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Abstract 39 

This study demonstrates the use of Multi-channel Analysis of Surface Waves (MASW) to measure changes in 40 

Rayleigh wave velocity relating to both the initial trench construction and subsequent simulated failures (water 41 

leaks) of a buried water-pipe. The MASW field trials were undertaken in conjunction with a wider suite of 42 

geophysical monitoring techniques at a site in South-west England, within an area of clayey sandy SILT. The 43 

Rayleigh wave velocity through a soil approximately equals the shear wave velocity, which in turn is 44 

predominantly dependant on the shear modulus of the soil (G) and this can be inferred to give a measure of the 45 

relative strength of a soil. It is proposed that the time-lapse measurement of Rayleigh wave velocity may be used 46 

to monitor ongoing changes in soil strength and therefore the MASW technique could perform a significant role 47 

in monitoring the initiation/progression of any internal processes within a geotechnical asset, before they would 48 

otherwise be identified through visual inspection alone.  49 
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1. Introduction 56 

The continued, successful operation of buried service infrastructure relies upon the support of the natural 57 

ground / engineered soils within which they are constructed. In turn, buried services and their host materials 58 

may themselves provide support for geotechnical assets such as roads, railways or embankments for example. 59 

Within heavily urbanised areas therefore, the failure of a service could result in the ongoing degradation and 60 

loss of strength of the surrounding soil, eventually leading to a catastrophic loss of support for any overlying 61 

infrastructure. Asset maintenance and repair is often guided by visual inspection, looking for changes at the 62 

surface, or intrusive means, which themselves can compromise the overall condition of a geotechnical asset. 63 

The ability to assess soil condition around a buried service or internal to a geotechnical asset without using 64 

traditional intrusive means of investigation such as trial-pitting, would mean that alternative methods of repair, 65 

or at least, targeted ground remediation could be employed, without the need to dig-up large areas of road and 66 

before issues have manifested at the surface.   67 

The combined network of statutory utilities beneath our city streets including water, sewer, gas and electric 68 

exceeds 1.5 million km, roughly five times the UK’s road network (Parker, 2008). According to the Asphalt 69 

Industry Alliance (AIA 2013), up to 2.2 million excavations were undertaken in 2015 to repair, maintain or 70 

upgrade this network at a combined social, economic and environmental cost of £7 billion per annum (McMahon 71 

et al., 2005; House of Commons, 2016). Survey methods capable of delivering anatomical ground condition 72 

information would revolutionise current remedial practice, enabling a greater range of optimised interventions 73 

as alternatives to excavation, and hence mitigate many of these disruptions.  Unfortunately, modern utility 74 

survey methods such as Ground Penetrating Radar (GPR) and electromagnetic locators (e.g. CAT & Genny), 75 

specialise in utility positioning and identification (The Survey Association, 2011) and provide little quantitative 76 

information about the ground conditions and potential disturbances caused, for example by damaged utilities 77 

and associated discharges.  78 

Common geotechnical monitoring approaches use sensors in small boreholes to directly monitor soil properties 79 

such as moisture content and pore water pressure. This is not always an efficient/effective means of relating the 80 

degree and spatial distribution of water saturation to possible water flow from a nearby leaking pipe, as such 81 

approaches include the expense of intrusive works, and only monitor a small volume of soil around the sensor, 82 

from which subsurface property changes may be quantified. Individual point sensors cannot provide continuous 83 

volumetric images of dynamic subsurface processes and a variety of different conclusions can be drawn about 84 

the cause of the ground disturbance, depending upon where the sensors are located. However, non-invasive 85 

imaging over surface-based arrays either buried just beneath the pavement or towed along the surface, offer 86 

the potential not only to provide leak early warning, but also to provide accurate location and condition 87 

monitoring of leak-affected ground.  88 

Geophysical methods that propagate seismic waves or electric current through, and holistically sample the 89 

ground, provide alternative approaches for anatomical imaging of ground properties around the utility. Time-90 



 

 

lapse electrical resistivity tomography has successfully captured complex structures and groundwater 91 

movements driving deterioration, even in heterogeneous environments, with a subsurface resolution 92 

significantly closer to the true in situ heterogeneity than achieved using conventional intrusive or point sensing 93 

(Chambers et al. 2007, 2013, 2014; Gunn et al. 2015a). Surface wave surveys provide a reliable means of non-94 

invasively imaging the shear wave velocity and associated stiffness distributions within engineered structures 95 

(Gunn et al. 2006; Gunn et al. 2016; Bergamo et al. 2016). Electrical and seismic imaging applications have been 96 

successfully adapted for use at increasing scales, e.g. from kilometric to decametric. But as yet, neither 97 

technique is routinely used at metric or sub-metric scales to assess buried utilities or the ground supporting 98 

them.  99 

Two very important parameters controlling the shear (and hence Rayleigh) wave velocity through soil are density 100 

and small strain stiffness (or modulus of shear). Stiffness is related to the shear strength of the solid framework 101 

matrix, which is strongly influenced by mineralogy, and hence, the size, shape, friction and interactions between 102 

adjacent grains comprising the soil skeleton (Gunn et al. 2003, Donohue & Long 2010). Density and shear 103 

strength are controlled by the degree of consolidation of the soil fabric, often expressed using the voids ratio or 104 

porosity, and the moisture content, often expressed as the proportion of saturation (Whalley et al. 2012, 105 

Consentini & Foti 2014). Grain-grain contact and friction increase and porosity decreases as a soil consolidates, 106 

for example with increasing burial depth. Hence, the rigidity of the skeleton increases as the soil densifies, 107 

resulting in a positive correlation between shear strength, stiffness and density (Foti 2003, Foti 2004, Richart et 108 

al. 1970, Ohta & Goto 1978, Hasancebi & Ulusay 2007, Robertson 2009). It is for this reason that the soil profile 109 

exhibits an increasing shear wave velocity with depth, and because different Rayleigh wave frequencies 110 

propagate in different soil depth intervals, the phase velocity is dispersive. Shear (and Rayleigh) wave velocity is 111 

not directly dependent upon shear strength, but because of these associations, it is seen as a non-invasive, 112 

qualitative proxy for assessing shear strength changes, especially in disturbed, landslipped ground and 113 

earthworks (Gunn et al. 2016, Uhlemann et al. 2016). In coarse grained soils, such as sand and gravel, the 114 

stiffness, shear strength and shear wave velocity are dependent upon the packing density of the soil grains, and 115 

are largely insensitive to saturation. However, in fine grained soils, such as the weathered Mercia Mudstone at 116 

Blagdon, these parameters are sensitive to both changes in density caused by consolidation and the fabric 117 

consistency (plasticity or deformability) controlled by saturation, usually with increasing saturation leading to 118 

reduced shear wave velocity. Hence, non-invasive shear wave velocity monitoring is a viable option for assessing 119 

the ground stiffness and its engineering performance in relation to strength, deformability and bearing capacity 120 

of utility pipes and geotechnical infrastructure. 121 

To this end, this paper presents the application of surface wave surveys to study the ground disturbances caused, 122 

firstly by trenching during the installation of a water pipe, and secondly by the ingress of water leaking from the 123 

pipe into the surrounding formation. Repeat surveys using the Multi-channel Analysis of Surface Waves (MASW) 124 

method were utilised: i. prior to the excavation, ii. after the water pipe installation and backfill, and then after a 125 



 

 

controlled iii. minor leak and iv. a major leak. The MASW technique provided shear wave velocity images of the 126 

ground about the water pipe, from which, with further ground density information, the ground stiffness could 127 

also be estimated. These MASW survey observations formed a component part of a larger study of the temporal 128 

and spatial ground property changes caused by the invasion into the formation of the water leaking from the 129 

pipe. Other observations of the events at this site included using: i. a non-invasive electrical resistivity 130 

tomographic imaging method to monitor the spatio-temporal evolution of the moisture invasion into the 131 

formation about the point of the leak in the pipe, and ii. a network of sensors installed in the trench to monitor 132 

the temporal changes in moisture content, temperature and electrical conductivity at specific point locations 133 

about the water pipe. While this paper focuses on the MASW method, associated papers by Curioni et al. (2018) 134 

and Inauen et al. (2016) describe the methods and results arising from observations on the sensor network and 135 

the Electrical Resistivity Tomography (ERT) array respectively.             136 

         137 

2. Experimental set-up 138 

2.1 Site location and host geology 139 

This study was undertaken within the grounds of Bristol Water’s Blagdon Pumping Station, which is located 140 

behind a dam on the west end of Blagdon Lake, Somerset, UK, Fig. 1. Blagdon is situated on the north flank of 141 

an eroded anticline, where water drains to the north through Carboniferous limestones of the Mendips into 142 

Blagdon Lake, which is situated on the Sidmouth Mudstone Formation of the Mercia Mudstone Group. The 143 

Sidmouth Mudstone is characterised by red-brown mudstone and siltstone, sometimes reduced to grey-green, 144 

Fig. 1a. The experimental installation required pitting to 1.2 m deep, which revealed weathered and disturbed 145 

ground including what appeared to be red-brown, soft to stiff clayey SILT with gravel and cobble-sized, dolomitic 146 

SILTSTONE and lithorelicts of what was probably the original, unweathered MUDSTONE, Fig. 1a. The site was 147 

situated in a flat, grassed area under the canopy of several large fir trees, and the ground contained a loose 148 

network of roots ranging from 1 mm to 100 mm in diameter. The canopy and water uptake from the trees 149 

resulted in ground appearing relatively dry in the near surface, especially within the topsoil, Fig. 1a. 150 

2.2 Water pipe installation and monitoring configurations 151 

A pit 8 m by 1.2 m by 1.2 m deep was dug, in which an 8 m long, standard 25 mm OD MDPE water pipe was run 152 

between two stop cocks at a depth of 0.7 m, Figs. 1b, c. One end of the pipe was connected via the stop cock 153 

and a flow meter to the water mains network, which had an operating pressure between 1 and 6 bar (100 – 600 154 

kPa), while the other could be open ended or closed, controlled by its stop cock, Fig. 1c. The leak was simulated 155 

by a small 3 mm diameter hole, facing upwards, drilled into the pipe at a point between the two stop cocks. The 156 

trench was back-filled with the soil originally excavated and re-compacted using a plate compactor and digger 157 

bucket, Figs. 1b, d. The backfill was progressed in a sequence of ~200 mm thick layers, which resulted in the 158 

ground surface of the backfilled trench being approximately level with the surrounding ground.  159 



 

 

Fig. 2 shows the layout of the 7 parallel, 36 channel, MASW arrays (including the shot locations for the far west 160 

line) relative to the back-filled trench with the centrally located leak point. The three central arrays were located 161 

over the excavated zone, with outer array pairs to the east and west located over the host formation.  The 162 

findings in this paper are supported by some observations made on the sensor network (Curioni et al. 2019) and 163 

over the electrical resistivity grid (Inauen et al. 2016) also undertaken over this trench. The sensor network was 164 

installed during the backfilling process, at the leak location around the pipe at various depths within the soil 165 

column. This network was at the centre of the MASW arrays and included: temperature sensors and Time 166 

Domain Reflectometry (TDR) probes to measure soil moisture and electrical conductivity (Curioni et al. 2017). 167 

The sensor sampling interval was four hours, except during leak tests when the rate of sampling was increased 168 

to once per hour. Fig. 2 also shows the footprint of an electrical resistivity array comprising a 6 m x 6 m grid of 169 

169 steel electrodes spaced at 0.5 m. Electrical resistivity tomography images were gathered using a PRIME 170 

(PRoactive Infrastructure Monitoring and Evaluation, Gunn et al. 2015a) system every 4 hours during the leak 171 

tests reported in this paper and every 4-6 hours at other times between April 2016 and October 2016.  172 

2.3 Engineering geology of the site 173 

25 mm diameter moisture-density rings were gathered from the trench wall in the upper 1.2 m near to the leak 174 

location, Fig. 3a, with further rings also gathered from the backfill. The trench was refilled using most of the 175 

original excavated material, resulting in broadly matching formation and backfill dry densities, but with a slightly 176 

drier backfill (c.f. Volumetric Water Content (VWC) in Fig. 3a). The matrix porosity, (estimated using a grain 177 

density of 2.66 Mg.m-3), was around 49 – 55% which, combined with a highly fissured soil mass was consistent 178 

with the dry appearance. (N.B. index tests were on intact matrix material).  The undrained shear strength of the 179 

intact formation matrix was tested with a hand shear vane. A strength range of 100 – 150 kPa was consistent 180 

with a stiff soil matrix, but one that appears to be highly to completely weathered and disturbed with much 181 

destructuring and fissuring of the original mudrock. Simple Guelph permeameter tests just beneath the topsoil 182 

were either aborted due to no measurable fall in the head or indicated hydraulic conductivities up to 10-5 m.s-1 183 

normally associated with sandy soils, but which was consistent with highly fissured Mercia Mudstone reported 184 

by Hobbs et al. (2002).  185 

Compaction and soil-moisture characteristic curves were also measured on remoulded material taken from the 186 

excavation, Fig. 3b, and Table 1 provides a summary of the soil geotechnical properties tested. Although the in 187 

situ formation appeared dry, the plasticity chart (Fig. 1a) indicates that the samples taken from the formation 188 

behaved as a high plasticity, SILT of low density and high moisture content, consistent with highly 189 

weathered/destructured Mercia Mudstone (Hobbs et al. (2002)). [N.B. SAND/SILT/CLAY were indicated as 190 

approximately equal grain size fractions via wet sieving and sedigraph testing. The SAND fraction is considered 191 

likely to represent the incomplete breakdown of CLAY/SILT agglomerations and a significant SAND fraction is not 192 

observed using the dried/crushed bulk material (passed through a 2mm jaw-crusher), as used for the laboratory 193 

moisture content-resistivity experiments discussed below.] The backfill was compacted to a density (dry density 194 



 

 

= 1.25Mg.m-3) that was below optimum at a relatively low moisture content (VWC=31%), and, projecting this 195 

condition onto the soil-moisture characteristic curve in Fig. 3c would indicate suctions of several thousand kPa, 196 

but which would dissipate to only 10’s of kPa on saturation of this material. As both saturation (Whalley et al. 197 

2012) and suction (Consentini & Foti 2014) control soil stiffness, detection of their effects on the soil shear wave 198 

velocity was a key challenge of these MASW trials.  199 

 200 

Table 1: Geotechnical properties of sample materials taken from the MASW/ERT test trench at the Blagdon test 201 

site, Somerset, UK. 202 

2.4 Multi-channel analysis of surface waves (MASW) survey method 203 

MASW surveys use the seismic field records gathered using the same receiver array configuration adopted in 204 

shallow seismic refraction and reflection surveying (Park et al. 1999), Fig. 4a. Our MASW surveys employed a 205 

light hammer (0.6 kg) and plate (100x100x20 mm) source, capable of providing a broad range of frequencies 206 

from 10 Hz up to 80 Hz, Fig. 4b. Two-thirds of the total seismic wave energy generated by a vertical impact 207 

propagates as Rayleigh waves (Richart et al., 1970; Gunn et al., 2012). These are observed as the ground surface 208 

roll that radiates from the vertical impact and are utilised in surface wave surveys. The shear wave velocity is 209 

approximately 1.1 times the Rayleigh wave velocity and is controlled by the small strain stiffness and density of 210 

the soil (Richart et al. 1970; Gunn et al. 2016). Rayleigh waves propagate with a reverse-ellipsoid particle motion 211 

within different depth intervals in the ground shown in Fig. 4a. Higher frequencies propagate within shallower, 212 

slower intervals and lower frequencies through deeper, faster intervals. For this reason, Rayleigh waves are 213 

dispersive and the ground stiffness or shear wave velocity can be imaged using field methods that propagate 214 

multi-frequency Rayleigh waves. 215 

Using an ABEM Terraloc Mk6 field seismometer, the field records were gathered along static linear arrays 216 

comprising 36No. 10Hz geophones spaced at 0.3 m (Fig. 4a & b). These array dimensions faithfully captured 217 

wavelengths from 0.5 m - 20 m, enabling measurement of phase velocities from 40 m.s-1 - 200 m.s-1. Fig 4a also 218 

describes the shot sequence used for each array of 36 geophones,  including a 1.2 m offset, Source 1, an end of 219 

geophone line, Source 2, with a further 5 inline sources located after every 4th geophone (1.2 m intervals).  220 

Three shots were recorded and stacked at each source location and Fig. 5a shows an example of a 36-channel 221 



 

 

field record, from which the nearest 12 channels were selected for MASW processing.  This involved application 222 

of a slowness transform to calculate the phase velocities from the time delays for the energy that propagated 223 

through the array group within a series of discrete frequency bands across the 10 – 80 Hz bandwidth (McMechan 224 

& Yedlin 1981; Park et al. 1999). Fig. 5b shows a phase velocity-frequency characteristic typical of a 12-geophone 225 

group, also known as a field dispersion curve, which were inverted to produce a series of shear wave velocity-226 

depth profiles, located at the mid-point of each geophone group (distributed at 1.2 m centres), as indicated in 227 

Fig 4a. Construction of each profile involved attribution of a factored shear wave velocity (usually 1·1 times 228 

Rayleigh wave velocity) to a depth equivalent to a fraction of the Rayleigh wavelength (Foti, 2003; Joh, 1996), 229 

Fig. 5c. A depth equivalent to one third the wavelength is most commonly used because a significant proportion 230 

of the particle motion in the ground associated with Rayleigh wave propagation is approximately at this depth 231 

(Gunn et al., 2006; Joh, 1996; Richart et al., 1970). Vertical 2D sections were constructed along each array by 232 

contour infilling using anisotropic inverse distance weighting over a grid between each of the 7 shear wave 233 

velocity–depth profiles collected along each geophone array (Gunn et al., 2016). Equivalent small strain stiffness 234 

logs and sections can also be estimated using the product of the square of the shear wave velocity and the bulk 235 

density, where for example, the bulk density can be estimated from the profile sampling using simple density 236 

rings.  237 

3. Impact of excavation, backfill and water leaks on ground properties 238 

3.1 Monitoring Schedule  239 

Table 2 summarises the MASW survey schedule in relation to the trench excavation and other investigations on 240 

the sensor network, which included time-lapse ERT monitoring, Cone Penetration Resistance testing (CPT) and 241 

Terrestrial Laser Scanning (TLS) of the ground surface. Effects of both the excavation and backfilling of the 242 

trench, as well as leak water ingress on the ground’s shear wave velocity have been assessed using 7 MASW 243 

arrays and five CPT profiles to a depth of 2.25 m (but initially 3.5 m into the “undisturbed” formation), spaced 244 

along line array No. 3 (see Fig. 2). The trench (Trench 2 in Fig. 2) was excavated and backfilled 20-23 Oct 2015 245 

(along with another trench used for further tests discussed in Curioni et al., 2019), which was when the 246 

formation and backfill samples were gathered for the geotechnical property tests (Fig. 3). The ground level about 247 

the trench was scanned shortly after both the excavation and backfilling using a FARO X330 laser scanner. The 248 

latter level was the baseline against which further scans could indicate subsequent ground consolidation or 249 

swelling.  250 

The impact of the excavation and backfill were investigated via comparison between the MASW surveys and 251 

CPT profiles gathered in September 2015 and again in November 2015. A further comparison between the Nov 252 

2015 and the pre-leak surveys undertaken in April 2016 enabled further assessment of any progressive ground 253 

velocity changes that occurred over the 2015-16 winter. Comparison of the April 2015 pre- (19 April) and post-254 

leak surveys (22 April) enabled the impact of a minor leak of 2.095 m3 of water into the host ground on the 255 



 

 

ground velocity distribution to be assessed. Similarly, the impact of a major leak of 20.68 m3 (order of magnitude 256 

greater) was assessed via comparison of the Aug 2016 pre- (8 Aug) and post-leak (11 Aug) surveys.  257 

 258 

Table 2 MASW test timeline relative to trench excavations, leak tests and other monitoring. N.b. Pre-Trench & 259 

Post-Trench ERT profiles were acquired using an AGI SuperSting meter and surface electrode array. Additionally 260 

Post-Leak MASW surveys were undertaken 1-2 hours prior to the leak being turned off. 261 

3.2 Impact of excavation and backfilling on shear wave velocity and stiffness 262 

The ground property changes caused by the trenching and water ingress during these trials are captured in both 263 

1-D velocity-depth and cone penetration resistance-depth logs (Fig. 6), as well as in 2D geophysical property 264 

change sections along the longitudinal axis of the trench (Fig. 7), which present the percentage change in velocity 265 

(and resistivity) between the time of measurement and the Pre-Trench baseline velocity model constructed from 266 

the September 2015 survey. Using a time-lapse sequence of logs/sections, an interpretation of the processes 267 

driving these property changes is presented relative to three depth intervals. These intervals include: i. the 268 

‘Trench’ in the upper 1.2 m, ii. a ‘Sub-Trench’ interval extending from the base of the trench (1.2 m) to the top 269 

of a fully saturated interval, estimated at around 2.2 m, beneath which, the interval was denoted iii. the 270 

‘Formation > 2.2 m’. Tests on auger arisings confirmed moisture contents of 45 % Gravimetric Water Content 271 

(GWC, or approx. 54 % VWC, i.e. full saturation of all pore spaces – see Table 1) between 2.25 m and 2.75 m 272 

depths in this lower interval.  273 

The CPT data has been smoothed using a 9 point moving average to remove the chatter of lower spatial 274 

variability encountered (when driving through siltstone cobbles for example), in order to better represent the 275 

bulk soil mass changes due to the trenching and leak testing. Apart from a greater resistance in the original 276 

formation over the upper 0.3 m, which is largely attributable to a topsoil toughened by an unbroken root mat, 277 

CPT measurements taken show good overlap from 0.4 m to 1.2 m through the Trench interval between the ‘Pre-278 

Approx. Total

Ground Flow Leak

MASW Survey CPT Surface Buried Sensor Network ERT Rate Volume

 Timeline Profiles LIDAR Data Timeline Images  Leak Times Start End lt/min m
3

Pre-Trench Y N 23-Sept-2015 No Sensor Data
Y - 

Sting *
N/A

Post-Trench Y Y 12-Nov-2015 12:00 & 16:00
Y - 

Sting *
N/A

Pre-Leak Y Y 19-Apr-2016  18:00 Y
Leak Started @ 10:00      

21-Apr-16
0.09 1.5

Syn-Leak N N 21-Apr-2016 17:00 & 18:00 Y 0.65 0.72 1.5

Post-Leak Y Y 22-Apr-2016  10:00 Y
Leak Turned off @ 15:45 

22-Apr-16
2.08 2.185 1.5 2.095

Pre-Leak Y Y 08-Aug-2016  16:00 Y
Leak Started @ 18:25      

08-Aug-16
2.76 6.4

Syn-Leak N Y 09-Aug-2016  12:00 Y 13:00 09-Aug-16 8.56 9.03 5.0

Post-Leak Y Y 11-Aug-2016 12:00 & 16:00 Y 14:17 11-Aug-16 22.48 22.735 4.9

Leak Turned-off @ 18:05 

11-Aug-16
23.44 4.3 20.68

Meter Reading



 

 

Trench’ (Sept 2015) and the ‘Post-Trench’ (Nov 2015) profiles, with similar densities noted between the 279 

backfilled material and original formation (Fig. 6a).  The increased penetration resistance noted at ~0.5m depth 280 

(Fig 6a-ii), is likely to relate to the presence of a persistent siltstone band or “skerry” within the original formation 281 

(as shown in Fig. 1a). Greater resistance throughout the Sub-Trench, post excavation (see Fig. 6A and highlighted 282 

area >3.5 MPa cone resistance-Fig. 7b (‘Formation-Nov 2015’)), is attributed to consolidation over this interval 283 

in response to compaction of the lower layers of the trench fill. Note that there appears to be later relaxation, 284 

especially just below the base of the trench, for example in response to subsequent leak water ingress. 285 

Initial CPT logs to characterise the “undisturbed” Formation indicate a laterally continuous area of low cone 286 

penetration resistance (<2.5 MPa), observed at depths in excess of 2.25 m, Fig. 6a-i (Pre-/Post-Trench) and up 287 

to 3.25 m depth elsewhere in the site. This corresponds to the apparently fully saturated Formation materials, 288 

as determined from auger arisings collected during trench excavation. Whilst further CPT profiles collected 289 

during subsequent monitoring intervals do not extend into this zone, it appears to be coincident with a persistent 290 

low velocity zone characterising the upper Formation materials defined from the MASW data between 2.25 m 291 

and 3.5m depth, Fig. 6, with velocities in excess of 150m.s-1 characterising materials at depths greater than 4m. 292 

3.2.1 Impact of trench on MASW; Sept 2015 – Nov 2015 293 

Comparison is made between the 23 Sept 2015 (Pre-Trench (Fig. 6a-velocity section)) and 12 Nov 2015 (Post-294 

Trench (Fig. 6b-velocity change section)) measurements to assess the early effects of the trench, avoiding any 295 

later progressive effects, due for example, to the different responses of the formation and the backfill to natural 296 

moisture infiltration over the 2015-2016 winter. Between the 3-7 m stations, in the centre of the trench where 297 

the greatest compaction of the backfill materials could be achieved, velocity differences were within +/- 5-10 298 

m.s-1 (Fig. 6a), which is <10% change (Fig. 7b), confirming that the backfill material was re-compacted to a density 299 

approximating that of the undisturbed formation. However, notable differences can be seen on the North side 300 

of the trench, where pre-trench velocities are reduced by over 20% in the near surface. Research in this area, 301 

e.g. by Foti & Lanellotta (2004) and Consentini & Foti (2014) generally show shear wave velocities to be reduced 302 

by ground disturbances and a lowering of density. This may be the case here, with difficulties encountered when 303 

compacting the fill at the ends of the trench around the inspection chambers for the stopcocks, but there may 304 

also be other factors contributing to the velocity reduction, for example related to dissipation of the backfill 305 

suctions into the autumn. Note, there was just over a 10% increase in the low velocity formation underlying the 306 

Southern end of the trench, corresponding with the area of increased cone penetration resistance indicated in 307 

Fig 7b. 308 

3.2.2 Further Changes Nov 2015 – April 2016 309 

The 2015-2016 winter was particularly wet with above average rainfall in Blagdon, but no swelling of the trench 310 

fill relative to the formation was observed via comparison of the 12 Nov 2015 and 19 Apr 2016 ground surface 311 

scans. However, a line of sensors to the side of the pipe near the leak situated at all depths (10, 35, 60, 80, 100 312 

and 120 cm-see Fig. 8a, b) registered increasing moisture content over the Trench interval. In particular, heavy 313 



 

 

rainfall in Jan 2016 resulted in significant infiltration and a rapid increase in saturation to over 65% in the topsoil 314 

and at the base of the trench and up to 80% at around 60 cm depth.  Such moisture increases would certainly 315 

lead to dissipation of the pore suctions in the fill. There is considerable contrast in the velocity in the Trench 316 

interval between Sep 2015 (Pre-Trench) and April 2016 (Pre-Leak) velocity/penetration resistance-depth profiles 317 

(Fig. 6b) and MASW velocity change section (Fig. 7c). By April 2016, the shear wave velocity distribution 318 

throughout the backfill in the Trench Interval between the 4 m and the 9 m stations had fallen to 80 - 100 m.s-1, 319 

a 30% change, which was attributed to softening (i.e. lowering of the stiffness) of the fill in response to rain 320 

infiltration. With a bulk density, circa 1.55 Mg.m-3, a velocity of 80m.s-1 equates to a fill stiffness < 10 MPa. Such 321 

fill would be highly susceptible to consolidation and deformation, and hence, completely unsuitable for 322 

supporting roads or buildings. Note also, a 10 – 20% reduction in the velocities attributed to the ‘Sub-Trench 323 

1.2-2.2 m’ and ‘Formation > 2.2 m’ to 3 m depth intervals (Fig. 7c). Again, increased saturation, certainly over 324 

the Sub-Trench 1.2-2.2 m interval would have contributed to reduced velocities in this zone (i.e. falling to 325 

between 110 – 130 ms-1-Fig. 6b). 326 

3.3 Impact of water ingress from leaking pipe 327 

3.3.1 Minor Leak 328 

The minor leak began at 10.00 on 21 April 2016. The 1.5 litres per minute flow rate was maintained until the 329 

leak was stopped at 15.45 on 22 April 2016. Over this period, 2.095 m3 of water discharged from the 3 mm hole 330 

in the pipe, situated mid-trench at 0.7 m depth into the surrounding fill and formation. The Post-Leak MASW 331 

survey was undertaken at 10.00 on 22 April 2016. A negative change in the time-lapse resistivity image indicates 332 

increases in moisture, where the magnitude of the change is also indicative of the increase in saturation (Inauen 333 

et al. 2016). Referring to the ‘April 2016 Leak’ image sequence in Fig. 7d, there appears to be a narrow funnel 334 

(possibly < 0.75 m diameter in places) constraining the drainage of water from the hole in the pipe, through the 335 

lower ‘Trench’ and ‘Sub-Trench’ intervals into the fully saturated ‘Formation > 2.2 m’ interval. At this depth 336 

(approx. 2.2 m), the leak waters appear to drain laterally (as well as vertically). The lateral drainage appears to 337 

develop increasingly after a delay of 8 hours. The unsaturated hydraulic conductivity of the lower Sub-Trench 338 

interval is likely to be greater than the conductivity through the saturated Formation (>2.2 m), thus leading to 339 

lateral flow just above this lower level. The diameter of the drainage plume in the Formation (>2.2 m) grows 340 

with time, growing to beyond 3 m around a day after the leak began. Development after the first day of reduced 341 

resistivity above the pipe was likely due to suctions driving moisture movement into the shallow trench-fill 342 

materials. This is consistent with the moisture sensors at 100 and 120 cm depths recording full saturation (VWC 343 

48 – 50%) shortly after the start of the leak, whereas the sensor at 35 cm shows a more gradual moisture 344 

increase, Fig. 8c (top image).    345 

The reduced penetration resistance extending from the leak at 0.7 m depth to the top of the Formation (Fig. 6b-346 

ii), is consistent with reduced soil consistency (softening) due to increased moisture over this interval (however, 347 

it should be stressed that the differences may also be caused by rain as well as leak water infiltration). While 348 



 

 

overall shear wave velocity distribution throughout the trench materials appears to be largely unaffected by the 349 

minor leak, the most significant reduction of up to 15% or around 15 m.s-1 is mapped below the leak between 2 350 

– 3 m depths (Sub-Trench/Formation), Fig. 7c, which occurs in-line with the apparent “funnelling” evident from 351 

the ERT measurements, Fig. 7d. A pronounced reduction in penetration resistance, particularly in the Sub-Trench 352 

materials (Fig. 6b-ii), indicates that soil consistency and stiffness in the zone affected by the drainage plume 353 

were reduced. The magnitude of the velocity reduction within the trench materials is small however and only 354 

slightly greater than the velocity measurement errors (estimated at +/- 5 m.s-1) and although it was concentrated 355 

below the leak location, the subsequent effect of a further 2.095 m3 of water appears to have been largely 356 

masked by the preceding heavy winter rainfall (Fig. 9).  357 

3.3.2 Major Leak 358 

The major leak began at 18.25 on 8 Aug 2016. Flow rate at the beginning of the test was 6.4 litres per minute, 359 

reducing to around 5.0 litres per minute after the first day, but never going lower than 4.3 litres per minute 360 

during the test. The leak was stopped at 18.05 on 11 Aug 2016 after 20.68 m3 of water had discharged into the 361 

fill and formation. The post-leak MASW survey was undertaken at 16.00 on 11 Aug 2016. Referring to the ‘August 362 

2016 Post-Leak’ Resistivity Change image in Fig. 7f, a bulb of around 2m in diameter developed beneath the 363 

point of the leak. Removal of the leak water at this flow rate was not accommodated via drainage alone (as 364 

observed in the previous minor-leak test where ERT indicated the formation of a vertical drainage funnel 365 

developing through the trench fill, before lateral dispersion of the water became apparent into/through the sub-366 

trench materials (1.2. – 2.2m)), and would have included additional lateral and upwards infiltration into the 367 

backfill (c.f. April 2016 Leak (Fig. 6d) and August 2016 Leak (Fig. 6f)). Successive resistivity images chart the 368 

progressive dilation of this bulb (Inauen et al., 2016), which appears to grow continually during the test, reaching 369 

a maximum lateral diameter of 3 – 4 m, consistent with the zone equating to a 20% reduction in measured Vs 370 

(Fig. 6e). Water broke the ground’s surface 68 hours after the leak began (after ~20 m3 of water discharged). We 371 

suspect that the bulb geometry would stabilise at some point, for example to accommodate relatively steady 372 

saturated flow from the pipe, up and out into the surrounding fill/formation to eventually flow into the saturated 373 

soils in the Formation > 2.2m interval. 374 

Post-leak CPT measurements indicate that the penetration resistance of the trench-fill materials is 375 

homogenously low (2 MPa) to a depth of 1 m, and below this, in the ‘Sub-Trench’ interval (1.2 – 2.2 m), 376 

penetration resistances are in-line with the “relaxed” materials (Fig. 6c-ii). This correlates well with the shear 377 

wave velocities of 65 – 100 m.s-1 observed from the MASW data for much of the ’Trench’ zone (Fig. 6c-i). The 378 

exception to this is at the southern end of the trench, where higher velocities of up to 125 m.s-1 are observed at 379 

the base of the ‘Trench’ and in the ‘Sub-Trench’ to the south (Fig. 7e). The increased velocities within this 380 

southern ‘Sub-Trench’ zone are believed to relate to increased sunlight due to the reduced canopy above the 381 

southern part of the trench, in addition to the summer increase in water-uptake from the ground by the large 382 

conifers present at the test-area. 383 



 

 

The time-lapse ERT and post-leak MASW velocity profiles indicate that a symmetrical pattern of low shear wave 384 

velocity develops around the leak position, extending through the ‘Sub-Trench (1.2 – 2.2m)’ materials and into 385 

the formation below to a depth of 3.5m below the leak position itself, where shear wave velocities of 115 – 125 386 

m.s-1 (a reduction of 10%) are evident (Fig. 6c – Aug 2016 Post-Leak). Much of the trench-fill (<1.2m) is 387 

characterised by velocities lower than 100 m.s-1, with the lowest velocity of 65 m.s-1 evident around the leak 388 

position itself (Fig. 6c and Fig. 9 – Trench at Leak - August 2016). Assuming a bulk density of 1.55 Mg.m-3 would 389 

mean that the small-strain shear modulus (stiffness) of the upper trench fill materials may be reduced from 13 390 

MPa to <8 MPa over the course of the leak experiment (<72 hours), presenting a potential loss of support to any 391 

overlying infrastructure. 392 

The major-leak experiment significantly elevated the VWC of much of the trench fill and underlying materials to 393 

levels above the characteristic seasonal VWC. Whilst the reduction in shear wave velocity is most pronounced 394 

in the southern half of the trench (MASW stations 4 – 8 m) where a reduction in velocity in excess of 20% is 395 

observed (Fig. 7e), there is little or no change in the velocity characterising the fill materials in the northern half 396 

of the trench other than relating to the wetting up of the trench materials post back-fill (Fig 7e), which remained 397 

around 90 m.s-1 throughout the test (Fig. 9 - Trench-South of Leak (August 2016)). While it is possible that leak 398 

water did not penetrate this far, consistent low velocities in this zone from the minor leak test undertaken in 399 

April 2016 (after a very wet winter), may also indicate the fill in the northern half of the trench has remained at 400 

near saturation throughout both monitoring periods. Water from the leak does not appear to have much effect 401 

on the (“undisturbed”) formation materials adjacent to the trench however, where little or no reduction in Vs is 402 

observed (Fig. 9 - Formation East/West of Trench - August 2016). 403 

TDR probes buried in the vicinity of the leak indicate a VWC for the bulk of the fill material of 30-35% prior to 404 

the leak (Fig. 8c – bottom), which would equate to soil suctions of several thousand kPa based on the SWCC 405 

determined for the trench fill material (Fig. 3c). During the leak VWC’s of 50 – 55% are observed, suggesting that 406 

suctions would dissipate rapidly to a few hundred kPa, before recovering slightly post-leak, where an increased 407 

VWC of 35-40% is observed (after Curioni et al., 2019).  408 

4. Relevance of this Technology to Network Monitoring  409 

Leaks are often suspected after noticeable pressure drops between network nodes and lead to visual inspections 410 

and use of listening sticks to fine-tune the leak location. However, these may have limited use in urban settings 411 

where engineered pavements and city noise obscure the audio or visual signs of leaks. Where leaks cannot be 412 

accurately located on the water network, observation of ground disturbances they cause often provides a 413 

secondary proxy to their existence. As perception of the problem always follows detection of the disturbance, 414 

approaches relying upon surface manifestations will always detect the problem later that those making sub-415 

surface observations. Thus, approaches based on surface observations will always encounter greater ground 416 

disturbances, which will be exacerbated where these signs have been masked, e.g. by tarmac pavements as in 417 

the urban environment.  418 



 

 

Qualitative analysis of GPR data can be used to inform further invasive investigation, but with increased 419 

acceptance, other geophysical methods could also inform design and monitor efficacy of more sophisticated, 420 

customised interventions. Improved understanding and quantification of the relationship of shear wave velocity 421 

to engineering properties, such as stiffness and density would increase acceptability and use of surface wave 422 

surveys. This method would benefit from a better understanding of how these properties change with the 423 

consistency of key UK soils. Early focus should include the control of moisture content on both matrix and clast 424 

supported fill, for example mapping shear wave velocity onto consistency, and identifying threshold values of 425 

velocity and stiffness associated with critical shrinkage, plastic and liquid limits of fine-grained materials (of 426 

various plasticities). The contribution of suction to undrained shear strength also requires further study, 427 

especially to quantify its relationship to velocity and stiffness and their sensitivity to saturation, such as from 428 

leaks. Convincing and timely delivery of this information from the research community to the buried asset 429 

owners would stimulate the take up of surface wave surveys as part of routine monitoring and management 430 

practice. Streamed, time-lapse velocity or stiffness images could provide performance metrics as part of a 431 

smarter asset network, offering the potential for earlier detection of deterioration, improved ground 432 

disturbance mapping, more timely and better optimised intervention. 433 

5. Conclusions  434 

MASW surface wave surveying provides a rapid, portable and non-intrusive tool to assess the condition of the 435 

ground supporting buried infrastructure. The method yields shear wave velocity and ground stiffness 436 

information, providing a useful input to characterize static and dynamic loads.  Using closely spaced geophones, 437 

2D sections can be built up from a series of inline velocity–depth profiles spaced at intervals suitable for 438 

capturing the heterogeneity even on a sub-metric level. Similarly, pseudo 3D models can also be built up via 439 

combination of 2D sections. In this manner, MASW arrays can be scaled to capture the complex heterogeneity 440 

associated with urban settings and artificial ground.  441 

Relatively high frequencies generated from a lightweight, impulsive source enabled investigation of the shallow 442 

subsurface in which buried utilities are located. Survey measurements are repeatable, making these methods 443 

very suitable for long term monitoring of asset condition and deterioration. Shear wave velocity or stiffness 444 

changes provide a proxy for monitoring the effect of ground disturbances associated with trenching and water 445 

ingress on the strength and supporting capacity of the ground. Ground disturbances causing low velocity (or 446 

stiffness) anomalies can be localised on MASW images with high spatial resolution. Anatomical imaging is 447 

possible, including the location of stiffness contrasts between backfill and formation, and early identification of 448 

progressive ground disturbances following water leaks. Shear wave velocity reductions of up to 10% were 449 

observed in ground disturbed by a minor leak, and reductions of up to 25% in ground disturbed by a major leak. 450 

While this case study used spiked geophones, deployment of towed streamers would enable more rapid surveys, 451 

making the MASW method a useful reconnaissance and monitoring technique. Also, the non-invasive nature of 452 

MASW enables imaging through engineered pavements. Hence, MASW methods can contribute to reducing the 453 



 

 

level of disruption associated with street works, firstly during survey, which requires no excavation, and also 454 

improved quantification and localisation of the affected ground gained from sub-surface shear wave velocity 455 

images widens the intervention options, which in the very least can lead to smaller, more focused trenches. 456 
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Figure 1. Site location, host geology and water pipe installation. 

a. Pit section: showing weathered and disturbed Sidmouth Mudstone Formation. Red-brown clayey SILT, weathered to 

grey-green with blue-green coarse gravel sized SILTSTONE. 

b. Two pits excavated at site; dimensions 8 m x 1.2 m x 1.2m. Foreground: Pit 2; Top-Right: Pit 1.  

c. Water pipe installation: 32 mm OD MDPE pipe with 3 mm diameter hole located mid-length (in front of person in pit); 

Foreground: flow meter and stopcock. 

d. Backfilling: most of the excavated material was compacted back into the trench using a wacka plate (1b above) and the 

digger bucket. 



 

 

 
Figure 2. Monitoring instrumentation configurations for MASW, sensor network and electrical resistivity tomography. 

(For method and full results of sensor network monitoring see Curioni et al. 2019). 

 

 



 

 

 
Figure 3. Geotechnical properties of in situ and remoulded samples from the formation and backfill. 

a. Density, moisture content and plasticity of samples taken from formation and backfill. 

b. Standard Proctor compaction curve on remoulded site material: Optimum Dry Density: 1.40 Mg.m-3 at 28 % GWC. 

c. Wetting and drying moisture-suction scanning curves or remoulded site material. 

 



 

 

 

Figure 4. MASW survey using a standard field refraction seismic geophone array set-up 

a. Schematic overview of geophone array and field seismic recorder required for MASW survey, with relative positions of 

1D profiles used to generate 2D sections along each static geophone array indicated. The highlighted geophones correspond 

to the 12 No. “Group 2” geophones used to record the Rayleigh waves generated by “Source 2”. Geophones placed at 0.3m 

centres, with 1.2m between shot (and therefore 1D profile) locations. 

 

b. Photo showing the geophone arrays deployed at the field site. Reference pegs were left in place between surveys to aid 

re-occupation of geophone/shot locations. An array of 36 (yellow) geophones is shown deployed along Array 7 to the east 

of the trench (the extent of which is highlighted in grey, centred on Array 4), with the first geophone group also identified. 

The hammer and plate source are in the fore ground with the trigger cable running to the orange seismograph system (by 

the tree). 

 



 

 

 

Figure 5. MASW processing steps to calculate velocity-depth logs and sections. 

a. Field record showing refracted and Rayleigh wave: 12-channel group extracted to construct dispersion curve and velocity 

profile.  

 

b. Phase velocity – frequency transform for 12-channel group: Rayleigh wave picked at maximum intensity (darkest) of low 

velocity feature.  

 

c. Factored S-wave velocity-depth profile plotted at group mid-point: Depth equivalent to 1/3 wavelength. 

 

 

 

 

 

 

 

 

 



 

 

 
Figure 6. 1D Vs- (top) and Penetration Resistance (bottom)-Depth profiles associated with;  

A-Pre-Post Trenching,  

B-Pre-Post April (2016) Leak Test and  

C-Pre-Post August (2016) Leak Test.  

 

All 1D profiles refer to a position within the trench immediately adjacent to the leak location (Line 04 (Shot 04)). Vs-Depth 

profiles constructed as shown in Figure 5. 

 

 

 



 

 

 
 

Figure 7. Changes in shear wave velocity (Vs) and resistivity in response to excavation and backfill and ingress of leak 

water from pipe. Velocity section for September 2015 (Pre-Trench) is used as a reference to assess change in velocity for 

the subsequent measurements. The same reference period is also used for the ERT data presented (see Inauen et al., 

2016 for details) 

a. September 2015 (Pre-Trench) – Measured Vs (m.s-1). 

b. November 2015 (Post-Trench) – Vs Change (%) 

c. April 2016 (Pre-Leak (Upper)) & Post-Leak (Lower) - Vs Change (%) 

d. April 2016 Leak (2.54m3) – Resistivity Change (%) 

e. August 2016 (Pre-Leak (Upper)) & Post-Leak (Lower) - Vs Change (%) 

f. August 2016 Leak (19.8m3) – Resistivity Change (%) 

  



 

 

 

 
 

Figure 8. Time series measurements on TDR sensors prior to and during minor leak.  After Curioni et al. (2019) 

a. Estimated density and saturation changes within the trench intervals during the period January 2016 to October 2016. 

b. Sensor location in relation to pipe (and leak) within trench (Top). Bottom - decommission of Trench shows relative 

position of upper sensors. 

c. Volumetric moisture content time series measurements on TDR sensors during minor leak (April 2016 – Top) and major 

leak (August 2016 – Bottom).  



 

 

 
 

Figure 9. Comparison of average Vs derived from MASW analysis of the upper 1.2m (equivalent to the thickness trench 

back-fill materials).  

Error bars equate to a maximum error of +/- 5m.s-1 in determining Vs. For the leak tests, coloured bars equate to the 

observed velocity (+/- error) of the “syn-leak” measurement for comparison with pre- and post-leak velocities.   


