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SUMMARY 10 
 11 
Recent pore-scale observations and geomechanical investigations suggest the lack of true 12 

cohesion in methane hydrate-bearing sediments (MHBS) and propose that their mechanical 13 

behavior is governed by kinematic constrictions at pore scale. In this paper, we present a 14 

mechanical model for MHBS, which does not rely on physical bonding between hydrate 15 

crystals and sediment grains but on the densification effect that pore invasion with hydrate has 16 

on the sediment mechanical properties. The Hydrate-CASM extends the critical state model 17 

CASM (Clay and Sand Model) by implementing the subloading surface model and introducing 18 

the densification mechanism. The model suggests that the decrease of void volume during 19 

hydrate formation stiffens the sediment structure and has a similar mechanical effect as the 20 

increase of its density. In particular, the model attributes stress-strain changes observed in 21 

MHBS to variations in void volume due to hydrate formation and its consequent effect on 22 

isotropic yield stress and swelling line slope with hydrate saturation. The model performance 23 

is examined against published experimental data from drained triaxial tests performed at 24 

different confining stress and with distinct hydrate saturation and morphology. Overall, the 25 

simulations capture the influence of hydrate saturation in both the magnitude and trend of the 26 

stiffness, shear strength and volumetric response of synthetic MHBS. The results are also 27 

validated against those obtained from previous mechanical models for MHBS that use the same 28 

experimental data. The Hydrate-CASM performs similarly to the previous models considered 29 

although its formulation do not requires any additional parameter, with the exception of one 30 

hydrate-related empirical parameter to express changes in the sediment elastic stiffness with 31 

hydrate saturation. 32 

 33 

 34 
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1. INTRODUCTION 37 

 38 

Methane hydrates have drawn international interest as an alternative energy resource to 39 

conventional fossil fuels [1-5], and as a major hazard for offshore drilling and gas production 40 

operations [6-8], global climate change [9-12] and seafloor instability [13-15]. Quantitative 41 

evaluation of the resource potential of gas hydrate reservoirs and of their response to natural 42 

and/or human-induced changes in pressure and temperature (P-T) conditions, requires precise 43 

knowledge of the hydrate phase change phenomenon and of its effect on the mechanical 44 

stability of the reservoir. Due to the operational complexity at preserving the in-situ P-T 45 

conditions during MHBS recovery, the mechanical properties of these sediments are generally 46 

investigated through geophysical techniques [16-18] and geotechnical testing of synthetic 47 

sediments [19-21]. Both geophysical and geotechnical data show that the stiffness, strength, 48 

and dilatancy of MHBS tend to increase with increasing hydrate saturation [22, 23]. They also 49 

evidence that their mechanical and hydraulic properties drastically change during hydrate 50 

dissociation, which may compromise the mechanical stability of the sediment. Thus, hydrate 51 

dissociation is likely to trigger small to large-scale deformations in the seabed, including 52 

sediment collapse [24] and sliding [25-27]. As a result, dissociation may also induce damage 53 

of preexisting offshore infrastructures [28]. 54 

 55 

Several mechanical models developed for MHBS assume that the increase of strength, stiffness 56 

and dilatancy observed in these sediments is mainly governed by bonding or cementation 57 

between the hydrate crystal and the sediment grains (Table 1). However, recent pore-scale 58 

observations [29-31] and geomechanical investigations [32-34] evidence the lack of true 59 

cohesion in MHBS and suggest that the mechanical response of these sediments may not 60 

necessarily be governed by sediment bonding/cementation, but rather to kinematic 61 

constrictions at pore/grain scale during shearing. In this paper, we develop a new mechanical 62 

constitutive model that does not consider hydrate-bonding effects in its formulation but 63 

assumes that the reduction of sediment void volume and the increase of sediment elastic 64 

stiffness during pore invasion with hydrate can explain the greater mechanical properties 65 

observed in MHBS 66 

 67 
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Table 1: Notable mechanical models for MHBS considering hydrate-bonding effect 68 

Model reference Hydrate-bonding modelling strategy  

Klar et al. [35]; Jung et al. [36]; Pinkert and 
Grozic, [37]; Pinkert et al. [38] Additional cohesion constituent in the failure criteria 

 

Uchida et al. [39]; Sánchez and Gai [40]; 
Sánchez et al. [41]. 

Enlargement of the yield surface by cohesion and 
dilatation 

 

Sultan and Garziglia et al. [42] Impediment of the normal consolidation of the sediment 
and enlargement of the yield surface 

 

Sánchez and Gai [40]; Sánchez et al. 
[41].De La Fuente et al. [43] 

Stress-strain partition between hydrate and matrix in a 
bonding damage framework (BDM) 

 

Jiang et al. [44] Attribution of physical bonding properties in discrete 
element methods (DEM) 

 

Lin et al. [45] 
Expansion of the failure envelope in a spatially 

mobilized plane (SMP) model 
 

 69 

The elasto-plastic model Hydrate-CASM extends the formulation of the unified critical state 70 

constitutive model CASM [46] by implementing the subloading surface model [47] and 71 

introducing the densification mechanism. The subloading surface, which has been successfully 72 

used in previous mechanical models for MHBS [39, 40, 44, 48], allows capturing irrecoverable 73 

plastic strains inside the yield surface. The densification mechanism suggests that the decrease 74 

of the available void ratio of the host sediment during hydrate formation stiffens its structure 75 

and has a similar mechanical effect as the increase of the sediment density. In particular, the 76 

densification mechanism attributes the stress-strain changes observed in MHBS to variations 77 

in the available void ratio, isotropic yield stress and swelling line slope of the host sediment 78 

with hydrate saturation.  79 

 80 

The Hydrate-CASM is applied here to robust and well-described published experimental data 81 

[19, 21] that cover the most relevant conditions related to MHBS behavior, including a wide 82 

range of hydrate saturations, several hydrate morphologies and confinement stress.  These data 83 

have also been used in the calibration of previous mechanical models developed for MHBS 84 

[e.g., 39, 40, 48-50], which give us the opportunity to compare and validate our results. The 85 

model performance is found satisfactory over a wide range of test conditions and evidence the 86 

capability of the Hydrate-CASM model at capturing both the trend and magnitude of the stress-87 

strain and the volumetric response of synthetic MHBS. Overall, the good matching of our 88 
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results with the outputs obtained from previous mechanical models for MHBS evidences that 89 

the experimental data examined in this paper can be simply reproduced by (i) considering the 90 

mechanical effect of the reduction of sediment void volume due to pore invasion with hydrate 91 

and (ii) modifying the sediment elastic stiffness according to hydrate saturation. In addition, 92 

our results also show that accounting for the different initial porosities of the set of host 93 

specimens used to produce cementing and pore-filling MHBS allows capturing the 94 

experimental data without using any empirical parameters related to hydrate morphology. 95 

 96 
2. CASM MODEL 97 

 98 
The Hydrate-CASM extends the formulation of the constitutive model CASM developed by 99 

Yu [46]. The CASM model is selected here because of its simplicity and flexibility in 100 

describing the shape of the yield surface as well as its proven ability to predict the mechanical 101 

behavior of sand, the most likely target for the commercial exploitation of hydrates [51]. The 102 

critical state model CASM is formulated in terms of the state parameter [52] and the spacing 103 

ratio concept, and uses a non-associated flow rule, which is particularly suitable to simulate the 104 

behavior of granular sediments like those examined in this paper [53, 54]. All the parameters 105 

used in the formulation are listed and defined in Table 2. 106 

 107 

Table 2. CASM and Hydrate-CASM parameters. Subscript ℎ refers to hydrate-bearing 108 

sediment properties and bold symbols denote tensors. Note that 𝑒𝑒𝑎𝑎ℎ, 𝑣𝑣ℎ , 𝑝𝑝𝑜𝑜ℎ  and 𝜅𝜅ℎ recover 109 

the hydrate-free parameters  𝑒𝑒, 𝑣𝑣, 𝑝𝑝0 and 𝜅𝜅 when 𝑆𝑆ℎ=0.  110 

Model parameters 

 

Description 

Stress 

𝑃𝑃𝑝𝑝 Pore pressure 

𝝈𝝈 Cauchy total stress tensor 

𝐈𝐈 Identity matrix 

𝝈𝝈′ Cauchy effective stress tensor, 𝝈𝝈′ = 𝝈𝝈 − 𝑃𝑃𝑝𝑝𝐈𝐈  

 

 

𝝈𝝈𝒄𝒄 Confining total stress 

𝝈𝝈′𝒄𝒄 Confining effective stress,𝝈𝝈′𝒄𝒄 = 𝝈𝝈𝒄𝒄 − 𝑃𝑃𝑝𝑝   

𝑝𝑝 Mean stress, 𝑝𝑝 = 1
3� (𝜎𝜎1 + 𝜎𝜎2 + 𝜎𝜎3 ) 

𝑞𝑞 Deviatoric stress, 𝑞𝑞 = 𝜎𝜎1 − 𝜎𝜎3 

𝑝𝑝′ Mean effective stress, 𝑝𝑝′ = 𝑝𝑝 − 𝑃𝑃𝑝𝑝 

𝜂𝜂 Stress ratio 𝜂𝜂 = 𝑞𝑞/𝑝𝑝′ 

 

Strain 

ε Total infinitesimal strain tensor  

𝜺𝜺𝑒𝑒 Elastic  strain tensor 

|𝑑𝑑𝜀𝜀𝑝𝑝| Norm of the incremental plastic strain vector 

𝜀𝜀𝑣𝑣
𝑝𝑝 Plastic volumetric strain, 𝜀𝜀𝑣𝑣

𝑝𝑝 = 𝜀𝜀1
𝑝𝑝 + 𝜀𝜀2

𝑝𝑝 + 𝜀𝜀3
𝑝𝑝 

𝜀𝜀𝑞𝑞
𝑝𝑝 Plastic deviatoric strain, 𝜀𝜀𝑞𝑞

𝑝𝑝 = 2
3

(𝜀𝜀1
𝑝𝑝 − 𝜀𝜀3

𝑝𝑝) 
𝑉𝑉𝑡𝑡 Total volume 
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Critical state 

parameters 

𝜆𝜆 Slope of the normal compression and critical state lines in the 𝑣𝑣 − 𝑙𝑙𝑙𝑙 (𝑝𝑝′) space 

𝑀𝑀 Critical state stress ratio: slope of critical state line in the 𝑝𝑝′ − 𝑞𝑞 space 

𝑝𝑝0 Isotropic yield stress of the host sediment 

𝑝𝑝0ℎ  Isotropic yield stress of the hydrate-bearing sediment 

𝑝𝑝′𝑥𝑥 Mean effective stress at critical state 

Γ Specific volume at critical state with 𝑝𝑝′ of 1 KPa 

Elastic 

parameters 

𝜅𝜅 Host sediment swelling (reloading-unloading) line slope 

𝜅𝜅ℎ MHBS swelling (reloading-unloading) line slope 

𝜈𝜈 Poisson’s ratio 

𝐾𝐾 Elastic bulk modulus 

𝐺𝐺 Elastic shear modulus 

𝑫𝑫𝒆𝒆   Elastic stiffness tensor 

CASM 

parameters 

𝑙𝑙 Stress-state coefficient: yield surface shape parameter 

𝑟𝑟 Spacing ratio, 𝑟𝑟 = 𝑝𝑝0′  𝑝𝑝′𝑥𝑥⁄  

𝜉𝜉 State parameter  

𝜉𝜉𝑟𝑟 Reference state parameter, 𝜉𝜉𝑟𝑟 = (𝜆𝜆 − 𝜅𝜅)𝑙𝑙𝑙𝑙𝑟𝑟 

Subloading 

parameters 

𝑝𝑝0𝑠𝑠  Isotropic yield stress of the subloading surface 

𝑅𝑅 Subloading surface ratio,  𝑅𝑅 = 𝑝𝑝0𝑆𝑆 𝑝𝑝0⁄  

𝑢𝑢 Subloading parameter controlling plastic deformations before yielding   

 

Plastic 

parameters 

φ Size parameter 

𝝌𝝌 Vector of hardening (2 components: 𝑝𝑝0ℎ and 𝑅𝑅) 
𝐻𝐻 Hardening modulus 

𝜆𝜆𝑝𝑝 Plastic multiplier 

Empirical 

parameters 
𝜅𝜅𝑟𝑟𝑟𝑟 Swelling line reduction factor 

 111 

2.1. State parameter concept 112 
 113 
The state parameter (Eq. 1) is defined in the 𝑣𝑣 − 𝑙𝑙𝑙𝑙(𝑝𝑝′) space as the vertical distance between 114 

the void ratio at the current state and that at the critical state for a given mean effective stress 115 

(Figure 1a):  116 

ξ = 𝑣𝑣 + 𝜆𝜆 𝑙𝑙𝑙𝑙(𝑝𝑝′) − Γ  (1) 117 

 118 

Volumetric 

ratios 

𝑉𝑉𝑠𝑠 Volume of mineral grains 

𝑉𝑉ℎ Volume of hydrate 

𝑉𝑉𝑣𝑣 Potential void volume, 𝑉𝑉𝑣𝑣 = 𝑉𝑉𝑡𝑡 − 𝑉𝑉𝑠𝑠 

𝑉𝑉𝑎𝑎 Available void volume,  𝑉𝑉𝑎𝑎 = 𝑉𝑉𝑣𝑣 − 𝑉𝑉ℎ 

𝑒𝑒 Void ratio of the host sediment, 𝑒𝑒 = 𝑉𝑉𝑣𝑣 𝑉𝑉𝑠𝑠⁄  

𝑆𝑆ℎ Hydrate saturation,  𝑆𝑆ℎ = 𝑉𝑉ℎ/𝑉𝑉𝑣𝑣 
𝑒𝑒ℎ Hydrate ratio, 𝑒𝑒ℎ = 𝑉𝑉ℎ 𝑉𝑉𝑠𝑠⁄ = 𝑆𝑆ℎ𝑒𝑒 

𝑒𝑒𝑎𝑎ℎ  Available void ratio of the hydrate-bearing sediment,  𝑒𝑒𝑎𝑎ℎ = 𝑒𝑒(1 − 𝑆𝑆ℎ)  

𝑣𝑣 Specific volume, 𝑣𝑣 = 1 + 𝑒𝑒 

𝑣𝑣ℎ Hydrate-CASM equivalent specific volume , 𝑣𝑣ℎ =   𝑣𝑣 − 𝑒𝑒ℎ   
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 119 

Figure 1: CASM framework. Graphical representation of the CASM parameters and 120 

qualitative mechanical response of sediments subjected to triaxial shear with (a, b) positive and 121 

(c, d) negative values of  ξ. After [46].  122 

 123 

The magnitude and sign of this parameter play a key role in understanding the densification 124 

mechanism introduced in this paper. The state parameter adopts positive values when the 125 

sediment void ratio is located above the critical state line (CSL) (as in loose sand; Figure 1a), 126 

and negative ones when located below it (as in dense sand; Figure 1c).  Sediments with a 127 

positive value of ξ and subjected to triaxial shear tend to show hardening on the 𝑝𝑝’ − 𝑞𝑞 stress 128 

space and contractancy as volumetric response (Figure 1b). Instead, sediments with a negative 129 

value of ξ show a distinctive peak in the deviatoric stress followed by softening before the 130 

critical state is achieved, and dilatancy dominates its volumetric response (Figure 1d).  131 
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   132 

2.2. CASM yield function 133 

 134 

A total of seven model parameters are required to define the original CASM formulation. Five 135 

of which (𝜆𝜆,𝑀𝑀,𝛤𝛤, 𝜅𝜅 and 𝜈𝜈), are the same as those in the Cam Clay model [55,56], and the two 136 

additional parameters, denoted by 𝑙𝑙 and 𝑟𝑟, are used to specify the geometrical properties of the 137 

yield function. For a general stress state, the CASM yield function is expressed as: 138 

𝑓𝑓 = � 𝑞𝑞
𝑀𝑀𝑝𝑝′

�
𝑛𝑛

+ 1
𝑙𝑙𝑛𝑛(𝑟𝑟)

𝑙𝑙𝑙𝑙 �𝑝𝑝′
𝑝𝑝0′
� (2) 139 

Where 𝑙𝑙 governs the shape of the yield surface and 𝑟𝑟 controls its intersection with the critical 140 

state line. Particular combinations of 𝑙𝑙 and 𝑟𝑟 allow the intersection between the critical state 141 

line and the yield surface to not necessarily occur at the maximum deviatoric stress (Figure 2) 142 

as happens in Cam-Clay type models. This allows the CASM model to predict local peaks in 143 

the deviatoric stress on the left side of the critical state condition, feature that is widely observed 144 

in geotechnical testing of sand [57, 58]. Certain values of 𝑙𝑙 and 𝑟𝑟 can also recover the yield 145 

surface function of the standard and modified Cam-clay models [46]. 146 

 147 

Figure 2: Influence of 𝑙𝑙 and 𝑟𝑟 in the shape and size of the yield surface. Note the presence of 148 

local peaks in the deviatoric stress on the left side of the critical state condition. After [46]. 149 

Within the yield surface, the behavior is assumed isotropic and elastic, with the elastic 150 

volumetric stress-strain relationship governed by the bulk modulus 𝐾𝐾 (Eq. 3a) and the elastic 151 

shear by the shear modulus 𝐺𝐺 (Eq. 3b): 152 
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𝐾𝐾 = (1+𝑒𝑒)𝑝𝑝′
𝜅𝜅

 (3a) 153 

𝐺𝐺=3𝐾𝐾(1−2𝜈𝜈)
2(1+𝜈𝜈)

 (3b)  154 

2.3. Stress-dilatancy relation and plastic potential 155 
 156 

The CASM model uses a non-associated flow rule that follows the stress-dilatancy law 157 

proposed by Rowe [59], which has been applied with success at describing the deformation of 158 

sands and granular materials [46], as well as to simulate the response of MHBS [32, 33].: 159 

𝑑𝑑𝜀𝜀𝑣𝑣
𝑝𝑝

𝑑𝑑𝜀𝜀𝑞𝑞
𝑝𝑝 = 9(𝑀𝑀−𝜂𝜂)

9+3𝑀𝑀−2𝑀𝑀𝜂𝜂
 (4) 160 

By integrating equation (4), the CASM plastic potential function is obtained as: 161 

𝑔𝑔 = 3𝑀𝑀𝑙𝑙𝑙𝑙 �𝑝𝑝′
𝜑𝜑
� + (3 + 2𝑀𝑀)𝑙𝑙𝑙𝑙 �2𝑞𝑞

𝑝𝑝′
+ 3� + (𝑀𝑀 − 3)𝑙𝑙𝑙𝑙 �3 − 𝑞𝑞

𝑝𝑝′
� (5) 162 

Whose expression does not depend on the hardening parameters and where 𝜑𝜑 is a size 163 

parameter controlling the size of the plastic potential which passes through the current stress 164 

state (𝑝𝑝’ − 𝑞𝑞).  165 

2.4. Hardening parameters 166 
 167 

Similar to Cam-clay type models, the CASM model assumes isotropic changes in the isotropic 168 

yield stress controlled by the incremental plastic volumetric deformation, so that:   169 

𝑑𝑑𝑝𝑝0′ = (1+𝑒𝑒) 𝑝𝑝0′

𝜆𝜆−𝜅𝜅
𝑑𝑑𝜀𝜀𝑣𝑣

𝑝𝑝 (6) 170 

3. HYDRATE-CASM FORMULATION 171 
 172 
 173 
The Hydrate-CASM extends the formulation of the CASM model [46] by implementing the 174 

subloading surface model [47] and introducing the densification mechanism. We note that 175 

material parameters 𝑒𝑒, 𝑣𝑣, 𝑝𝑝′0 and 𝜅𝜅 presented in equations 1 to 5 read as 𝑒𝑒𝑎𝑎ℎ, 𝑣𝑣ℎ , 𝑝𝑝′0ℎ  and 𝜅𝜅ℎ 176 

in the presence of hydrate within the sediment. 177 

 178 
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3.1. Hydrate-CASM subloading function 179 

 180 

It is widely recognized that plastic strains can develop for stress states inside the yield surface; 181 

its interior is not a purely elastic domain. This feature results in a smooth transition between 182 

the elastic and the plastic response of soils [60, 61]. González [62] shows that the CASM yield 183 

function reproduces well the residual soil strength, but generally over-estimates the elastic 184 

strains and predicts unrealistic sharp transitions between the elastic and elastoplastic states. The 185 

subloading surface concept [47] is implemented in the present formulation to account for pre-186 

yield plasticity that allows capturing a smoother transition between elastic and plastic behavior, 187 

and a more accurate volumetric response of MHBS. This model assumes the existence of a 188 

subloading surface that expands/contracts inside the general yield surface keeping its same 189 

shape. The Hydrate-CASM subloading function is derived from equation 2 as: 190 

𝑓𝑓 = � 𝑞𝑞
𝑀𝑀𝑝𝑝′

�
𝑛𝑛

+ 1
𝑙𝑙𝑛𝑛(𝑟𝑟)

𝑙𝑙𝑙𝑙 � 𝑝𝑝′
𝑅𝑅𝑝𝑝0ℎ

′ � (7) 191 

Where 𝑅𝑅 controls the size of the subloading surface (Table 2) and recovers the original CASM 192 

yield function for values equal to 1. The evolution of 𝑅𝑅 is controlled by the norm of the 193 

incremental plastic strain vector and the subloading parameter (𝑢𝑢):  194 

𝑑𝑑𝑅𝑅 = −𝑢𝑢𝑙𝑙𝑙𝑙𝑅𝑅|𝑑𝑑𝜺𝜺𝑝𝑝| (8) 195 

3.1.1. Plastic strain 196 
 197 

The constitutive equation that characterizes an elasto-plastic material can be expressed as the 198 

following stress-strain relationship: 199 

 200 

𝑑𝑑𝝈𝝈′ = 𝑫𝑫𝑒𝑒𝑑𝑑𝜺𝜺𝑒𝑒 = 𝑫𝑫𝑒𝑒(𝑑𝑑𝜺𝜺 − 𝑑𝑑𝜺𝜺𝑝𝑝) (9a) 201 

 202 

With: 203 

 204 
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𝑫𝑫𝑒𝑒 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝐾𝐾 + 4

3
𝐺𝐺

𝐾𝐾 − 2
3
𝐺𝐺

𝐾𝐾 − 2
3
𝐺𝐺

0
0
0

𝐾𝐾 − 2
3
𝐺𝐺

+ 4
3
𝐺𝐺

𝐾𝐾 − 2
3
𝐺𝐺

0
0
0

𝐾𝐾 − 2
3
𝐺𝐺

𝐾𝐾 − 2
3
𝐺𝐺

+ 4
3
𝐺𝐺

0
0
0

0
0
0
𝐺𝐺
0
0

       0
      0
      0
      0
      𝐺𝐺
      0

      0
      0
      0
      0
      0
      𝐺𝐺

 

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (9b) 205 

 206 

𝑑𝑑𝜺𝜺𝒑𝒑 = 𝑑𝑑𝜆𝜆𝑝𝑝 𝜕𝜕𝜕𝜕
𝜕𝜕𝝈𝝈′

 (9c) 207 

 208 

The elastoplastic regime is reached when the stress state lies on the Hydrate-CASM yield 209 

surface. For the stress state to remain on it at any plastic loading, the consistency condition 210 

must be satisfied: 211 

 212 

 𝑑𝑑𝑓𝑓(𝝈𝝈′,𝝌𝝌) = 0 (10)  213 

By linearizing the consistency condition, 𝑑𝑑𝑓𝑓 can be rewritten as: 214 

𝑑𝑑𝑓𝑓 = �𝜕𝜕𝑟𝑟
𝜕𝜕𝝈𝝈′
�
𝑇𝑇
𝑑𝑑𝝈𝝈′ + �𝜕𝜕𝑟𝑟

𝜕𝜕𝝌𝝌
�
𝑇𝑇
𝑑𝑑𝝌𝝌 = 0 (11a) 215 

with: 216 

𝜕𝜕𝑟𝑟
𝜕𝜕𝝈𝝈′

= 𝜕𝜕𝑟𝑟
𝜕𝜕𝑝𝑝′

𝜕𝜕𝑝𝑝′
𝜕𝜕𝝈𝝈′

+ 𝜕𝜕𝑟𝑟
𝜕𝜕𝑞𝑞

𝜕𝜕𝑞𝑞
𝜕𝜕𝝈𝝈′

 (11b) 217 

 218 

𝜕𝜕𝑟𝑟
𝜕𝜕𝜕𝜕

= � 𝜕𝜕𝑟𝑟
𝜕𝜕𝑝𝑝′0ℎ

+  𝜕𝜕𝑟𝑟
𝜕𝜕𝑅𝑅
�  (11c) 219 

By solving equations 9c and 10 the plastic multiplier is classically obtained as: 220 

𝑑𝑑𝜆𝜆𝑝𝑝 =
� 𝜕𝜕𝜕𝜕𝜕𝜕𝝈𝝈′�

𝑇𝑇
𝑫𝑫𝑒𝑒𝑑𝑑𝜺𝜺

𝐻𝐻+� 𝜕𝜕𝜕𝜕
𝜕𝜕𝝈𝝈′�

𝑇𝑇
𝑫𝑫𝑒𝑒 𝜕𝜕𝜕𝜕

𝜕𝜕𝝈𝝈′

 (12) 221 

where: 222 

𝐻𝐻 = −� 𝜕𝜕𝑟𝑟
𝜕𝜕𝑝𝑝′𝑜𝑜ℎ

𝜕𝜕𝑝𝑝′𝑜𝑜ℎ
𝜕𝜕𝑑𝑑𝜺𝜺𝑣𝑣

𝑝𝑝 + 𝜕𝜕𝑟𝑟
𝜕𝜕𝑅𝑅

𝜕𝜕𝑅𝑅
𝜕𝜕|𝑑𝑑𝜺𝜺𝒑𝒑| 

� 𝛿𝛿𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝝈𝝈′

 (12a) 223 

𝛿𝛿𝑇𝑇 = {1,1,1,0,0,0} (12b) 224 
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 225 

3.2. Densification mechanism 226 
 227 

In nature, variations in the sediment void volume may result from two competing and 228 

interdependent processes: (i) mineral precipitation or dissolution (which compares here to 229 

hydrate formation and dissociation, respectively) and (ii) mechanical compaction or dilation 230 

under pressure [63]. In particular, mineral precipitation in pores reduces the sediment available 231 

void volume without experiencing mechanical compaction [64 and 65] and has a significant 232 

effect on its hydraulic and mechanical properties [e.g., 63, 66].  233 

Figure 3 examines qualitatively the effect of sediment density or void ratio on the magnitude 234 

of 𝜉𝜉 and the corresponding mechanical behavior of the sediment under triaxial shear.  235 

 236 

Figure 3: Effect of the increase in the sediment density on the magnitude of ξ and the 237 

corresponding stress-strain behavior of the sediment under triaxial shear. (a,d) Initial ξ for the 238 

reference sediments, (b, e) evolution of ξ due to densification, and (c, f) computed stress-strain 239 

response of the sediment at different densities. 240 

 241 
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For a reference sediment with positive ξ (grey cross in Figure 3a and 3b), an increase in density 242 

or a reduction of the void ratio reduces the vertical distance between the current state and the 243 

CSL (black cross in Figure 3b). Thus, during shear, the model predicts less hardening and 244 

contractancy than that observed on the reference sediment (Figure 3c). For a reference sediment 245 

with negative ξ  (grey cross in Figure 3d and 3e), an increase in density increases the distance 246 

of the current state from the CSL (black cross in Figure 3e), and consequently, during shear, 247 

the model predicts a higher peak strength and greater dilatancy than that observed on the 248 

reference sediment (Figure 3f).  249 

 250 

Figure 3 shows that variations in ξ related to an increase in sediment density produce a similar 251 

mechanical response than those observed in sediments with increasing hydrate saturation (i.e., 252 

greater strength and dilatancy, or less contractancy, compared to the sediment without hydrate). 253 

Thus, we suggest that the occurrence of hydrate as a solid phase invading the voids of the 254 

hosting sediment may have a similar mechanical effect than the increase of the host sediment 255 

density.  Alike Gupta et. al. [67], the Hydrate-CASM formulation conceptually divides the 256 

sediment void-space into potential void volume (𝑉𝑉𝑣𝑣) and available void volume (𝑉𝑉𝑎𝑎) (Figure 4). 257 

The potential void volume is the space between the mineral grains of the sediment and includes 258 

the available void volume for fluid flow and storage and the hydrate volume.  259 

 260 

  261 

 262 

Figure 4: (a) Pore-scale phase distribution in MHBS, (b) potential void volume and (c) 263 

available void volume. Note that 𝑉𝑉𝑣𝑣 = 𝑉𝑉𝑎𝑎  for 𝑆𝑆ℎ=0. 264 

 265 
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To introduce the densification effect that pore invasion by hydrate has on the mechanical 266 

response of the sediment; the Hydrate-CASM uses the available void ratio left after hydrate 267 

formation (Eq.13) to derive the mechanical properties of the sediment.  268 

 269 

𝑒𝑒𝑎𝑎ℎ = 𝑒𝑒(1 − 𝑆𝑆ℎ) =  𝑒𝑒 − 𝑒𝑒ℎ (13) 270 

From where, variations in  𝜉𝜉 with hydrate saturation can be derived as:  271 

𝑑𝑑𝜉𝜉 =  𝑑𝑑𝑒𝑒ℎ (14) 272 

In addition to the reduction of the host sediment available void ratio, the presence of hydrate 273 

also enhances the sediment stiffness [16, 22, 23]. We represent the stiffening effect of hydrate 274 

on the elastic response of the sediment by the following explicit dependency between 𝜅𝜅 and 275 

𝑆𝑆ℎ:  276 

𝜅𝜅ℎ = 𝜅𝜅 𝜅𝜅𝑟𝑟𝑟𝑟   (15)  277 

With: 278 

𝜅𝜅𝑟𝑟𝑟𝑟 = �
1,          𝑆𝑆ℎ = 0

3𝑆𝑆ℎ2 − 2.68𝑆𝑆ℎ + 0.9934, 0 < 𝑆𝑆ℎ ≤ 0.42
                                   0.397,           𝑆𝑆ℎ > 0.42

          (16) 279 

Equation 16 is obtained empirically by calibrating the experimental data of three synthetic 280 

sediments with hydrate saturations ranging from 24.2% to 53.1% (data examined in section 281 

4.2). This empirical relation needs validation for other sediments and hydrate saturations 282 

outside the range used for its determination.  283 

The decrease of 𝜅𝜅 in MHBS has been recently observed in experimental high-pressure 284 

oedometer tests [68]. In our formulation the use of 𝜅𝜅𝑟𝑟𝑟𝑟 compensates for spurious changes of 𝐾𝐾 285 

(Eq. 3a) when reducing the sediment available void ratio with increasing 𝑆𝑆ℎ. If neglecting the 286 

hydrate-related stiffening effect suggested in Eq.15, the Hydrate-CASM is still capable of 287 

reproducing a close solution to the experimental results (purple line in Figure 5b). However, 288 

the use of 𝜅𝜅ℎ adopted in this work leads to a better fit of the elastic response and the peak 289 

strength of synthetic hydrate-bearing sediments subjected to triaxial shear (red line in Figure 290 

5b).  291 
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292 

Figure 5: Influence of the densification and stiffening effects caused by hydrate formation in 293 

pores at (a) predicting the isotropic yield stress of MHBS and at (b) capturing its mechanical 294 

response under triaxial shear (experimental data from [19]). Note that the 𝑒𝑒𝑎𝑎ℎ − ln (𝑝𝑝’) paths 295 

are plotted here in terms of available void ratio. 296 

As a result of both the decrease of the host sediment available void ratio and the increase of its 297 

stiffness during hydrate formation, a greater isotropic yield stress can be deduced graphically 298 

in the 𝑣𝑣 − ln (𝑝𝑝′) space by projecting 𝑒𝑒𝑎𝑎ℎ on the normal consolidation line (NCL) of the host 299 

sediment following the 𝜅𝜅ℎ slope (Figure 5a), so that:  300 

𝑝𝑝0ℎ
′ =  𝑒𝑒𝑒𝑒𝑝𝑝 � 𝑒𝑒ℎ

𝜆𝜆−𝜅𝜅ℎ
�  𝑝𝑝0′  

� 𝜆𝜆−𝜅𝜅𝜆𝜆−𝜅𝜅ℎ
�  (17a)  301 

Where changes in 𝑝𝑝0ℎ
′ are computed through 𝑑𝑑𝑝𝑝0′ , which reads: 302 

𝑑𝑑𝑝𝑝0′ = (1+𝑒𝑒𝑎𝑎ℎ)𝑝𝑝0′

𝜆𝜆−𝜅𝜅
𝑑𝑑𝜺𝜺𝑣𝑣

𝑝𝑝  (17b) 303 

   304 
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3.2.1. MHBS critical state  305 

To evaluate the influence of the densification mechanism due to hydrate formation in the 306 

critical state of the sediment, Figure 6b relates the potential void ratio of the host sediment (𝑒𝑒) 307 

with the isotropic yield stress predicted after hydrate formation (𝑝𝑝0ℎ′ ). 308 

Figure 6a shows the procedure to obtain the isotropic yield stress of the MHBS (𝑝𝑝0ℎ′ ), for which 309 

the sediment with hydrate is considered mechanically denser (𝑒𝑒𝑎𝑎ℎ < 𝑒𝑒) and stiffer (𝜅𝜅ℎ <  𝜅𝜅) 310 

than the corresponding host sediment. When relating 𝑝𝑝0ℎ′  with the potential void ratio of the 311 

sediment (𝑒𝑒), both the NCL and CSL move to the right in the 𝑣𝑣 − ln (𝑝𝑝′) space (Figure 6b). 312 

Thus, for a given 𝑆𝑆ℎ the model predicts a normal consolidation line NCLh that is parallel to that 313 

for the host sediment (NCL) and that keeps a vertical distance from the CSLh equal to 𝜉𝜉𝑟𝑟  (Table 314 

2). 315 
  316 

   317 

Figure 6: Effect of the densification mechanism at predicting (a) 𝑝𝑝0ℎ′  and (b) shifting both 318 

NCL and CSL. 319 

3.2.2.  Hydrate dissociation phenomena 320 

 321 

Several experimental studies [69-74], and field observations [7-9, 13, 14] have demonstrated 322 

the impact of hydrate dissociation in the mechanical properties of MHBS. Hydrate dissociation 323 

occurs when the P-T and salinity conditions of the system are outside the hydrate stability zone. 324 

In the case of hydrate dissociation, the available porosity of the sediment increases 325 

proportionally to the volume of hydrate dissociated, which in turn increases the sediment 326 

permeability and reduces its stiffness and strength [22, 75]. Consequently, stress changes and 327 
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mechanical deformation might be expected during specific conditions of hydrate dissociation. 328 

This aspect is integrated in the model since equations 13 to 17b predict an increase in both 𝑒𝑒𝑎𝑎ℎ 329 

and 𝜅𝜅ℎ, as well as a decrease in  𝑝𝑝0ℎ
′  with decreasing 𝑆𝑆ℎ. 330 

 331 

Figures 7 and 8 examine qualitatively the performance of the model in two different scenarios 332 

of thermal-induced hydrate dissociation under constant effective stress.  333 

 334 

 335 
 336 

Figure 7: Qualitative analysis of sediment collapse due to hydrate dissociation after isotropic 337 

consolidation. (a) Evolution of the host sediment available porosity and increase of the 338 

isotropic yield stress due to hydrate densification effect. (b) Prediction of the NCLh and CSLh 339 

characterizing the MHBS and 𝑣𝑣 − ln (𝑝𝑝’) evolution during isotropic consolidation. (c) 340 

Sediment collapse induced by hydrate dissociation under constant effective stress. Pore-scale 341 

diagrams schematically depict the effect of hydrate formation, mechanical loading, hydrate 342 

dissociation and collapse on the porous structure.  343 
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 344 

Figure 7 shows the ability of the model at predicting sediment collapse induced by hydrate 345 

dissociation after isotropic consolidation. Upon hydrate dissociation, the sediment is assumed 346 

to recover the mechanical properties of the host sediment (i.e., NCL and CSL). Then, and as 347 

observed by Yoneda’s et al. [68] observations, if after the hydrate dissociation the 𝑣𝑣 −348 

ln(𝑝𝑝′) state of the sediment is located in a mechanically inadmissible stress state (point 4 in 349 

Figure 7c) the model can predict sediment collapse until reaching a normally consolidated state 350 

(point 5 in Figure 7c).  351 

 352 

Figure 8 examines the deformation properties of a hydrate-free specimen and a dissociated 353 

MHBS during triaxial shear. Initially, both sediments are isotropically consolidated up to  𝑝𝑝𝑖𝑖𝑠𝑠𝑜𝑜′  354 

(Figures 8a and 8c). After consolidation, the MHBS is subjected to dissociation under constant 355 

effective stress (point 3, Figure 8d), so that the mechanical properties of the host sediment are 356 

recovered (i.e., NCL and CSL, Figure 8d). Then, both sediments are sheared under drained 357 

conditions. In agreement with experimental observations in synthetic MHBS subjected to 358 

dissociation after isotropic consolidation [75], our model predicts a lower failure strength for 359 

the MHBS after dissociation than that observed in the host sediment  during shear (Figure 8e). 360 
  361 

  362 
 363 
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Figure 8: Qualitative analysis of changes in the stress-strain response of both host and 364 

dissociated MHBS subjected to shear after isotropic consolidation. Evolution of the 𝑣𝑣 −365 

𝑙𝑙𝑙𝑙(𝑝𝑝′) state during (a, c) isotropic consolidation, (b) triaxial shear of the host sediment and (d) 366 

hydrate dissociation followed by triaxial shear of the dissociated MHBS. (e) Computed 367 

mechanical response during triaxial shear. 368 

 369 

 370 

4. HYDRATE-CASM PERFORMANCE 371 

 372 

Triaxial tests at constant hydrate saturation provide very useful information to understand the 373 

influence of hydrate saturation on the mechanical behavior of MHBS. Two sets of stress-strain 374 

data from published triaxial tests are used here to evaluate the model performance. The selected 375 

experimental data report the mechanical behavior of synthetic MHBS subjected to drained 376 

triaxial shear at different confining effective stress, hydrate morphology and saturation. This 377 

data have been widely used to calibrate previous mechanical models developed for MHBS, 378 

which allows us to compare the model results and validate our formulation. 379 

 380 

4.1. Modeling of Masui’s et al. (2005) experimental tests 381 

 382 

Masui et al. [19] conducted several triaxial tests on synthetic MHBS at different hydrate 383 

saturations and both pore-filling and cementing hydrate morphologies. Toyoura sand 384 

specimens with slightly different porosities (Table 3) were used as host sediments for the 385 

preparation of the hydrate-bearing sand. Prior to forming hydrate, the host sediments were 386 

isotropically consolidated up to 1 MPa of confining effective stress. Subsequently, the ice-seed 387 

method and the partial water saturation method were employed to produce hydrates with 388 

dominant pore-filling and cementing morphologies, respectively. After hydrate formation, the 389 

hydrate-bearing sand specimens were sheared at a constant rate of 0.1 % min-1 in drained 390 

conditions. 391 

 392 

 393 
 394 
 395 
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Table 3. Physical properties of Toyoura sand used as host sediment in Masui et al. [19]. 396 

 
Specimens used to form hydrate 

with cementing morphology  

Specimens used to form hydrate with 

pore-filling morphology 

Diameter/height (mm) 50/100 50/100 

Density (g/cm3) 1.74–1.92 1.77–1.78 

Porosity (%) 36.3–38.7 42.3–42.9 

 397 

The set of critical state parameters for the Toyoura sand (Table 4) have been calibrated using 398 

the stress-strain curve and the volumetric response of the specimen used for the synthetic 399 

formation of cementing hydrate morphology and tested without hydrate (𝑆𝑆ℎ=0% in Figure 9c). 400 

Henceforward, these specimens will be called “cementing specimen without hydrate”. 401 

Similarly, the specimens used to form hydrate with pore filling morphology will be called 402 

“pore-filling specimen without hydrates”. For the calibration process, values used in previous 403 

publications that also model the mechanical response of Toyoura sand have been considered 404 

as a reference [e.g., 39, 41, 45]. In addition, the different porosities of 0.6 and 0.75 reported for 405 

the host cementing and pore-filling specimens respectively, have been considered in the 406 

modelling (Table 4).  407 

 408 

Table 4. Input parameters for modeling the host sediment used by Masui et al. [19] in triaxial 409 

tests.  410 

Model parameters 

𝑒𝑒 𝜆𝜆 𝑀𝑀 𝑝𝑝0′ (𝑀𝑀𝑃𝑃𝑀𝑀) 𝜅𝜅 𝜐𝜐 𝑙𝑙 𝑟𝑟 𝑝𝑝0𝑠𝑠
′ (𝑀𝑀𝑃𝑃𝑀𝑀) 𝑢𝑢 

Specimens used to form hydrate with cementing morphology (𝑆𝑆ℎ = 0%) 

0.6 0.22 1.17 12 0.015 0.1 2.5 1.7 3.5 20 

Specimens used to form hydrate with pore-filling morphology (𝑆𝑆ℎ = 0%) 

0.75 0.22 1.17 5.3 0.015 0.1 2.5 1.7 3 20 

 411 

Figure 9 shows the model results for Masui’s et al. [19] triaxial tests. Overall, our results show 412 

that Hydrate-CASM successfully captures the trend and magnitude of the mechanical response 413 

of MHBS subjected to shear, showing an increase in stiffness, shear strength, and dilatancy 414 

with increasing 𝑆𝑆ℎ (Figures 9c to 9f). The model outputs fit particularly well the volumetric 415 

response of the cementing specimens (Figure 9e) as well as the rate of increase observed in the 416 

peak strength with 𝑆𝑆ℎ (Figure 9f). However, they underestimate the maximum deviatoric stress 417 
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of the cementing specimen with 𝑆𝑆ℎ=55.1% (Figure 9c) and slightly overestimate the maximum 418 

deviatoric stress of the pore-filling specimen with 𝑆𝑆ℎ=26.4% (Figure 9d) and the volumetric 419 

response of the pore-filling sediment with 𝑆𝑆ℎ=40.9% (Figure 9e). 420 

 421 
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 422 

Figure 9: (a,b) Effect of the host sediment void ratio and the hydrate saturation at shifting the 423 

NCL of the sediment. Stress-strain behavior predicted during triaxial shear for (c) cementing 424 
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and (d) pore-filling specimens. (e) Volumetric response under triaxial shear of cementing 425 

specimens with 𝑆𝑆ℎ= 0% and 40.1% and pore-filling specimens with 𝑆𝑆ℎ=40.9%. (f) Comparison 426 

of the sediment peak strength at different hydrate saturations predicted by the model and the 427 

corresponding experimental measurement. Percentages indicated in the figure correspond to 428 

hydrate saturations. 429 

 430 

Previous mechanical models for MHBS that also modelled Masui’s et al. [19] data [e.g., 39, 431 

41, 50] assume that the differences in strength and dilatancy observed between the cementing 432 

and pore-filling specimens for a given hydrate saturation are controlled by hydrate morphology. 433 

However, Masui et. al. [19] state that if the pore hydrate saturation is the same in both types of 434 

specimens (e.g., Sh≈ 40% in Figures 9c and 9d), shear strength becomes higher for the 435 

specimen with lower porosity. The similarity between the results from previous models and 436 

those obtained with the Hydrate-CASM (Figure 10), which does not consider mechanical 437 

contributions related to hydrate morphology, suggests that the different mechanical behavior 438 

between cementing and pore-filling specimens can be alternatively reproduced  considering the 439 

different porosity reported for each set of  host specimens  (Table 3).    440 

  441 
  442 

   443 
Figure 10: Model comparison between Hydrate-CASM predictions and those obtained from, 444 

Uchida et al. [39], Sánchez et al. [41] and Yan & Wei [50] models against the experimental 445 

data from [19]. The results are presented in terms of stress-strain relationship and volumetric 446 

behavior for (a) cementing and (b) pore-filling specimens.  447 
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4.2. Modeling of Hyodo’s et al. (2013) experimental tests 448 

 449 

Hyodo et al. [21] performed a series of triaxial tests to investigate the mechanical properties 450 

and dissociation characteristics of synthetic MHBS. They used an innovative temperature 451 

controlled high-pressure apparatus specially developed to reproduce the in-situ conditions 452 

expected during gas extraction from hydrates. Three sets of triaxial tests conducted at zero or 453 

constant hydrate saturation are used here for the model application. The tests were performed 454 

on Toyoura sand with an initial porosity of about 40% (𝑒𝑒 ≈0.65), subjected to confining 455 

effective stress of 1, 3 and 5 MPa with different hydrate saturations. The experimental data 456 

from the sediments without hydrate are used to calibrate the critical state parameters of the 457 

model (Table 5) and those from the hydrate-bearing sand are used to examine the model 458 

capability at capturing the mechanical effect of 𝑆𝑆ℎ.  459 

 460 

Table 5. Input parameters for modelling Hyodo’s et al. [21] triaxial tests at 1, 3 and 5 MPa of 461 

confining effective stress.  462 

Model parameters 

𝑒𝑒 𝜆𝜆 𝑀𝑀 𝑝𝑝0′ (𝑀𝑀𝑃𝑃𝑀𝑀) 𝜅𝜅 𝜐𝜐 𝑙𝑙 𝑟𝑟 𝑝𝑝0𝑠𝑠
′ (𝑀𝑀𝑃𝑃𝑀𝑀) 𝑢𝑢 

0.65 0.22 1.32 9 0.015 0.1 4 2.5 5.6 50 

 463 

Figure 11 shows the simulation of the experimental tests performed by Hyodo et al. [21]. The 464 

results show the capability of the Hydrate-CASM at capturing changes in the mechanical 465 

response of the host sediment with increasing confining effective stress. For the host sediment 466 

confined at 1 MPa the model predicts a moderate softening after a peak and the volumetric 467 

strain goes from compressive to slightly dilatant (𝑆𝑆ℎ=0%, Figure 11a). With increasing 468 

effective stress, the model predicts a gradual transition of this response towards a hardening 469 

and a fully contracting behavior, although the maximum deviatoric stress at 3 and 5 MPa are 470 

slightly underestimated (𝑆𝑆ℎ=0%; Figure 11c and 11e). The results for the hydrate-bearing sand 471 

show, in general, a good agreement with the experimental data, capturing both the trend and 472 

magnitude of the stress-strain and volumetric responses of the sediment (Figure 11a, c and 11e) 473 

and the 𝑒𝑒 − ln(𝑝𝑝′) paths during triaxial shear (Figure 11b, 11d and 11f). However, the model 474 

largely overestimated the peak strength for the sediment with 𝑆𝑆ℎ = 53.7% tested at 3 MPa 475 

(Figure 11c).  476 
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 477 

Figure 11: Modelling of Hyodo’s et al. [21] experimental data. Results are presented in terms 478 

of deviatoric stress-axial strain, volumetric strain-axial strain and void ratio-mean effective 479 

stress relationships at effective confining stress of (a, b) 1 MPa, (c, d) 3 MPa, and (e, f) 5 MPa. 480 

For comparison purposes, the 𝑒𝑒 − 𝑙𝑙𝑙𝑙 (𝑝𝑝′) paths during triaxial shear are adjusted to the 481 

potential void ratio reported by Hyodo et al. [21] after isotropic consolidation. Percentages 482 

indicated in the figure correspond to hydrate saturations. 483 

 484 
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The maximum strength of the sediments examined in this section tends to increase almost 485 

linearly with hydrate saturation. However, the sediment with 𝑆𝑆ℎ = 53.7% does not follow this 486 

trend (Figure 12a). Hyodo et al. [21] estimated the hydrate saturation within the sediment based 487 

on the stoichiometry of the hydrate formation reaction and assuming that all the methane gas 488 

injected converted into hydrate. Several studies have proposed that hydrate and gas can coexist 489 

under hydrate stability conditions [76-78]. In particular, Sahoo et al. [79] show experimental 490 

evidence in which hydrate formation stops with up to 13% of gas still on the sediment under 491 

favorable pressure, temperature and salinity conditions. Accordingly, we hypothesize that is 492 

possible that part of the gas injected into the specimen with 𝑆𝑆ℎ=53.7% could not form hydrate 493 

and consequently, the saturation reported could have been slightly overestimated. For 494 

comparison purposes, the same test was modelled considering 𝑆𝑆ℎ= 24.2%, which is a more 495 

consistent value within the linear 𝑞𝑞𝑚𝑚𝑎𝑎𝑥𝑥 − 𝑆𝑆ℎ  trend observed for the rest of the experimental 496 

data (Figure 12a). Considering 𝑆𝑆ℎ= 24.2%, the Hydrate-CASM reproduces closely the 497 

deviatoric stress-axial strain relationship reported experimentally (Figure 12b).  498 

       499 

  500 

Figure 12: Effect of hydrate saturation on the peak strength of MHBS. (a) 𝑞𝑞𝑚𝑚𝑎𝑎𝑥𝑥 − 𝑆𝑆ℎ relatively 501 

linear trend for Hyodo’s et. al. [21] experimental data. Note that the maximum deviatoric stress 502 

is normalized by the value reported in the corresponding sediment without hydrate. (b) Model 503 

predictions considering both 𝑆𝑆ℎ=53.7% and 𝑆𝑆ℎ=24.2% for the sediment confined at 3MPa. 504 

 505 

The results presented in this section have been validated against the outputs from three other 506 

mechanical models for MHBS [41, 48, 49] (Figure 13).  The comparison is satisfactory and 507 

shows that, despite the simplicity of the densification mechanism, the Hydrate-CASM 508 
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performs similarly to models that require more than one hydrate-related empirical parameters 509 

in their formulation. 510 

 511 

 512 
 513 

 514 

 515 

Figure 13: Model comparison between the results from Hydrate-CASM, Sánchez et al. [41] 516 

Hyodo et. al. [48], Uchida et al. [49] models against the experimental data from Hyodo et al. 517 

[21]. Stress-strain behavior and volumetric response for hydrate-bearing sediments with (a) 518 

𝑆𝑆ℎ=24.2%, (b) 𝑆𝑆ℎ=35.1% and (c) 𝑆𝑆ℎ=53.1% subjected to triaxial shear under confining 519 

effective stress of 5 MPa. 520 

 521 

5. CONCLUSIONS 522 

 523 

The Hydrate-CASM is a new elastoplastic constitutive model developed to simulate the 524 

mechanical behavior of MHBS. This model extends the formulation of the CASM model by 525 

implementing the subloading surface model and introducing the densification mechanism.  526 

Alternatively to bonding or cementing models, the Hydrate-CASM suggests that the greater 527 

strength and dilatancy observed in MHBS can be explained by the densification and stiffening 528 

effects that pore invasion with hydrate has on the mechanical properties of the sediment. The 529 

densification mechanism attributes hydrate-related changes in the host sediment available void 530 

ratio, swelling line slope and isotropic yield stress to sediment stress-strain changes. Moreover, 531 

the flexibility in the shape of the Hydrate-CASM yield function and the use of a non-associated 532 
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flow rule make our formulation particularly suitable for modelling the behavior of sands, the 533 

most likely target deposit for commercial exploitation of hydrates.   534 

 535 

Compared to previous models for MHBS, our formulation reduces to one the number of 536 

empirical hydrate-dependent parameters required to reasonably capture the mechanical 537 

behavior of MHBS. Our formulation only requires an empirical hydrate-dependent parameter 538 

to account for changes in the swelling line slope with hydrate saturation. Reducing to one the 539 

number of these parameters is an important advance in mechanical constitutive modeling of 540 

MHBS (i) because obtaining them through laboratory tests is challenging, especially if their 541 

physical meaning is not well understood, and (ii) because eases the application of the Hydrate-542 

CASM model to a wide range of experimental test conditions.   543 

 544 

Robust and well-described published experimental tests have been chosen to calibrate the 545 

Hydrate-CASM capabilities at modelling the mechanical behavior of MHBS during triaxial 546 

shear. These tests cover the most relevant conditions related to MHBS behavior, including a 547 

wide range of hydrate saturations, several hydrate morphologies and confinement stress. In 548 

addition, they have been previously used to calibrate other mechanical models developed for 549 

MHBS, which allowed us to compare and validate our results. Our simulations evidence the 550 

ability of the Hydrate-CASM to predict both stress-strain and the volumetric response of 551 

synthetic MHBS subjected to triaxial shear and suggest that quantifying the void ratio and the 552 

mechanical response of the host sediment is key to isolate hydrate-related mechanical 553 

contributions.  554 

 555 
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