
Ecology and Evolution. 2020;10:1069–1086.     |  1069www.ecolevol.org

 

Received: 18 December 2018  |  Revised: 8 December 2019  |  Accepted: 18 December 2019

DOI: 10.1002/ece3.5973  

O R I G I N A L  R E S E A R C H

Ecological costs of climate change on marine predator–prey 
population distributions by 2050

Dinara Sadykova1,2  |   Beth E. Scott1 |   Michela De Dominicis3 |   Sarah L. Wakelin3 |   
Judith Wolf3 |   Alexander Sadykov1,2,4

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1Institute of Biological and Environmental 
Sciences, University of Aberdeen, Aberdeen, 
UK
2School of Biological Sciences, Queen's 
University Belfast, Belfast, UK
3National Oceanography Centre, Liverpool, 
UK
4Centre for Ecological and Evolutionary 
Synthesis, University of Oslo, Oslo, Norway

Correspondence
Beth E. Scott, Zoology School of Biological 
Sciences, University of Aberdeen, Tillydrone 
Ave, Aberdeen, AB24 2TZ, UK.
Email: b.e.scott@abdn.ac.uk

Funding information
Science Foundation Ireland, Grant/Award 
Number: 15/IA/2881; Engineering and 
Physical Sciences Research Council, Grant/
Award Number: EcoWatt2050 and EPSRC 
EP/K012851/1

Abstract
Identifying and quantifying the effects of climate change that alter the habitat overlap 
of marine predators and their prey population distributions is of great importance for 
the sustainable management of populations. This study uses Bayesian joint models 
with integrated nested Laplace approximation (INLA) to predict future spatial density 
distributions in the form of common spatial trends of predator–prey overlap in 2050 
under the “business-as-usual, worst-case” climate change scenario. This was done for 
combinations of six mobile marine predator species (gray seal, harbor seal, harbor 
porpoise, common guillemot, black-legged kittiwake, and northern gannet) and two 
of their common prey species (herring and sandeels). A range of five explanatory 
variables that cover both physical and biological aspects of critical marine habitat 
were used as follows: bottom temperature, stratification, depth-averaged speed, net 
primary production, and maximum subsurface chlorophyll. Four different methods 
were explored to quantify relative ecological cost/benefits of climate change to the 
common spatial trends of predator–prey density distributions. All but one future joint 
model showed significant decreases in overall spatial percentage change. The most 
dramatic loss in predator–prey population overlap was shown by harbor seals with 
large declines in the common spatial trend for both prey species. On the positive side, 
both gannets and guillemots are projected to have localized regions with increased 
overlap with sandeels. Most joint predator–prey models showed large changes in 
centroid location, however the direction of change in centroids was not simply north-
wards, but mostly ranged from northwest to northeast. This approach can be very 
useful in informing the design of spatial management policies under climate change 
by using the potential differences in ecological costs to weigh up the trade-offs in 
decisions involving issues of large-scale spatial use of our oceans, such as marine pro-
tected areas, commercial fishing, and large-scale marine renewable developments.
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1  | INTRODUC TION

We need to understand more explicitly the spatial functioning of 
our marine systems and especially critical marine habitats: those 
limited areas that are more likely to be the foraging habitats of mo-
bile species such as seabirds and mammals (Cox, Embling, Hosegood, 
Votier, & Ingram, 2018; Sharples, Scott, & Inall, 2013). This level of 
understanding is necessary if we are to use marine protected areas 
(MPAs), marine spatial planning, and changes in spatial management 
of fisheries effectively (Gaines, White, Carr, & Palumbi, 2010; Gissi, 
Fraschetti, & Micheli, 2019; Green et al., 2014). Also, to mitigate 
climate change, we will need to rapidly use more marine space for 
the large-scale expansion of marine energy extraction (wind, wave, 
and tidal), but this will also have ecosystem-level effects on criti-
cal marine habitats (Cazenave, Torres, & Allen, 2016; De Dominicis, 
O'Hara, & Wolf, 2017; De Dominicis, Wolf, & O'Hara Murray, 2018; 
Ludewig, 2015; van der Molen, Smith, Lepper, Limpenny, & Rees, 
2014). However, the complexity of marine ecosystems is prevent-
ing rapid increases in mechanistically detailed knowledge about the 
entire range of possible changes to the multiplicity of trophic inter-
actions that may occur with both climate change and large-scale an-
thropogenic use of our oceans. Therefore, to proceed with spatial 
planning and management decisions that need rapid answers, we 
must come up with pragmatic methods that capture the complex-
ity of ecosystems, using what we already know. Also, in order to 
proceed with some certainty that we are also protecting and main-
taining our important top-predator populations, we need to be able 
to predict, quantify, and separate the possible “ecological costs” of 
changes due to climate change from those of large-scale renewable 
developments as well as benefits from MPAs. This type of approach 
will allow the weighing up of trade-offs in different spatial manage-
ment decisions (White, Halpern, & Kappel, 2012).

We use the terminology “ecological costs” to cover a range of 
ecologically important changes to populations, as the purpose of this 
study was to provide quantitative values of the amount of change 
to spatial population distributions as well as probabilities of future 
spatial overlap with prey species. These outcomes can then be used 
in ecosystem models as predictors of the amount of future popu-
lation change for a given stressor, that is, climate change or large-
scale renewable developments. In the North Sea and Atlantic region 
long-term (up to 40 years) surveys for fish, fish larvae (Edwards et 
al., 2011; ICES, 2016), seabirds (Kober et al., 2010), and marine mam-
mals (Hammond et al., 2013), as well as more recent use of tagged 
mammals and seabirds (Jones et al., 2013; Wakefield et al., 2017), 
have allowed the creation of seasonal and annual spatial distribu-
tions of either density or abundance depending on the data for the 
mobile species (see section on “Study Area and Species”). Therefore, 
we know a lot about “where” seabirds and mammals and some of 
their main prey species may be located but we know far less about 
exactly “why” they are there, for example, what it is about these 
habitats that make them the (potentially limited) areas where mobile 
animals forage (Cox et al., 2018). This study sets out to investigate 
the use of a range of analytical techniques to produce outputs that 

can be used to assess the spatial changes to populations that we are 
calling “ecological costs” of climate change, on the locations where 
highly mobile marine predators capture prey and where mobile com-
peting species may overlap. This study uses spatial analytical tools 
(Sadykova et al., 2017) that can estimate the degree and strength 
of overlap (referred to as “common spatial trends”) of spatial loca-
tions driven by important biological and physical variables by using 
a Bayesian hierarchical joint modeling approach with integrated 
nested Laplace approximation, INLA (Rue, Martino, & Chopin, 2009; 
Rue et al., 2017). The “common spatial trend” quantifies the degree 
of spatial overlap and specifically is the posterior residual spatial au-
tocorrelation unexplained by covariates.

We explore spatial joint model outputs to compare the efficiency 
of methods that estimate the ecological costs of trophic interactions 
between predator and prey and competing species for similar prey, 
in present versus future “business-as-usual” (worst-case) green-
house-gas emissions scenario (De Dominicis et al., 2018; Stocker et 
al., 2013), projected to mean climate change conditions centered on 
2050. We used the “worst-case” scenario in order to calculate the 
maximum ecological cost. We ran the models up to 2050 as it is only 
after this time period that the effects of different scenarios start to 
become more important (IPCC, 2018). Therefore, in this study we 
are comparing the current situation to what the marine environment 
will most likely look like in 2050.

We use a selected group of important biological and physical 
variables (see section “Physical Environmental Variables” for more 
details) that will change with climate change and have been shown 
to be important to marine mammals and seabirds and their prey 
(Carroll et al. 2015, Chavez-Rosales, Palka, Garrison, & Josephson, 
2019, Sadykova et al., 2017, Wakefield et al. 2017). The three aims of 
this study are first to compare joint model distributions of a range of 
contrasting seabird and mammal species from the present to future 
(2050) climate change projections. The second aim is to quantify es-
timates of the changes in spatial population density or abundance 
distributions, which we are defining as ecological costs/benefits, by 
four different methods. The third aim is to test whether some or 
all of the methods show the same degree and direction of change, 
to determine which method or combination of methods is the most 
effective predictor of both quantitative and spatial changes. The 
four methods include both single-species and joint model outcomes. 
Method 1 is the prediction of the amount of relative change in the 
populations for single species for each of the joint modeling future 
scenarios. Method 2 is assessing the overall spatial change in either 
density or abundance for single-species models and common spatial 
trends of the joint models by quantifying the number of grid cells 
within the study area that shows >33% change in value. This method 
is called overall spatial percentage change. Method 3 uses outcomes 
of the percentage of grid cells that show either a loss or gain of hab-
itat (for single-species models) and a change from either positive to 
negative or vice versa in the common habitat trends (for joint mod-
els). Method 4 quantifies the distance between weighted centroids 
of each joint model and the direction of travel between the present 
and future common habitat trends.
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2  | DATA DESCRIPTION

2.1 | Study area and species

The study area was defined as covering the North Sea and the UK 
continental shelf in the area between 48° and 62° north and 10° 
west and 10° east. We used spatial distributional data on eight 
mobile marine top-predator species: gray seal (Halichoerus grypus), 
harbor seal (Phoca vitulina), harbor porpoise (Phocoena phocoena), 
common guillemot (Uria aalge), black-legged kittiwake (Rissa tridac-
tyla), northern gannet (Morus bassanus), herring (Clupea harengus), 
and sandeels (Ammodytidae). The seabird and mammal species were 
chosen to provide contrasts in their foraging and breeding behaviors 
and for the high level of spatial and temporal data availability. Within 
the seabirds, kittiwakes represent surface feeders, guillemots—deep 
divers (>150 m), and gannets—plunge divers of intermediate depths 
(~30 m). Gray and harbor seals were selected due to their similari-
ties in diet and foraging behaviors and yet contrasting population 
dynamics: Gray seal populations are currently rapidly increasing and 
harbor seals declining (Wilson & Hammond, 2019). Harbor porpoise 
were selected as the most common cetacean species (Hammond 
et al., 2013). For fish prey species, we choose two species that are 
very common in the diet of all the above top predators (Booth, 
2019; Wanless, Harris, Newell, Speakman, & Daunt, 2018; Wilson 
& Hammond, 2019) but have very contrasting behaviors and habi-
tat use. Sandeels have very specific benthic habitat needs (Wright, 
Jensen, & Tuck, 2000) with localized populations that have a ten-
dency to remain in the same areas throughout their life histories 
(van der Kooij, Scott, & Mackinson, 2008; Wright, Régnier, Gibb, 
Augley, & Devalla, 2018). Herring, in particular juvenile herring, have 
large larval movements (age 1) and adult annual migrations (age 2,3 
and older), such that they are found in quite different habitats at 
different ages and seasons (Corten, 2002). For all present climate 
distributions of single species, see Figures S1.1a–S1.9a, the left panel 
of each figure.

The gray and harbor seal usage maps represent estimated an-
nual at-sea density distributions of seals over 20 years from surveys 
and tagging programs (Jones, McConnell, Sparling, & Matthiopoulos, 
2013). The harbor porpoise density maps represent porpoise density 
from whole UK surveys in 1994 and 2005 (Hammond et al., 2013), 
and unique from all the other data used in this study, these outputs 
are model estimates of density distributions based on environmental 
covariates. They were created by combining the outputs of a smooth 
surfaces generated from species distribution models using latitude, 
longitude, and depth in 1994, and using latitude, longitude, depth, 
and distance to coast in 2005 (Hammond et al., 2013). The poten-
tial issues and care that must be given with the interpretation of 
these results will be examined in the results and discussion. Maps 
of the herring abundance represent the herring mean abundance 
from summer acoustic surveys for juveniles (age 1) and all older 
age classes (2 and 3+) for the combination of the years: 2003–2009 
and 2013–2014 provided by the Herring Assessment Working 
Group (HAWG, 2019), (ICES, 2015, 2016). The common guillemot, 

black-legged kittiwake, and northern gannet density maps show sea-
bird density across 25 years (1989–2014) of data from at-sea surveys 
with data from all seasons (Kober et al., 2010). The density maps for 
sandeels represent larval density across 25 years (1989–2014) from 
continuous plankton recorder (CPR) data (Edwards et al., 2011). All 
the species data were given on a regular 7 × 7 km square grid. All the 
data points with depth >500 m were removed from consideration as 
the prey species of focus in this study all live in habitats that do not 
go beyond those depths. More details about the methods of mod-
eling the different species can be found in Sadykova et al. (2017).

2.2 | Physical environmental variables

Data on five biophysical environmental variables have been pro-
vided from runs of the Atlantic Margin Model 7 × 7 km (AMM7-
NEMO) 3D baroclinic, hydrodynamic model, coupled with an 
ecosystem model ERSEM (Wakelin, Artioli, Butenschön, Allen, & 
Holt, 2015). The variables used are as follows: bottom tempera-
ture (BT) (°C), maximum chlorophyll-a (CHL) (mgC/m3), net primary 
production (NPP) (gC m2 year−1), potential energy anomaly (PEA, 
which is the energy required to mix the water column completely) 
(J/m3), and depth-averaged current speed (SP) (m/s). The variables 
were used in two seasons: “spring” and “summer,” and this is de-
scribed in the following section. These variables were chosen as 
they cover the main physical and biological parameters that can 
affect pelagic habitats and primary production (Holt, Butenschon, 
Wakelin, Artioli, & Allen, 2012; Holt, Hughes, et al., 2012; Holt & 
Proctor, 2008; Holt et al., 2016) under both climate change and, 
the next biggest change to our shallow seas, very large extraction 
of energy from offshore renewable developments (Boon et al., 
2018; De Dominics et al., 2018; van der Molen et al., 2014). These 
variables are important habitat variables as they capture the 
range of features: fronts, other areas of high production, and mix-
ing characteristics of shallow seas including density differences 
due to regions of freshwater influence (Cox et al., 2018). PEA is a 
continuous variable that captures the main vertical mixing charac-
teristics (level of stratification) of the water column, such as dif-
ferences in pycnocline gradient and depth and positions of fronts, 
and will generally increase with distance to shore, as the value of 
depth increases (Holt & Proctor, 2008). BT is similar to PEA, in 
fact the two variables are highly correlated (r > .6) such that both 
will never be run in the same model. However, PEA will change 
more with climate change via changes to stratification by surface 
warming, whereas BT will not increase as much (De Dominicis et 
al., 2018). Therefore, BT was also used to cover any physiological 
responses, especially from prey and mammals where temperature 
may play a more important role than stratification. SP was used 
to pick up areas where predators use different horizontal current 
speeds (Benjamins et al., 2015). The two biological variables NPP 
and CHL are not correlated in the summer  season (r < .2). High 
levels of NPP represent different areas in the spring versus sum-
mer seasons. In spring, they can represent anywhere there is a 
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spring bloom occurring, whereas in the summer they will mostly 
represent areas where the whole water column is mixed, normally 
near shore, shallower regions (Holt et al., 2016). CHL represents 
much more fine-scale areas of higher localized production due to 
internal waves at shelf edges, banks, and troughs (Cox et al., 2018). 
A range of studies have shown their importance for specific sea-
bird and marine mammal species (Van Beest et al., 2019; Bost et 
al., 2009; Carroll et al., 2015; Chavez-Rosales et al., 2019; Scott et 
al., 2010; Waggitt et al., 2018; Wakefield et al., 2017).

All the variables were on a regular 7 × 7 km square grid for 2 sea-
sons: The first season (“spring season”) represents spring and early 
summer and includes March, April, May, and June and the second sea-
son (“summer season”) includes July, August, September, and October. 
Having the data in two seasons allows capture of the major differences 
in availability of prey (sandeels, mostly available only in the spring 
season, and herring, available during both seasons but with different 
distributions) and the spatial foraging changes due to differences in 
breeding (central-placed) and postbreeding behaviors of at least the 
seabird species. As the distribution for seals was from annual usage 
maps (Jones et al., 2013), both seasons are represented, and with por-
poise data derived during July, their distribution represents only the 
summer season (Hammond et al., 2013). All the data were given as cli-
matological means across 25 years for present (1989–2014) and future 
(projected) (2037–2062) years, using a single climate scenario termed 
the “business-as-usual” or “worst-case” climate scenario (Stocker et al., 
2013). AMM7-NEMO was used to downscale the climate signal from 
the Hadgem2-ES climate model (The HadGEM2 Development Team, 
2011). Present and future outputs for each variable are presented in 
Figures S2.1–S2.5.

3  | METHODS

3.1 | Single-species and joint models

We used Besag, York, and Mollie (BYM) (Besag, York, & Mollie, 
1991) spatial hurdle and nonhurdle single and joint models follow-
ing Sadykova et al. (2017). BYM is an intrinsic autoregressive model, 
where the spatial effect of a particular area depends on the effects 
of the neighboring areas. In addition, the BYM specification al-
lows inclusion of a heterogeneous effect, which assumes that the 
obtained estimates between areas are independent of each other 
(Besag et al., 1991). Both spatial effect and heterogeneous effect 
are referred to as “random effects” in this paper. The hurdle mod-
els, which have been developed to manage the high occurrence of 
zeros in the observed data, were considered for data with an ex-
cess of zeros (harbor seal, sandeels, and common guillemot), while 
nonhurdle models were considered for the data without excess of 
zeros. A hurdle model is a two-component model, where the first 
part presents a binary component that generates zeros and ones (0—
zero values, 1—positive values). The second part of the hurdle model 
presents an amount component that generates nonzero values (for 

positive density or abundance). The “hurdle” value (which may pre-
sent any value) was set at zero in this study. Gamma likelihood was 
assumed for the positive density or abundance data, and logistic re-
gression was used for the binary process in hurdle models. For the 
data without excess zeros, we assumed a model with gamma likeli-
hood (Sadykova et al., 2017).

The parameters were modeled as sums over different combina-
tions of the biophysical variables' effects (we considered all possible 
combinations of the covariates excluding highly correlated (r > .5) 
variables) and the random effects, due to unstructured and spatially 
structured heterogeneity. The covariates' effects were modeled as 
smooth functions of either first-order or second-order random walk 
processes to pick up smooth fluctuations (Rue & Held, 2005). For a 
detailed description of the models, readers are referred to Sadykova 
et al. (2017). The Bayesian hierarchical modeling approach with inte-
grated nested Laplace approximation (INLA) was applied to reduce 
the computational cost of fitting these spatial models (Rue et al., 
2009).

3.2 | Joint model selection

Joint-species models were considered, in order to select the best 
habitat models for coupled species (e.g., predator–prey or com-
peting species). The coupled species were assumed to share the 
same biophysical habitat variables (find more about single-species 
habitat selection in Sadykova et al., 2017). We considered all pos-
sible combinations of covariates (biophysical variables), excluding 
the combinations with highly (r > 0.5) correlated variables (BT was 
strongly correlated with NPP and PEA, NPP was highly correlated 
with CHL). The goodness of fit for all the joint-species models 
with all the considered combinations of covariates was assessed 
using the deviance information criterion (DIC; Spiegelhalter, Best, 
Carlin, & Linde, 2014). The models with the lowest DIC values 
were considered as the best models. All computations were per-
formed using the R-INLA package (Lindgren & Rue, 2015; Rue et 
al., 2009, 2013).

3.3 | Single-species and joint model predictions

Integrated nested Laplace approximation provides predictions of 
missing values in the response. We used this feature to provide pre-
dictions of the density values using future climate scenario biophysi-
cal data (2037–2062). Specifically, making a prediction for a response 
variable in INLA is the same as fitting a model with some missing data. 
The response values (abundances or densities) that we want to predict 
are set to be “NA” (not available) for all the locations. Then, the models 
were fitted using both the present biophysical variables (for the pre-
sent abundances or densities values) and the projected future climate 
scenario biophysical variables (2037–2062) (for the missing values). 
The BYM predictive models also included the random effects, due to 
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unstructured and spatially structured heterogeneity (for more details, 
see “Single-species and joint models” subsection). The biophysical co-
variates for each model were selected based on the model selection 
results.

3.4 | Methods for analyzing spatial differences: 
estimates of ecological costs

Four methods were used to assess differences between present and 
future populations and spatial distributions of single-species and 
joint-species model outcomes. These differences are used to com-
pare the estimates of potential ecological costs of climate change 
to gauge whether each of the four methods for ecological costs in-
dicates the same magnitude and/or direction of change. Note for 
Method 3, the local and common spatial percentage loss/gain calcu-
lations have separate methods for single-species versus joint models 
(see subsection “Local and Common Space Percentage Loss or Gain” 
below).

3.4.1 | Relative population change: Method 1

The first method assessed predicted relative changes in populations 
for each single-species and joint model. This was accomplished by 
comparing present (1989–2014) and future (projected) (2037–2062) 
densities for each predictive model. The outputs of this analysis are 
used for each of the following three methods for quantifying eco-
logical costs.

3.4.2 | Overall spatial percentage difference: 
Method 2

The comparisons of overall spatial percentage difference in den-
sity or abundances, between future and present single-species 
and joint model common spatial trends, were made by evaluating 
the percentage change for each grid cell and then also estimating 
the percentage of the entire area (over all grid cells) that exceeds 
the one-third difference (i.e., >33% of all grids are different). The 
“thirds rule of thumb” (Berry, 2007) says that if two-thirds of the 
total area (67%) has grid cells with >33% differences, the surfaces 
are “fairly different,” otherwise the future distributions are “fairly 
similar” (Berry, 2007). In this study, we have introduced three cat-
egories. The future distributions are (1) “fairly similar,” when <33% 
of the total area is different (has grid cells with >33% differences) 
from the present common spatial trend; (2) “fairly different,” when 
the difference is in the range 34%–66%; and (3) “very different” 
when >67% of the total area is different. Analysis considered in 
this paper included all grid points (following Berry, 2007), to take 
all spatial information into account. However, we also calculated 
spatial percentage difference with three different thresholds 
to find out whether small values are influencing the percentage 

difference outcomes and estimating percentage differences in the 
highly populated habitat areas.

3.4.3 | Local and common space percentage loss or 
gain: Method 3

Single-species models: Percentage of local area loss or gain
To explore local patterns in the decrease or increase in densities of sin-
gle-species future (projected) distributions, we defined “hot spots” and 
“cold spots” using G* statistics by Getis and Ord (1992). Percentage of 
the population change (decrease/increase) was estimated as the per-
centage of the grid cells where “hot spots” moved to “cold spots” (de-
crease, lost area) or moved from “cold spots” to “hot spots” (increase, 
gained area).

Joint models: Percentage of local area loss/gain in common spatial 
trends
Percentage of common spatial trend (joint habitat) loss was calcu-
lated as the percentage of the grid points that are not going to be 
suitable for both predator and prey or competing species in the fu-
ture; in other words, the grid points where the common spatial trend 
changed sign from positive to negative. Conversely, the percentage 
of new suitable common habitat was estimated as the percentage of 
the grid points where the spatial trend changed sign from negative 
to positive. This analysis considered only those grid-point values in 
which 95% credible intervals included either only negative or only 
positive values (i.e., significant). The analysis sums up the number 
of grid cells where the common spatial trend will have changed 
sign from negative to positive (gain overlap) or positive to negative 
(lost overlap) and calculates the percentage of the present common 
trend area that will change in the future 2050 scenario.

3.4.4 | Weighted centroids and direction of change: 
Method 4

To estimate the effect of climate change on the species distributions, 
we calculated differences between weighted centroids of the pre-
sent and future (projected) populations of both single-species and 
joint model outputs. Each weighted centroid represents how the 
population is spatially distributed, summarized as a single reference 
point on the map, and was calculated using a mean centroid algo-
rithm (first moment of area; Kumler & Goodchild, 1992; Tukey, 1977). 
Differences between weighted centroids of the present and future 
population densities and present and future common habitat trends 
(based on the positive values) were used to estimate the effect of 
climate change on both densities and the common species habitat 
and were calculated using the haversine formula (Inman, 1835). The 
direction of travel was obtained as the orientation between two 
centroids (reference points). As population densities were predicted 
from different models, with different biophysical covariates, a range 
of differences between weighted centroids was obtained.
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3.5 | Comparisons with other common methods: 
RMSE and Bhattacharyya distance

We compared the results from our research with the results that 
would be obtained using two other common statistical methods. The 
first method is root mean square error (RMSE), also known as root 
mean square deviation, which is commonly used to compare two 
data sets (Hyndman & Koehler, 2006). Here, we used it to compare 
future (projected) and present common spatial trends to estimate 
relative ecological costs of climate change (note that we did not use 
the RMSE method to evaluate our models, but to compare two dif-
ferent map surfaces). The RMSE formula that we used was 

RMSE = 

�

∑N

i=1(FutureCST−PresentCST)
2

N
, where N is a sample size and 

FutureCST, PresentCST are future (projected) and present common 
spatial trends. The second method that we used is estimating 
Bhattacharyya distances (Bhattacharyya, 1943), which reflect the 
degree of dissimilarity (also called “measure of divergence”) between 
the future (projected) and present common spatial trends.

3.6 | Percentage of deviance explained

To estimate the percentage of the null deviance explained by each 
model predictor (each biophysical variable), the following formula 
has been used:

where the null deviance is a deviance of a model that includes only 
the intercept (“worst model”) and reduced model deviance is a de-
viance of the reduced model with only one biophysical variable. 
This diagnostic measure is used to indicate the explanatory power 
brought individually by each biophysical variable. This measure can 
also indicate the potential level of bias in the outputs including the 
porpoise density data, which had estimated density surfaces based 
on correlations with depth and distance to coast (see “Data descrip-
tion” section).

4  | RESULTS

4.1 | Single-species model selection

Overall, outcomes of both single and joint models showed that PEA 
and NPP are the most important habitat-proxy variables, with CHL 
being the 3rd most important.

The direction/shape of the relationship for single-species model 
selection results is shown in Table 1. As there were some models with 
2 or less DIC points between them, the 2nd best models were also pre-
sented. Across species, PEA was the most important variable in 9 out 

of 14 models (7 out of 8 species) with NPP the next with 8 appear-
ances (7/8 species) and CHL with 6 (5/8 species). The PEA relationships 
were almost always negative across species; however, for herring age 
2+3, the relationship contains an optimal value for PEA. The CHL re-
lationships are mostly positive and have an optimum with porpoise, 
but again, herring aged 2+3 is the exception with a negative relation-
ship with CHL. NPP, SP, and BT all had very variable relationships with 
different relationships between the different species. The percentage 
of deviance explained by each biophysical variable can also be seen 
in Table S3, which confirms that PEA is the variable that explains the 
highest deviance in 5 of the species and the combination of PEA, NPP, 
and CHL are consistently the top 3 variables for 7 out of 8 species. 
The Table S3 also shows that the biophysical variables for the porpoise 
models do not have the higher explained deviance than those of the 
other species, which provides support in using the biophysical variables 
for the porpoise density surfaces.

(

Null deviance −Reducedmodel deviance
)

Null deviance
×100.

TA B L E  1   Deviance information criterion (DIC)-based single-
species model selection results

Model BT CHL NPP PEA SP

(1) Gray seals   asm neg  

(1) Harbor seals  pos  neg  

(2) Harbor 
seals

  pos neg  

(1) Porpoises opt opt   neg

(2) Porpoises   opt neg  

(1) Northern 
gannet

  opt  opt

(1) Common 
guillemot

 pos  neg  

(1) Black-legged 
kittiwake

 pos  neg  

(2) Black-
legged 
kittiwake

  pos neg  

(1) Herring age 1   opt  pos

(2) Herring 
age 1

 pos   pos

(1) Herring age 
2+3

neg neg    

(2) Herring age 
2+3

  opt opt  

(1) Sandeels   neg neg  

Note: The best-supported models are shown for each species (number 
(1)), and variables included in the best models are shaded in blue. 
When the difference in DIC between the best model and the next best 
model is less than 2, the second best models are reported (number 
(2)) and variables included in the 2nd best models are shaded in gray. 
Selected models for herring are given for different age-groups (age 1 
and ages 2 and 3). The biological and physical variables are as follows: 
bottom temperature (BT), maximum chlorophyll-a (CHL), net primary 
production (NPP), potential energy anomaly (PEA), and depth-averaged 
current speed (SP). “Pos” indicates a positive relationship, “neg”—a 
negative relationship, “opt”—that the relationship contains an optimal 
value, and “asm”—that the relationship is asymptotic.
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Note, due to a range of improvements, including updated input 
data from the NEMO-ERSEM data sets, limiting the analysis to depths 
of <500 m (as prey species are not found beyond those depths) and 
the use of predictive modeling in this study, the single-species model 
results are different from those of Sadykova et al. (2017).

4.2 | Joint model selection and common 
spatial trends

The common spatial trends (Figures 1‒14) are also somewhat differ-
ent from those published in Sadykova et al. (2017). This is due to the 
fact that we used predictive modeling in this study with the new and 
updated biophysical variables from the NEMO-ERSEM models, while 
Sadykova et al. (2017) used descriptive analysis to provide insight 
into the past data. DIC-based joint-species model selection results 
can be found in Table 2. Only the best-supported models are shown 
and they have DIC differences greater than the next best model, by 
at least 5 units. The joint-species model selection results demon-
strate that both PEA and NPP (Table 2) play vital roles in determining 
joint habitat preferences (for 11 and 8 appearances, respectively, out 
of 14 models). CHL is the next most important environmental vari-
able showing up in nearly half (6) of all models. SP was also important 
(5), appearing in almost all models (4 out of 6) with herring involved. 
BT appeared only in 2 joint models, and as it is highly correlated with 
PEA, the results indicate that in the majority of cases PEA is a better 
explanatory variable than BT.

4.3 | Differences in spatial density: Ecological 
cost estimates

4.3.1 | Single species: Relative population change, 
Method 1

Table 3 provides the percentage overall change in (mean) popula-
tion density or abundance between present and future populations 
in 2050 for each species across all possible joint habitat parameters.

4.3.2 | Overall spatial percentage difference: 
Method 2

Single-species models
Table 3 shows the range of percentages of grid cells that are pro-
jected to exceed 33% difference in density by 2050 in relation to 
the present densities. Harbor seals and both prey species, herring 
(age 2+3) and sandeels, show “very different” percentage density 
distributions to their overall future spatial density distributions with 
>67% of the grid cells having >33% differences, suggesting environ-
mental effects are very important in determining their future distri-
butions. On the other hand, porpoise, gannet, and kittiwake showed 
“fairly similar” spatial density distributions between present and 

future distributions, suggesting that, under the influence of only en-
vironmental variables, they will not shift their current distributions 
very much. The rest of the species, gray seal, guillemot, and herring 
(age 1), showed a range of responses from “fairly similar” to “fairly 
different” distributions.

Joint models
Table 4 shows the percentages of grid cells in the 2050 climate com-
mon spatial trend that are projected to exceed 33% difference in 
relation to the present climate common spatial trend. Almost all 
joint models showed “very different distribution” with 11 out of the 
14 models significantly different in their spatial composition in the 
future. Therefore, according to the “thirds rule of thumb” (Berry, 
2007), the joint porpoises and herring distribution is the only out-
come that is “fairly similar,” while the other 2 joint models (gray seals 
and herring, guillemots and herring) are “fairly different” suggesting 
there will be a great deal of change in common spatial trends across 
most species in the future.

The drawback of this method might be dealing with an amount 
of very small values or values close to zero, whose percentage 
change might be detected as significantly different, while the ef-
fect might be insignificant—depending on the errors of the pre-
dicted values. However, the results of the outcomes to investigate 
the potential issue of small values influencing outcomes concluded 
there was no effect (Table S1). However, one should apply this 
method with care when dealing with maps that consist of large 
numbers of small values (especially alongside relatively large 
values).

4.3.3 | Local and common space percentage loss or 
gain: Method 3

Single-species models: Percentage of local area loss or gain
Table 3 provides the range of values for the percentage of grid cells 
changing from hot to cold or cold to hot spots for single-species 
models across the range of joint habitat parameters. Both prey spe-
cies showed the largest changes in local high-density areas with the 
maximum percentage of grid changes in sandeels and herring rang-
ing from 32% to 45% decreases (hot to cold) to 16 to 27% increases 
(cold to hot), respectively. The species that show the next biggest 
decreases are kittiwakes and harbor seals (with potential maximum 
losses of 22%–24% of local areas). Those species that showed the 
largest increases are gannets and gray seals (maximum 11%). Future 
(projected) differences in spatial densities from the single-species 
models may be found in Figures S1.1b–S1.9b. Most of the spatial 
outcomes discussed above showed population decrease in the pre-
sent high activity areas.

Joint models: Percentage of local common spatial trend lost or 
gained
Table 4 shows the percentage loss or gain of common trend by 2050, 
for the joint models. The harbor seal and herring model showed the 
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highest decrease in common spatial trend, 48.5%, compared with the 
present overlap. Kittiwake and harbor seals, both coupled with sand-
eels, also showed a high percentage of lost common habitat areas 

(>30%). However, gannet and guillemot models, both coupled with 
sandeels, showed high increases in common spatial trends (14%–24%). 
The only other major gain was between gray and harbor seals, which 

F I G U R E  1   Gray seals and harbor seals. 
Estimated present common spatial trend 
(1989–2014) (a) and future (projected) 
common spatial trend using future climate 
scenario data (2037–2062) (b). The right 
picture (c) shows difference between the 
future and the past common spatial trends

F I G U R E  2   Common guillemot and 
black-legged kittiwake. Estimated present 
common spatial trend (1989–2014) (a) 
and future (projected) common spatial 
trend using future climate scenario data 
(2037–2062) (b). The right picture (c) 
shows difference between the future and 
the past common spatial trends

F I G U R E  3   Common guillemot and 
herring. Estimated present common 
spatial trend (1989–2014) (a) and future 
(projected) common spatial trend using 
future climate scenario data (2037–2062) 
(b). The right picture (c) shows difference 
between the future and the past 
common spatial trends

F I G U R E  4   Common guillemot and 
sandeels. Estimated present common 
spatial trend (1989–2014) (a) and future 
(projected) common spatial trend using 
future climate scenario data (2037–2062) 
(b). The right picture (c) shows difference 
between the future and the past 
common spatial trends

F I G U R E  5   Northern gannet and 
herring. Estimated present common 
spatial trend (1989–2014) (a) and future 
(projected) common spatial trend using 
future climate scenario data (2037–2062) 
(b). The right picture (c) shows difference 
between the future and the past 
common spatial trends
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showed they will share 17.5% more common spatial areas. The esti-
mated common spatial trends for competing and predator–prey spe-
cies can be seen in Figure 1a,b–14a,b. The purple areas (with values 
>0) of these common spatial trends identify the high-density areas of 
the coupled species (and show positive spatial effects on the estimated 
joint populations). Figures 1c-14c show differences between the fu-
ture and the past spatial trends, where blue areas will be less suitable 
habitat areas by 2050 and red areas will be more suitable habitat areas, 
relative to the present habitat zones. In these joint models, herring 
of different ages were regarded as separate species (Sadykova et al., 
2017), such that the joint models with herring and predator species 
essentially contained 3 species. Overall, most of the future-projected 
common spatial trends showed decreases relative to the present high 
activity areas. Some joint models produced completely new suitable 
common habitat areas (kittiwake and sandeels, gannet and sandeels) 
and a few indicated higher species concentrations in the present high 
activity areas (porpoise and sandeels, guillemot and kittiwake).

4.3.4 | Weighted centroids and direction of change: 
Method 4

Single-species models
Table 3 shows that the centroids of the single species may move by 
a range of 0.5–119 km, depending on the selected species and dif-
ferent biophysical variables present in the models. Both prey species 
showed the most significant centroid point shifts with herring age 2+3 
(45–119 km) and sandeels (6–57 km). Guillemots had the widest range 
(0.5–81 km).

Joint models
Table 4 shows estimated distances between the centroid of the esti-
mated common spatial trend (based on positive values) in 1989–2014 

and the centroid of the common trend in 2037–2062. The distances 
vary from 12 to 164 km. Overall, 7 out of 14 models showed large 
shifts (>70 km) between present and future central points and 2 models 
showed small shifts (<20 km, porpoise and kittiwakes, both with her-
ring) and 5 models showed moderate shifts (20–70 km). The harbor 
porpoise and sandeel model is projected to have the largest shift in the 
common trend (164 km). On the other hand, the harbor porpoise and 
herring model shows a small shift (16 km) in the joint trends. All models 
with sandeels as prey, except common guillemot (38 km), showed large 
changes in distance (71–164 km) of the centroid between present and 
future predictions. All models with herring as prey, except for harbor 
seals (92 km), showed smaller changes in centroid distance (12–44 km). 
The direction of change in the centroids was not all to the north (which 
might be expected due to the northward movement of temperature 
zones), with only the competing seals and harbors seals and herring 
moving directly north. In fact, all of the joint models with seabirds had 
either a northwest or northeast direction of change and gray seals and 
herring had a southeast change with porpoises and herring having a 
move to the east.

4.4 | Ecological costs comparisons

All four ecological cost method comparisons are not strongly corre-
lated with each other (Figure 15a,b). For example, the kittiwake and 
herring model showed a low centroid movement (12 km) but a large 
decrease in common spatial trend (30%) and “very different distri-
butions” with a high number of grid cells (76%) with >33% percent 
difference in density, indicating that low centroid movement cannot 
be assumed to mean nonsignificant spatial changes. Overall, there 
is a weak relationship between the common spatial trend percent-
age change and the centroid distance, but there is no relationship 
between any of the other combinations of costs.

F I G U R E  6   Northern gannet and 
sandeels. Estimated present common 
spatial trend (1989–2014) (a) and future 
(projected) common spatial trend using 
future climate scenario data (2037–2062) 
(b). The right picture (c) shows difference 
between the future and the past 
common spatial trends

F I G U R E  7   Black-legged kittiwake 
and herring. Estimated present common 
spatial trend (1989–2014) (a) and future 
(projected) common spatial trend using 
future climate scenario data (2037–2062) 
(b). The right picture (c) shows difference 
between the future and the past 
common spatial trends
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4.5 | Comparisons with other methods: RMSE and 
Bhattacharyya distances

A number of different statistical methods exist for comparison of 
spatial maps, for example, Bhattacharyya distances/affinity, root 
mean square error (RMSE), or Ripley's K. We used two of the com-
mon methods to compare our results with the results obtained from 
the selected methods.

The RMSE results are found in Figure S3, and they are strongly 
correlated (r = .64) with the results from the weighted centroids 
(Method 4) and moderately correlated (r = .51) with the results 
from the overall percentage difference (Method 2). The RMSE 
scores are high for most of the models except porpoise and her-
ring model (in relation to the common spatial trend values), which 
agrees with the major findings of this paper. The Bhattacharyya 
distances' results are found in Figure S4. The Bhattacharyya 
distance method showed the largest dissimilarity (0.58) for the 
harbor seal and herring model, followed by gannet and herring 
(0.44) and harbor seal and sandeel (0.44) models. The smallest 
dissimilarity is shown for the porpoise and herring model (0.01). 
These results are in accordance with the “Overall percent differ-
ence” results (Method 2, Table 4), which also showed the highest 

difference for the harbor seals and herring, followed by gannet 
and herring and harbor seals and sandeels with the smallest dif-
ference for porpoise and herring.

5  | DISCUSSION

5.1 | Use of joint modeling: comparing present and 
future climate-influenced distributions

The overall approach of using Bayesian joint modeling with inte-
grated nested Laplace approximation (INLA) was highly success-
ful and allowed investigation of a range of methods quantifying 
changes in mobile predator and prey and competing species dis-
tributional population overlap in projected climate scenarios. In 
particular, comparing present climate conditions to the projected 
“business-as-usual” climate scenario in 2050 (IPCC, 2013; Stocker 
et al., 2013), for a range of three species of mammals (gray and har-
bor seals, porpoise) and three seabirds (gannets, guillemots, and 
kittiwakes) with two common prey species (herring and sandeels), 
has shown that, even with only three physical and two biological 
parameters, there can be a complex array of future distributional 
overlaps between species (Figures 1-14, Tables 1 and 2). Overall, 

F I G U R E  8   Black-legged kittiwake and 
sandeels. Estimated present common 
spatial trend (1989–2014) (a) and future 
(projected) common spatial trend using 
future climate scenario data (2037–2062) 
(b). The right picture (c) shows difference 
between the future and the past 
common spatial trends

F I G U R E  9   Gray seals and herring. 
Estimated present common spatial trend 
(1989–2014) (a) and future (projected) 
common spatial trend using future climate 
scenario data (2037–2062) (b). The right 
picture (c) shows difference between the 
future and the past common spatial trends

F I G U R E  1 0   Gray seals and sandeels. 
Estimated present common spatial trend 
(1989–2014) (a) and future (projected) 
common spatial trend using future climate 
scenario data (2037–2062) (b). The right 
picture (c) shows difference between the 
future and the past common spatial trends
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the picture is not a positive one, with many population densities 
or abundances projected to fall (Table 3). However, even though 
for some species, such as harbor seals and kittiwakes, the future 
looks bleak in their present habitat, if projections are correct there 
are new future locations which, provided there are haul-out/col-
ony sites and appropriate sediments available, may become more 
conducive to overlap between predator and prey (see Table 4 and 
Figures 1‒14). This approach provides better understanding of the 
possible mechanistic linkages between the future changes to dis-
tributions of combinations of important biophysical variables that 
provide predators–prey overlap. The increase in the predictability 
of the associated relative “ecological cost” to the level of change 
in important species spatial overlap is what is needed to make 

well-informed decisions about the spatial locations and future an-
thropogenic uses of our ocean spaces.

5.2 | Model selection and uncertainty

However, there are words of caution about this approach and it must 
be stressed that as we used only a single future climate projection 
(the HadGEM2-ES model with RCP8.5, the “business-as-usual” sce-
nario) and only one prey species at a time in this study. Here, we 
would also like to emphasize that the data used in that paper were 
collected from different sources (see “Data description” section 
above) and present species density or abundance. Therefore, the 

F I G U R E  11   Harbor seals and herring. 
Estimated present common spatial trend 
(1989–2014) (a) and future (projected) 
common spatial trend using future climate 
scenario data (2037–2062) (b). The right 
picture (c) shows difference between the 
future and the past common spatial trends

F I G U R E  1 2   Harbor seals and sandeels. 
Estimated present common spatial trend 
(1989–2014) (a) and future (projected) 
common spatial trend using future climate 
scenario data (2037–2062) (b). The right 
picture (c) shows difference between the 
future and the past common spatial trends

F I G U R E  1 3   Harbor porpoise and 
sandeels. Estimated present common 
spatial trend (1989–2014) (a) and future 
(projected) common spatial trend using 
future climate scenario data (2037–2062) 
(b). The right picture (c) shows difference 
between the future and the past 
common spatial trends

F I G U R E  14   Harbor porpoise and 
herring. Estimated present common 
spatial trend (1989–2014) (a) and future 
(projected) common spatial trend using 
future climate scenario data (2037–2062) 
(b). The right picture (c) shows difference 
between the future and the past 
common spatial trends
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obtained predictions for different species might not be directly com-
patible with each other and were compared only to themselves (pre-
sent vs. future) in this manuscript. When interpreting the results, this 
should be taken into account. As with all modeling outputs, there 
are uncertainties due to stochasticity in the spatial models, uncer-
tainty in the values of the parameters and uncertainty in the input 
variables (biophysical variables, which have been provided from runs 
of the 3D coupled baroclinic/hydrodynamic and ERSEM ecosystem 
models). There is additional caution with the porpoise model outputs 
as, stated in the “Data description” section, the input density maps 
contained environmental covariates. By performing the analysis on 
combined data from multiple years that had very different spatial 
density distributions, the influence of those spatial covariates was 
reduced (see Table S3 and “Results” section), but the influence still 
needs to be considered. Due to the large size of data sets and the 
complexity of spatial models meant that we chose to use the DIC 
for model comparison, which was more straightforward to compute 
in the INLA approach than the alternatives such as leave-one-out 

cross-validation (LOO; Vehtari, Gelman, & Gabry, 2017). Therefore, 
in our results and discussions, where we are making inference about 
future species densities, abundances, and future common spatial 
trends, we urge readers to consider these as physically plausible pro-
jections, rather than an absolute prediction and the results should 
be used with some care. The approach in this study is focused to ex-
plore best methods of comparisons to assess future vs present fine-
scale spatial densities rather than definitive spatial distributions.

5.3 | Comparisons and use of ecological 
cost methods

The use of spatial models (with INLA), combined with the four meth-
ods of estimating possible ecological costs of climate change, which 
is seen in the relative amount of change in the population density 
or abundance, allows a range of different assessments of the quan-
titative changes between two distributions. This approach allows 
analysis of continuous distributions and joint predator/prey or com-
petitors' distributions, which provides the means to compare and 
quantify changes in spatial relationships. The four methods are dis-
cussed in turn below:

5.3.1 | Relative population change: Method 1

The method presented here allows future projections of species 
population density or abundance, based on different biophysical co-
variates, to be made. This approach provides an informative metric 
that can be used to make predictions of population change due to 
climate or other anthropogenic disturbances. This study shows that 
all species are projected to have overall decreases in populations in 
most predator–prey and competitive relationships (Tables 3 and 4) 
with prey species in general doing much worse than predators.

5.3.2 | Overall spatial percentage difference: 
Method 2

Among the four methods, method 2, the spatial percentage differ-
ence measure, has an advantage of using all the spatial information, 
such that this method can spatially represent the differences be-
tween the two distributions for any grid cell separately and allow 
very fine-scale (individual colony, haul-out site) understanding of 
changes in common spatial trend at local subpopulation level. It can 
also be summarized into one overall measure for whole population-
level comparisons. Exploring the detail for single species (Table 3), 
it is quite intriguing that for herring age 1 there is relatively less 
change (20.0%–48.2% change) as compared with drastic differences 
for herring age 2+3 (74.8%–82.4% change), which may be explained 
by herring age 1 having no significant relationship with PEA (Table 1). 
The age classes of herring were modeled separately because the 
age classes have very different distributions (Bailey, Maravelias, & 

TA B L E  2   Deviance information criterion-based joint-species 
model selection results

Model BT CHL NPP PEA SP

Gray seals and harbor 
seals

     

Common guillemot 
and black-legged 
kittiwake

     

Northern gannet and 
herring

     

Northern gannet and 
sandeels

     

Common guillemot 
and herring

     

Common guillemot 
and sandeels

     

Black-legged kittiwake 
and herring

     

Black-legged kittiwake 
and sandeels

     

Gray seals and herring      

Gray seals and 
sandeels

     

Harbor seals and 
herring

     

Harbor seals and 
sandeels

     

Porpoises and herring      

Porpoises and 
sandeels

     

Note: Only the best-supported models are shown, and variables 
included in the best models are shaded in blue. The biological and 
physical variables are as follows: bottom temperature (BT), maximum 
chlorophyll-a (CHL), net primary production (NPP), potential energy 
anomaly (PEA), and depth-averaged current speed (SP).
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Simmonds, 1998). The approach in this study suggests that this level 
of detail is needed for clearer understanding of the mechanisms of 
future change.

For joint models (Table 4), only 3 overall outcomes did not have 
“very different” distributions, and these were gray seal, porpoise, 
and guillemot. All these species clearly show or have indications 
(SCANS, 2016) of currently increasing UK populations (Hammond, 
2017; Harris, Albon, & Wanless, 2016; Jones et al., 2015).

Gannets are also increasing in the UK (Murray, Harris, & Wanless, 
2015), and although the model outcomes show a high overall per-
centage change in spatial densities (Table 4), this is because future 
predicted overlaps show increases with prey (Figures 4 and 5). 
Therefore, it is interesting that the four species of predators that are 
currently showing stable or increasing populations are predicted in 
this study to either have very little change or increases in the com-
mon spatial trends with their prey in 2050. This point will be picked 
up in the next section.

5.3.3 | Local and common space percentage 
loss or gain

Habitat loss/gain and common spatial trend measures have an ad-
vantage of identifying hot/cold spot areas and detecting significant 
local changes as a response to climate change (Table 4). The two 
species that are already of concern in European waters, the harbor 
seals (Jones et al., 2015) and kittiwakes (OSPAR, 2017), both show 
the highest losses (31%–49%) of areas of common spatial overlap for 
both prey species in 2050. Also, unlike some of the other predator 
species, neither has major increases of spatial overlap (1% or less) 
in other regions with either prey species. Interestingly, the minimal 
increases between kittiwakes and sandeels are predicted to be very 
localized, mostly to the west and south (Figure 8). In contrast, the 
other seabird species, guillemots and gannets, have much lower lev-
els of losses of common trend with their prey (0%–18%), but both 
have the potential for gains in future common spatial trend, with 
gannets in particular having high gains with sandeels (14%–24%, re-
spectively). However, these models must be interpreted with cau-
tion, as they will more accurately reflect losses than they will gains, 
since the future projections are not constrained by the presence (or 
lack) of suitable breeding sites and sediment type for prey.

The potentially competing seal species (Jones et al., 2015) show 
a high future overlap, with a predicted 18% increase with very little 
decrease in overlap in present areas (<2%, Figure 1). This could be 
due to the fact that, although both seal species have similar negative 
relationships with PEA, our models' estimates have quite different 
relationships with NPP and opposite relationships with CHL. Climate 
change is projected to decrease both NPP and CHL (Holt et al., 2016). 
Gray seals have an optimum value of NPP closer to 200 mgC m2 day−1 
and are negatively related to CHL, whereas harbor seals have an in-
creasing relationship with NPP at values >400 mgC m2 day−1 and a 
positive relationship with CHL (Table 1). Interestingly, the areas in the 
UK where harbor seals show less projected overlap with gray seals TA
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in this study (Figure 1) (i.e., low future overlap on northwest coast as 
compared to northeast coast) are areas that show increases in cur-
rent numbers (Jones et al., 2015). Therefore, this modeling outcome 
suggests that the drastic population declines in the harbor seals (the 
smaller, less mobile species) may be due to the combination of the 
change in habitats, via climate change, producing both an increased 
overlap with a major competitor and losses in overlap with both prey 
species, but also suggesting possible areas without high competition 
and more prey overlap in the northwest.

5.3.4 | Weighted centroid and direction of change

The weighted centroid movement in this study requires only two ref-
erence points: weighted centroids of present and future climate for 
the whole UK population distributions, which, for 11 out of 14 joint 
relationships, showed quite significant changes in more than 75 km. 
The direction of change has been shown to be highly variable in this 
study. It is not a simple case of all prey and predators moving north. 
There are complex interactions between predator–prey relation-
ships with biophysical variables and the effects of climate change, 
with some outcomes showing possible new locations of overlap in 
northwestern, southern, and eastern areas of UK waters.

However, this approach could also be used at a much finer spatial 
scale within the foraging areas of breeding colonies/haul-out sites 
to assess local population shifts or the change in distances that spe-
cies might be required to travel in response to climate change (or 
other anthropogenic disturbances) on a daily timescale for foraging 
trips. Knowledge of the change in distance, which would be required 
in order to better overlap with future prey species distributions, is 
what is missing in most current impact assessments that try to assess 
the population changes in displacement due to substantial anthro-
pogenic activities (such as large-scale offshore renewable develop-
ments that can also change the important biophysical variables for 
predator–prey overlap). The explicit inclusion of future predator–
prey spatial overlap estimates may make a significant difference in 
the assessment of possible impacts of the spatial locations of off-
shore developments of all kinds.

5.3.5 | Comparison of all four ecological 
costs methods

The results imply that the four methods for quantifying ecological cost 
using joint modeling outcomes are not consistent with each other in di-
rection or magnitude (Figure 15a,b), and therefore, we would conclude 

TA B L E  4   Joint models

Model

Overall percent 
difference

Common space % 
decrease (−)

Common space % 
increase (+)

Centroid distance 
(km) Direction

Method 2 Method 3 Method 3 Method 4 Method 4

Gray seals and harbor seals 85.5 1.4 17.5 28.5 North

Common guillemot and black-
legged kittiwake

77.6 14.5 8.9 72.5 Northwest

Northern gannet and herring 95.1 14.0 0.1 44.0 Northwest

Northern gannet and sandeels 89.1 18.2 24.0 99.6 Northeast

Common guillemot and 
herring

63.2 0.01 9.3 32.2 Northeast

Common guillemot and 
sandeels

90.2 16.6 14.1 38.3 Northeast

Black-legged kittiwake and 
herring

75.8 30.5 0.00 11.6 East

Black-legged kittiwake and 
sandeels

91.6 42.5 1.3 98.1 Northwest

Gray seals and herring 47.8 5.4 2.9 41.7 Southeast

Gray seals and sandeels 82.2 11.4 0.4 71.4 Northwest

Harbor seals and herring 98.1 48.5 0.4 91.7 North

Harbor seals and sandeels 92.8 30.6 0.01 71.1 Northwest

Porpoises and herring 11.1 0.6 1.0 16.0 East

Porpoises and sandeels 89.1 18.5 11.2 164.2 Southwest

Note: “Overall percent difference” column shows what percentage of the common spatial trend in 2050 exceeds 33% difference in grid values in 
relation to the present common spatial trend. Common space % decrease or increase columns show percentages of the lost or gained common 
habitat areas by 2050, respectively. Distances between the center point of the estimated common spatial trend (based on positive values) in 
1989–2014 and the center point of the common trend in 2037–2062 (“centroid distance” column). Forecast of moving directions of species' climate 
migrations (“direction” column).
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that to understand more clearly the mechanisms that drive predator–
prey/competing species overlap, it is best to use all the methods in 
combination. First of all, this is to understand whether (1) populations 
are changing at high or low rates; (2) whether the density or abun-
dance changes are occurring significantly in many or few locations 
(with the worrying outcomes in this study showing for most single spe-
cies over 25% of areas changing and many joint models showing over 
80% of areas changing more than 33% already in 2050); (3) local areas 
changing from good to poor habitat (hot/cold) or foraging locations 
(common spatial trend) may be the most obvious in highlighting the 
differences between species and predator–prey overlap, as a large de-
crease in common spatial trend was a good single metric in picking up 
the 2 predator species that are currently strongly decreasing: harbor 
seals and kittiwakes. The combination of Methods 3 and 2 for “eco-
logical costs” (low decreases in spatial common trend together with 
low percentage spatial differences) was a good pair of metrics for iden-
tifying three predator species (gray seals, guillemots, and porpoise) of 
the four species that have currently increasing populations, with very 
large increases in spatial common trend (just Method 3) identifying the 
forth (gannets). The combination of the four methods can suggest that 
large centroid movement and large spatial percentage differences, to-
gether with somewhat equal gains and losses in common spatial trends, 
are indicative of large increases in patchiness of areas of overlap with 
significant new areas of habitat appearing. We would also note that we 
compared our methods with 2 other common methods of comparing 
spatial data: root mean square error (RMSE) and Bhattacharyya dis-
tances. The RMSE method is strongly correlated with the results from 
the weighted centroids (Method 4) and the Bhattacharyya distances' 
results follow in accordance with the “Overall percentage difference” 
(Method 2) results, which indicates that these approaches are compa-
rable. However, the overall results suggest the use of all four methods 
is recommend and in particular Method 3 was found to be the single 
most useful quantifier of ecological costs.

5.4 | Conclusion: methods for detecting climate 
change versus other anthropogenic effects

There is a great need to understand and be able to quantify the 
“ecological cost,” in population terms, of the projected effects of 
climate change, in order to allow effective assessments of trade-
offs in future marine spatial planning, at a time when there are 
going to be rapid increases in demands on ocean space. Spatial 
demands will come from large-scale offshore renewable energy 
developments (Boon et al., 2018), as well as issues of siting MPAs 
with climate change in mind and changes in spatial fishing dis-
tributions that may occur as a displacement due to the first two 
activities. Joint modeling using present versus future climate 
scenarios allows an understanding of whether population-level 
changes, driven by both changes in habitat and predator/competi-
tor distributions, are expected, and where in space the differences 
in individual species densities and joint-species common spatial 
trends are changing the most. This approach, combined with four 
methods to assess the ecological costs, has shown that there is 
a need to look at a range of metrics that assess the costs, since 
the metrics did not correlate with each other. Examining all the 
costs together, focusing especially on locations where there is 
considerable loss or gain of common spatial trend, will provide a 
more mechanistic understanding of which combinations of habitat 
variables are more important for pairs of predator–prey and com-
peting species' spatial overlap. The results of future predictions in 
general show a high degree of difference in spatial density distri-
butions for almost all combinations of species with some models 
predicting new areas of potential future overlap. The level of com-
plexity of outcomes suggests that there is a further need for much 
more detailed and fine-scale exploration at specific colony sites 
and contrasting regions (50–100 km scale) of these types of future 
spatial predictions.

F I G U R E  1 5   (a) Three-dimensional plot of the regression plane relating centroid distances for common spatial trends (km), percentage 
difference (%), and common space decrease (%) from Table 4. (b) Same as (a) but with common space increase (%)
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