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Highlights 32 
 DIC concentrations and δ13CDIC trends were investigated across cascaded reservoirs.  33 

 Carbon dynamics in the reservoirs were mainly impacted by biological processes. 34 

 Damming effect is controlled by both hydraulic retention time and air temperature.  35 

 The damming effect can be weakened by regulating the hydraulic retention time. 36 
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Abstract 75 

The effect of dams on dissolved inorganic carbon (DIC) transport and riverine ecosystems is 76 

unclear in karst cascade reservoirs. Here, we analysed water samples from a karst river system with 77 

seven cascade reservoirs along the Wujiang River, southwestern China, during one hydrological 78 

year. From upstream to downstream, the average concentration of DIC increased from 2.2 to 2.6 79 

mmol/L and its carbon isotope composition (δ13CDIC) decreased from -8.0 to -10‰. Meanwhile, the 80 

air temperature (Ta) increased from 20.3℃ to 26.7℃ and 10℃ to 13.7℃ in the warm and cold 81 

seasons, respectively. The results suggest that a cascade of dams has a stronger effect on DIC 82 

dynamics and retention than a single dam. The good correlation between Ta/HRT (hydraulic 83 

retention time) and ∆[DIC] as well as ∆[δ13CDIC] mean that Ta and HRT affected the magnitude of 84 

the damming effect by altering changes in concentration of DIC and δ13CDIC in the reservoir 85 

compared to the inflowing water. In particular, daily regulated reservoirs with short retention times 86 

acted more like river corridors and had a smaller effect on carbon dynamics, so modulating retention 87 

time might be used reduce the effect of dams on the riverine ecosystem. 88 

 89 

Keywords: Dissolved inorganic carbon, Carbon isotope, Damming effect, Cascade reservoirs, 90 

Hydraulic retention time91 
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1. Introduction  92 

Damming a river provides numerous goods and services for human society by facilitating the 93 

development of agriculture, industry and tourism but can also have adverse effects on the local 94 

aquatic environment and the global carbon budget (Arthington et al., 2010; Best, 2018; Richter et 95 

al., 2010). Increasingly, rivers are dammed by multiple reservoirs in order to increase water resource 96 

utilization and hydropower generation (Kondolf et al., 2014; Shi et al., 2017; Zhou et al., 2018). 97 

Globally, 48% of river volume has been moderated and 37% of large rivers (longer >1000 km) 98 

remain-flowing in the world (Grill et al., 2015, 2019). While single reservoirs have many 99 

environmental consequences, the situation is more complex and potentially severe with cascade 100 

reservoirs. Past work has concentrated on the effects of reservoirs on greenhouse gases (Kumar et 101 

al., 2019 a,b; Li et al., 2018; Maavara et al., 2019; Raymond et al., 2013; Wang et al., 2014a), the 102 

water regime (Wang et al., 2019a), sediment and carbon burial and carbon cycle (Bretier et al., 2019; 103 

Kondolf et al., 2018; Maavara et al., 2017; Wang et al., 2019b), water utilization and hydropower 104 

generation (Zhou et al., 2018), irrigation pressure and other ecological risks (Finer and Jenkins, 105 

2012; Grill et al., 2015; Li et al., 2017; Nilsson et al., 2005; Van and Maavara, 2016; Watkins et al., 106 

2019). DIC represents the largest fraction of total carbon in most rivers and is transported from the 107 

continents to the oceans (Meybeck, 1987; Brunet et al., 2009; McClanahan et al., 2016). As a result 108 

of carbonate weathering, the DIC concentration in rivers draining karst areas is significantly higher 109 

than that in non-karst areas (Li et al., 2010; Han et al., 2010). With the rising demands for energy, 110 

rivers have been dammed by multiple dams in the last two decades and the hydrological environment 111 

and ecosystem has been severely influenced (Grill et al., 2019; Best, 2018). However, the effects of 112 

karst cascade reservoirs on DIC transport and the global carbon cycle are still not clear. 113 

The dissolution of carbonate rocks in karst areas contributes approximately 0.15 Pg C/yr to 114 

carbon dioxide (CO2) sequestration in the ocean based on the chemistry of the largest rivers in the 115 

world (Gaillardet et al., 1999). Thus, chemical weathering in karst catchment areas is an important 116 

carbon sink (Beaulieu et al., 2012; Cole et al., 2007; Li et al., 2008; Zeng et al., 2019; Zhong et al., 117 

2018a,b). Southwestern China, with a karst area of about 5.3×105 km2 (Cao et al., 2004), is not only 118 

one of the largest karst areas in the world, but also has the most reservoirs in China (Sun et al., 2013). 119 

The geomorphology in this area, with narrow and steep river valleys, facilitates the construction of 120 



 
6 

large dams and a series of cascade reservoirs have been created along the major rivers, such as the 121 

Wujiang River (Li et al., 2009; Wang et al., 2019a; Zhao et al., 2019), the Jialingjiang River (Cui et 122 

al., 2017) and the Yangtze River (Ran et al., 2016; Yang et al., 2005). The damming effect can 123 

influence hundreds of kilometers (Finer and Jenkins, 2012), with a huge potential impact on the 124 

biogeochemical cycling of inorganic carbon.  125 

The management of a reservoir strongly influences the hydraulic retention time (HRT) of a 126 

reservoir along with the water level, water discharge, strength of stratification, and growth of algae. 127 

As a key parameter of multi-purpose reservoir operation, HRT is likely to play a critical role in 128 

migration and transformation of DIC. In addition, the formation of thermal stratification is strongly 129 

influenced by air temperature (Ta). Thermal stratification starts at the end of spring when Ta starts 130 

to increase and solar radiation heats the surface water and causes the difference in water density on 131 

the vertical column (Menna-Barreto et al., 1969; Elçi, 2008; Zhang et al., 2015). With the variation 132 

in Ta, the degree of thermal stratification in the reservoir varies seasonally and geographically. Thus, 133 

we hypothesized that HRT and Ta are important factors affecting DIC dynamics in cascade 134 

reservoirs. To test this, we analysed the concentration and isotopic composition of DIC (δ13CDIC) in 135 

seven cascade reservoirs along the Wujiang River and related these to the characteristics of the 136 

reservoirs. Isotopes can be used to trace the migration and transformation of dissolved inorganic 137 

carbon in riverine system (Aucour et al., 1999; Li et al., 2008). The results reveal the factors that 138 

control DIC dynamics and transport in a typical carbonate dominated cascade of reservoirs. 139 

 140 

2. Study area and methods 141 

2.1 Site description 142 

The Wujiang River is the longest tributary of the south bank of the Yangtze River, which is 143 

located in the humid subtropical zone and affected by a typical East Asian monsoon climate. From 144 

1957 to 2013, the average annual Ta of the upstream and downstream was 14.1℃ and 17.4℃ and 145 

the average annual precipitation was 965 mm and 1125 mm, respectively (Liang et al., 2017). In 146 

2017, the year of this study, the average annual Ta of the upper and lower reaches of the Wujiang 147 

River was 15.1℃ and 20.2℃ and the average annual precipitation was 1101.3 mm and 1157.1 mm, 148 

respectively (GZPWRD, 2017; CMA, 2019). The total length of the main stream of the Wujiang 149 
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River is 1,037 km, with a drop of 2,124 m and a drainage area of 88,267 km2. The Wujiang River 150 

has abundant water resources, and there were eleven cascade hydropower stations along the main 151 

stream of the river. The total installed capacity is 10,215 MW, and the annual power generation 152 

capacity is 372 MkW·h. In the future, the hydro-power resources will be further developed in the 153 

main stream (NDRC, 2018). As the number of dams increases, the river system is further fragmented, 154 

which has a significant impact on the regional ecological environment. In order to explore better the 155 

damming effect of cascade reservoirs on karst rivers, we selected seven reservoirs (Fig. 1) with 156 

different locations and HRT along the main stream. The characteristics of the seven reservoirs are 157 

in listed in Table 1. 158 

2.2 Field sampling and data collection 159 

For a comprehensive understanding of the impact of the cascade dams on DIC migration and 160 

transformation, a total of 328 water samples from 29 sampling sites were collected in January, April, 161 

July and October 2017, including surface water from the inflow, depth-profiles within the reservoir 162 

and surface samples from the outflow. Collecting water samples at different depths is helpful to 163 

understand the characteristic of the water profile in the lentic area. Generally in these reservoirs, 0-164 

5 m is the epliminion, 5-30 m is the thermocline and below 30 m is the hypolimnion. Thus, surface 165 

water was collected from the upper 0.5 m and water for depth-profiles was collected from 0.5, 5, 15, 166 

30, 45 and 60 m. Water temperature (Tw), pH, dissolved oxygen (DO), total dissolved solids (TDS) 167 

and chlorophyll (Chl) were measured in situ using an automated multiparameter profiler (model YSI 168 

EXO) to provide information on the basic hydrochemical characteristics of the water. Total 169 

carbonate alkalinity was measured by titration with 0.02 mol/L hydrochloric acid within 12 h using 170 

a titrimeter (Brand 4760161). For the analysis of major cations (K+, Na+, Ca2+ and Mg2+) and 171 

dissolved organic carbon (DOC), approximately 50 ml of sample was filtered through 0.45 µm 172 

cellulose acetate membrane filters (Whatman, Inc.) and 0.7 μm glass fibre filters (Whatman GF/F), 173 

respectively. The filtered water was stored in HDPE bottles at 4℃ in a refrigerator and samples for 174 

cations analysis were preserved within 12 h of sampling by adding HNO3 to keep pH < 2. The major 175 

ions and DOC were used to determine ionic strength and characterize the biological activity level, 176 

respectively. 177 

2.3 Sample analysis 178 
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DOC samples were analyzed using a total organic carbon analyzer (OI Analytical, 1030W), with 179 

a detection limit of 0.01mg/L. The analytical error was less than 0.3% based on replicate analysis. 180 

Major cations were analyzed using inductively coupled plasma-optical emission spectrometry (ICP-181 

OES), within a relative standard deviation (RSD) of 5%. For δ13CDIC analysis, 20 ml water was 182 

filtered through 0.45 µm PTFE syringe filters, and injected into a vacuumed glass bottle, pre-filled 183 

with 2 ml 85% phosphoric acid, at the sampling sites. The CO2 generated by the reaction was 184 

transferred into tubes on a vacuum line and analyzed on a Finnigan MAT 252 mass spectrometer, 185 

with an analytical precision of ±0.1‰ (Li et al., 2008). Carbon stable isotope results are expressed 186 

in a permil deviation with reference to a standard (PDB). All laboratory analyses were conducted at 187 

the Institute of Geochemistry, Chinese Academy of Science (Guiyang, China). 188 

PLS modeling (projections of latent structures by means of partial least squares) was used to 189 

identify potential drivers of DIC and δ13CDIC of the cascade reservoirs, as provided by the software 190 

SIMCA-P+ (version 14.1.0.0, Umetrics, Sweden). PLS is widely used because it allows many-to-191 

many linear regression modeling, which can synthesize principal component regression and 192 

canonical correlation analysis, can overcome the negative influence of small numbers of sample and 193 

the existence of multiple collinearity among variables and maximize the information in raw data to 194 

explain dependent variables and improve prediction accuracy (Paranaiba et al., 2018; Peter et al., 195 

2014). The PLS model performance is expressed by R2Y (explained variance) and by Q2 (predictive 196 

power estimated by cross validation). R2Y is the model's ability to explain the Y-axis, and Q2 is the 197 

model's prediction ability. The closer R2Y and Q2 are, the more stable and reliable is the model. 198 

Normally, when Q2>0.5 the model is stable and reliable (Umetrics, 2008). Variable importance in 199 

projection (VIP) describes how much a variable contributes to explaining the Y variable and reflects 200 

the correlation of the terms to all the responses. The VIP values indicate the relative importance of 201 

the variables, highly important variables have VIP>1.0, moderately important variables have VIP 202 

0.8-1.0, and unimportant variables have VIP<0.8. Coefficients and intercepts correspond to, and are 203 

analogous to, the slopes and intercepts in an ordinary multiple linear regression. PLS models were 204 

validated by comparing goodness of fit of the Y variables. For all statistical tests, the level of 205 

significance was taken as P<0.05. 206 

2.4 Calculations 207 

https://www.instrument.com.cn/zc/317.html?AgentSortId=8361
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The concentration of CO2 was calculated from pH, alkalinity and temperature and Henry’s law 208 

was used to convert this to partial pressure of carbon dioxide (pCO2) with the following equation: 209 

pCO2 = [H2CO3*]/KCO2, where H2CO3* (mol/L) is the sum of hydrated CO2 (aq) and KCO2 is 210 

Henry’s constant for CO2 at a given temperature (Barth and Veizer, 1999; Neal et al., 1998; 211 

Raymond et al., 1997). 212 

DIC concentrations and δ13CDIC showed significant spatial and temporal variability along the 213 

cascade dams (Figs 2 and 3). In order to reveal the major influencing factors and processes related 214 

to DIC migration and transformation in cascade reservoirs, we used the inflow water as the reference 215 

value to calculate the changing degree of profile water and outflow water samples, which reflected 216 

the strength of the reservoir effect. It is defined by the following equations.  217 

∆[δ13CDIC] = 100 × (δ13CDIC (sample)-δ13CDIC (inflow)) /δ13CDIC (inflow) (%)     (1) 218 

∆[DIC] = 100 × ([DIC](sample)-[DIC] (inflow)) /[DIC](inflow) (%)      (2) 219 

∆[Tw] = 100 × ([Tw](sample)-[Tw](inflow)) /[Tw](inflow) (%)          (3) 220 

Where ∆[DIC], ∆[δ13CDIC] and ∆[Tw] represent the % change of δ13CDIC, DIC and water 221 

temperature in depth-profiles and outflow waters compared with inflow waters. ∆[Tw] is linked to 222 

the thermal stratification capacity, i.e., the higher the ∆[Tw], the stronger the stratification. 223 

3. Results 224 

3.1 Longitudinal variations of water chemical parameters and δ13CDIC in the surface water 225 

Longitudinal variation in surface Tw, pH, Chl, DO, TDS and Ca2+ concentration are shown in 226 

Fig. S1, and Ta is shown in Fig. S2 for the study year. The Tw and Ta ranged from 13.1℃ to 31.2℃ 227 

(mean = 19.3 ± 4.1℃) and 5.5℃ to 35.3℃ (mean = 18.3 ± 2.1℃), respectively. The pH values 228 

ranged from 7.3 to 9.3. They were obviously higher in the reservoir area and the average value was 229 

much larger than the discharge water except for in the downstream reservoirs. The concentrations 230 

of Chl varied from 0 μg/L to 23.9 μg/L (mean = 4.0 ± 5.4 μg/L) and the variations of DO are from 231 

4.3 mg/L to 19.9 mg/L (mean = 9.2 ± 2.6 mg/L). The water TDS values decreased from upstream to 232 

downstream, ranged from 191 mg/L to 334 mg/L, with a mean value of 257 ± 28 mg/L. The Ca2+ 233 

accounted for 62% to 80% of the total cations, ranging from 36.4 mg/L to 81.5 mg/L (mean = 58.3 234 

± 7.9 mg/L). All the water chemical parameters mentioned above in the lentic area were larger than 235 

http://xueshu.baidu.com/usercenter/paper/show?paperid=70739cea5bd404dc1884110bfc9e7b6b
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those of the inflow and outflow water. These parameters tended to be less variable downstream 236 

compared to upstream.  237 

Since pH ranged from 7.3 to 9.3, bicarbonate (HCO3-) was the dominant species (>80%) of 238 

DIC (Wang et al., 2014b). Therefore, DIC concentrations were expressed as HCO3- in this paper. 239 

The DIC concentration, DOC concentration and pCO2 values in the surface water increased and 240 

then decreased along the river, ranging from 1 to 3.4 mmol/L, 0.6 to 2.7 mg/L and 56 to 9902 µatm, 241 

respectively (Fig. 2a, b, c). The δ13CDIC values in the surface water ranged from -11.5‰ to -1.9‰ 242 

(mean = -8.8 ± 2‰) with seasonal variations and in the middle and upper reaches of the reservoir, 243 

the average δ13CDIC values decreased to different degrees after it had passed through a reservoir. 244 

The overall trend was a cascade decline from upstream to downstream (Fig. 2d). The mean values 245 

of δ13CDIC, pH, DO and Ca2+ were the lowest, while the DIC concentrations and pCO2 were the 246 

highest in the outflow waters of SL reservoir (Figs 2 and S1). However, the HRT of SL reservoir is 247 

less than that of HJD, DF and WJD reservoirs (Table 1). 248 

3.2 Seasonal and vertical variations of DIC and δ13CDIC down the water column 249 

DIC concentrations and δ13CDIC values showed significant seasonal variation in the depth 250 

profiles, from 1 to 3.6 mmol/L and -12.1 to -1.9‰, respectively. In the warm season, thermal 251 

stratification was observed in the reservoirs except for daily regulated reservoirs (SFY, PS and YP). 252 

While in the cold seasons with no significant stratification, DIC concentrations and δ13CDIC varied 253 

little in the profiles (Fig. 3). In the depth-profiles, the DIC concentrations increased and δ13CDIC 254 

decreased markedly in the thermocline (0 – 15 m), and became stable in the hypolimnion. Changes 255 

in the depth-profiles of daily regulating reservoirs (SFY, PS and YP) were small or absent (Fig. 3). 256 

However, in reservoirs with longer HRT, water at depth had high DIC and CO2 concentrations and 257 

the water released from the bottom of the reservoir had a high pCO2 (Fig. 3), which may increase 258 

the potential of cascade reservoirs to become CO2 sources. 259 

3.3 Relationships between DIC, δ13CDIC and other chemical parameters 260 

Compared to a river, the artificial storage of a reservoir increases HRT, permits thermal 261 

stratification and eventually causes a series of changes in water chemical parameters such as Tw, 262 

pH, DO, TDS, Chl, DIC, DOC, pCO2, etc. In order to intuitively explore the factors controlling of 263 
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DIC, we used PLS to identify potential drivers of DIC and δ13CDIC. In the PLS model, R2Y are 264 

0.91/0.84, Q2 are 0.86/0.72, for DIC/δ13CDIC, indicating a high predictive power in this study (Table 265 

2). PLS analyses revealed that Ta, pH, Chl, DO, HRT, Depth and DOC (variable importance in 266 

projection, VIP > 0.8; Table 2) were positively associated with DIC or δ13CDIC (Table 2), while other 267 

parameters had a minor influence on DIC concentration and δ13CDIC (most VIP< 0.8; Table 2).  268 

In order to compare and analyze the data with other reservoirs in karst area, we collected data 269 

on DIC concentrations and δ13CDIC from karst reservoirs with different HRT and annual average Ta 270 

published in the Jialing River (JLR) (Cui et al., 2017), Bajiangkou reservoir of Zhujiang River (ZJR) 271 

(Tang et al., 2014), Puding reservoir of Sancha River (SCR) (Qian et al., 2017) and cascade 272 

reservoirs in Maotiao River (MTR) (Li et al., 2009). Detailed data and discussion are given in the 273 

Discussion. 274 

 275 

4. Discussion 276 

4.1 Influence of HRT and environmental factors on DIC variation 277 

The DIC in karst rivers mainly originates from carbonate weathering (Han et al., 2010; Li et 278 

al., 2008). However, the altered hydrodynamics in reservoirs can change the processes controlling 279 

DIC concentrations and δ13CDIC values compared to similar areas without dams (Li et al., 2010; 280 

Zhong et al., 2017, 2018b). For example, reservoirs in this study area usually discharge water from 281 

the bottom of their dam, and since thermal stratification occurs in reservoirs with long HRT in the 282 

warm season (Wang et al., 2019c), a series of internal hydrochemical changes can occur, which is 283 

responsible for the increase in DIC concentrations and decrease in δ13CDIC values (Fig. 3, Fig. S3). 284 

From the upstream to the downstream areas, the concentration of DIC gradually increased both 285 

in the surface and along the water profiles and reached a maximum at SL reservoir, while it tended 286 

to be stable in the downstream due to the non-thermal stratification. With the increase of DIC 287 

concentrations, δ13CDIC values gradually decreased, indicating that longer HRT and high air 288 

temperature promoted the formation of thermal stratification and enhanced biochemical reactions, 289 

such as the photosynthesis of surface algae and the degradation of bottom organic matter (Han et 290 

al., 2018; Wang et al., 2019c).  291 
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We used both ∆[DIC] and ∆[δ13CDIC] to analyse these processes transforming DIC in these 292 

cascade reservoirs (Alling et al., 2012; Samanta et al., 2015; Wang et al., 2019c). Fig. 4 shows that 293 

DIC is affected by different processes at different depths including biological production, outgassing, 294 

carbonate precipitation and dissolution, and degradation of DOC and particulate organic carbon 295 

(POC). The analysis shows that biological production and CO2 outgassing are the dominant 296 

processes in the surface of the reservoirs while the degradation of organic carbon dominates at depth 297 

(Fig. 4). There are three major sources of POC in the river-reservoir system: (i) terrestrial plants 298 

from the basin. The average δ13C of terrestrial C3 plants and C4 plants are −32‰ to −24‰ and −13‰ 299 

to −10‰, respectively (Kohn, 2010; Cerling et al., 1997). From the previous study, riverine POC in 300 

the study area is mainly from terrestrial C3 plant debris, and the average δ13CPOC is about −28‰ 301 

(Han et al., 2018); (ii) Aquatic phytoplankton. The δ13C of freshwater phytoplankton ranges from 302 

−34.4‰ to −5.9‰ (Vuorio et al., 2006); (iii) Microbial biomass. Microbes have a mean value of 303 

δ13C of about −55‰ (Freeman et al., 1990). Reservoir DOC is also influenced by the above three 304 

sources. High DOC concentrations in the epilimnion derive from terrestrial organic matter (OM) 305 

and the release by phytoplankton. DOC concentrations decreased and DIC increased with the 306 

increase of water depth by photodegradation in the euphotic zone and microbial degradation in the 307 

profile and sediment (Shi et al., 2017; Teodoru et al, 2013; Tranvik et al., 2009).  308 

Seasonal stratification in the warm season enhances algal photosynthesis in the euphotic layer, 309 

consuming CO2 and HCO3- and leading to a decreased DIC concentration (Maberly, 1996; Zhao et 310 

al., 2019). The OM produced by phytoplankton would enter into the bottom of the reservoir when 311 

the water column overturned (f1 in Fig. 4). The carbon:nitrogen (C:N) ratio, is a natural tracer 312 

identifying POC provenance in riverine environments and varies from 14 to 50 in plant OM (C3 and 313 

C4) and 5 to 8 in phytoplankton (Ogrinc et al. 2008; Liu et al., 2018). The molar C:N ratio ranged 314 

from 4.7 to 8.9 (average = 6.6) in POC from the Maotiao cascade reservoirs of the Wujiang River 315 

(Liu et al., 2018). This indicates that autochthonous OM is an important component of organic 316 

matter in sediments, which is responsible for the variation of DIC with allochthonous terrestrial 317 

plant OM in the reservoirs (Wang et al., 2019b).  318 

In addition, photosynthesis can increase pH and cause calcium carbonate precipitation (Chen 319 

and Liu, 2017; Millo et al., 2012; Vuorio et al., 2006) (f2) and accelerate the decomposition of POC 320 



 
13 

and DOC in the bottom region (f3) (Kumar et al., 2019b; Wang et al., 2019c). A 14C tracer method 321 

also showed that the presence of CaCO3 in the sediment would affect the condition of soil 322 

aggregates and pH and promote the decomposition of organic matter (Motavalli et al., 1995). The 323 

decrease of pH caused by anaerobic decomposition of organic matter at the bottom of the reservoir 324 

would produce CO2, increasing DIC and also lead to a further increase of DIC content by calcium 325 

carbonate decomposition (f4), and finally lead to an increase of DIC content discharged from the 326 

reservoir bottom area. However, the degradation of organic matter is dominant in this area as 327 

indicated by the depletion of 13C in the bottom region (Han et al., 2018; Wang et al., 2019c). DIC 328 

generated at the bottom of the reservoir will further promote the photosynthesis of surface water 329 

downstream of the reservoir via discharged water (f5, f6), and provide support for the degradation 330 

of organic matter (equation 4) at the bottom (Wang et al., 2019b; Lu et al., 2018). 331 

CaCO3+CO2+H2O↔HCO3
-+Ca2+→ (Photosynthesis) CaCO3↓+x(CO2↑+H2O)+(1-x)(CH2O↓+O2↑) 332 

(4) 333 

Finally, these effects (equation 4) would jointly promote the decomposition of organic matter 334 

to form DIC and transfer to the downstream of the river. Compared to other reservoirs, the average 335 

concentration of DIC (2.92 mmol/L) and the average value of δ13CDIC (-10.6‰) in the discharged 336 

water were the maximum and minimum values, respectively in SL reservoir (Fig. 3). However, SL 337 

reservoir is only a monthly regulated reservoir, with a lower HRT (22 days) than that of HJD (368 338 

days), WJD (49 days) and DF (29 days). Compared with the inflow water, the variation in the degree 339 

of δ13CDIC was also greater than that of the DF and WJD reservoirs. In addition, the DIC 340 

concentration and δ13CDIC in the discharged water showed spatial variability along the cascade 341 

reservoirs. Therefore, HRT may not be the only factor controlling the migration and transport of 342 

DIC.  343 

4.2 The factors controlling DIC in river-reservoir systems 344 

Air temperature is an important factors linked to the stratification of the reservoir and biological 345 

components (Elçi, 2008; Feuchtmayr et al., 2019; Zhang et al., 2015). The normal elevation of SL 346 

reservoir is 440 m, which is much lower than that of HJD (1140 m), resulting in an average Ta 347 

difference of 6.3℃ between the two reservoirs in the warm season. VIP values (1.35 /1.45) in the 348 

PLS model indicate (Table 2) that average Ta has the highest correlation with DIC concentrations 349 
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and δ13CDIC values, so we speculate that Ta may play an important role in DIC geochemical behavior 350 

and transport by influencing reservoir stratification. The contour maps of the DIC and δ13CDIC in 351 

the cascade reservoirs (Fig. S4), suggest that the higher Ta under the same residence time conditions, 352 

the higher were the DIC concentration and the more negative were the δ13CDIC values. This indicates 353 

that different HRT and Ta can cause complex processes in the reservoirs and affect the DIC behavior.  354 

In order to test our hypothesis and clarify the influence of average Ta and HRT on DIC transport, 355 

we fitted the relationship diagram of Ta/HRT with ∆[DIC] and ∆[δ13CDIC] (Fig. 5). The patterns 356 

were consistent with the trend predicted in Fig. S4: when the retention time was constant, the 357 

concentrations of DIC increased with Ta, indicating that Ta affected the stability of reservoir 358 

stratification and finally accelerated the degradation of organic matter in the hypolimnion. This also 359 

explains why DIC concentrations and δ13CDIC varies greatly in the SL reservoir despite a short HRT 360 

because of the higher Ta. The strong damming effect ultimately can cause more CO2 to be released 361 

downstream, especially during monsoon and post-monsoon periods when the air temperature is high 362 

and stratification is strong with degradation of organic carbon occurring in the water at depth, 363 

reflecting the processes that occur in lakes (Kumar et al., 2018; Maberly et al., 2013; Shi et al., 364 

2017), which is characterized by lower δ13CDIC and more DIC contributed to the retention effect 365 

(Figs 3 and 5). However, in the cold season, as the Ta decreases, the thermal stratification of the 366 

water weakens. The increase of DO in the column will accelerate the decomposition of OM in the 367 

sediment (Teodoru et al, 2013; Tranvik et al., 2009; Mcclanahan et al., 2016; Zhao et al., 2019), 368 

causing the increase in DIC concentrations and decrease in δ13CDIC in the column, which is different 369 

from the warm season when reservoirs with longer HRT have an opposite trend of DIC 370 

concentrations and δ13CDIC in the water column caused by thermal stratification (Wang et al., 2019c; 371 

Tranvik et al., 2009; Vuorio et al., 2006).  372 

Our study showed that the DIC concentration and its isotopic values were mainly dependent on 373 

the Ta and HRT in the Wujiang cascade reservoirs and other karst reservoirs. It indicates that the 374 

altitude of each reservoir in different cascade reservoirs affects the regional climate, which will 375 

affect the carbon cycle to varying degrees due to artificial regulation (Fig. 6). We can infer that:  376 

(1) In the same climatic zone, the DIC concentrations of the inflow water is taken as the initial 377 
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value, and we assume that the increased DIC would return to the initial value by outgassing CO2. 378 

In this study, the mean value of δ13CDIC was -10.4‰ in the downstream, which was similar to the 379 

mean δ13CDIC of -9.7‰ in the karst river catchment with no dam (Li et al., 2010). Therefore, 380 

although there are reservoirs downstream, the damming effect is weak in the daily regulated 381 

reservoirs and gradually returns to the state of a river. Thus, by reducing the HRT to a daily 382 

regulating reservoir (<7 day), the CO2 emissions from the discharge water with a HRT >7 days will 383 

be reduced by about 2%-12%, calculated based on the variation of pCO2 values from the seven 384 

reservoirs in this study (Fig. 2).  385 

(2) In the same geological lithology area, when the HRT is consistent, every 1℃ increase in Ta 386 

will elevate DIC concentrations by ~6% compared to the inflow water. However, the damming effect 387 

is more pronounced in the reservoirs with higher Ta. In the case of Silin reservoir (HRT = 22 day) 388 

in the downstream, due to the high Ta in the warm season, once the water body forms stable thermal 389 

stratification, even if the HRT is short the pCO2 in the discharge water is 1.6 times and 2.3 times 390 

that of the Hongjiadu reservoir (HRT = 368 day) and the Wujiangdu reservoir (HRT = 49 day) in 391 

the upstream and downstream, respectively.  392 

(3) Our data, model and results can play a critical part in evaluating the impact of cascade dams 393 

on the carbon cycle, and our study is also a new perspective for identifying the damming effect of 394 

different reservoir types in the cascade reservoirs. It can also provide a scientific basis for weakening 395 

damming effects, such as reducing greenhouse gas emissions, improving water quality by artificial 396 

regulation and help address the ecological risks.  397 

 398 

5. Conclusions 399 

Cascade dams on a river can alter riverine DIC concentrations and δ13CDIC by altering the 400 

geochemistry of a river through variations of HRT and Ta. Along the Wujiang River, DIC 401 

concentrations increased downstream while δ13CDIC showed a converse trend, indicating that the 402 

retention effect of the DIC gradually increased from the upstream to the downstream. Moreover, the 403 

damming effect may depend on the interaction between HRT and Ta. Reservoirs with a long HRT 404 

and high Ta had a large effect on DIC dynamics. In this study, we found that the “hot spot” reservoir 405 
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like SL, where the HRT is not long, whereas the damming effect is stronger than other reservoirs 406 

with longer HRT and lower Ta. Given its higher carbon emission, the reservoirs incurred a greater 407 

global warming effect among the cascade reservoirs, which is enhanced by the long HRT and high 408 

Ta. In addition, we are also surprised to find that even in reservoirs with higher Ta like PS and YP, 409 

the damming effect is weak with the short HRT. Therefore, the results of our research emphasize the 410 

need to frame reservoir management in a truly multidisciplinary context and consider reducing CO2 411 

emissions by managing HRT. 412 
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 679 

Table 1. The basic characteristics of the studied reservoirs. The classification of up-stream, mid-680 

stream and down-stream and data from hydrological monitoring stations are derived from 681 

the Guizhou meteorological bureau and a previous study (Liang et al., 2017). 682 

Reservoir Hongjiadu 
  (HJD) 

Dongfeng  
(DF) 

Suofengying 
 (SFY) 

Wujiangdu 
(WJD) 

Silin  
(SL) 

Pengshui 
(PS) 

Yinpan  
(YP) 

Year of construction 2004 1994 2002 1979 2006 2003 2007 

Catchment area (km2) 9900 18161 21862 27790 48558 69000 74910 

Elevation (m) 1140 970 835 760 440 293 215 

Approximate water depth (m) 70 - 110 70 - 110 60 - 80 70 - 110 60 - 80 60 - 80 60 - 80 

Average annual runoff (108 m3) 48.88  108.80  134.66  158.31  267.74  409.97  435.20  

Total storage (108 m3) 49.25 8.63 1.57 21.4 15.93 11.68 3.2 

Regulation storage (108 m3) 33.61 4.9 0.85 13.5 3.17 5.18 0.37 

Regulation mode Multi-year Seasonal Daily Seasonal Monthly Monthly Daily 

HRT (day) 368 29 4 49 22 10 3 

Storage coefficient (%) 68.8 4.5 0.6 8.5 1.2 1.3 0.1 

Location, Annual mean air 
temperature (℃)/ precipitation 
(mm) 

Upstream, 14.1/965 Mid-stream, 15.5/1057 Downstream, 17.4/1125 
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 702 

Table 2: Environmental characteristics explaining the variability in DIC and δ13CDIC in the studied 703 

reservoirs, analysed using PLS with 3 components. Variable importance in projection (VIP) 704 

describes how much a variable contributes to explaining the Y variable DIC 705 

(mmol/L)/δ13CDIC (‰ ). Highly important variables have VIP>1.0 (marked in bold), 706 

moderately important variables have VIP 0.8-1.0 (marked in italics), and unimportant 707 

variables have VIP <0.8. Q2 represents the predictive ability and R2Y the explained variance. 708 

Coefficients and intercepts are analogous to the slopes and intercepts in an ordinary 709 

multiple linear regression. Combine the values of original R2Y (<0.4) and Q2 (<0.05), the 710 

study indicate that the mode is valid. 711 

 712 

Model PLS 

Components 3 

Q2 (0.86/0.72)  R2Y (0.91/0.84) Y (DIC(mmol/L)/δ13CDIC (‰)) 

Parameters VIP Coefficients Parameters VIP Coefficients 

Ta (℃) 1.35 /1.45 0.40/-0.62 Depth (m) 0.92/0.93 0.14/0.15 

pH 1.26/1.21 -0.33/0.41 DOC (mg/L) 0.87/0.43 0.38/0.14 

Chl (µg/L) 0.91/1.22 -0.10/0.33 Tw (℃) 0.44/0.52 0.003/0.02 

DO (mg/L) 1.13/0.73 -0.33/0.02    

HRT (day) 0.85/1.05 -0.20/0.08    

Intercept 0.02/0.06 

 713 
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 716 

 717 

 718 

 719 

 720 

Figure captions 721 

 722 

Fig. 1. Sampling sites of the river- reservoir system in the Wujiang River, See Table 1 for sites name 723 

and abbreviations of the reservoirs; the inset shows the location of the catchment in China 724 

with the Wujiang watershed shown as a red line. 725 

 726 

Fig. 2. Variations of carbon concentrations and stable isotope ratios in surface water along the 727 



 
25 

Wujiang River. DIC concentration (a), DOC concentration (b), δ13CDIC (c) and pCO2 (d). 728 

The x-coordinate represents the surface water samples at sampling points from W1 to W29; 729 

W9 is a tributary of the Wujiang River. See Fig. 1 for the location of sampling sites. 730 

 731 

Fig. 3. Depth profiles of DIC and δ13CDIC for seven reservoirs in the warm season (April to 732 

September) and the cold season (October to the next March). 733 

 734 

Fig. 4. Relationship between ∆[DIC] and ∆[δ13CDIC] in depth profiles from seven reservoirs. The 735 

four quadrants indicate different processes that influence ∆[DIC] and ∆[δ13CDIC]. The 736 

colour of the circle outline represents the site and the fill colour the depth. The quadrant 737 

BP/OG represents biological production and outgassing of CO2 that results in a decrease 738 

of both ∆[DIC] and ∆[δ13CDIC] (Alling et al., 2012; Kumar et al., 2019b). The quadrant CP 739 

represents calcite precipitation, which causes ∆[DIC] to decrease and ∆[δ13CDIC] to 740 

increase (Samanta et al., 2015). The quadrant DC represents the degradation of organic 741 

carbon which causes an increase of both ∆[DIC] and ∆[δ13CDIC] (Wang et al., 2019c). The 742 

quadrant CD represents calcite dissolution, which causes ∆[DIC] to increase and ∆[δ13CDIC] 743 

to decrease (Abril et al., 2003). The dashed red lines is the linear fitting of the ∆[DIC] and 744 

∆[δ13CDIC]. 745 

 746 

Fig. 5. Relationship between changes in ∆ [DIC] (%) and ∆ [δ13CDIC] (%) and the quotient of Ta/ 747 

HRT for lakes from this study and the literature (see text). (a) Relationships of Ta/HRT 748 

versus ∆ [DIC] (%), (b) Relationships of Ta/HRT versus ∆ [δ13CDIC] (%). The dashes black 749 

lines in (a) and (b) represent the theoretical curve corresponding to HRT under a certain 750 

average Ta and the theoretical curve corresponding to Ta under a HRT, respectively. Overall, 751 

Ta and HRT are the two most important factors affecting river-lacustrine development. 752 

 753 

Fig. 6. The conceptual diagram of DIC migration and transport across cascade reservoirs along the 754 

Wujiang River. 755 
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Fig.1 768 

 769 

 770 
Fig.2 771 

 772 

 773 



 
27 

 774 

 775 

 776 
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Fig.6 785 

 786 

 787 

 788 

 789 


	postprint cover - Elsevier 11
	Manuscript-unmarked version - R1

