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Abstract The entrainment rate of pyroclastic density currents is investigated by large‐scale experiments.
The ground flows are initiated by the impact on the terrain of a dense gas‐particle fountain issuing from a
cylindrical conduit, similarly to natural volcanic events. On impact, the excess density with respect to the
surrounding atmosphere was up to 11.6 kg/m3, making the currents non‐Boussinesq. A power law model of
the entrainment rate is developed, which is similar to that proposed for snow avalanches by Ancey (2004,
https://doi.org/10.1029/2003JF000052) and is verified for the Richardson's number range between 0.25 and
5.95. Rapid changes of the entrainment are caused by (i) strong accelerations at the fountain impact on the
ground; (ii) break in slope; and (iii) topographic obstacles. Such changes, together with the sedimentation
rate, influence flow mobility. The use of the power law is suggested for modeling the motion of unsteady
hazardous geophysical mass flows such as pyroclastic density currents and snow avalanches.

Plain Language Summary Pyroclastic density currents form from volcanic fountains and, as
other ground‐hugging currents, like snow avalanches, incorporate air, and expand along runout. Air
entrainment is one of the factors that control the mobility of such huge, devastating currents. In this paper
the entrainment rate is simulated by large‐scale experiments, which can help modeling the motion of such
hazardous geophysical gas‐particle flows.

1. Introduction

Pyroclastic density currents are ground‐hugging flows that move down the slope of volcanoes and spread for
long distance over the surrounding area (Dufek, 2016; Sulpizio et al., 2014). They represent the most devas-
tating phenomena of explosive eruptions and are often initiated by a few‐kilometer‐high gas‐particle foun-
tains issuing at high velocity from a crater. As the fountain impinges on the terrain, the normal stress of
the descending flow is transformed into tangential stress, which generates a turbulent shear current, up to
hundreds of meters deep, moving laterally. Its speed, in the range of tens of meters per second, is governed
by the excess density of the fluidmixture with respect to the surrounding atmosphere. The current is made of
a dispersion of gas and dense solid particles with bulk mixture density:

ρmix ¼ ρsC þ ρg 1−Cð Þ (1)

with ρs particle density, C particle volumetric concentration, and ρg gas density. Since particle density is in
the order of 103 kg/m3, even a very low particle volumetric concentration (a few percent) results in a current
density much greater than atmosphere. Such a range of particle volumetric concentration is easily reached in
volcanic fountains (Dellino et al., 2014; Dufek, 2016).

It is to note that pyroclastic density currents are density stratified with a basal part much denser than the top,
dilute, and turbulent part.

As long as there is a continuous feeding from the fountain, the mass flow rate is conserved, and the current is
steady. This condition holds until the excess density is changed, along runout, as a result of air entrainment
and particle sedimentation.
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The entrainment of air from the surrounding atmosphere leads to a decrease of C, which results in a reduc-
tion of ρmix, which can be further reduced by particle sedimentation, with consequent flow deceleration.
Eventually, when the excess density is nullified, the current stops flowing. At that point, if the fluid has a
temperature still higher than the atmosphere, it could happen that the gas‐particle mixture has a density
lower than the surrounding, it becomes buoyant, and it forms a vertically directed phoenix cloud
(Engwell et al., 2016; Neri & Macedonio, 1996).

Knowledge of the physical parameters that govern the rate of air entrainment in pyroclastic density currents
is therefore of major importance for flow modeling and hazard assessment.

Specific models of the entrainment rate of pyroclastic density currents have not been developed until now,
and empirical laws derived from hydraulics experiments are in use.

Morton et al. (1956), in a paper dealing with plume modeling, hypothesized that the rate of air entrainment
from the surrounding, E, was a function of the plume ascent velocity. The entrainment is due to “stretching”
and interpenetrating structures like the Kelvin‐Helmoltz instabilities that enhance mixing at the flow inter-
face. These structures develop as a function of fluid turbulence, and the entrainment rate is a time‐averaged
quantity. Such a hypothesis is maintained by Turner (1986) for gravity density currents moving down a
slope. The entrainment coefficient is given by

E ¼ Ucross

Ustream
(2)

where Ucross and Ustream are the current cross‐stream and the stream average velocities, respectively.

In density currents the entrainment rate can change along runout as a function of the overall Richardson
number Ri0, which represents a ratio between buoyancy and inertial forces due to shear.

Ri0 ¼ g′Hcosθ
U2 (3)

with g′ ¼ ρmix−ρatm
ρatm

the reduced gravity, ρatm density of the atmosphere surrounding the current, θ the slope
angle, andH current depth. The Richardson number is a measure of flow stratification stability, where shear
favors the formation of flow instability structures and gravity tends to suppress them. The higher the
Richardson number, the more the flow is stably stratified. The lower the Richardson number, the more flow
instabilities grow and enhance entrainment.

We note that the definition of g' in equation (3) uses the conventional reduced gravity and not the alternative

form of the reduced gravity, g′ ¼ ρmix−ρatm
ρmix

, which has been proposed by some authors for pyroclastic density

currents (e.g., Bursik & Woods, 1996). Turner (1986), basing on experiments made by Ellison and Turner
(1959), proposed an equation of the entrainment coefficient as a function of the overall Richardson number,
which has the form

E ¼ 0:08−0:1Ri0
1þ 5Ri0

(4)

Beghin et al. (1981) found that the entrainment rate was strongly dependent on the slope, and for angles
higher than 5° the spatial growth rate of a finite volume cloud moving downslope has a linear dependence
on the slope angle.

Hallworth et al. (1996) demonstrated, through experiments on Boussinesq gravity currents, that effective
entrainment starts after a slumping phase whose position, along runout, depends on the aspect ratio of
the current issuing from a lock gate. After the slumping phase, a similarity solution is attained in which velo-
city is scaled as a Froude number Fr = U/(g′H)1/2. According to Hupperth and Simpson (1980), the value of
the Froude number is set to Fr = 1.19.

Hopfinger and Tochon‐Danguy (1977), by means of experiments in water tanks of finite volume clouds mov-
ing on a slope, found that
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dH
dx

¼ 3x10−3 5þ αð Þ (5)

with α slope angle. In the experiments, flow velocity was in the range of 0.1 m/s and depth 0.1 m.

Parker et al. (1987) conducted experiments to determine the behavior of turbidity currents and produced
steady flows seeded with silt particles in an inclined water tank. They added, to the results of their experi-
ments, data from similar experiments carried out by Ellison and Turner (1959), Lofquist (1960), and
Fukuoka and Fukushima (1980) and found an approximating function of the form

Ew ¼ 0:075

1þ 718Ri
2:4ð Þ0:5

(6)

with Ewwater entrainment and Ri the Richardson number that, with respect to the overall Richardson num-
ber Ri0 does not account for the slope angle. Even in this case, flow velocity is about of 0.1 m/s and depth 0.1
m. The experiments from which equations (4)–(6) were derived relied on the Boussinesq approximation,
which states that when the excess density between the current and the surrounding fluid is very small, it
can be neglected in the equations of motion, except in the buoyancy terms. This approximation holds for
aqueous fluids with a small particle volumetric concentration, like turbidity currents, but not for pyroclastic
density currents or other gas‐particle flows. In fact, if there is a 0.01 particle volumetric concentration in
water (representing turbidity currents), an excess density with respect to the surrounding free water of the
order of 1% is obtained, which can be considered negligible. The same particle concentration in gas implies
an excess density of the order of 1,000% with respect to the surrounding atmosphere, which is clearly not
negligible.

In volcanology, when entrainment is explicitly treated in the modeling of pyroclastic density currents, equa-
tions derived from experiments on aqueous flows of the type of turbiditic currents have been used, with a
recommendation of caution in utilizing such laws for flows that have different scales, as it is the case of
the Bursik and Woods (1996) model, in which equation (6) has been employed. Andrews (2014) and
Breard and Lube (2017) found, by experiments, that the entrainment rate of pyroclastic density currents is
highly variable, in dependence of the flow conditions and of the structure of the current (different values
were found at the head and in the flow body). In particular, Breard and Lube (2017) report of a strong par-
ticle stratification in the current with a basal, concentrated part, characterized by a lower entrainment rate
and an upper, dilute, and more turbulent part, with a higher entrainment rate, up to 0.22. Benage et al.
(2016), by means of numerical simulations, confirm the current stratification found by Breard and Lube
(2017) and report that the dilute part has entrainment coefficients 2–3 times larger than the basal bedload.

Recent research has shed new light on the behavior of snow avalanches, which are characterized by mixture
density, flow velocity, and depth in the same ranges of pyroclastic density currents (Ancey, 2004; Turnbull
et al., 2007). Differently from the small experimental aqueous currents of models (4)–(6), in both snow ava-
lanches and pyroclastic density currents the regime is non‐Boussinesq, and the inertia due to the large excess
density cannot be neglected in the equations of motion. Ancey (2004), for a finite volume snow avalanche

cloud moving on a slope, uses the equation for volume variation dV
dt ¼ αv

ffiffiffiffi

V
p

U , with V being the volume

per unit width and αv volume growth rate, the latter being analogous to the entrainment rate E of constant
flux currents. Basing on experiments and unpublished data by Beghin et al. (1981) and data from Fernando
(1991), Ancey (2004) proposes a relationship between the volumetric growth rate and the overall Richardson

number, based on a two‐piece function, of the form αv ¼ e−1:6Ri0
2
for Ri0 ≤ 1 and αv = 0.2/Ri0 for Ri0 > 1. The

experiments cover a small range of Ri0, between 0.23 and 1.32, and caution is recommended when using the
relationship for the whole range of natural events.

Unfortunately, laboratory experiments on strong non‐Boussinesq flows are very rare. According to Étienne
et al. (2006) only lock‐exchange flow experiments using gas allow reaching very high density ratios and say:
“… it is hardly feasible to use gases for gravity current or dense cloud experiments on slopes because of the
large gas volumes needed … .”

In order to cover this gap, in the present research, non‐Boussinesq gas‐particle gravity currents simulating
pyroclastic density currents were produced by experiments.
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2. Experiments
2.1. Setup, materials, and methods

The purpose of experiments was to obtain measurable gas‐particle flows, scalable to natural pyroclastic den-
sity currents, by which to develop amodel of air entrainment. Density currents were generated by the impin-
gement on the ground of a gas‐particle fountain issuing from a cylindrical conduit. The experiments were
performed with the apparatus described in detail by Dellino et al. (2007, Dellino, Dioguardi, et al., 2010,
Dellino, Büttner, et al., 2010, 2014).

The gas source of the experiments consisted of two racks of 16 bottles (Figure 1a) of compressed gas (50 L
each at 200 bars). Nitrogen was used in order to avoid oxidation of the metallic parts.

The gas bottles were in line with manometers and were connected, via two valves and two hubs, to 18 steel‐
reinforced rubber hoses each 30 m long with 8‐mm internal diameter. Two hubs of high‐speed solenoid
valves, where the driving pressure was monitored by a transducer, connected the 18 long hoses to 18 short
hoses of 1.5‐m length, 8‐mm internal diameter (Figure 1b). The short hoses were connected to 18 blow noz-
zles in the base plate of a 3.2‐m‐high conduit with an internal diameter of 0.6 m (Figure 1c), which was
loaded with up to 360 kg of particulate material. Particles were collected from the pyroclastic deposits of
Vesuvius and Campi Flegrei volcanoes in Southern Italy. The coarser composition (from Vesuvius) ranged
from a few micrometres to a few centimetres, with a median size D = 0.75 mm, while the finer one (from

Figure 1. Display mount of experiments. (a) The two racks of gas bottles. (b) A hub of solenoid valves connecting the long to short hoses. (c) The 3.2‐m cylindrical
conduit. (d) Formation of the dense gas‐particle fountain. On the right, the two mock‐ups representing morphological obstacles are shown by the arrow. (e)
Collapse of the fountain on the ground and generation of the density current. (f) General view of the thin layer of deposit.
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Campi Flegrei) was made mostly of fine ash, with a median size D = 0.066 mm (see the grain‐size distribu-
tions in the Figure S1 in the supporting information).

The particle load, gas pressure, and grain size of the particulate material were varied among runs as to obtain
flows of different speed, particle concentration, and granulometry.

On previous papers (Dellino et al., 2011; Dellino et al., 2014) experiments carried out both at ambient tem-
perature and up to 300 °C demonstrated that, in the case of collapsing fountains (in contrast with convective
plumes), temperature does not play a major role neither in determining the jet dynamics nor in the sedimen-
tation from the base of the ground‐moving density current. The effect of temperature is just that of modifying
the density stratification of the current. The same effect can be obtained by varying the particle volumetric
concentration of the gas‐particle mixtures, which is the choice of the present paper, where experiments were
carried out at ambient temperature.

The experiments were monitored with a network of high‐definition video cameras (recording at 50 frames
per second) that allowed measurements of the geometry (including heights, lengths, and volume) and foun-
tain speed, and speed and geometry of the density currents. The slope on the ground was 9° in the first 8 m of
radial distance from the conduit base and dropped to zero at longer distance. At a radial distance of 5 m from
the conduit, two mock‐ups (simulating morphologic obstacles) of 1‐m length and 0.3‐m height were placed
on the ground (Figure 1d) as for analyzing the effect of a topographic barrier on the flow.

The experiment started by opening the valves that connected the gas source to the long hoses. By means of
manometers, the pressure of the gas in the long hoses was regulated. When the valves were closed, a volume
of 28 L of compressed gas at the desired pressure was loaded into the long hoses. Upon opening the solenoid
valves, the gas charge rapidly passed through the short hoses and eventually was injected into the particulate
material through the blow nozzles of the base plate. The so formed two‐phase flow started moving as a gran-
ular mass that expanded while it was accelerated along the conduit. The gas‐particle mixture was finally
expelled out of the conduit, adjusted in pressure with respect to the surrounding atmosphere (Dellino
et al., 2014), in the form of a dense fountain, with an exit velocity, U0, up to 17.5 m/s.

The flow alimentation at conduit exit was assumed as steady during the experiment, since the gas flow rate
entering the conduit, as recorded by a high‐precision, high‐frequency pressure transducer, resulted to be
constant over the time scale of the experiment. The particulate mass flow rate PFR0 at conduit exit was cal-
culated by the ratio of the total mass of particles and the duration of flow alimentation.

The gas‐particle mixture density at conduit exit was calculated, assuming that gas and particle velocities
were fully coupled, as

ρ0 ¼
PFR0

πR2
0U0

(7)

where R0 is the internal conduit radius.

The total mass flow rate at conduit exit, MFR0, was calculated as

MFR0 ¼ U0ρ0πR
2
0 (8)

The fountain reached a maximum height Z (over 14 m in the case of Figure 3d), which followed the prescrip-
tion of Bernoulli's equation of conservation of total pressure Z = U0

2/2g (Dellino et al., 2014). It means that
the density of the gas‐particle mixture and mass flow rate did not change along the ascending‐descending
trajectory:

MFR0 ¼ MFRimp (9)

where the right‐hand side is the mass flow rate of the fountain impinging on the ground, with impact velo-
city normalized, with respect to conduit exit velocity, to the extra height between the conduit length and the
ground (which is 3.2 m).

The particle load of experiments ranged between 180 and 360 kg. Experiment parameters at conduit exit are
reported in Table S1. In particular, the Reynolds number was in the order of 107, meaning that fully
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turbulent flows were reached at conduit exit. These conditions ensure that the experiments were
dynamically similar to actual eruption columns (Dellino et al., 2014). Upon hitting the ground
(Figure 1e), the fountain resembled the collapse of an eruptive column similar to that generating a
natural pyroclastic density current.

After the impact of the fountain on the ground, the normal stress of the fluid was transformed into a tangen-
tial stress, leading to a shear flow that evolved laterally into a few‐meters‐thick, fully turbulent gas‐particle
current, moving at several meters per second. It spread radially for more than 20 m and left on the ground a
thin bed representing sedimentation from the current (Figure 1f).

In this paper, six runs are considered. For each run, data of the entrainment rate E, the overall Richardson
number Ri0, and the sedimentation rate Sr of the density currents were collected at multiple stations, along
flow runout. A data set of 20 measurements was obtained, which is shown in Table S1.

Figure 2. Variation of experiments parameters along runout. (a) Run 2 of Table S1. (b) Run 6 of Table S1. (c) Run 5 of
Table S1. On the horizontal axis, the distance from the fountain impact and the station number, as they are reported in
the data set of Table S1, are shown. The vertical axis on the left refers toU (current velocity), ρmix (current density), andH
(current depth). The right axis refers to the E (entrainment coefficient).
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As to ensure that data were collected from sustained flows, measurements were made along runout as long
as the fountain was continuously feeding the current. The entrainment rate was calculated, at each station,
using the axisymmetric formulation of the volume conservation:

EU ¼ dUHr
rdr

(10)

where r is the radial distance of the station from the fountain impact on the ground and U is the velocity at
the station.

dUHr was calculated as UHr – UupHuprup, and rdr as r(r – rup) where U, h, and r are the velocity, depth, and
distance values at the station and Uup, Hup, and rup are the velocity, depth, and distance values at an
upstream location. The distance between the station and the upstream location ranged between 1 and 3 m.

The change of volume due to particle sedimentation was assumed as not significant.

Ri0 was calculated by means of equation (3), and the sedimentation rate Sr was estimated as the mass sedi-
mented per unit area, over the time of sedimentation, which was measured by the time elapsed between the
arrival of the current and the end of the fountain feeding the current (Dellino et al., 2019). The mass of sedi-
ment per unit area was calculated by sampling the sediment over a rectangle of known area and weighting it.

At each station, current velocity and depth were measured at flow front as the average value of five succes-
sive video frames, with the third frame centered around the location. Depth and velocity values, which were
used in equation (10) for the calculation of the entrainment rate, are, therefore, averaged over a time interval
of 0.1 s. This means that the entrainment rate represents the macroscopic time‐averaged behavior of the cur-
rent, as it is in the case of other experimental measurements as those of Parker et al. (1987). Our measure-
ments do not take into consideration oscillations around very small time scales and lengths, which are
due to the fluctuating nature of the Kelvin‐Helmoltz instabilities at the mixing interface of turbulent cur-
rents that are captured by instantaneous measurements (see Breard & Lube, 2017).

The mass flow rate of the current,MFR, was calculated, at each station, by subtracting the mass of sediment
deposited at previous stations from the mass flow rate at the impact, MFRimp, and using as the
cross‐sectional area of the flow, the value measured at each station by multiplying H for 2πr, where r is
the radial distance, from the impact, reached by the flow front. The current density at each station was cal-
culated by ρmix ¼ MFR

UH2πr.

2.2. Results

The fluid‐flow parameters recorded in the experiments (see Table S1) are in the same order of magnitude of
natural pyroclastic density currents (see Table S2), meaning that a scaling between experiments and nature

can be proposed. The current velocity was up to 11.9 m/s; the Reynolds numberRe ¼ ρf uHT

μ , with μ fluid visc-

osity, was always in excess of 105, meaning the flowwas fully turbulent. The overall Richardson number ran-
ged between 0.25 and 5.95, and the entrainment coefficient ranged between 0.01 and 0.67. The density of the
gas‐particle mixture ranged between 1.5 and 12.8 kg/m3.

The analysis of runs where the current wasmeasured at a sufficient number of stations allows visualizing the
change of current parameters as a function of radial distance. In run 2 (Figure 2a), a strong acceleration
occurs in the vicinity of the impact against the ground and leads to a rapid decrease of the overall
Richardson number and an increase of the entrainment rate between stations 2a and 2b. After the accelera-
tion phase, a rapid deceleration occurs, accompanied by a high sedimentation rate that causes a rapid
decrease of current density. In this run, measurements were made along the direction where the flow inter-
cepted the mock‐ups. At the encounter between the flow and the mock‐ups, which happened between sta-
tions 2d and 2e, a further strong deceleration, a rapid increase of depth, a rapid increase of the overall
Richardson number, and a sharp decrease of the entrainment rate occurred.

In run 6 (Figure 2b), at the radial distance where the slope goes to zero, a strong deceleration occurs that
leads to a rapid increase of current depth, and a rapid increase of the overall Richardson number and a
decrease of the entrainment rate between station 6d where the slope change starts (slope in of Figure 2b)
and station 6e where the slope goes to zero (slope out of Figure 2b).
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Runs 2 and 6 were fed with the particulate material of the coarse size, while run 5 was fed with the fine ash
composition. In run 5 (Figure 2c), the trend of velocity as a function of radial distance is affected by less
abrupt changes with respect to the other runs, likely due to the much smaller sedimentation rate, deter-
mined by the lower settling rate of fine‐ash particles. A small “kink” in the trend is visible as the current
approaches the slope change at higher radial distance (station 5c), causing a deceleration, a depth increase,
an increase of the overall Richardson number, and a decrease of the entrainment rate between stations 5c
(slope in of Figure 2c) and 5d (slope out of Figure 2c).

Run 3 demonstrates the rapid change of the entrainment rate of a strongly decelerating run (stations 3a and
3b of Table S1).

As for assessing whether similarity was attained in the currents, the whole data set was plotted against the
solution adopted by Hupperth and Simpson (1980), U = 1.19(g′H)1/2, as shown in Figure 3a. Only the points

Figure 3. Models. (a) Similarity diagram. Circles represent data points of stations without strong velocity changes.
Squares represent data points of stations with strong velocity changes. The equation of the regression line, which is
relative only to circles, and the correlation coefficient are inset. (b) The power law model of E as a function of Ri0. The
regression line and the correlation coefficient are also inset. The stations with strong velocity changes are lettered
according to Table S1. (c) The power law model of E as a function of Ri0 calculated without the stations with strong
changes of velocity. The circles represent the stations without strong velocity changes; the squares represent stations with
strong changes of velocity. The regression line equation is calculated without stations with strong changes of velocity. The
correlation coefficient is also inset.
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relative to strong velocity changes (squares) caused by (i) the fountain
impact (stations 2a, 3a, and 3b of Table S1); (ii) the occurrence of an obsta-
cle (station 2d of Table S1); and (iii) a slope change (stations 5d and 6d of
Table S1) show a marked scatter. For all other stations, where less strong
changes of velocity affected the current, the regression line, which was
obtained by the least squares method, can be approximated, with a small
error, to the form y = x, with a good correlation coefficient. This means
that a similarity solution was obtained by the experimental currents.
The Richardson number was calculated using the original formulation
of the reduced gravity g′ (see previous section), differently from what
has been done in other models of pyroclastic density currents (e.g.,
Bursik & Woods, 1996); we suggest, therefore, that this is the correct for-
mulation of g′ that leads to a similarity solution.

In Figure 3b, a diagram of the entrainment rate as a function of the overall
Richardson number is shown. A power law with equation

E ¼ 0:21Ri0
−1:1 (11)

which was obtained by the statistical least squares method, fits well the whole data set, with a good correla-
tion coefficient. A small scatter is visible, which is related to the data points of stations characterized by
strong velocity changes. It is to note that the data points related to strong changes of velocity are much closer
to the fitting line when compared to the larger scatter that the same stations show on the diagram of the simi-
larity solution of Figure 3a. The equation of the fitting line is identical with and without the data points of the
stations with strong velocity changes, as it is evidenced by a comparison with Figure 3c, where the stations
with strong changes of velocity are marked by squares, and the increase of the correlation coefficient without
the data points of the stations with strong velocity changes is not statistically significant. This outcome
makes equation (11) usable also in the case of currents that respond to perturbations of the flow rate, or
to changes in slope, or to the occurrence of morphological obstacles, which are likely conditions in large‐
scale ground‐hugging geophysical mass flows, as pyroclastic density currents. In Figure 4 a comparison
between the law of equation (11) proposed in this paper; the model of equation (6), which was proposed
by Parker et al. (1987) for aqueous currents and was used by Bursik and Woods (1996) for modeling pyrocla-
tic density currents; and the model proposed by Ancey (2004) for snow avalanches, is shown. The model of
Parker et al. (1987) always has a much lower entrainment than equation (11), in the whole range of
Richardson number. This is probably due to the different scales of instabilities at the mixing interface, which
are much larger in highly turbulent gas‐particle mixtures compared to those in less turbulent aqueous cur-
rents. The Reynolds number of our experiments (see Table S1) is, in fact, at least 3 orders of magnitude
higher than the one obtained by previous experiments on aqueous flows by Turner (1986), Hopfinger and
Tochon‐Danguy (1977), and Parker et al. (1987).

By the inspection of Figure 4 it is also noted that equation (11) is strikingly similar to that proposed by Ancey
(2004) in the range of Ri0 higher than 1. In fact, our model, can be conveniently simplified as E= 0.2/Ri0. The
little difference between the model of this paper and the two‐piece function of Ancey (2004), which is noted
at Ri0~0.5, vanishes at lower Ri0values; thus, it does not affect much the general similarity of the two models.
This small difference is probably not related to a real physical effect but, more likely, to data processing or
interpolation. In fact, by inspecting Figure 2 of Ancey (2004) it is noted that the two‐piece function is con-
structed by means of a few data points and that the use of a single line with equation E = 0.2/Ri0 would
not introduce much of a variance with respect to the two‐piece function. The strong similarity of pyroclastic
density currents and snow avalanches, which was already suggested by Turnbull et al. (2007) and Ancey
(2004) is, indeed, confirmed by the model of the present paper.

3. Discussion and Conclusion

The large‐scale experiments allowed the development of a model that is similar to the law proposed by
Ancey (2004) for snow avalanches and is verified in the range of overall Richardson number between 0.25
and 5.95, which is a much wider range compared to that resulting from previous experiments on small

Figure 4. Diagram showing log‐log plots of the entrainment rate models as
a function of the overall Richardson number of Parker et al. (1987), solid
line; Ancey (2004), dotted line; and this paper, dashed line.
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aqueous Boussinesq flows. The entrainment rate rapidly readjusts to flow perturbations, making the model
applicable also in the case of flows with rapid changes of velocity. By means of the experiments it was
demonstrated that sharp changes are caused by flow perturbations that occur (i) at the impact of the foun-
tain, which causes an acceleration of the current, with an increase of the entrainment rate; (ii) at the break in
slope that causes a strong deceleration with an increase of flow depth and a decrease of air entrainment; and
(iii) in the presence of topographic obstacles that lead to a deceleration and decrease of air entrainment.

Such changes can strongly influence the behavior of pyroclastic density currents. Sharp changes of velocity
and excess density, which frequently occur over the flow dispersal area, especially in zones of abrupt mor-
phological “jumps,” lead to strong variations of current dynamic pressure and particle volumetric concentra-
tion, which are the main source of hazard of pyroclastic density currents (Dellino et al., 2008, 2011; Mele
et al., 2015; Valentine, 1998). Similar effects can be expected in the case of snow avalanches, which share
many characteristics with pyroclastic density currents (Ancey, 2004; Turnbull et al., 2007). The presence
of a significant amount of fine ash tends, instead, to prevent the rapid changes of excess density due to sedi-
mentation (Dellino et al., 2019) and allows to maintain a larger mobility of the current (Dellino et al., 2019).

As for fully accounting the effect of air entrainment on flow mobility, the use of models as the one proposed
in this paper is therefore recommended when modeling hazardous geophysical mass flows as pyroclastic
density currents and snow avalanches.
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