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Abstract
In boundary line analysis a biological response (e.g., crop yield) is assumed to be a

function of a variable (e.g., soil nutrient concentration), which limits the response

in only some subset of observations because other limiting factors also apply. The

response function is therefore expressed by an upper boundary of the plot of the

response against the variable. This model has been used in various branches of soil

science. In this paper we apply it to the analysis of some large datasets, originating

from commercial farms in England and Wales, on the recorded yield of wheat and

measured concentrations of soil nutrients in within-field soil management zones.

We considered boundary line models for the effects of potassium (K), phosphorus

(P) and magnesium (Mg) on yield, comparing the model with a simple bivariate

normal distribution or a bivariate normal censored at a constant maximum yield.

We were able to show, using likelihood-based methods, that the boundary line

model was preferable in most cases. The boundary line model suggested that the

standard RB209 soil nutrient index values (Agriculture and Horticulture Develop-

ment Board, nutrient management guide (RB209), 2017) are robust and apply at

the within-field scale. However, there was evidence that wheat yield could respond

to additional Mg at concentrations above index 0, contrary to RB209 guidelines.

Furthermore, there was evidence that the boundary line model for yield and P dif-

fers between soils at different pH and depth intervals, suggesting that shallow soils

with larger pH require a larger target P index than others.

Highlights

• Boundary line analysis is one way to examine how soil variables influence crop
yield in large datasets.

• We showed that boundary line models could be applied to large datasets on soil
nutrients and crop yield.

• The resulting models are consistent with current practice for P and K, but not
for Mg.

• Models suggest that more refined recommendations for P requirement could be
based on soil pH and depth.
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1 | INTRODUCTION

Farmers commonly add the essential plant nutrients, potas-
sium (K), phosphorus (P) and magnesium (Mg), to the soil
in fertilizers and manures. These additions contribute to the
stocks of nutrients retained by the soil, from which plants
obtain most of their requirements, rather than directly from
the added fertilizer (Cooke, 1982; Stockdale, Goulding,
George, & Murphy, 2013). If farmers do not maintain ade-
quate stocks of available nutrients in the soil then the yield
of the crop may be limited and other nutrients, notably nitro-
gen, may be used less efficiently, increasing harmful losses
to the environment (e.g., Duan, Shi, Li, Sun, & He, 2014).
In the short term, P, K and Mg remain in plant-available
forms in soil, so the farmer can estimate fertilizer require-
ments to maintain, build or deplete stocks of available nutri-
ents on the basis of calculated offtake in the crop. With
regular soil sampling to monitor the situation, the farmer can
therefore avoid nutrient deficiency, while avoiding the eco-
nomic and environmental costs of over-fertilization
(Goulding, Jarvis, & Whitmore, 2008).

This approach to nutrient management has long been the
basis for the “RB209” system for advice to farmers in the
United Kingdom (AHDB, 2017; Defra, 2010). A critical part
of RB209, and other advisory systems, is the definition of
target concentrations of available nutrients in the soil that
should be maintained in order to avoid nutrient limitations
on crop yield. In the UK system nutrient index ranges are
defined with respect to nutrient concentrations in standard
extractions. These index values are based on experimental
evidence from past field trials. In the current system they do
not reflect known soil factors that might induce variations in
the crop requirement at within- or between-field scales. It is
therefore to be expected that the general target index for a
particular nutrient might be excessive in some circumstances
and inadequate in others.

Large amounts of data on soil (from sampling and analy-
sis) and on crop yield (from monitors on combine har-
vesters) are acquired by farm businesses to improve crop
and soil management. There is growing interest in the poten-
tial of such “big data” sources to improve the management
and efficiency of farm enterprises (e.g., Wolfert, Ge, Ver-
douw, & Bogaardt, 2017). These large datasets could be
used for an empirical reappraisal of current target index
values. However, whereas a field fertilizer trial is carefully
designed to reduce the yield variation induced by limiting
factors other than the controlled treatment, at least within
each block, and to ensure that this variation does not bias
estimates of the fertilizer effect, this is not the case in an
observational study of data from working farms. It is there-
fore necessary to find methods to characterize the depen-
dence of crop yield on the concentrations in soil of nutrients

of interest in datasets where other factors such as soil pH,
non-target nutrients in soil, soil depth, available water, weed
competition and disease pressure, etc., vary in an
uncontrolled way.

One quantitative model that has been used for this partic-
ular problem is boundary line analysis (BLA), first enunci-
ated by Webb (1972), who proposed that the effect of some
factor on the response of a biological system may be
expressed by the upper boundary of the scatter plot of the
response (variable y on the ordinate) against the factor (vari-
able xi on the abscissa). The boundary line is a function Λ(�),
such that, for some value of xi the largest value of the bio-
logical response is Λ(xi). The boundary line is interpreted as
the response to variable xi that is possible when other factors
are not limiting.

Let us assume that there are j variables that are poten-
tially limiting on y. We denote the nth observation of the
response by yn and the corresponding set of potentially limit-
ing variables take values xn,i,i = 1,…,j. The boundary func-
tion, Λi, might be a limiting response to variable xi in one of
two senses. First, it might represent the response of variable
y to xi in a model that expresses von Liebig's (1863) “law of
the minimum”:

yn = mini∈ 1,…, jf g Λi xn,ið Þ½ �: ð1Þ

In words, the nth instance of the response y is determined
by the most limiting of the corresponding environmental
variables, the variable for which the limiting response is
smallest.

An alternative interpretation of the boundary response, as
made by Elliot and de Jong (1993), is that it is a rate-limiting
function such that:

yn = ymaxΠi=1,… , j Λi xif gf g, ð2Þ

where

0≤Λi xið Þ ≤ 1 8 i, xi∈ R, ð3Þ

and where ymax is the largest possible response of the sys-
tem, achieved only when

Λi xið Þ = 1 8 i:

Note that the boundary function Λi(�) will be represented
by an upper limit on a scatter plot of y against xi for some
datasets only if the set contains a number of instances in
which the ith variable is limiting. The response of a crop to a
nutrient, for example, will not correspond to an upper
boundary on the scatter-plot of yield against nutrient concen-
tration if crop yield at all sites from which the data are
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obtained is limited by either available water or poor estab-
lishment. The dataset must therefore be large enough and
cover sites with sufficient variation that there exists some
non-empty subset, ℬi, of observation indices, such that:

n∈ℬi ) Λi xn,ið Þ ≤ Λk xn,kð Þ 8 k∈ 1,…, jf g: ð4Þ

We say that a dataset in which some such subset exists
expresses the boundary response.

The boundary line concept has been applied to quantify
potentially limiting concentrations of crop nutrients in the
soil on crop yield (e.g., Evanylo & Sumner, 1987; Kihara
et al., 2016; Kihara & Njoroge, 2013; Wang et al., 2015:
Tittonell & Giller, 2013). Shatar and McBratney (2004) used
BLA to examine limiting effects of soil organic carbon, pH,
K and Fe on the yield of sorghum based on a large dataset
obtained with a yield monitor.

The outputs of a BLA can be used to define potentially
limiting values of a variable as a guide to practice. For
example, if growers ensure that concentrations of a soil
nutrient are maintained within a range of values where the
boundary line model is at maximum yield, then they reduce
the risk that the nutrient will limit crop production (although
other factors might). This was the approach taken by
Walworth, Letzsch, and Sumner (1986) to define diagnostic
norms for nutrient concentrations in plant tissue, and by
Evanylo and Sumner (1987) and Evanylo (1990) to define
target values for soil nutrients for soya bean and cucumber
crops. This suggests that BLA could be a powerful way to
exploit the information contained in large agronomic
datasets for the refinement of target values for soil nutrient
concentrations.

Milne, Ferguson, and Lark (2006) proposed a statistical
model for data with a boundary line, in which the variate
{y, xi} is modelled as a realization of a bivariate Gaussian
random variate {Y, Xi}, which is censored by the function
Λi(�), such that the underlying random variate is {min
[Y, Λi(Xi)], Xi} and the data are a realization of this random
variate with the observed yield, including a Gaussian mea-
surement error of mean zero and variance σ2e . The parame-
ters of this model may be estimated by maximum likelihood,
and this provides a basis for comparison with alternative
models (with no censoring process) by means of likelihood-
based statistics such as Akaike's information criterion (AIC)
(Akaike, 1973). It also allows the uncertainties in the esti-
mated parameters of the boundary line to be quantified.

The approach of Milne et al. (2006) has been used in sub-
sequent studies. Cossani and Sadras (2018) used it to exam-
ine the joint effects of nitrogen and water limitation on grain
yields at a global scale, and Kindred, Milne, Webster,
Marchant, and Sylvester-Bradley (2015) used it to analyse
results of experiments on the response of crops to applied

nitrogen at the within-field scale. Lark and Milne (2016)
proposed a reparameterization of the model and used it to
assess how the water-filled pore space fraction of soils
affects the potential rate of emission of nitrous oxide.

In this paper we use the method of Milne et al. (2006)
and Lark and Milne (2016) to examine boundary line models
for datasets on the yield of wheat and on concentrations of
extractable P, K and Mg in the soil. The data were collected
from subregions within arable fields in the UK for harvests
in 2015, 2016 and 2017 and were originally collected as part
of a commercial service to growers. We examine evidence
for a boundary line model in each case and compare the
results with recommendations to growers based on soil ana-
lyses under the RB209 system (AHDB, 2017; Defra, 2010).
We look at how greater granularity in recommendations
might be obtained by examining the boundary model for
yield and soil P in soil subsets defined by pH intervals and
soil depth.

2 | MATERIALS AND METHODS

2.1 | Soil and yield data

AgSpace Agriculture Ltd. conducts soil sampling for its cus-
tomers on the basis of pre-identified management zones
within each field. These zones were the basic units for which
soil and crop yield data were obtained in this study. The
zones are map units, delineated in the field by experienced
soil scientists, who made hand-auger observations of the
soil, paying particular attention to topsoil colour, topsoil and
subsoil texture, stone content, carbonate content and soil
depth. All these properties were assessed in the field follow-
ing conventional soil survey practice; for example, inferring
carbonate content from a “fizz” test with 10% hydrochloric
acid (Hodgson, 1976). Note that the purpose of these obser-
vations was to allow the surveyor to assess the variability of
the soil within the field and to identify distinct soil units to
map. Any quantitative information on soil properties was
obtained by subsequent sampling after the delineation of
zones. Augering was not done on a fixed grid, but according
to the surveyor's judgement, to allow the delineation of
boundaries between contrasting soil map units by the inter-
pretation of the auger observations in combination with
observed slope, known geological boundaries, air photogra-
phy and yield maps. This procedure corresponds to “free”
soil survey (Dent & Young, 1981; White, 2006). The
resulting soil map units are treated as management zones, to
be managed on the basis of soil sampling undertaken within
the units after they are delineated. It has been shown that soil
map units, delineated by free soil survey, can account for the
variation of soil properties and crop yield at the within-field
scale in the sense that the variation of these properties within

336 LARK ET AL.



the units is less than that within the field as a whole (King
et al., 2005; Lark, Catt, & Stafford, 1998).

AgSpace Agriculture Ltd. then undertook soil sampling,
structured by the zones. For the soil analyses reported here a
total of 24 cores were collected per zone to a depth of
15 cm. The cores were collected in a “W” pattern across a
zone and aggregated in the field to form one bulk sample for
that zone. A subsample was then taken for laboratory ana-
lyses. The resulting data can be treated as estimates of the
zone mean for each soil property (Webster & Burgess,
1984). In the work reported in this paper we consider
available P, K and Mg following extractions, as required for
comparison with RB209 Indices (MAFF, 1986). Details are
given in the reference, but in summary the P measurement
was Olsen P. Phosphorus was extracted from a 5-ml sample
of air-dried soil in 100 ml of sodium bicarbonate buffered at
pH 8.5 at a temperature of 20 ± 1

�
C. The concentrations of

K and Mg measurements were from an extraction in M
ammonium nitrate. A 10-ml sample of air-dried soil was
extracted in 50 ml of the extractant. Soil pH was measured
in a 1:2.5 soil:water suspension with a combination electrode
and pH meter.

In each season the mean yield of combinable crops was
extracted for each zone. The raw yield monitor data were
subjected to preliminary editing to remove values that
appeared to be influenced by movement of the combine
(e.g., turning on headlands) or by partial fill of the cutter
bar. The point yield values were then aggregated in each
zone to give a zone mean yield.

The data used for this study were on yields of winter
wheat and soil nutrient data aggregated to zone scale. All the
available yield and soil data for this crop were extracted for
analysis from the AgSpace database and used in the analyses
described below. For harvests in 2015, 2016 and 2017 there
were, respectively, 6,609, 5,954 and 4,541 zones in total
from 240, 202 and 166 farms, respectively; an average of
27.5, 29.5 and 27.4 zones per farm in the respective seasons.

Summary statistics for zone yields and analytical results
are presented in Appendix S1 (Tables S1 and S2), dividing
the data into feed and milling wheat crops. Note that, in all
cases, the nutrient concentrations showed a marked positive
skewness, which was reduced to below 1.0 by transforma-
tion to natural logarithms. The data on yield did not require
transformation.

2.2 | The boundary line model

Details of the boundary line model based on a censored
bivariate Gaussian random variable are given by Lark and
Milne (2016). In summary, the model is a bivariate distribu-
tion of the observed response variable, y, and an independent
covariate, xi. It is assumed that this distribution depends on a

latent bivariate-normal random variate Z = {Y, Xi}
T with

joint density function:

f y,xið Þ = ϕ2 zjμ,Cð Þ, ð5Þ

where ϕ2(�| μ, C) is the bivariate normal density function for
a random variate with mean vector μ and covariance matrix
C. The variate, Z, is censored by a boundary function
Λi(Xi| β) with parameters in β, to give a censored variate
�Z= �Y ,Xif gT. In this paper we consider upper boundaries
(a maximum yield is determined by the value of x), so:

�Z= min Y ,Λi Xijβð Þf g,Xi½ �T: ð6Þ

We assume, as in the general linear model, that the inde-
pendent variable is known without error and that the
observed response variable, y, is obtained by the observation
of �y with an observation error, which is normally distributed
with mean zero and standard deviation σe.

Lark and Milne (2016) derived the likelihood function
for y conditional on xi and some proposed set of parameters
β, μ, C and σe. If each of a set of n observations,
�yk,xi,kf g, k=1,…,n,is treated as independent, one may then

compute the negative log-likelihood for a set of parameter
values, given the observations, as:

ℓ = −
Xn
k=1

log f b �ykjxi,k;β,μ,C,σeð Þ: ð7Þ

The maximum likelihood estimate of model parameters
was obtained by finding a set of values that minimize ℓ over
the dataset.

2.3 | Model fitting and assessment

2.3.1 | Fitting a boundary line model by
maximum likelihood

We followed Milne et al. (2006) by using an approximation
to the measurement error of the yield data, σe, so as to
reduce the computational demands of finding the ML esti-
mates. This approximate value was set at the nugget vari-
ance for the variogram of yield data in each set. As the
empirical variogram could be estimated for lag distances
down to short, within-field scales, and the support of the
yield data is the whole zone over which the yield monitor
data are aggregated, we expect the contribution of any
sources of variation other than measurement error to this
nugget to be small. Empirical variograms were estimated
with the variogram function of the gstat package for the
R platform (R Core Team, 2014) and variogram models
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were fitted by weighted least squares using the fit.
variogram function in the same package.

Because the boundary line model of Lark and Milne (2016)
is based on an underlying bivariate normal distribution for the
yield and nutrient concentrations, it is necessary to decide
whether this assumption is plausible. To do this we examined
histograms of the data and summary statistics, evaluating these
in the light of the possibility that the observed yield is subject to
some right (upper) censoring. On this basis we chose to trans-
form nutrient concentrations to natural logarithms for all data
used in this study, but kept yield in tonnes per hectare.

Boundary line models, describing the limits of a dataset,
are susceptible to the effects of outliers and all methods use
some criterion to identify and remove them first. In this study
we used the bagplot proposed by Rousseeuw, Ruts, and
Tukey (1999) as a bivariate generalization of Tukey's (1977)
boxplot. The univariate boxplot defines an interval (box)
which includes half the observations, and then uses the spread
of the box to define a wider set of fences outside of which
data are regarded as outliers. The bagplot similarly defines a
“bag” which contains the central half of the data and a fence
around the bag obtained by expanding it by a factor. Values
outwith the fence are regarded as outliers. In this study we
followed this procedure using the bagplot procedure in the
aplpack library for the R platform (R Core Team, 2014).

We used a simple boundary line model with a linear
response to a variable xi (nutrient concentration) bounded by
a maximum yield:

Λ xið Þ = min β0 + β1xi,β2½ �, ð8Þ

where β2 is the maximum yield. The parameters of the
boundary line model were therefore:

β= β0,β1,β2f g,

from Equation (8), μ, a vector including the mean values of
the latent variables y and xi and parameters of the covariance
matrix, C, of the latent variables (their variances and correla-
tion). For any specified values of these parameters, and with
σe fixed at the nugget variance of the yield data, the negative
log-likelihood could be computed from the data with Equa-
tion (7). The optim procedure in R was used to find the
values of the parameters that minimized the negative log-
likelihood. This procedure requires initial guesses of the
parameters. After a first solution was obtained, we repeated
the optimization, starting from this first solution and setting
values for an optional scaling argument of the procedure
using numerical partial derivatives of the likelihood at the
first solution, such that a unit change in each model parame-
ter produced a similar change in the likelihood. It is known

that all numerical optimizations are prone to find solutions
that are only locally optimal, so this procedure was repeated
several times from different initial guesses, and the solution
with the smallest negative log-likelihood was selected.

2.3.2 | Comparing the boundary line model
with alternatives

Two alternative models to the boundary line were also con-
sidered. The first is a simple bivariate normal distribution for
which the parameters are just the mean values of yield and
the variable of interest, their variances and correlation. This
model was fitted by minimizing the negative log-likelihood
in the same way as for the boundary line model. This model
would be appropriate if yield and the variable of interest, xi,
were quite independent of each other (which would include
the case where variable xi is not limiting on yield for any of
the observations) or if yield could be regarded as a linear
function of xi additive with effects of other independent vari-
ables. The second alternative was a bivariate normal distri-
bution with a constant censor on yield. This model could be
appropriate if some factor other than xi, and independent of
it, limits yield, including general biophysical factors such as
seasonal climate or disease pressure.

Evidence for the validity of the boundary line model can
therefore be assessed by comparing its fit with that of the
alternative models. The models may be compared with
respect to their likelihood, but it is necessary to account for
the number of model parameters. The bivariate normal
model, for example, can be considered a special case of the
boundary line model in which the parameters in β are such
that no observations are limited by the boundary. For this
reason, the negative log likelihood for the boundary line
model can never be larger than that of the bivariate normal
model. One way to compare models with respect to their
likelihood while allowing for differences in their complexity
is to compute Akaike's information criterion A (Akaike,
1973). If a model with P parameters is fitted and the mini-
mized negative log-likelihood is ℓ then:

A = 2ℓ + 2P: ð9Þ

Over some set of alternative models we can minimize the
expected Kullback–Leibler divergence between the esti-
mated model and the process that generates the data by
selecting the model for which A is smallest (Buckland, Bur-
nham, & Augustin, 1997). Note that, in effect, the term 2P
in Equation (9) is a penalty for model complexity. If the
value of A for the ith model in a set of m exceeds the mini-
mum value of A over the set by Δi then one may compute
the Akaike weight for that model as:
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wi =
exp −Δi=2f gPm
j=1exp −Δ j=2

� � : ð10Þ

The weight for the i th model can be interpreted as the proba-
bility that the model is the best one for the variable, in the sense
of having minimum Kullback–Leibler divergence, over the set
of models considered (Buckland et al., 1997; Burnham &
Anderson, 2004). In this study we used the Akaike weights for
this purpose. We computed the weight for each of the three
models considered for each dataset and examined the boundary
line model if and only if its value of A was smallest in the set
and its Akaike weight equalled or exceeded 0.5.

2.3.3 | Uncertainty in model parameters

The optim procedure can compute a Hessian matrix, H, for
the model parameters. The element in the Hessian matrix for
the ith and jth parameters, βi and βj, is:

H i, j½ � = ∂

∂βi∂β j
ℓ2, ð11Þ

where ℓ is the negative log-likelihood. In this case the
covariance matrix of the model parameters, Σ, can be

estimated by the inverse of the Hessian matrix (Dobson &
Barnett, 2018). The standard errors for each estimated
parameter can be computed as the square root of the
corresponding term on the main diagonal of Σ.

In the case of the boundary line model used in this study,
Equation (8), the independent variable xi is potentially limit-
ing on crop yield if xi is less than a critical value, xcriti ,
beyond which the boundary line is constant. This critical
value is given by:

xcriti =
β2−β0
β1

, ð12Þ

where the terms are as defined for Equation (8). In order to
assess the uncertainty in the value of xcriti , we assumed nor-
mal errors in the estimates of the boundary model parame-

ters β̂0, β̂1 and β̂2, and drew sample sets of these parameters
from the multivariate normal random variable with
distribution:

N β̂0, β̂1, β̂2
� �T

,
X� �

: ð13Þ

This was carried out with the mvrnorm function from
the MASS package for R (Venables & Ripley, 2002). A

TABLE 1 Minimized negative log-likelihoods, AIC (A) and AIC weights (wi) for fitted models for all three nutrients in each crop

Year/crop Model*

Mg K P

ℓ A wi ℓ A wi ℓ A wi

2015 Milling BL 8,118.8 16,253.6 0.484 6,936.1 13,888.2 0.966 7,250.9 14,517.8 0.522

MVN 8,122.1 16,254.1 0.377 6,942.8 13,895.5 0.025 7,254.3 14,518.6 0.350

MVNc 8,122.1 16,256.1 0.139 6,942.8 13,897.5 0.009 7,254.3 14,520.6 0.129

2016 Milling BL 7,485.1 14,986.2 0.782 6,208.7 12,433.4 0.589 7,502.6 15,021.2 0.532

MVN 7,491.0 14,992.0 0.043 6,214.1 12,438.2 0.053 7,506.9 15,023.8 0.145

MVNc 7,488.6 14,989.2 0.175 6,211.2 12,434.4 0.357 7,505.1 15,022.2 0.323

2017 Milling BL 8,161.5 16,339.0 1.000 7,353.8 14,723.6 0.982 8,112.8 16,241.6 0.978

MVN 8,174.5 16,359.0 0.000 7,361.1 14,732.2 0.013 8,121.4 16,252.8 0.004

MVNc 8,171.4 16,354.8 0.000 7,361.1 14,734.2 0.005 8,118.8 16,249.6 0.018

2015 Feed BL 12,418.3 24,852.6 0.354 10,090.1 20,196.2 0.550 11,036.6 22,089.1 0.721

MVN 12,422.7 24,855.4 0.000 10,094.5 20,199.0 0.000 11,121.3 22,252.6 0.000

MVNc 12,419.7 24,851.4 0.646 10,092.3 20,196.6 0.450 11,039.5 22,091.0 0.279

2016 Feed BL 8,409.4 16,834.8 0.998 7,309.6 14,635.2 0.213 8,124.1 16,264.2 0.996

MVN 8,424.1 16,858.2 0.000 7,316.0 14,642.0 0.007 8,138.6 16,287.2 0.000

MVNc 8,417.6 16,847.2 0.002 7,310.3 14,632.6 0.780 8,131.7 16,275.4 0.004

2017 Feed BL 5,175.4 10,366.8 1.000 4,250.6 8,517.2 0.072 4,705.9 9,427.8 0.124

MVN 5,197.8 10,405.6 0.000 4,251.9 8,513.8 0.395 4,707.8 9,425.6 0.373

MVNc 5,196.4 10,404.8 0.000 4,250.6 8,513.2 0.533 4,706.5 9,425.0 0.503

*BL, bounded linear boundary model; MVN, multivariate normal model; MVNc, multivariate normal model with constant censor for yield.
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total of 500,000 subsets were drawn and xcriti was calculated

for each with Equation (12). The distribution of xcriti was
approximated by the empirical distribution from these sam-
ples. In particular, the 95% confidence interval was obtained.
Because the distribution of xcriti was not symmetrical, the
highest density interval was found by means of the hdi func-
tion in the HDInterval package for R (Meredith &
Kruschke, 2018). The highest density interval is a continu-
ous range of values in a sample, [xl, xh], such that the target

proportion of observations in the sample is included in the
interval (here 95%), and the empirical density for all values
within the range is larger than for any points outside the
range.

2.4 | Data subsets

Subsets of data on yield and nutrient concentrations for field
zones were analysed. The first subsets were divided by crop
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FIGURE 1 Yield data and soil nutrient concentrations for milling wheat in 2017 with fitted boundary line model. The abscissa of the plot is
(a) log-transformed soil Mg concentration; (b) soil Mg concentration in original units with RB209 Index boundaries shown; (c) log-transformed soil
K concentration; (d) soil K concentration in original units with RB209 Index boundaries shown; (e) log-transformed soil P concentration; (f) soil P
concentration in original units with RB209 Index boundaries shown
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TABLE 2 Estimates of boundary line model parameters and their standard errors for all three nutrients in each crop where wBL ≥ 0.5

Mg(log) K(log) P(log)

Crop/year Parameter Estimate Standard error Estimate Standard error Estimate Standard error

2015 Milling β 2 16.65 0.38 16.96 0.34

β0 −7.80 0.44 4.87 0.85

β1 4.82 0.70 4.37 0.95

2016 Milling β2 13.64 0.19 13.41 0.17 13.81 0.23

β0 −21.05 0.43 −2.72 0.57 5.02 0.36

β1 10.15 1.47 3.29 0.90 3.19 0.57

2017 Milling β2 16.16 0.26 16.51 0.28 16.56 0.11

β0 −7.92 0.38 −29.22 0.39 −7.93 0.35

β1 6.17 0.46 9.83 1.53 9.80 1.47

2015 Feed β2 16.01 0.45 13.69 0.09

β0 −19.37 1.47 6.16 1.0

β1 7.68 2.75 2.77 0.41

2016 Feed β2 13.43 0.17 13.50 0.87

β0 −14.30 0.34 4.95 0.12

β1 7.91 0.67 3.08 0.05

2017 Feed β2 15.37 0.36

β0 −7.35 0.45

β1 5.62 0.69

TABLE 3 Models for pooled wheat yield data and soil P, including data subsets defined by pH intervals

Subset Model*

Year

2015 2016 2017

ℓ A wi ℓ A wi ℓ A wi

All data BL 18,032.2 36,080.3 0.879 15,721.6 31,459.1 1.000 12,817.8 25,651.7 0.935

MVN 18,041.9 36,093.9 0.001 15,737.5 31,485 0.000 12,823.8 25,657.6 0.048

MVNc 18,036.2 36,084.9 0.120 15,734.9 31,481.8 0.000 12,823.8 25,659.6 0.018

pH ≤7 BL 3,961.9 7,939.8 0.335 3,538.8 7,093.7 0.946 2,788.1 5,592.3 0.997

MVN 3,965.0 7,940.0 0.312 3,545 7,100 0.04 2,797.2 5,604.3 0.002

MVNc 3,963.9 7,939.7 0.352 3,545 7,102 0.015 2,797.2 5,606.3 0.001

7 < pH ≤ 7.5 BL 3,035.5 6,086.9 0.05 3,057.6 6,131.3 0.941 2,137.3 4,290.6 0.108

MVN 3,036.0 6,082.1 0.576 3,065.8 6,141.6 0.005 2,138.5 4,287.0 0.654

MVNc 3,035.5 6,082.9 0.373 3,062.5 6,137 0.054 2,138.5 4,289.0 0.238

7.5 < pH ≤ 8 BL 5,539.4 11,094.9 0.997 4,112.9 8,241.8 0.312 3,420.7 6,857.3 0.354

MVN 5,550.0 11,110.1 0.001 4,116.4 8,242.6 0.206 3,423.4 6,856.7 0.473

MVNc 5,547.3 11,106.7 0.003 4,114.5 8,240.9 0.482 3,423.4 6,858.7 0.174

pH > 8 BL 5,649.9 11,315.8 0.631 4,902.7 9,821.4 0.874 4,203.5 8,423 0.183

MVN 5,654.4 11,318.8 0.141 4,908.4 9,826.8 0.058 4,205.3 8,420.6 0.598

MVNc 5,652.9 11,317.9 0.229 4,907.3 9,826.5 0.068 4,205.3 8,422.6 0.22

Note: Minimized negative log-likelihoods, AIC (A) and AIC weights (wi) for fitted models.
*BL, bounded linear boundary model; MVN, multivariate normal model; MVNc, multivariate normal model with constant censor for yield.
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(feed wheat or milling wheat) and harvest year (2015, 2016 or
2017) and included data on P, K and Mg. We then examined
the available data on soil P in greater detail with a view to see-
ing whether distinct boundary responses could be modelled over
soils contrasting with respect to properties measured in the
AgSpace Agriculture Ltd. soil zone characterization. Specifi-
cally, we examined the boundary responses for subsets of the
data defined initially by intervals of (topsoil) pH. The intervals
were pH ≤ 7, 7 < pH ≤ 7.5, 7.5 < pH ≤ 8 and pH > 8. For
these analyses we combined the milling and feed-wheat yields
together. Although there might be differences in yields of the
two crops due to management (e.g., different nitrogen applica-
tions), the boundary line for the combined set represents the P
response when such effects are not limiting and so allows us to
identify target P concentrations over rotations with both milling
and feed crops. It also ensured that there were adequate data in
each season and subset. We then undertook a similar analysis in
which the boundary responses to soil P were modelled for com-
bined feed and milling-wheat yields over soils of different depth
intervals, as recorded by AgSpace Agriculture Ltd.: shallow
(depth < 30 cm), medium (30–50 cm) and deep (>50 cm).

3 | RESULTS

3.1 | All nutrients

Summary statistics for the datasets are provided in Appendix
S1 (Tables S1 and S2). As noted above, it was decided to

transform all nutrient concentrations to natural logarithms
for the BLA.

Table 1 shows the negative log-likelihoods, values of
AIC (A) and the AIC weights (wi) for all models fitted to
the milling and feed-wheat yield datasets for each season
and nutrient. Recall that the boundary line model was
selected only when the Akaike weight for that model was
wi≥ 0.5. On this basis the boundary line model was selected
for Mg and both feed and milling wheat in the 2016 and
2017 harvest seasons. The boundary line model was selected
for K in all three seasons for milling wheat and for the 2015
season in the case of feed wheat. The boundary line model
was selected for P in all three seasons for milling wheat and
for all but the 2017 yields in the case of feed wheat.

Figure 1 shows 2017 milling-wheat data and boundary
responses to all nutrients. Note that the plots are shown both
on the log-scale for nutrient concentrations and on the origi-
nal units, the latter plots including the ranges for the RB209
nutrient indices. Plots for the other datasets are in Appendix
S1 (Figures S1–S14). The estimated parameters for the
boundary line models, where selected, and their standard
errors are presented in Table 2.

These results show critical concentrations of all nutrients,
xcrit, as defined in Equation (12). In the case of Mg, the criti-
cal concentration was at the Index 0/1 boundary (milling
wheat, Figure S4) and in the Index 1 range (feed wheat,
Figure S5) in 2016. In 2017 it was at the Index 1/2 boundary
for both feed and milling wheat (Figure 1b, Figure S14). For

TABLE 4 Models for pooled wheat yield data and soil P, including data subsets defined by pH intervals

Subset Parameter

Year

2015 2016 2017

Estimate Standard error Estimate Standard error Estimate Standard error

All data β 2 16.6 0.18 14.04 0.13 16.44 0.14

β0 2.28 2.5 3.13 0.14 3.22 1.65

β1 5.54 1.26 3.85 0.03 4.9 0.71

pH ≤7 β 2 13.99 0.33 15.37 0.64

β0 −2.46 1.73 1.65 1.07

β1 6.56 0.92 4.74 0.47

7 < pH ≤7.5 β2 13.17 0.31

β0 3.35 1.49

β1 3.49 0.62

7.5 < pH ≤8 β2 16.76 0.27 �
β0 −8.57 1.69 �
β1 9.6 0.72 �

pH > 8 β2 16.69 0.29 13.48 0.35

β0 4.16 2.33 5.05 1.26

β1 4.29 1.09 3.07 0.6

Note: Estimates of boundary line model parameters and their standard errors where wBL ≥ 0.5.
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K the critical concentration was in the index −2 range or
near the 1/−2 boundary (e.g., Figure 1d). For P the critical
concentration was at the 1/2 boundary in four out of the five
cases where the boundary line model was selected
(Figures S3, S6, S11, S13); in the fifth case it was within the
Index 1 interval (Figure 1f).

3.2 | P subsets

Table 3 shows the negative log-likelihoods, values of AIC
(A) and the AIC weights (wi) for all models on data subsets
defined by intervals of soil pH. Note that the boundary line
model was selected on the criterion wi≥ 0.5 for pooled
datasets in all years. When the subsets are considered, the
boundary line model was selected on this criterion in 2015
(two subsets with pH>7.5), in 2016 (all subsets apart from
7.5< pH≤ 8) and in 2017 (subset with pH ≤7).

The parameters of the boundary line model, where
selected, and their standard errors are presented in Table 4.
Figures 2–5 show the data and fitted models, again with
nutrients plotted on both the log and original scales with
RB209 Index ranges indicated in the latter case.

Table 5 shows the negative log-likelihoods, values of
AIC (A) and the AIC weights (wi) for all models on data
subsets defined by intervals of soil depth. The boundary line
model was selected for the datasets for 2015 (all depth inter-
vals), 2016 (deep soil only) and 2017 (shallow soil only).
Model parameters and standard errors for the selected
boundary line models are presented in Table 6 and plots of
the data and fitted models are in Figures 6 and 7.

The values of xcrit, which define the inflexion points for
the soil P boundary lines, are presented in Table 7 along
with the bounds for their 95% confidence intervals. Also
presented are the probabilities that the inflexion point lies in
each RB209 Index range for soil P. In 2015 and 2016 there
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FIGURE 2 Yield data from 2015 and soil P concentration and fitted boundary model for all wheat data on (a) the log scale or (b) the original
scale with index boundaries shown and subsets defined by pH (c) 7.5 < pH ≤8 and (d) pH > 8
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is evidence that the boundary P response was somewhere in
Index 2 for soils of pH > 8 (Figures 2d and 4c), but the critical
value was smaller for soils with pH <7 (Figure 4a). In 2016 the
inflexion point for soils with pH ≤7 was most likely in Index
1 (Figure 4a), although in 2017 it was in Index 2 (Figure 5c).

In the 2015 data, partitioned by soil depth, critical P concen-
trations appear to be larger for shallow soils (into Index 3) 2017
(Figure 6a). In 2016 the critical value for deep soils was close
to the 1/2 boundary (Figure 7a) and in 2017 the critical value
for shallow soils was in Index 2 (Figure 7b). As might be
expected, Table S3 (2015 data) shows that shallow soils have
larger pH than medium or deep ones, so these two subdivisions
of the data are not independent. Figure S15 shows the yield and
soil P data (2015) for shallow soils, with soils of very large pH
(>8) distinguished from the rest. It is notable (Figure S15 and
Table S3) that the soils at sites close to the boundary line and
below the inflexion point are generally of larger pH than soils
below the boundary. This suggests that P limitations are particu-
larly likely for the shallow soils of largest pH.

4 | DISCUSSION

4.1 | General observations

It is interesting that the boundary line model is commonly
preferable to the multivariate normal distribution or multivari-
ate normal with a constant censor to represent the joint

variation of soil nutrient concentrations and crop yield. There
are some differences in model behaviour between seasons,
although the boundary line model is favoured over the
alternatives in most cases considered. Variation in behaviour
between the seasons is to be expected as general biophysical
limitations vary (e.g., weather, pest and disease severity) as
well as other inputs (e.g., nitrogen fertilizer due to variations
in both cost and the commodity price). These differences may
affect the maximum yield achievable in the season, and so
xcrit, and may also interact with potentially limiting
factors. They may also result in limited or no expression of
the boundary in the dataset for a particular season, in the
sense of Condition (4). It is, therefore, necessary to build an
evidence base for boundary line models over multiple sea-
sons. This study is a significant start. It should also be
borne in mind that this study is based on data from farms
investing significantly in data to improve the management of
their crop. Such farms might be expected to be well managed
in other respects (e.g., with respect to soil drainage, acidity
and physical limitations such as compaction), and although
this would not be expected to bias the estimate of the bound-
ary line, the overall distribution of observations relative to the
boundary might not be representative of farmed UK soils as a
whole.

We note that the procedure used here to analyse large
datasets from across the UK is based on a statistical model
and advances a hypothesis that can be tested against
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FIGURE 3 Yield data from 2016 and soil P concentration and fitted boundary model for all wheat data on (a) the log scale or (b) the original
scale with index boundaries shown
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alternatives to quantify the strength of evidence to support
it. We think this is a strength of the approach by comparison
to machine learning methods, which search for patterns and
correlations within large datasets rather than testing hypothe-
ses in a model-based framework. Machine learning methods
can be used to build complex models that relate crop yields
to multiple attributes of a field or soil zone. However, the
complexity of the models means that it is difficult to interpret
the causes of yield variation. Where this is the aim, we would
encourage, in general, the development of hypothesis-driven
approaches to big data based on statistical modelling
principles.

4.2 | Overall models for all nutrients

It is informative to compare the overall results, without sub-
setting on soil properties, with RB209 recommendations
(AHDB, 2017). For K, RB209 recommends that soils are

maintained at target index −2. That is consistent with the
results obtained here, where the value of xcrit for K was near
the Index 1/−2 boundary or in Index −2. Similarly for P, the
RB209 target Index is 2, which is consistent with the overall
results presented in this paper.

It should be noted that these results do not simply con-
firm RB209. Those recommendations are based on experi-
ments designed to estimate mean crop responses at the field
scale or indeed at the farm scale. Non-linear responses of
soil–plant systems do not, in general, remain invariant with
change of scale, an issue that has been specifically addressed
by Kachanoski and Fairchild (1995) in respect of fertilizer
recommendations at scales around the whole field. The
robustness of the RB209 recommendations for sub-field
zones, at least for P and K, is therefore of some interest and
suggests that they could provide a basis for improved nutri-
ent management at the within-field scale with precision agri-
culture technology.
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FIGURE 4 Yield data from 2016 and soil P concentration and fitted boundary model for all wheat data on the original scale with index
boundaries shown and subsets defined by pH (a) pH ≤7, (b) 7 < pH ≤7.5 and (c) pH > 8
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FIGURE 5 Yield data from 2017 and soil P concentration and fitted boundary model for all wheat data on (a) the log scale or (b) the original
scale with index boundaries shown and (c) subset defined by pH, pH ≤7

TABLE 5 Models for pooled wheat yield data and soil P, including data subsets defined by depth intervals. Minimized negative
log-likelihoods, AIC (A) and AIC weights (wi) for fitted models

Subset Model*

Year

2015 2016 2017

ℓ A wi ℓ A wi ℓ A wi

Shallow BL 2,711.1 5,438.1 0.582 2,365.8 4,747.5 0.223 2,500.4 5,016.8 0.634

(< 30 cm) MVN 2,715.0 5,439.9 0.237 2,368.0 4,746.0 0.467 2,504.5 5,018.9 0.226

MVNc 2,714.2 5,440.5 0.182 2,367.4 4,746.9 0.310 2,503.9 5,019.9 0.139

Medium BL 2,318.6 4,653.1 0.965 1958.5 3,933.0 0.055 2078.8 4,173.6 0.130

(30–50 cm) MVN 2,325.7 4,661.3 0.016 1959.0 3,927.9 0.681 2080.3 4,170.6 0.584

MVNc 2,324.5 4,661.0 0.019 1958.9 3,929.8 0.265 2080.0 4,172.0 0.286

Deep BL 6,115.4 12,246.7 0.578 5,131.6 10,279.2 0.84 5,426.9 10,870.0 0.111

(>50 cm) MVN 6,119.4 12,248.9 0.199 5,429.0 10,284.9 0.049 5,429.0 10,868.1 0.285

MVNc 6,118.3 12,248.6 0.222 5,427.3 10,283.3 0.111 5,427.3 10,866.6 0.604

*BL, bounded linear boundary model; MVN, multivariate normal model; MVNc, multivariate normal model with constant censor for yield.
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TABLE 6 Models for pooled wheat yield data and soil P, including data subsets defined by depth intervals

Subset Parameter

Year

2015 2016 2017

Estimate Standard error Estimate Standard error Estimate Standard error

Shallow β 2 15.79 0.21 15.84 0.27

β0 5.81 0.22 −2.52 0.28

β1 2.99 0.03 6.48 0.04

Medium β2 16.83 0.36

β0 −3.97 3.09

β1 7.29 1.34

Deep β2 17.56 0.39 13.62 0.37

β0 5.06 2.17 5.15 1.42

β1 4.3 0.95 3.03 0.61

Note: Estimates of boundary line model parameters and their standard errors where wBL ≥ 0.5.
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FIGURE 6 Yield data from 2015 and soil P concentration and fitted boundary model for data subsets defined by depth: (a) shallow (<30 cm),
(b) medium (30–50 cm) and (c) deep (>50 cm)
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FIGURE 7 (a) Yield data and soil P
concentration with fitted boundary model for (a) all
wheat data in 2016 over deep soils (>50 cm) and
(b) all wheat data in 2017 over shallow
soils (<30 cm)

TABLE 7 Inflexion points with confidence intervals and probability that the inflexion point lies in each P index range for all datasets and
subsets defined by pH or by depth where wBL ≥ 0.5

Inflexion point/mgL−1 Index probability†

Year Dataset Estimate Upper* Lower* 0 1 2 3 4 5

2015 All data 13.0 10.1 19.6 0 0.76 0.23 0.01 0 0

7.5 < pH ≤ 14.0 13.3 14.8 0 0.99 0.01 0 0 0

pH > 8 18.6 12.1 35 0 0.12 0.71 0.14 0.02 0

Shallow 28.1 26.7 29.4 0 0 0 1 0 0

Medium 17.3 14.0 22.8 0 0.06 0.92 0.02 0 0

Deep 18.3 12.9 28.5 0 0.09 0.81 0.09 0 0

2016 All 17.0 16.4 17.6 0 0 1 0 0 0

pH ≤ 7 12.3 9.8 15.7 0 0.93 0.07 0 0 0

7 < pH ≤ 7.5 16.7 13 21.9 0 0.17 0.82 0.01 0 0

pH > 8 15.6 10.7 24.0 0 0.42 0.54 0.03 0 0

Deep 16.4 11.5 24.0 0 0.3 0.67 0.03 0 0

2017 All 14.9 12.6 17.9 0 0.53 0.47 0 0 0

pH ≤7 18.0 13.0 24.3 0 0.1 0.87 0.03 0 0

Shallow 17.0 16.6 17.5 0 0 1 0 0 0

*Upper and lower bounds of the 95% confidence intervals (highest density interval).
†Probability that the inflexion point falls in each index interval.
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For wheat crops RB209 recommends that Mg is added in
fertilizer to soils in Index 0, but the results presented in this
paper suggest that, in some seasons, Mg concentrations in
the Index 1 range can be limiting. Note that Index 2 is the
target for grass in the RB209 system, although this is deter-
mined by considerations of the requirements for grazing
livestock as well as the growth of the crop. Lark, Ander, and
Broadley (2019) present a map of the probability that soil
Mg is below Index 2 for soils in agricultural use across
England and Wales. This shows that if soil Mg status below
Index 2 is potentially limiting on wheat yield, then this could
be an issue in parts of the south, north-east and east of
England, particularly in soils over chalk.

4.3 | Subsets

Within-season comparisons suggest that critical P values
may be larger on soils of larger pH (into index 2). The
maximum yield penalty for soils at Index 0 rather than at
the threshold can be of the order of 4 t ha−1. Maximum
yield penalty means the potential yield response to an
increase in the P status to the threshold, on the assumption
that P remains limiting and some other factor does not
become so.

These results also provide evidence that shallow soils
may be more susceptible than deeper ones to P limitation
with the inflexion point in the boundary response at xcrit
approaching or in Index 3. Figure S15 and Table S3 show
that the effects of soil depth and of pH are related, with the
mean pH much larger in shallow soils than in deeper ones,
and with the soils of largest pH dominating in the vicinity of
the boundary response to P for shallow soils. It is not unex-
pected that soil P availability is reduced in calcareous condi-
tions (Delgado & Torrent, 2000) and this effect could be
increased in shallow soil where the rooting depth is also lim-
ited. The results presented here suggest that this has implica-
tions for the target P concentrations in the soil, or other
management practices, to avoid limiting effects on crop
yield.

5 | CONCLUSIONS

To conclude, we have shown in several instances that
there is strong statistical evidence for a boundary line
model over alternatives to represent the joint variation of
soil nutrient status and crop yield, and that this model pro-
vides a basis for identifying target nutrient indices to sup-
port fertilizer practice. The results obtained here show
that, for P and K, the overall boundary line response
obtained for within-field zones is consistent with the set of
Index values in the RB209 recommendation system used
for field- and farm-scale fertilizer management in the

UK. This suggests that RB209 Index values could be used
as guidelines for spatially variable management of these
nutrients at the within-field scale. However, the boundary
line model provided evidence that recommendations for
Mg fertilizer application to winter wheat might not be ade-
quate and that larger target index values should be
maintained. This could be based on within-field soil
management zones, such as those defined by AgSpace
Agriculture Ltd. We suggest that the boundary line meth-
odology used here could be applied to the evaluation of
index values for soil fertility management under other
systems.

Examination of boundary line models for P in subsets of
the data defined by pH or soil depth intervals, suggested that
P advice might be tailored to local soil conditions, with
larger target P concentrations specified for shallow soils with
large pH to avoid the loss of yield and suboptimal use by the
crop of other inputs.

6 | DATA AVAILABILITY

The data reported in this paper are commercial and in confi-
dence, and as such are not available to third parties.
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