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Metal Bioavailability Models: Current Status, Lessons Learned, Considerations for Regulatory Use, 1 

and the Path Forward 2 

Christopher A. Mebane,  M. Jasim Chowdhury,  Karel A.C. De Schamphelaere,  Stephen Lofts,  Paul R. 3 

Paquin,  Robert C. Santore,  Chris M. Wood 4 

Abstract 5 

Since the early 2000s, biotic ligand models and related constructs have been a dominant paradigm 6 

for risk assessment of aqueous metals in the environment. We critically review 1) the evidence for 7 

the mechanistic approach underlying metal bioavailability models; 2) considerations for the use and 8 

refinement of bioavailability‐based toxicity models; 3) considerations for the incorporation of metal 9 

bioavailability models into environmental quality standards; and 4) some consensus 10 

recommendations for developing or applying metal bioavailability models. We note that models 11 

developed to date have been particularly challenged to accurately incorporate pH effects because 12 

they are unique with multiple possible mechanisms. As such, we doubt it is ever appropriate to lump 13 

algae/plant and animal bioavailability models; however, it is often reasonable to lump bioavailability 14 

models for animals, although aquatic insects may be an exception. Other recommendations include 15 

that data generated for model development should consider equilibrium conditions in exposure 16 

designs, including food items in combined waterborne–dietary matched chronic exposures. Some 17 

potentially important toxicity‐modifying factors are currently not represented in bioavailability 18 

models and have received insufficient attention in toxicity testing. Temperature is probably of 19 

foremost importance; phosphate is likely important in plant and algae models. Acclimation may 20 

result in predictions that err on the side of protection. Striking a balance between comprehensive, 21 

mechanistically sound models and simplified approaches is a challenge. If empirical bioavailability 22 

tools such as multiple‐linear regression models and look‐up tables are employed in criteria, they 23 

should always be informed qualitatively and quantitatively by mechanistic models. If bioavailability 24 

models are to be used in environmental regulation, ongoing support and availability for use of the 25 

models in the public domain are essential. 26 

EVIDENCE FOR THE MECHANISTIC APPROACH 27 

In 1996, the Society of Environmental Toxicology and Chemistry (SETAC) held a workshop to evaluate 28 

how regulatory criteria for protecting aquatic life could better reflect the science of metal 29 

bioavailability and toxicology (Bergman and Dorward‐King 1997). This was followed by an irruption 30 

of publications on biotic ligand models (BLMs), related mechanistic or quasi‐mechanistic models, and 31 

simpler empirical approaches such as multiple linear regression (MLR) models. Although some of 32 

these bioavailability models have been incorporated into regulatory frameworks, many jurisdictions 33 

retain 1980s vintage criteria. In December 2017, SETAC sponsored a follow‐up workshop titled 34 

Bioavailability‐Based Aquatic Toxicity Models for Metals in Pensacola, Florida, USA. The purpose of 35 

the workshop was to consider the status of different modeling approaches for predicting the 36 

bioavailability and toxicity of metals in freshwaters and their incorporation into regulatory water 37 

quality criteria. This is one of 5 articles that evaluated the performance of the models and sought to 38 

identify best practices in the use of these models for developing and applying bioavailability‐based 39 

criteria, benchmarks, or guidelines for metals that are intended to protect aquatic life (Adams et al. 40 

2020; Brix et al. 2020; Garman et al. 2020; Van Genderen et al. 2020). 41 

The concept of mechanistic models incorporating metal bioavailability as a key factor governing 42 

toxicity (Paquin et al. 2002; Niyogi and Wood 2004) can be traced back to early experimental studies. 43 

These studies established that toxicity could vary considerably according to the water chemistry, 44 



reflecting influences of factors such as salinity, pH, hardness (i.e., Ca + Mg concentration), alkalinity, 45 

and dissolved organic matter (DOM; Jones 1938; Holm‐Jensen 1948; Lloyd and Herbert 1962; Zitko 46 

et al. 1973). Today we recognize that these factors reflect competition by naturally occurring cations 47 

(e.g., Ca2+, Mg2+, Na+, H+) for the binding of free metal cations (Men+) to ligands on target organisms 48 

and complexation of these Men+ ions by waterborne anions (e.g., HCO3
–, Cl–, and most importantly 49 

DOM). In both cases, the binding of the metal to ligands on the organism is decreased, thereby 50 

offering protection. The first regulatory tools incorporating this bioavailability concept proposed 51 

different ambient water quality criteria (AWQC) for freshwater and sea water and, in freshwater, 52 

applied hardness as the key factor modifying metal toxicity (e.g., Alabaster and Lloyd 1980; US 53 

Environmental Protection Agency 1986; Canadian Council of Ministers of the Environment 2007). 54 

These approaches were empirically based and either proposed different AWQC for waters in 55 

different hardness ranges or else used equations to adjust AWQC for hardness (US Environmental 56 

Protection Agency 1986). The latter were forerunners to the current MLR models that incorporate 57 

multiple toxicity‐modifying factors (Brix et al. 2017a, 2020). In hindsight, it is now clear that hardness 58 

was often a surrogate for other water chemistry variables (e.g., alkalinity, specific ions, pH), which 59 

may have been equally or more important in the regression data sets that were used to derive these 60 

AWQCs and that another crucial water chemistry variable (DOM) was completely overlooked. 61 

Pagenkopf (1983) presented the first mechanistic model, the gill surface interaction model (GSIM). 62 

This recognized that metals could bind to biological ligands on the respiratory surfaces of target 63 

organisms, thereby causing toxicity. The GSIM postulated that toxicity was attributable to free metal 64 

ions (Men+) and used trace metal speciation, gill surface interaction, and competitive inhibition to 65 

explain the protective effect of water hardness. The model also recognized that pH and alkalinity 66 

influenced metal speciation and that inorganic anions (the role of DOM was curiously discounted) 67 

could complex metals, decreasing their bioavailability. These reactions, including those at the gills, 68 

were assigned conditional equilibrium constant (log K) values, and steady‐state conditions were 69 

assumed, allowing prediction of toxicity through equilibrium modeling. Almost simultaneously, 70 

Morel (1983) formulated the free ion activity model (FIAM), which focused on algae and made very 71 

similar assumptions to the GSIM but in addition recognized the importance of DOM in complexation 72 

reactions. Again, a similar geochemical modeling framework was used, and chemical equilibrium was 73 

assumed. In both the GSIM and the FIAM, the degree of toxic response was related to the fraction of 74 

sites to which Men+ was bound, a concept that became a key component of future models. The GSIM 75 

and the FIAM can be considered the parents of modern bioavailability models such as the BLM. In 76 

this same era, the advent of geochemical modeling programs (e.g., MINEQL+, MINTEQA2) facilitated 77 

further progress. Subsequently, the development of the Windermere Humic Aqueous Model 78 

(WHAM) (Tipping 1994) incorporated multisite binding to deal with metal interactions with DOM, an 79 

important breakthrough. 80 

Pagenkopf (1983) had proposed that the cause of lethality when Men+ bound to critical sites on the 81 

gill surface was respiratory toxicity. However, many studies over the next 2 decades demonstrated 82 

that the proximate cause of lethality was interference with the active branchial uptake of either Na 83 

(Cu, Ag) or Ca (Zn, Cd, Co, Pb) from the water, at least for fish at metal levels causing acute toxicity 84 

(Paquin et al. 2002; Niyogi and Wood 2004). These were associated with inhibition of basolateral 85 

Na+, K+‐ATPase (for Na uptake) and Ca2+‐ATPase (for Ca uptake), as well as blockade of apical Na+ and 86 

Ca2+ channels, and were compounded by increased diffusive losses of these major nutrient ions at 87 

higher metal concentrations. Thus, different metals targeted different specific sites (transport 88 

proteins) on the gills, and measurements of net Na or Ca loss rates to the water or net decreases in 89 

plasma or whole‐body concentrations provided physiological evidence for this mechanism of 90 

toxicity. 91 



Subsequently, Playle and colleagues made a major conceptual breakthrough based on experiments 92 

with fathead minnow and trout exposed to Cu or Ag (targeting Na transport sites) and Cd (targeting 93 

Ca transport sites) in ion‐poor synthetic soft water of defined composition (Playle et al. 1993a, 94 

1993b; Janes and Playle 1995). Natural DOM decreased the binding of metals to the gills. Through 95 

the analysis of gill metal burdens, the use of competitive waterborne ligands with known log K 96 

values, Langmuir isotherm analysis, and a geochemical modeling program (MINEQL+), they were 97 

able to estimate distinct log K (affinity) and Bmax (site density = capacity) values for these metals at 98 

the gills in short‐term exposures (2–3 h). Calculated metal accumulation on gills correlated well with 99 

measured gill metal concentrations and adverse physiological effects (e.g., Na loss attributable to 100 

Ag) in a number of different field‐collected waters. These gill accumulation experiments likely reflect 101 

correlates to the true accumulation on the “biotic ligand,” for there is a wide range of possible 102 

binding sites on a gill surface (including excreted mucus), with a wide spectrum of affinities for 103 

different metals. Although it is incorrect to think that by “titrating” a gill surface one can expect to 104 

probe and characterize the “biotic ligand,” the strong relationships between short‐term gill metal 105 

accumulation and toxicity gave operational support to gill‐binding modeling. 106 

The gill‐binding model for Ag (Janes and Playle 1995) was later transformed into a physiologically 107 

based BLM by relating the gill Ag burden on trout to the fractional inhibition of gill Na+, K+‐ATPase 108 

activity associated with 96‐h mortality (McGeer et al. 2000). This work provided the mechanistic step 109 

from short‐term gill metal accumulation to the proximate cause of acute toxicity. Similar studies by 110 

MacRae et al. (1999) with trout more rigorously demonstrated that short‐term gill metal 111 

accumulation (in this case Cu at 24 h of exposure) was a constant predictor of acute toxicity (in this 112 

case percentage of mortality at 120 h) among a range of test media containing different copper‐113 

binding ligands. In fathead minnow, Meyer et al. (1999) demonstrated elegantly that the gill burden 114 

of Ni at 24 h associated with 50% mortality at 96 h was constant over a range of water qualities, 115 

even though the concentration of the free Ni2+ ion associated with 50% mortality was not. From 116 

these studies arose the concept of the LA50, the short‐term accumulation at the biotic ligand that is 117 

predictive of 50% mortality at a later time. This is a key component of all BLMs, now more commonly 118 

known as the intrinsic sensitivity parameter, which can be varied in model fitting to compensate for 119 

differences in sensitivity among species, strains, and clones. The gill log K, Bmax, and LA50 concepts 120 

still underpin all modern BLMs. The terminology varies, with the gill accumulation log K values often 121 

referred to as biotic ligand log K values because gills are not the sole site of ion exchange in small 122 

animals such as cladocerans, and plants obviously do not have gills. Likewise, LA50s can be related to 123 

fractional effects other than 50% or to sublethal endpoints, and thus the LA50 term is often replaced 124 

by the more general term for a critical accumulation associated with x% effects (CAx). But despite 125 

the varied (and sometimes confusing) terminology, the underlying concepts are fundamentally 126 

similar. 127 

Building on these early results, subsequent investigations have successfully correlated short‐term gill 128 

metal accumulation with toxic effects in longer‐term exposures for a variety of metals (Table 1). For 129 

example, Figure 1 shows how measured gill Ag accumulation (first bar in each pair) can be predicted 130 

in 2 forms (Ag+ and AgCl; second bar) as a function of water chemistry (dissolved organic carbon 131 

[DOC], Cl, Na, Ca, pH) using a chemical equilibrium model (Paquin and Di Toro 2008). Toxicity data 132 

were then used to evaluate the expected LA50, and the derived BLM could then be used in 133 

combination with the LA50 to predict dissolved Ag median lethal concentrations (LC50s) over a wide 134 

range of water quality characteristics (Figure 2). 135 

Moving from models based on physiological mechanisms and gill metal burdens to models based on 136 

toxicity only 137 



A SETAC Pellston Workshop in Pensacola in 1996, and the subsequent book that arose from it 138 

(Bergman and Dorward‐King 1997), greatly accelerated the pace of BLM development. Thereafter, 139 

landmark publications by Paquin et al. (2000), Di Toro et al. (2001), and Santore et al. (2001) laid out 140 

the formal technical framework for the BLM and demonstrated its utility in predicting acute toxicity 141 

of Cu and Ag to fish (e.g., Figure 2) and invertebrates in a range of natural waters. Although these 142 

papers were firmly rooted in the concept that the short‐term metal burden on the biotic ligand was 143 

the key factor causing longer‐term toxicity, they showed that this quantity did not have to be 144 

measured but rather could be back‐calculated (if required) from toxicity data for the purpose of 145 

model generation. The extensive results of Erickson et al. (1996) on acute Cu toxicity to fathead 146 

minnow where single water chemistry parameters were varied, one at a time, provided the key data 147 

used to illustrate this principle. 148 

Relative to the number of BLMs developed since that time, there are relatively few studies where 149 

the physiological mechanisms (e.g., gill enzyme inhibition, ion loss) and/or surrogates for the actual 150 

metal burden at the biotic ligand (e.g., gill metal concentration) have been measured (see summary 151 

in Table 1). This move to model fitting to toxicity data only maintains the conceptual mechanistic 152 

framework (that a theoretical critical metal burden at the biotic ligand causes a critical level of 153 

toxicity); it has arisen partly as a matter of convenience and partly as a matter of necessity. The 154 

former reflects the time‐consuming, technically demanding, and costly nature of the measurements, 155 

whereas the latter reflects the fact that in many cases the measurements simply cannot be done. 156 

Even when metal concentrations in a tissue or an organ are measured, the concentration of metal at 157 

the site of toxic action most likely is not the only accumulation being measured. Instead, it is usually 158 

assumed that the measured concentration in a tissue or organ is proportional to the currently 159 

unmeasurable concentration at the site of action. With Ni, the mechanism of chronic toxicity 160 

remains unresolved (Brix et al. 2017b); and indeed for most metals, the mechanism(s) of chronic 161 

toxicity, and therefore the target biotic ligands, remains poorly understood. Furthermore, the most 162 

sensitive organisms which “drive” AWQC are usually very small (e.g., daphnids, snails, algae), in 163 

which the biotic ligands are unknown and the metal burdens difficult to measure. However in 164 

daphnids, acute Ag toxicity, active Na uptake inhibition, whole‐body Na decrement, whole‐body Ag 165 

burden, and whole‐body Na+, K+‐ATPase inhibition were well correlated (Bianchini and Wood 2003); 166 

and chronic Ag toxicity seemed to result from a failure of Na regulation in both fish (Naddy et al. 167 

2007) and daphnids (Bianchini and Wood 2002). These data provide some confidence that the 168 

conceptual framework remains valid. 169 

In approximately 2001, the rate of BLM development was greatly accelerated by the shift from 170 

modeling based on gill metal burden/physiological effects to modeling based on toxicity data alone. 171 

De Schamphelaere, Janssen, and colleagues have exploited this approach to the greatest extent, 172 

particularly for chronic BLMs, which have been in high demand for European regulations (De 173 

Schamphelaere and Janssen 2002, 2004a; De Schamphelaere et al. 2005a, 2005b). The chemical 174 

submodel remains identical and mechanistic, whereas on the biological/ toxicity side of the model, 175 

the implicit mechanistic assumption is that toxicity results faithfully reflect an imaginary metal 176 

burden at an imaginary biotic ligand. Studies on chronic (30‐d) toxicity of Cu to trout represent one 177 

of the rare cases where this assumption has been tested (Ng et al. 2010; Crémazy et al. 2017). These 178 

studies concluded that the 24‐h gill LA50 predictive of 30‐d mortality remained constant from pH 6.0 179 

to 8.0 but not at extreme pH values (5.5, 8.5). However, De Schamphelaere et al. (2005b) reported 180 

that both surface‐bound Cu and internal Cu concentrations were relatively good predictors of 181 

chronic toxicity (48–72 h) in algal growth tests across a slightly smaller pH range (5.9–8.5). Possible 182 

scenarios for such anomalous effects at extreme pH values are explored in the section Dealing with 183 

extreme waters. Regardless, if the model is calibrated with data in the water chemistry range of 184 



interest (and hybrid model strategies for doing so are outlined in the section Complexity versus 185 

simplicity: Use of mechanistic and hybrid models to inform development of simpler models), the 186 

model predictions should be reliable. 187 

Incorporating dietary metal exposure into bioavailability models: The importance of equilibration 188 

The question of whether chronic toxicity of metals in aquatic environments is the result of 189 

waterborne, dietary, or combined exposures has generated much study and extensive reviews 190 

(Clearwater et al. 2002; Meyer et al. 2005; DeForest and Meyer 2015). In nature, ingestion may be a 191 

significant route of metal uptake, and for nutrient metals (e.g., Cu, Fe, Zn) it is undoubtedly the 192 

major route. Acute models do not take this into account because testing protocols dictate that the 193 

organisms must be fasted during the exposure. Because it is almost impossible to envisage a natural 194 

situation where dietary metal would cause acute toxicity to aquatic organisms, this is not an issue of 195 

concern. However, during chronic exposures, dietary metal may contribute to toxicity or acclimation, 196 

and this may occur by both direct (metal poisoning) and indirect (metals affecting the nutritional 197 

quality of the diet or causing food aversion) routes (e.g., Irving et al. 2003; Niyogi and Wood 2003; 198 

Besser et al. 2005; De Schamphelaere et al. 2007; Golding et al. 2013; Tomczyk et al. 2018). Hook 199 

and Fisher (2001, 2002) reported extremely low waterborne effect levels for reproductive 200 

impairment when metal–exposed algae (Ag, Hg, Cd, Mn, and Zn) were fed to zooplankton; for Ag, 201 

the threshold was below the chronic AWQC. These notable results stimulated subsequent 202 

investigations, which confirmed that, in some settings, algae could accumulate metals to harmful 203 

levels from low waterborne concentrations (Bielmyer et al. 2006) but, in other settings, metal 204 

bioaccumulation occurred without obvious adverse effects (Kolts et al. 2009). Similarly, discordant 205 

results were obtained with mayflies fed Cd‐exposed algae in repeated experiments (Xie et al. 2010). 206 

The reasons for the differing responses are unclear. Further, the literature is not consistent on 207 

whether metals incorporated into natural diets by chronic waterborne exposure of the prey 208 

organisms are more or less bioavailable than metal salts or prey dipped in metals (DeForest and 209 

Meyer 2015). 210 

In the real world, we expect that a natural diet will be in some sort of dynamic equilibrium with the 211 

metal in the water column. Direct evidence for this is sparse, and metal accumulation studies have 212 

shown that time to reach constant tissue burdens ranges from hours for algae to >28 d for predatory 213 

insects and oligochaete worms (Timmermans et al. 1992; Stephenson and Turner 1993; Roy and 214 

Hare 1999; Meylan et al. 2003). Nevertheless, DeForest and Meyer (2015) argued that “exposure of 215 

test organisms to matched water‐borne and diet‐borne metal concentrations is perhaps the most 216 

relevant for evaluating the protectiveness of water‐borne metal guidelines.” In this context, 217 

“matched” means that the test organisms were exposed to the same waterborne‐metal 218 

concentration to which its food was exposed. This was also a key recommendation of the 2002 219 

SETAC Pellston workshop on this topic (Meyer et al. 2005). However, this has rarely been done. 220 

There are 2 aspects to this equilibration: 1) physicochemical equilibration reflecting the slow kinetics 221 

of diffusion into and sorption onto the food item, which is mainly a concern when dead organisms or 222 

artificial food (e.g., trout pellets) are used as the diet—in this case, the same kinetic constraints as 223 

for equilibration of metal with DOM will likely apply, a process that can take 24 h or more (see 224 

section Equilibrium issues), and 2) biodynamic equilibration (achievement of constant 225 

concentrations) with a live diet, where the prey organisms may concentrate the metal many fold 226 

above that in the water column, which may take days to weeks. 227 

Two recent studies assessed dietary impacts of Pb with matched waterborne and diet‐borne metal 228 

exposure concentrations. These examined the interactive effects of waterborne and dietary Pb 229 

exposure in daphnids (Ceriodaphnia dubia; Nys et al. 2013) and rainbow trout (Alsop et al. 2016) and 230 



concluded that dietary Pb exposure to these freshwater organisms may not be of concern under the 231 

scenarios tested. 232 

At present, there is insufficient evidence to conclude that chronic bioavailability models would be 233 

underprotective if based on waterborne‐only exposures or on combined exposures with insufficient 234 

equilibration. Therefore, this should not be a reason for rejecting the large amount of otherwise 235 

high‐quality data available for use in model generation or for current models that exist based on 236 

such data. However, we recommend, for best practice in the future, that during chronic tests 237 

combined waterborne and dietary matched exposures should be performed. These should be based 238 

on natural live diets that have undergone full biological equilibration with the waterborne metal 239 

through pre‐exposure. If it becomes apparent during such tests that whole‐body and target organ–240 

specific metal concentrations are not at equilibrium with ambient metal concentrations in water and 241 

food, a biodynamic modeling framework that incorporates uptake (via water and food) and 242 

elimination kinetics may be needed. 243 

Incorporating behavioral endpoints (e.g., olfaction, mechanoreception) into bioavailability models 244 

In most jurisdictions, mortality, growth inhibition, and reproductive inhibition are the only toxicity 245 

endpoints that can be used in a regulatory framework. Nevertheless, there is increasing evidence 246 

that disruptions of behavior caused by metal exposure may be equally or more sensitive endpoints 247 

and that these disruptions are mediated by disturbances in olfaction and/or mechanoreception 248 

(reviewed for many metals in Wood et al. 2012a, 2012b). If organisms cannot navigate properly, 249 

sense predators or prey, maintain social hierarchies, or find mates, population impacts will likely 250 

occur. Furthermore, the limited information available suggests that mechanisms governing olfactory 251 

toxicity are rather different from those governing toxicity for other endpoints. For example, for 252 

waterborne Cu, inhibitory effects are almost immediate, Ca provides little protection, the log K value 253 

for Cu at the olfactory rosette is lower than at the gill, and there is evidence of recovery/acclimation 254 

from olfactory inhibition during chronic exposure (e.g., McIntyre et al. 2008; Mirza et al. 2009; Green 255 

et al. 2010; Dew et al. 2012). Furthermore, there are different viewpoints (e.g., Green et al. 2010 and 256 

Dew et al. 2012 vs Meyer and Adams 2010, DeForest et al. 2011, and Meyer and DeForest 2018) on 257 

whether or not mechanistic bioavailability models based on concepts of ionoregulatory disturbance, 258 

such as the BLM‐based US Cu criterion (US Environmental Protection Agency 2007), are protective 259 

against olfactory effects such as behavioral disturbance. If they are protective, it would appear that 260 

this is because highly sensitive taxa are included (e.g., cladocerans) for criteria derivation, not 261 

because the bioavailability models are mechanistically correct for behavioral endpoints (i.e., the 262 

comparison is of apples vs oranges). The matter remains unresolved, but moving forward, as argued 263 

by Pyle and Wood (2007), we recommend that mechanistically based bioavailability models for 264 

behavioral toxicity should be developed. These should be built from the ground up using behavioral 265 

endpoints, rather than by adjusting the intrinsic sensitivity parameter in existing BLMs. The areas of 266 

agreement and disagreement with models built on traditional endpoints will then be highly 267 

informative, and there will be a stronger foundation for deciding whether models based on 268 

behavioral endpoints should be used in environmental regulation. 269 

CONSIDERATIONS FOR THE USE AND REFINEMENT OF BIOAVAILABILITY‐BASED TOXICITY MODELS 270 

Types of bioavailability‐based models currently available 271 

Table 2 presents a representative summary of available models, but a thorough listing of all models 272 

would be beyond the scope of this article. The models include classic BLMs that predict acute 273 

toxicity based on measured accumulations (Table 1); models fitted to acute and chronic toxicity 274 



data; models predicting toxicity using humic acid or surfaces as surrogates for biotic ligands; and 275 

“generalized bioavailability models,” which may be as simple as a single‐variable regression such as 276 

pH against free metal ion toxicity (Table 2). Metal bioavailability models directly fitted to acute or 277 

chronic toxicity data such as those in Table 2 are often used to normalize single‐species toxicity data 278 

to a target water chemistry prior to inputting such data into species‐sensitivity distributions for 279 

guideline development. The problem of relying on acute models to predict chronic effects is further 280 

explored in the Supplemental Data. Many recent models have also extended single‐metal 281 

approaches to mixtures (Table 2). 282 

Some themes become apparent from inspecting different models. All include chemical speciation 283 

calculations, which require as inputs at least major ion chemistry (e.g., Ca, Mg, Na, K, Cl, SO4, and 284 

alkalinity or dissolved inorganic carbon), DOC, pH, and temperature. For shorthand, we refer to 285 

these as the “BLM” inputs. Some models, in addition, include Al and Fe. Thus, even the generalized 286 

bioavailability models (gBAMs), which predict free metal ion toxicity as a function of pH and/or free 287 

major cation activities, require the full BLM water chemistry to compute free ion activities. Further, 288 

pH is consistently incorporated as an important toxicity‐modifying factor, but the direction of 289 

responses (i.e., whether an increase or a decrease in pH would increase or decrease the effect 290 

concentrations of dissolved metal) often differ between plant and animal models (Figure 4). In 291 

addition to affecting speciation, pH affects the bioavailability and toxicity of metals to plants by 292 

changing membrane permeability (Boullemant et al. 2009; Lavoie et al. 2012). These are key reasons 293 

why it will likely never be feasible to combine plant and animal bioavailability models into a single 294 

model. The important but complex role of pH in bioavailability models is discussed in the section 295 

Complexity versus simplicity: Use of mechanistic and hybrid models to inform development of simpler 296 

models. 297 

Alternatives to the conventional single‐site unidentate BLM 298 

When the BLM was first formulated (Di Toro et al. 2001), the biotic ligand was considered a single 299 

unidentate binding site, for reasons of simplicity and lack of support for a more complicated 300 

formulation. It was later shown that this formulation dictates a linear relationship between the 301 

chemical activity of a competing cation and the x% effect concentration (ECx) of the toxic metal 302 

expressed as free metal ion activity (i.e., ECx Men+) and that stability constants of competitive 303 

cations could be estimated directly from a linear regression (De Schamphelaere and Janssen 2002). 304 

This prompted an explosion of studies (both acute and chronic) that estimated log KBL values for 305 

various organisms and metals directly from toxicity data, using univariate test designs. 306 

However, observed relationships often deviated from perfect linearity. Various potential mechanistic 307 

hypotheses have been put forward to explain these deviations, including binding of metal species 308 

(e.g., MeOH+, MeCO3) other than the free metal ion (De Schamphelaere et al. 2004), differences 309 

between pH in bulk solutions and the organism microenvironment (Playle and Wood 1989), multiple 310 

biotic ligand sites relating to multiple uptake sites or multiple simultaneous mechanisms of toxicity 311 

(Peters et al. 2011), bidentate biotic ligand sites (Farley and Meyer 2015), and the influence of 312 

plasma membrane potential on free metal ion activity at the biotic ligand (Kinraide 2006). In quite a 313 

few cases, researchers (including some authors of the present study) have generated models 314 

providing good fits and predictive capacities but at the expense of unrealistic parameter estimates 315 

(e.g., assuming that MeOH+ species are almost equally as bioavailable as the free metal ion [De 316 

Schamphelaere and Janssen 2004b; De Schamphelaere et al. 2004]). 317 

It is always possible to perform a linear regression and derive classical log K values, often with still 318 

reasonably accurate representation of observed bioavailability relations. Yet, an increasing number 319 



of observations have shown such strong deviations from linearity that alternative modeling 320 

approaches have been pursued. Indeed, some of them have already been implemented in European 321 

Union regulations, whereas others have not been implemented. Deviations from linearity appear to 322 

be greatest for H+ ions (i.e., pH), with some very obvious examples where log‐linear relationships 323 

describe the observations much better than linear regressions (e.g., algae–Cu [De Schamphelaere 324 

and Janssen 2006]; Daphnia–Ni [Deleebeeck et al. 2008]; Daphnia–Cu [Van Regenmortel et al. 325 

2015]). These observations have led to the formulation of “hybrid models,” or gBAMs, that combine 326 

a log‐linear pH effect (e.g., Figure 5) with the classic competition for other cations. Although this 327 

practice can be perceived as less mechanistic than the classic unidentate single‐site BLM, it should 328 

be emphasized that 1) the BLM is also just a fitted regression when the link between accumulation 329 

at a critical site and toxicity is not made (e.g., Figure 3) and 2) various alternative mechanisms may 330 

lead to log‐linear pH effects on free metal ion toxicity (e.g., Figure 3). 331 

The overall message of Figure 3 is that different mechanistic theories and model formulations can 332 

generate either approximately linear or log‐linear relations. In addition, assuming, for instance, a 333 

bidentate binding model, the pKa values can generate a wide range of pH–ECx Men+ slopes (on a log 334 

scale) In the absence of mechanistic evidence, such relationships are equivalent to MLRs. 335 

Nevertheless, hybrid models which incorporate such regressions into a BLM framework are useful 336 

for regulatory purposes, as long as they accurately predict toxicity over a wide range of conditions. 337 

A consequence of approaching the BLM as just equations to be solved by using optimization routines 338 

to find the best values for unknown parameters is that the fitted solutions may be disconnected 339 

from the BLMs' mechanistic foundations. Prominently, a fundamental BLM tenet is that toxicity 340 

follows accumulation on the biotic ligand (Table 1). In model construction, if the speciation model 341 

and log K values used successfully reproduce measured accumulation values, then the model is 342 

grounded in reality. However, if this step is bypassed, such as when appropriate accumulation data 343 

are not available, it is possible to successfully fit BLMs to toxicity values using binding constants or 344 

LA50 values that appear to be chemically or biologically unrealistic. 345 

With Cu and Na, the apparent protective effect of Na+ against Cu toxicity has been incorporated into 346 

BLMs as a competition between Na+ and Cu2+ for binding to the biotic ligand. The binding constant 347 

for Na+ that can be extracted from toxicity experiments tends to produce log K (biotic ligand–Na) 348 

values of 2.5 to 3.5 in various BLMs. This agrees well with the common observation that the binding 349 

affinity (Km) values for unidirectional active Na+ uptake values in most freshwater organisms are in 350 

the range of 10–3 M. It is curious therefore that, in contrast, log K (organic acid–Na) stability 351 

constants for various organic acids and Na are mostly between 0.7 and 1.9 (Stumm and Morgan 352 

1996). This illustrates that organismal biology is more complicated than simple chemistry. Figure 5 353 

illustrates a further example, comparing measured and predicted Cd LC50s with rainbow trout from 354 

diverse studies using 2 BLM constructs. In Figure 5, model A, the log K Cd–biotic ligand binding 355 

affinity coefficient of 8.1 is similar to those derived from gill accumulation experiments (e.g., 8.6 356 

[Playle et al. 1993a]; 8.0 [Niyogi et al. 2008]). Yet in Figure 5, model B, even when the Cd–biotic 357 

ligand binding affinity is decreased 2 full orders of magnitude (2 log units), the fit of the toxicity data 358 

is just as good, so long as the LA50 is reciprocally lowered 2 orders of magnitude to 0.03% (see 359 

online Supplemental Data SI‐2 in Farley et al. 2015). However, fit aside, both of these LA50 values 360 

are lower than experimentally determined values, and an LA50 of 0.03% seems implausible, 361 

assuming that binding to the site of toxic action is proportional to binding sites on the gill. An LA50 362 

of 0.03% implies that Ca regulation would be fatally compromised with channels that are 99.97% 363 

intact, which does not seem physiologically plausible. For comparison, experimentally derived LA50 364 



values for Cd in rainbow trout studies have been approximately 10 to 30% of the strong binding sites 365 

on the gill (Birceanu et al. 2008; Niyogi et al. 2008). 366 

The reason for these modeling manipulations was to try to find a combination of parameters that 367 

would mimic tests that showed that Cd toxicity was reduced by adding Cu, implying that Cu may 368 

have a higher affinity than Cd to the biotic ligand. Although ungrounded from accumulation, such 369 

manipulations have shown practical success across complex and varied exposure conditions (Farley 370 

et al. 2015). The capacity of the BLM structure to use widely available toxicity data to predict 371 

responses over a wide combination of waters, metals, and organisms is a major strength of the 372 

approach. However, too much flexibility from many adjustable parameters can lead to 373 

unconstrained models that would more accurately be described as “mechanistically inspired” 374 

models, rather than “mechanistic” models. 375 

Complexity versus simplicity: Use of mechanistic and hybrid models to inform development of simpler 376 

models 377 

The broad influence of metal bioavailability models within science communities has not always 378 

translated to their broad adoption by regulatory authorities (e.g., Wood et al. 2012a, 2012b). The 379 

necessity of determining the full composition of each water sample and the complexity underlying 380 

bioavailability–based models has proven to be a limitation for their wide application. To broaden 381 

access to potential users, various functional interfaces and simplified versions have been developed. 382 

In the early 2000s, Robert Santore and colleagues developed and freely shared an intuitive, 383 

spreadsheet‐style software interface that executed the BLM structure developed by Di Toro et al. 384 

(2001) and Santore et al. (2001). The software provided users a flexible platform to explore toxicity 385 

data and water chemistry and to expand on the work of the developers with new models. The 386 

influence and utility of this modeling platform are evidenced by approximately 300 literature 387 

citations to the software to date and by its incorporation into the US Environmental Protection 388 

Agency's national recommended aquatic life criteria for copper (US Environmental Protection 389 

Agency 2007). At the time of writing, the software was on its fourth major version. In the European 390 

Union, environmental quality standards under the Water Framework Directive and risk assessments 391 

under the policy Registration, Evaluation, Authorisation and Restriction of Chemicals employ 392 

computationally intensive applications of multiple BLMs developed to protect algae/plants, 393 

invertebrates, and fish (see Nys et al. (2016) for Ni; Van Regenmortel et al. (2017) for Cu and Zn; and 394 

Van Sprang et al. (2016) for Pb). Various simplified proxies have been developed including Bio‐Met, 395 

which employs look‐up tables that approximate BLM calculations for Cu, Ni, Zn, or Pb with over 20 396 

000 values covering a wide range of environmentally relevant water chemistries, using fewer 397 

parameters (Ca, pH, and DOC) than the full BLMs. Similar algorithm‐based approaches that simplify 398 

inputs and user calculations include the Metals Bioavailability Tool and PNEC‐Pro (Peters et al. 2016; 399 

Verschoor et al. 2017). For Pb, a separate tool simplifying speciation and toxicity predictions is also 400 

available (Van Sprang et al. 2016). All these resources can readily be found through internet 401 

searches. 402 

Because mechanistic and hybrid models typically integrate the effects of water chemistry on 403 

geochemical speciation as well as interactions of toxic metal species (mostly Men+) with the 404 

organism, obvious roles of these models are to populate look‐up tables and to inform the 405 

development of MLRs (Brix et al. 2017a; DeForest et al. 2018). For example, a statistical approach to 406 

developing MLRs using stepwise automated routines to maximize partial regression coefficients may 407 

yield a good fit between effects and predictor variables. Yet, variables that are only important in a 408 

subset of the data or that have subtle effects may be missed, and a statistical approach alone cannot 409 

distinguish between causative and correlative variables. In the case of MLRs for Cu and Al, the choice 410 



of potential toxicity predictor variables (DOC, pH, and water hardness or Ca) was informed by 411 

associated BLMs (e.g., Santore et al. 2001, 2018), not by statistical explorations. 412 

To further illustrate how mechanistic bioavailability models can inform simpler approaches, we have 413 

used a chronic gBAM for fish (De Schamphelaere 2018) to predict how the 30‐d LC20(dissolved) of 414 

Cu in soft water (hardness ~10 mg/L) for fish varies as a function of the DOC, species sensitivity, and 415 

pH (Figure 6). This gBAM accounts for geochemical speciation effects, competition of Cu2+ with Ca2+ 416 

and Mg2+, and effects of pH on Cu2+ ion toxicity. The simulations provide relationships between ECx 417 

and DOC that “emerge” from the joint effects of these 3 processes in the hybrid gBAM model. These 418 

simulations illustrate 3 important points: 1) the relation between ECx and DOC is nearly perfectly 419 

linear, on both linear and logarithmic scales; 2) on a linear scale, the slope of the ECx versus DOC 420 

relation is higher for less sensitive organisms and at higher pH; and 3) on a logarithmic scale, slopes 421 

appear nearly independent of species sensitivity or pH. This indicates that an MLR on a linear scale 422 

should contain not only a linear DOC term but also an interaction term between pH and DOC and 423 

furthermore that an MLR slope derived on the basis of an insensitive species should not be 424 

extrapolated to a more sensitive species. Similar simulations can be performed for other species, 425 

water quality variables, and metals, resulting in specific recommendations for MLR construction. 426 

Equilibrium issues 427 

From both chemical and biological perspectives, BLMs and related constructs all assume equilibrium 428 

conditions. If this is not the case, the predictive abilities of the model may be compromised. 429 

Instances where equilibrium may not occur include laboratory exposures with incompletely 430 

equilibrated diet and/or DOC and environmental exposures such as pulse exposures from 431 

stormwater or meltwater runoff (Kayhanian et al. 2008; Nimick et al. 2011; Balistrieri et al. 2012; 432 

Figure 7) and exposures within mixing zones downstream of point‐source releases (Vandenberg et 433 

al. 2005). Nonequilibrium conditions can cause metals which equilibrium‐based speciation 434 

calculations assign to complexes to actually be bioavailable, whereas equilibrium models such as 435 

BLMs generally assume that complexed metals are not bioavailable (Zhao et al. 2016). 436 

Reactions of metal ions with dissolved inorganic ligands typically reach equilibrium in seconds to 437 

minutes. However, equilibration of metals with DOC can take hours to days. This issue was initially 438 

manifested in fathead minnow Cu toxicity data reported by Erickson et al. (1996). In nonrenewal 439 

static trials, the 96‐h test duration was sufficient for any disequilibrium associated with Cu–DOC 440 

complexation to be effectively eliminated during the early part of the exposure. However, in flow‐441 

through tests, a Cu stock solution was mixed with unamended Lake Superior water in the diluter 442 

head tank just prior to entering the 45‐min residence time test chamber. In this case free Cu was 443 

continuously elevated relative to equilibrium conditions, and toxicity was increased relative to static 444 

tests at the same dissolved Cu concentration. Model‐predicted LC50s were almost identical in the 2 445 

flow regimes, but in the flow‐through tests, they were consistently higher than observed values (i.e., 446 

toxicity was underestimated by the model), whereas in the static tests they were consistently lower 447 

than observed values (i.e., toxicity was overestimated), under otherwise similar conditions (Figure 448 

8A,B; Santore et al. 2001). This interpretation is consistent with tests that found that Ceriodaphnia 449 

dubia Cu LC50s were directly related to equilibration time with DOC (Kim et al. 1999; Ma et al. 1999). 450 

A caution, however, is that DOC tends to increase over time during static tests, as a result of 451 

accretion of organic carbon from the test organisms. For Ag and Cu, metals with strong affinities for 452 

DOC, small increases in DOC in the range of 0.2 to 0.5 mg/L can produce noticeable changes in 453 

modeled or measured toxicity (Erickson et al. 1998; Welsh et al. 2008). Thus, the pattern of greater 454 

toxicity of Cu in flow‐through tests than static tests could be influenced by both incomplete 455 

equilibration in the former and increasing DOC over the course of the latter tests. 456 



At high humic acid (>5 mg/L DOC) and Cu (>1 µM) concentrations, up to 30 h were required to reach 457 

equilibrium (Ma et al. 1999). Under more dilute conditions with DOC <1 mg/L, Cu more rapidly 458 

equilibrated in 0.1 to 4 h (Louis et al. 2009; Meyer and Adams 2010). As an example, the kinetic data 459 

of Ma et al. (1999) were used to calculate that at the start of a static exposure the free Cu (Cu2+) 460 

concentrations might be elevated as much as 10‐fold relative to the concentration at equilibrium 461 

(Figure 9A). After the first 24 h, the deviation from equilibrium is small; and after 30 h, equilibrium is 462 

achieved (Figure 9B). Similarly, in static‐renewal tests, the solution is refreshed at regular intervals, 463 

resulting in elevated free Cu with each renewal unless pre‐equilibration is used (Figure 9C). Most 464 

seriously, in flow‐through tests with a short hydraulic residence, free Cu will be elevated throughout 465 

the test (Figure 9D). Similarly, Meyer and DeForest (2018) invoked the Ma et al. (1999) kinetic model 466 

to argue that a lack of adequate equilibration could explain the apparently very low threshold effect 467 

concentrations (<2 μg Cu/L) reported by Dew et al. (2012) for olfactory impairment in fathead 468 

minnows exposed to Cu for short durations (1–24 h), as an alternative to the damage‐repair 469 

hypothesis proposed by Dew et al. (2012) for explaining the decrease of olfactory impairment as 470 

exposure time increased. 471 

Reports on the importance of pre‐equilibration as a factor modifying metal toxicity have been 472 

inconsistent. For instance, although Glover et al. (2005) found that Ag was more toxic to Daphnia 473 

magna (lower 24‐h LC50s) in tests initiated after 3‐h metal–DOM contact time than in tests initiated 474 

after 24 h contact time (Figure 10), Erickson et al. (1998) found little effect on Ag toxicity from aging 475 

solutions for 72 h before testing. Further, in contrast to the Ma et al. (1999) results, Wang et al. 476 

(2011) found little differences in Cu toxicity between tests initiated with freshly mixed exposures 477 

versus solutions that had been aged for 24 h. 478 

Equilibrium models are a reasonable simplification of real‐world systems in many cases, such that 479 

simple relationships have been obtained that relate metal speciation to biological effects (e.g., the 480 

present review; Zhao et al. 2016). This simplification is probably necessary when using bioavailability 481 

models, whether mechanistic or empirical, to inform regulatory applications. Nevertheless, the 482 

controversies over equilibrium assumptions and contrasting results preclude conclusive 483 

generalizations to resolve the apparent equilibration dilemma. Still, unless time‐varying conditions 484 

are the focus of testing, we suggest a 24‐h pre‐equilibration period in experimental designs to allay 485 

concerns of nonequilibrium. 486 

Toxicity test design considerations for developing mechanistic and hybrid bioavailability models 487 

Historically, mechanistic and hybrid metal bioavailability models have been developed from 1) 488 

multiple univariate toxicity experiments, where each factor (e.g., Ca, Na, DOC, pH) is varied alone; 2) 489 

full‐factorial test designs (which can be considered a series of univariate experiments at various 490 

conditions); 3) multivariate toxicity experiments, where factors are varied in various combinations; 491 

or 4) a combination of 1) and 2). Regardless of the design, well‐informed selection of the water 492 

chemistry variables is crucial. This selection should be based on prior knowledge of suspected 493 

influential variables, using information on other organisms, other metals, previous metal uptake and 494 

toxicity data, and physiological understanding. 495 

Multivariate experiments are particularly useful as a first step to discriminate the more from the less 496 

important toxicity‐modifying variables. However, on their own, they are not necessarily the most 497 

useful for mechanistic model development, as illustrated in the following example. De 498 

Schamphelaere and Janssen (2004b) performed chronic D. magna toxicity experiments with Cu in a 499 

multivariate design with pH, DOC, and hardness as the factors. They found that DOC and pH were 500 

significant factors but that hardness was not. They subsequently used the data to calibrate a chronic 501 



Cu‐BLM for Daphnia, in which Ca or Mg competition was not included. Also, Na was included in the 502 

model because of evidence from a parallel univariate experiment with Na that showed a correlation 503 

with Cu toxicity. Later, Rodriguez et al. (2012) performed univariate experiments and did find 504 

protective effects of Ca and Mg. Van Regenmortel et al. (2015) developed an optimized chronic Cu 505 

bioavailability model by reformulating it as a gBAM and including biotic ligand constants for Ca and 506 

Mg. This optimized model accurately predicted the toxicity observed in both data sets. 507 

This example indicates that non‐full‐factorial multivariate test designs can “miss” toxicologically 508 

significant modifying factors, especially when the design is run over multiple test series where 509 

between‐batch variability may play a role (see Supplemental Data). On the positive side, the 510 

example illustrates that, over time, existing models can be improved if new data become available 511 

and that data sets from different sources can be used jointly for model calibration. It also suggests 512 

that univariate test designs are best for calibration of individual model parameters (e.g., biotic ligand 513 

stability constants for competing cations in BLMs or pH slopes in gBAMs). Furthermore, the 514 

mathematical method to estimate log K values is well known and relatively straightforward (De 515 

Schamphelaere et al. 2002). Full‐factorial designs (the special case of multiple univariate 516 

experiments) have been rarely used in generating bioavailability models because they are the most 517 

costly and labor‐intensive, but they are particularly useful to detect interactive effects. Using this 518 

design, Deleebeeck et al. (2009) were able to show no interactions between pH and Mg on chronic 519 

Ni toxicity to algae, allowing them to formulate a model that was successful at predicting Ni toxicity 520 

in a range of spiked field waters. In summary, all sorts of designs can help in initial model 521 

development, but univariate or full‐factorial designs are the best for calibration of individual model 522 

parameters. 523 

Consideration of other toxicity‐modifying factors 524 

Although pH, DOC, and major ions have been incorporated into most bioavailability models (Table 525 

2), other factors have received much less attention by bioavailability model developers. We are not 526 

aware of any current regulatory framework that explicitly incorporates effects of other metal toxicity 527 

factors such as acclimation to prior metal exposure, temperature, nutrients, suspended solids, or 528 

iron hydroxides in the assessment of metal toxicity. Yet we now know that such factors may strongly 529 

affect metal toxicity, and in the case of nutrients and temperature, for example, a wealth of 530 

empirical data is available. 531 

Acclimation to chronic metal exposures can have major effects on responses to subsequent acute 532 

exposures, through acquired tolerance. During long‐term, low‐level exposures, gill metal burdens 533 

may increase above the concentrations usually associated with acute toxicity (reviewed by Niyogi 534 

and Wood 2003). This has been explained by the “damage‐repair hypothesis,” whereby the repair 535 

processes increase the tolerance of the organism to a particular metal burden (McDonald and Wood 536 

1993). Likewise, the log K and Bmax conditional binding constants of the metal biotic ligand and of 537 

the various cation–biotic ligand complexes will be markedly changed following acquired tolerance, 538 

yet these constants are considered to be unchangeable with the changes in environmental 539 

conditions in BLMs (Niyogi and Wood 2003). Although acquired tolerance from exposure to elevated 540 

metals has long been recognized (Chapman 1985), acclimation to soft or hard water, or differences 541 

in the composition of the diet (e.g., high calcium or sodium content) may also have profound effects 542 

on metal tolerance and modeling (e.g., Niyogi and Wood 2003; Franklin et al. 2005; Todd et al. 2009; 543 

Mebane et al. 2010). In criteria development, acclimation is considered a confounding, false 544 

protection to be guarded against because acquired protections may not be persistent and, 545 

furthermore, the energetic costs of tolerance may lead to other adverse effects (Stephan et al. 1985; 546 

Brinkman and Woodling 2014). However, the implications of variations in binding constants 547 



depending on earlier metal exposure, water hardness, diet, and other environmental or 548 

physiological conditions seem to be underrecognized in the development and application of metal 549 

bioavailability models (Niyogi and Wood 2003). 550 

Most studies on temperature effects have investigated acute toxicity. These have reported both 551 

increasing metal toxicity with increasing temperature (Rao and Khan 2000; Heugens et al. 2003) and 552 

increasing toxicity with decreasing temperature (Hodson and Sprague 1975; Hansen et al. 2002). 553 

Much more limited data are available on chronic metal toxicity, but a recent study showed that 554 

chronic metal toxicity to D. magna varied by approximately 2‐fold, with a clear pattern of higher 555 

toxicity at lower temperature, opposite to what is most commonly expected for acute toxicity 556 

(Pereira et al. 2017). Interestingly, for Cu, the response pattern could be explained by the computed 557 

effect of temperature on speciation but not for Ni and Zn. Until now, most BLMs and hybrid models 558 

do include temperature as an input parameter, but they only compute the effect of temperature on 559 

inorganic speciation, whereas DOC interactions, which rely on WHAM V, VI, or VII, are not 560 

temperature‐adjusted. Most importantly, any temperature effects at the biological receptor are not 561 

incorporated. More empirical and mechanistic research is clearly needed to better integrate 562 

temperature into bioavailability models and AWQC. 563 

Effects of nutrient concentrations, especially phosphate, on metal toxicity have been studied 564 

extensively and can be relatively strong but are inconsistent across various studies. Notably, 565 

phosphate concentrations in natural freshwaters (European annual mean in rivers as of 2012 was 566 

65 µg PO4‐P L–1 [European Environment Agency 2018]) are typically considerably lower than those 567 

applied in standard algae toxicity test protocols (310–1550 µg PO4‐P L−1 [Organisation for Economic 568 

Co‐operation and Development 2011; US Environmental Protection Agency 2002]). Thus, a better 569 

mechanistic understanding of nutrient effects on metal toxicity, and associated incorporation into 570 

models, is urgently needed to improve laboratory‐to‐field extrapolation. Gao et al. (2016), for 571 

example, developed a mechanistic dynamic model that integrated effects of external phosphate, 572 

algal cell P content, and Zn on instantaneous algal growth rate. Their model was able to explain why 573 

different exposure scenarios (duration, phosphate supply, and initial P content of algae) can lead to 574 

opposite apparent effects of phosphate on Zn‐induced declines of algal biomass in standard toxicity 575 

tests. As bioavailability modeling expands into metalloids and plants, we expect nutrients will have 576 

an important role as a modifying factor, especially with pairs such as phosphate and arsenate (Zhao 577 

et al. 2016). 578 

The role of organic ligands that bind metals and form lipophilic complexes has received little 579 

attention in metal bioavailability modeling. Similarly, the potential role of low–molecular weight 580 

metabolites such as thiosulfate or citrate (which can bind metals and then transport them across 581 

epithelial surfaces as the intact metal–ligand complex via anion transporters) has received little 582 

attention (Zhao et al. 2016). Although BLMs and related constructs usually treat complexed metals 583 

as nontoxic, attributing toxicity only to the free ion metals, we now know that complexed metals can 584 

be bioavailable and toxic under some circumstances (Erickson et al. 1996; Zhao et al. 2016). 585 

Other trace metals, such as Fe and Al, may also influence metal toxicity, notably via 1) competition 586 

with the toxic metal ion for binding on DOC, and 2) by providing an adsorption phase when in the 587 

colloidal hydroxide‐precipitated form (Cain et al. 2016). It would be worthwhile to explore how 588 

effects of these and other bioavailability‐modifying factors could be added to metal bioavailability 589 

models. 590 

The choice of speciation modeling platforms for BLMs 591 



Given the importance of DOM (natural organic matter, DOC) in metal speciation, the speciation 592 

modeling component of a mechanistic bioavailability model must be capable of accurately predicting 593 

metal–DOM complexation. Several mechanistic models exist for computing metal binding to humic 594 

and fulvic acid, which are the dominant components of DOM in freshwaters. These include the 595 

humic ion–binding family (Models V, VI, and VII; Tipping and Hurley 1992; Tipping 1998; Tipping et 596 

al. 2011), the nonideal competitive absorption (NICA)‐Donnan model (Kinniburgh et al. 1996) and 597 

the Stockholm humic model (Gustafsson 2001). These are combined with inorganic speciation codes 598 

in tools such as WHAM, Visual MINTEQ, and the Hydroqual/Windward BLM software. These 599 

inorganic speciation models differ somewhat in the binding affinity values used and even the 600 

presence of equilibrium constants in their code. Some speciation models do not account for 601 

precipitation/dissolution reactions. The absence of the relevant equilibrium constants can lead to 602 

the use of unstable metal exposure regimes in experiments, where the metal's solubility limit is 603 

exceeded. 604 

A number of speciation models have been used in BLM development. Di Toro et al. (2001) 605 

implemented WHAM V within the CHESS framework, and many subsequent studies (e.g., De 606 

Schamphelaere and Janssen 2002; Heijerick et al. 2005) also used WHAM V. Others have used 607 

WHAM VI (e.g., Deleebeeck et al. 2008; Peters et al. 2011), WHAM VII (Vukov et al. 2016), or NICA‐608 

Donnan (Van Sprang et al. 2016). The choice of speciation model platform may be informed by a 609 

number of factors, particularly the availability of binding constants for the metal of interest. Derived 610 

BLM binding constants (i.e., log K values) are conditional on the choice of speciation model, and 611 

different BLM binding constants can be obtained from the same data set using different speciation 612 

models. This has implications for metal‐mixture BLMs—here, a single speciation model should be 613 

used for all metals to account for intermetal competition on DOM binding sites, and the provenance 614 

of any binding constants used should be carefully evaluated. We did not reach consensus whether 615 

any single speciation model for either DOM binding or inorganic speciation could be considered 616 

optimal. The choice of models may be informed by a number of factors, particularly the availability 617 

of binding constants for the metal of interest. 618 

Specification of DOM (DOC) in models 619 

All of the DOM‐binding models listed require concentrations of humic and/or fulvic acid to be 620 

specified. This requires the use of “activity factors”—the ratio of measured DOC concentration to 621 

the concentrations of humic and/or fulvic acid that reproduce the metal‐binding properties of that 622 

DOC. The activity factor is composed of 3 components, each of which may be assumed or estimated: 623 

the carbon content of DOM, the metal‐binding properties of that DOM, and the attribution of the 624 

binding properties of that DOM to humic and/or fulvic acid. Development of a BLM has usually used 625 

a global activity factor, sometimes derived from metal–DOM binding studies (Dwane and Tipping 626 

1998; Bryan et al. 2002). Early developments (e.g., Di Toro et al. 2001) assumed DOM to be 50% 627 

carbon, with 100% activity and comprising 10% humic and 90% fulvic acid. Because the activity 628 

factor is in reality water‐specific, some have researched whether the activity correlates to 629 

measurable DOM properties. De Schamphelaere et al. (2004) found that optimizing water‐specific 630 

BLM predictions of acute Cu toxicity to D. magna produced activities (as fulvic acid only) that 631 

correlated significantly with the specific absorbances of the DOM samples at 350 nm (SAC350). Al‐632 

Reasi et al. (2012) found significant correlations between acute Cu toxicity to D. magna and a 633 

number of optical and physicochemical properties of DOM, with SAC340 being the most significant 634 

predictor of protective ability. They suggested that the predictive capability of BLMs could be 635 

improved by the use of SAC340 to adjust the activity factor on a water‐by‐water basis. In general, 636 

larger, more lipophilic, more aromatic DOMs of terrigenous origin, with higher humic acid‐like 637 



content, and therefore higher SAC values, appear to be more protective against Cu toxicity. Despite 638 

these findings, however, many BLM studies still use a global activity factor in model development 639 

because this has the advantage of requiring only measurement of absolute DOC concentration for 640 

application. 641 

 642 

Evaluation of speciation models 643 

The ability of models to predict metal speciation, for the chemical conditions relevant to BLM 644 

development and application, needs to be fully evaluated. Because BLM parameterization employs 645 

predicted free metal ion activity, testing should ideally be done on measurements of the free 646 

activity. Speciation measurement is complex, and many methods remain under active development 647 

rather than in routine use. Relatively well‐established methods (e.g., ion‐selective electrodes [ISEs]) 648 

are challenging to apply at the dissolved metal and DOC concentrations encountered in natural 649 

waters because of issues such as membrane dissolution and fouling (Eriksen et al. 1999), although 650 

they can be highly useful in toxicity tests, particularly acute toxicity studies (e.g., Al‐Reasi et al. 2012; 651 

Crémazy et al. 2016). Some have used DOC preconcentration (Ahmed et al. 2013) or continuous‐flow 652 

(Tait et al. 2016) systems to enable measurement at the metal:DOM ratios encountered in natural 653 

waters. Competitive ligand exchange voltammetry (Xue and Sigg 1999; Cao et al. 2006) has also been 654 

used, though its validity has been criticized (van Leeuwen and Town 2005; Lofts and Tipping 2011). 655 

Nonetheless, continued research in this area is essential, alongside critical assessment of speciation 656 

models against such data. Of particular note is a pair of landmark studies comparing the reliability 657 

and performance of different trace metal speciation analytical methods and comparative model 658 

performance to modeling of metal speciation (Sigg et al. 2006; Unsworth et al. 2006). Examples of 659 

model predictions compared against recent measurements using ISEs (for Cu) and an ion‐exchange 660 

technique (for Co, Ni, Zn, and Cd) are shown in Supplemental Data, Figures S1 through S6. 661 

CONSIDERATIONS FOR THE INCORPORATION OF METAL BIOAVAILABILITY MODELS INTO 662 

ENVIRONMENTAL QUALITY STANDARDS 663 

Dealing with extreme waters 664 

The occurrence of extreme natural water conditions (e.g., unusual pH, hardness, DOC levels, or 665 

combinations thereof) is a common reality for almost all geographical regions. These situations have 666 

been recognized in working with BLMs (Van Genderen et al. 2005; Natale et al. 2007; Hoppe et al. 667 

2015a, 2015b) and pose a common challenge in terms of bioavailability model development and 668 

application for regulatory criteria. There are various reasons for this. First, the taxa typically used for 669 

model development (i.e., organisms commonly used in all laboratory testing) may not be tolerant of 670 

extreme water conditions. All of the water conditions that modify metal toxicity are themselves 671 

environmental characteristics that limit habitat suitability in ways that have nothing to do with metal 672 

toxicity. For example, DOM has been called an ecological driving force for aquatic ecosystems with 673 

well‐documented effects on the pH and primary productivity of natural waters (Steinberg et al. 674 

2006). Furthermore, there is evidence that DOC can bind to the gills (Campbell et al. 1997) and alter 675 

the basic physiology of ion transport in a way which can beneficially mitigate the damaging effects of 676 

metals and low pH (Galvez et al. 2008; Wood et al. 2011; Duarte et al. 2016). These actions of DOC 677 

are separate from their ability to reduce the bioavailability of metals by complexation. Some 678 

crustaceans and snails will not thrive in culture waters of very low hardness or pH (i.e., control 679 

performance will not be acceptable). Equally, they will not be present in natural waters of low 680 

hardness (Lodge et al. 1987; Hooper et al. 2008; Cairns and Yan 2009). Second, the available models 681 



are not generally validated for extreme water conditions, and thus, the predictions can be erroneous 682 

and/or generate uncertainty. And third, the extreme water types often have specific ecological 683 

assemblages with organisms of different physiological characteristics, which may or may not show 684 

similar sensitivities and/or metal–bioavailability relationships (e.g., different log K values or pH 685 

slopes) to organisms typically used for model development. 686 

The main target for model development should be the central distribution of data, such as the 5th to 687 

95th percentile of the distribution of water chemistry parameters, rather than undue focus on 688 

exceptions and extreme values. The following options can be considered in deciding the derivation 689 

of a new model or use of existing model for ecosystems with extreme water parameters. 690 

Extending the boundaries of existing models 691 

This includes recalibration of an existing bioavailability model with the testing of local waters and 692 

organisms to extend the physicochemical boundaries of the model. A series of papers has been 693 

published with methods describing how the validation boundaries of BLMs or hybrid models for Cu, 694 

Ni, Zn, and Pb can be extended to also accurately predict metal toxicity under more extreme pH and 695 

hardness (Van Genderen et al. 2005; Deleebeeck et al. 2007; Nys et al. 2016, 2017; Van Regenmortel 696 

et al. 2017). 697 

Developing new bioavailability models 698 

In general, bioavailability models should be developed and tested in media that resemble surface 699 

water conditions that are within the natural limit of the test organism. Testing organisms outside 700 

their usual physiological range of tolerance is inadvisable. Site‐specific models should be developed 701 

using toxicity testing that employs site waters and native organisms from the extreme sites. 702 

Metal mixtures 703 

Our discussions so far have treated metals as if they occur one by one in the environment. Likewise, 704 

regulatory criteria are developed as if individual metals occurred in isolation, with no interactive 705 

toxicities. Both are, of course, complete fiction. In the real world, metals always occur in mixtures 706 

that are a function of the mineral composition of the watershed. Anthropogenic inputs will 707 

invariably produce mixtures of metals, and some generalities about mixture occurrences in ambient 708 

waters can be made. The most predictable metal combination is probably Cd and Zn, which seem to 709 

naturally occur at close to a 1:200 mass ratio around the world (Mebane et al. 2017). Nickel and Co 710 

commonly occur in association with Cu, and Pb is commonly associated with Zn; but the ratios and 711 

particular combinations may be highly variable across geological domains (Salminen 2005). Empirical 712 

models are not well suited to such variable scenarios, whereas mechanistic bioavailability and 713 

toxicity models do provide a flexible approach to handle these combinations. 714 

It has long been recognized that the single‐metal framework for BLMs could logically be extended to 715 

metal mixtures (Di Toro et al. 2001; Playle 2004), and much recent progress has been made in this 716 

area (e.g., Farley et al. 2015; Meyer et al. 2015; Nys et al. 2018). These metal mixture modeling tools 717 

may be highly useful in risk‐assessment scenarios. However, because of the overwhelming diversity 718 

of possible combinations, we expect that regulatory criteria to protect aquatic environments will 719 

continue to be developed for individual substances for the foreseeable future. Toxic unit models 720 

assume that potency‐normalized concentrations of metals can be added together to predict the 721 

toxicity of a metal mixture; these provide a simple approach to estimate mixture toxicity risks from 722 

single‐metal toxicity models (concentration addition or toxic unit models). Alternatively, predicted 723 

toxic responses from single‐substance toxicity models can be added (response addition or, more 724 



appropriately stated, independent action models). The concentration addition approach tends to be 725 

more conservative than the response addition approach; that is, concentration addition may predict 726 

greater effects than observed (Van Regenmortel et al. 2017; Crémazy et al. 2018). Both approaches 727 

implicitly assume that chemicals in the mixture do not physically, chemically, or biologically interact 728 

and thereby overlook competition for metal binding sites on DOC and on the target biotic ligand, 729 

which could make metal mixtures more or less toxic than if there were no interactions. Recent 730 

studies at acutely toxic metal levels indicate that such binding interactions can occur at biotic ligands 731 

(Niyogi et al. 2015; Brix et al. 2016, 2017c). However, interactions between metals for biotic ligand 732 

or DOC binding sites are not predicted to be important at mixture concentrations at the low µg/L 733 

levels relevant to most chronic regulatory criteria (Balistrieri and Mebane 2014). We believe that 734 

mixture toxicity models are ultimately needed for the application of metal criteria, and as mentioned 735 

earlier, they should be developed using a common DOM speciation platform. However, the 736 

development of bioavailability‐based criteria on a single‐metal basis remains a reasonable approach. 737 

Concerns over how to apply criteria in the ubiquitous settings with metal mixtures present should 738 

not hold back the development and application of single‐metal bioavailability‐based criteria. 739 

Ownership and maintenance of bioavailability models 740 

Setting up the reaction equations for bioavailability models, writing code to execute them, 741 

developing software to provide a functional user interface and interpretive output display, 742 

documenting the construction and performance of the package, and preparing detailed 743 

documentation for users is no trivial undertaking. The expectations are particularly onerous when 744 

bioavailability models are used to set regulatory water criteria sufficient to protect diverse 745 

communities in diverse environments with legally enforceable limits that drive costs for engineering 746 

design, capital construction, operating, and monitoring. Furthermore, the use of models in public 747 

policy settings requires sustaining commitments by sponsors over the long term. 748 

It takes no ongoing effort to maintain regulatory criteria that are expressed as simple mathematical 749 

functions of toxicity‐modifying factors. For instance, some of the criteria values based on hardness 750 

equations published by the US Environmental Protection Agency (1986) are still in use 3 decades on. 751 

In contrast, for criteria calculated with the aid of custom software, that software needs ongoing 752 

maintenance to upgrade to new operating systems, to fix bugs, and to modify the model capabilities 753 

following advances in the underlying science. These maintenance needs pose a challenge to 754 

regulatory authorities. They must not just provide one‐time support for a model to be used in 755 

criteria and then move on; an ongoing commitment to maintain the model is needed. Further, the 756 

opportunistic use of model software that is not fully in the public domain to set environmental 757 

regulations raises intellectual property ownership questions. Institutions supporting chemical 758 

speciation models may sell licenses to partially offset their development and maintenance costs and 759 

allow the developers to keep advancing their models. Regulatory authorities may hesitate to rely on 760 

a software application that is not in the public domain and that cannot be guaranteed to be 761 

functional indefinitely, and they may be unwilling or unable to commit to ongoing support of model 762 

applications on behalf of their affected dischargers. Until these practical model support and public 763 

domain issues are addressed, the pragmatic path forward is to use bioavailability models as research 764 

tools to inform simpler, lower‐maintenance translational tools for regulatory adoption, such as MLRs 765 

and look‐up tables (see section Complexity versus simplicity: Use of mechanistic and hybrid models 766 

to inform development of simpler models). 767 

CONSENSUS RECOMMENDATIONS FOR DEVELOPING OR APPLYING METAL BIOAVAILABILITY MODELS 768 



Our workgroup reached consensus on the following points. It would be prudent for scientists and 769 

environmental managers to consider these when developing or applying metal bioavailability models 770 

for environmental quality standards or risk assessment. 771 

1) Empirical bioavailability tools such as MLRs and look‐up tables should always be informed 772 

qualitatively and quantitatively by mechanistic models. 773 

2) Going forward, equilibrium speciation should be considered in the design of experiments for 774 

bioavailability models. We recommend a 24‐h pre‐equilibration period in experimental designs to 775 

allay concerns of nonequilibrium test conditions. Care should be used to include speciation models 776 

that encompass precipitation reactions so as to ensure that the solubility limits are respected for the 777 

metal(s) of interest and that no loss of solubility occurs. 778 

3) The chemical speciation model used should be tested independently of its ability to predict 779 

toxicity. 780 

4) Data obtained from tests conducted with organisms outside the chemistry boundaries from 781 

where they live should not be used. The main target for model development should be the central 782 

distribution of data, such as the 5th to 95th percentile of the distribution of water chemistry 783 

parameters, rather than undue focus on exceptions and extreme values. 784 

5) Some potentially important toxicity‐modifying factors are currently not represented in 785 

bioavailability models and have received insufficient attention in toxicity testing. Temperature is 786 

probably of foremost importance; P is likely important in plant and algae models. 787 

6) Plant and animal bioavailability models should not be combined because of the divergent 788 

influences of pH. 789 

7) pH is a unique toxicity‐modifying factor, with multiple possible mechanisms. These effects are 790 

currently best captured by hybrid models, which can inform improved mechanistic understanding 791 

and foster better mechanistic models of pH effects. Failures of mechanistic models to explain 792 

experimental data can advance our understanding of actual mechanisms. 793 

8) To develop models for mixture toxicity, a common chemical speciation platform should be used. 794 

This is particularly important for DOM. 795 

9) To estimate bioavailability model parameters, univariate or full‐factorial designs are most useful 796 

because multivariate designs may miss responses for variables with limited effect. In univariate test 797 

designs, nonsimultaneous testing can introduce confounding variability. In real laboratories in the 798 

real world, this may be unavoidable, but repeating treatments between studies is important. 799 

10) For best practice during chronic tests, combined waterborne and dietary matched exposures 800 

should be performed. These should be based on natural live diets equilibrated with the associated 801 

waterborne metal concentration. However, the absence of such designs should not be a criterion for 802 

rejecting currently available chronic data. 803 

11) There is a need to develop mechanistically based bioavailability models for behavioral toxicity 804 

and to consider these for future regulatory application. Such models should be built from the ground 805 

up using behavioral endpoints, rather than by adjusting the sensitivity parameter in existing BLMs. 806 

 807 

12) 808 



If bioavailability models are to be used in environmental regulation, ongoing support and availability 809 

for use of the models in the public domain are essential. Until this can be guaranteed, simpler, 810 

lower‐maintenance translational tools based on bioavailability models, such as MLRs and look‐up 811 

tables, may be preferable. 812 
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Table 1. Summary of studies in which physiological mechanisms (e.g., gill enzyme inhibition or body ion loss) and/or the actual metal burden at the biotic 1335 

ligand (e.g., gill metal concentration) have been measured 1336 

Metal Organism Physiological endpoints Toxicity endpoints Sources 

Ag Daphnia magna 1‐h whole‐body accumulation, 
gill enzyme inhibition 

Mortality not measured (Bianchini and Wood 
2003) 

Ag Rainbow trout 2‐ to 3 h accumulations, gill 
enzyme inhibition 

Accumulation and 96‐h mortality data related 
across different studies 

(Janes and Playle 1995; 
McGeer et al. 2000) 

Ag Rainbow trout 3‐ and 24‐h gill accumulation Mortality at 96 h (Morgan and Wood 2004) 

Al Atlantic salmon 140‐h accumulation Mortality at 140 h (Santore et al. 2018) 

Cd Rainbow trout 3‐h gill accumulation Mortality at 96 h (Niyogi et al. 2008) 

Cd, Cu Fathead minnow 2‐ to 3‐h gill accumulations Mortality at 96 h (Playle et al. 1993a, 
1993b) 

Cd, Cu, Pb, Zn Rainbow trout 0.75‐ to 24‐h gill accumulation Accumulation and 96‐h mortality data related 
across different studies 

(Balistrieri and Mebane 
2014) 

Cd, Pb Rainbow trout 3‐ and 24‐h gill accumulation; 
Ca2+ and Na+ influx 

Mortality at 96 h (Birceanu et al. 2008) 

Cu Rainbow trout 24‐h gill accumulations Mortality at 120 h (MacRae et al. 1999) 

Cu Rainbow trout 24‐h gill accumulations Mortality at 96 h and 30 d (Ng et al. 2010) 

Cu Rainbow trout 24‐h gill accumulations from 
previous work 

Mortality at 96 h and 30 d (Crémazy et al. 2017) 

Ni, Cu Fathead minnow 2‐ to 3‐h gill accumulation Mortality at 96 h (Meyer et al. 1999) 

Pb Rainbow trout 3‐h gill accumulation Time to mortality of a single concentration in 
different waters 

(Macdonald et al. 2002) 

Pb Rainbow trout 0‐ to 96‐h Pb accumulation, 
enzyme inhibition, ion flux 
rates 

Mortality not measured (Rogers et al. 2005; 
Rogers and Wood 2004) 

Zn Rainbow trout 0.5‐ to 72‐h gill accumulations Mortality at 96 h (Alsop and Wood 2000) 

Zn Rainbow trout 0.75‐ and 3‐h gill 
accumulations 

Mortality at 96 h (Todd et al. 2009) 

 1337 

 1338 



Table 2. Selected examples of available freshwater bioavailability‐based modes of metal toxicity 1339 

Metal Model type or 
name 

Reference Organisms 
used in 
development 

Organisms 
presumed applicable 
to 

Necessary 
inputs 

Example 
applications 

Notes 

Al Acute and 
chronic BLM 

(Santore et al. 
2018) 

Various fish, 
invertebrates 
and green 
algae 

All freshwater 
aquatic life 

“BLM” Model supported 
a simplified MLR 
model which 
became federal 
water quality 
guidance for 
United States (US 
Environmental 
Protection 
Agency 2017) 

Toxicity is 
considered a 
function of both 
dissolved and 
precipitated Al, 
caused by either 
ionoregulatory or 
respiratory 
disturbance 
depending on pH 

Cd Acute BLM (Niyogi et al. 
2008) 

Rainbow 
trout 

 “BLM”  Classic BLM with 
binding coefficients 
derived from 
measured gill 
accumulation 

Cd Acute BLM (Clifford and 
McGeer 2010) 

Daphnia 
pulex 

 BLM  Binding coefficients 
calculated from 
toxicity values from 
a wide variety of 
water types 

Cu Acute BLM (Di Toro et al. 
2001; Santore 
et al. 2001; US 
Environmental 
Protection 
Agency 2007) 

Fish, Daphnia All freshwater 
animals 

“BLM” Acute model 
extrapolated to 
chronic criterion 
by ACR; adopted 
as federal water 
quality guidance 
in United States; 

Me‐BL log K values 
from fish gill 
accumulation tests, 
toxicity data used to 
adjust CA values for 
Daphnia and others 



some adoption 
by states 

Cu Generalized 
bioavailability 
model (gBAM) 

(De 
Schamphelaere 
et al. 2003; 
Van Sprang et 
al. 2008) 

Green algae All primary 
producers 

pH (“BLM” 
set needed 
for FIA 
calculation) 

ERA for REACH, 
EQS (Europe) 

pH only factor 
affecting algal 
growth when 
expressed as FIA; 
full “BLM” chemistry 
needed for FIA 

Cu Chronic BLM (De 
Schamphelaere 
and Janssen 
2004a) 

Daphnia 
magna 

All invertebrates “BLM” ERA for REACH, 
EQS (Europe) 

Only H and Na 
considered to 
compete with Cu; 
CuOH+ and CuCO3 
also bind to BL and 
significantly 
contribute to 
toxicity 

Cu Chronic gBAM (Van 
Regenmortel 
et al. 2015) 

Daphnia 
magna 

All invertebrates “BLM”  Toxicity of FIA 
predicted as a 
function of pH, Na, 
Ca, Mg 

Cu Chronic BLM (Crémazy et al. 
2017) 

Rainbow 
trout 

Fish “BLM”  Toxicity decreased 
(higher effect 
concentrations) with 
increasing pH, but 
pattern reversed at 
high pH (>8); even in 
long‐term 
exposures, Cu was 
an acute toxicant 

Ni Hybrid BLM (Deleebeeck et 
al. 2007) 

Rainbow 
trout, 
fathead 
minnow 

Fish “BLM”  Nonlinear pH 
response could not 
be modeled as a 
single‐site BLM; 



model predicted 
toxicity well, but the 
exact mechanisms 
by which Ca, Mg, 
and pH modify Ni 
toxicity were 
undetermined 

Ni Hybrid BLM (Deleebeeck et 
al. 2008) 

Daphnia 
magna 

All invertebrates “BLM”  Stronger effect of 
pH on chronic 
toxicity than acute; 
similar issues and 
resolution with 
nonlinear pH 
response as their 
fish model 

Ni Hybrid BLM (Deleebeeck et 
al. 2009) 

Green algae All primary 
producers 

“BLM”  Predictions from 
classic BLM limited 
to a narrow pH 
range; incorporating 
a nonlinear pH 
function expanded 
prediction ranges 

Ni Chronic BLMs (Schlekat et al. 
2010) 

Fish, 
daphnids, 
duckweed, 
snails, 
rotifers, 
insects, 
Chironomus 
dilutus 

All freshwater 
aquatic life 

“BLM” ERA for REACH, 
EQS (Europe) 

Tested existing 
BLMs; BLMs 
developed with 
cladocerans 
outperformed BLMs 
developed for more 
taxonomically 
similar taxa 

Pb Chronic BLM (Nys et al. 
2014) 

Ceriodaphnia 
dubia 

Freshwater 
invertebrates 

“BLM” ERA for REACH, 
EQS (Europe) 

pH had a strong 
influence on toxicity 
but not Ca; H+ (as 



log KBL‐H) was the 
only competitive 
constant needed 

Pb gBAM (Van Sprang et 
al. 2016) 

Algae and 
fish 

All aquatic 
organisms 

“BLM” ERA for REACH, 
EQS (Europe) 

Toxicity of FIA for 
algae is a function of 
pH and DOC only; 
for Ceriodaphnia, 
pH; and for fish, pH 
and Ca 

Pb Acute and 
chronic BLMs 

(DeForest et al. 
2017) 

Daphnids, 
mayflies, 
fathead 
minnow, 
rotifer, snails 

All aquatic animals “BLM”  Various animal 
toxicity data sets 
were fit by adjusting 
critical accumulation 
values with a single 
set of unidentate log 
K values; includes 
PbOH+ toxicity 

Zn Chronic BLM (Heijerick et al. 
2005) 

Daphnia 
magna 

Daphnia magna “BLM” RA for REACH, 
EQS (Europe) 

Toxicity of FIA 
increased (lower 
effect 
concentrations) with 
increasing pH 

Zn gBAM (De 
Schamphelaere 
et al. 2005a) 

Green algae All primary 
producers 

pH (“BLM” 
set needed 
for FIA 
calculation) 

RA for REACH, 
EQS (Europe) 

Toxicity of FIA and 
dissolved Zn 
increased (higher 
effect 
concentrations) with 
increasing pH; pH 
was the only factor 
affecting Zn 
suppression of algal 
growth when 
expressed as FIA; 



full “BLM” chemistry 
needed for FIA 

Zn Chronic BLM (De 
Schamphelaere 
et al. 2005a) 

Daphnia 
magna and 
rainbow 
trout 

All invertebrates and 
fish 

“BLM” ERA for REACH, 
EQS (Europe) 

Similar model 
structure and log K 
values between 
Daphnia and trout 

Zn Acute BLM (Clifford and 
McGeer 2009) 

Daphnia 
pulex 

 BLM  Binding coefficients 
calculated from 
toxicity values from 
a wide variety of 
water types 

Zn Acute and 
chronic BLMs 

(DeForest and 
Van Genderen 
2012) 

Various 
aquatic 
animals and 
rotifers, 
Brachionus 
calyciflorus 

All aquatic animals “BLM” ERA for REACH, 
EQS (Europe) 

Multiple BLM log K 
values from 
previous models 
were averaged to 
produce a “unified 
BLM which 
performed well 
predicting toxicity to 
a phylogenetically 
diverse group of 
species, including 
daphnids, rotifers, 
snails, and fish” 

Al, Cu, 
Pb, Zn 

“F‐Tox” humic 
acid model 

(Stockdale et 
al. 2010) 

Field surveys 
of stream 
aquatic 
insect 
communities 

Macroinvertebrate 
communities 

“BLM”  Humic acid used as 
proxy for 
bioaccumulation on 
insect biotic ligands; 
fitted potency 
factors were used to 
relate modeled 
accumulation of 



metals to species 
richness 

24 
metals 

“F‐Tox” humic 
acid model 

(Tipping and 
Lofts 2013, 
2014; Tipping 
et al. 2019) 

Fish, 
cladocerans, 
lettuce 

Various aquatic 
species 

“BLM”  F‐Tox humic acid 
model expanded to 
predict effects in 
classic single‐species 
toxicity tests; fitted 
potency factors 
were used to relate 
modeled 
accumulation of 
metals to various 
endpoints 

Al, Cd, 
Cu, Ni, 
Pb, Zn 

“Tox” 
(generalization 
of the F‐Tox 
humic acid 
model) 

(Balistrieri and 
Mebane 2014; 
Balistrieri et al. 
2015; Mebane 
et al. 2017) 

Trout in 
single‐
species 
toxicity tests; 
stream and 
lake aquatic 
invertebrate 
communities 

Natural aquatic 
communities 

“BLM”  Similar to F‐Tox but 
generalized to use 
various 
bioaccumulation 
models, including 
but not limited to 
humic acid 

Cd, Cu, 
Zn 

2‐pKa 
bidentate 
model with 
Tox addition 

(Farley and 
Meyer 2015; 
Mebane et al. 
2017) 

Trout, 
cladocerans, 
stream 
insect 
communities 

Freshwater animals “BLM”  “Streamlined” 
mixture models 
used bidentate, 
single‐site 
accumulation 
models with Tox 
addition to predict 
effects; bidendate 
structure increased 
flexibility for 
handling nonlinear 
pH responses 



Ag, Cd, 
Cu, Zn 

BLM and 
biodynamic 
hybrid model 

(Veltman et al. 
2010) 

Various 
freshwater 
fish 

Freshwater fish “BLM” 
chemistry; 
dietary and 
gill uptake, 
assimilation, 
and 
elimination 
rates; 
organism 
size 

 The covalent index, 
reflecting metal 
affinity for proteins, 
was used to 
estimate metal 
adsorption 
efficiencies 

Pb Surface 
complexation 

(Antunes and 
Kreager 2014) 

Duckweed 
(Lemna 
minor) 

Vascular plants “BLM”  Used the oxide 
surface 
complexation model 
within WHAM VII 

Cationic 
metals 

Plasma 
membrane 

(Kinraide 2006) Wheat 
(Triticum 
aestivum) 

Vascular and single‐
cell plants 

I “BLM set”  Most successful 
when calculated 
with free ion 
activities. Concept is 
broadly applicable 
to aquatic organisms 

“BLM set” of model inputs are temperature, pH, dissolved organic carbon, Ca, Mg, Na, K, Cl–, SO4, and alkalinity or dissolved inorganic carbon. 1340 

ACR = acute to chronic effects ratio; BLM = biotic ligand model; CA = critical accumulation values on the biotic ligand associated with a level of effect; 1341 

EQS = environmental quality standard; ERA = environmental risk assessment; FIA = free ion activity; log K = stability constant for cations to biotic ligands; 1342 

MLR = multiple linear regression; RA = response addition; REACH = Registration, Evaluation, Authorisation and Restriction of Chemicals; WHAM 1343 

VII = Windermere humic aqueous model VII. 1344 



Figures 1345 

Figure 1. An example of a biotic ligand model calibrated to measure rainbow trout gill Ag 1346 

accumulation data, over a variety of water chemistry conditions. In most cases, the patterns of 1347 

measured and calculated accumulations matched well (redrawn from Janes and Playle 1995). 1348 

Figure 2. The biotic ligand model (BLM) used to predict gill accumulation in Figure 1 also predicts 1349 

toxicity well. Median lethal concentrations of Ag experimentally obtained with Ceriodaphnia dubia 1350 

from laboratory (open symbols) or natural (closed symbols) water exposures compare well with 1351 

calculated BLM predictions. Solid diagonal is line of perfect agreement; dashed lines denote a factor 1352 

of ±2 deviations from the 1:1 line. (Bielmyer et al. 2007; Paquin and Di Toro 2008; Naddy et al. 1353 

2018). LC50 = median lethal concentration. 1354 

Figure 3. Effect of pH on dissolved zinc (upper left) and copper toxicity (upper right) to Daphnia 1355 

magna and Pseudokirchneriella. The figure for zinc shows the originally reported 72‐h median effect 1356 

concentration (EC50) for algae biomass (Heijerick et al. 2002) and the 21‐d reproductive EC50 1357 

(Heijerick et al. 2005). The figure for copper shows simulated toxicity data for the same endpoints, 1358 

using multiple linear regression models fitted to data from a multivariate test design, as reported for 1359 

algae (De Schamphelaere et al. 2003) and D. magna (De Schamphelaere and Janssen 2004b). The 2 1360 

upper panels show a clearly distinct effect trend of pH on dissolved metal toxicity and form clear 1361 

examples that strongly suggest that merging algae and animal bioavailability models into a single 1362 

model is not appropriate. The lower left panel shows that, when expressed on a free ion activity 1363 

basis (data also from Heijerick et al. 2002, 2005), the direction of the effect of pH on zinc toxicity is 1364 

the same for algae and Daphnia, but the magnitude of the effect is clearly stronger for algae than for 1365 

daphnids. The strong effect on free zinc ion toxicity for algae dominates over the speciation effect of 1366 

pH, overall resulting in increased toxicity at higher pH for algae. In contrast, at higher pH, the 1367 

speciation effect dominates for Daphnia, explaining the decreasing toxicity toward higher pH levels. 1368 

A similar reasoning applies to copper (not shown). Data in the lower left panel have been used to 1369 

construct and apply separate bioavailability models for algae and invertebrates in normalizing 1370 

toxicity data for criteria and predicted‐no‐effect concentration derivation in Europe. The lower right 1371 

panel shows possible regulatory implications of the different bioavailability relationships with pH 1372 

(data taken from Supplementary 5 in Van Sprang et al. [2009]). The sensitivity ratio of algae versus 1373 

invertebrates (geometric mean of normalized no‐observed‐effect concentration of all 1374 

invertebrates/algae) is simulated as a function of pH for 2250 water samples. This panel shows that, 1375 

although on average algae show similar sensitivity as invertebrates at low pH (~6.5), algae become 1376 

by far more sensitive with increasing pH, up to approximately 10‐fold and more at pH 8 and above. 1377 

Algae also become increasingly more sensitive than invertebrates at higher pH for copper and lead 1378 

(not shown). NOEC = no‐observed‐effect concentration. 1379 

Figure 4. Simulated relationships between toxicity of the free metal ion and pH, presented on a log‐1380 

scale versus pH (upper panel) or on a linear scale versus H+ ion activity, according to various 1381 

assumed mechanisms, that is, the classic biotic ligand model (BLM) with a unidentate binding site 1382 

(blue), a BLM with a bidentate binding site (orange), contribution of the hydroxide complex to 1383 

toxicity (gray), and assuming that humic acid is a good multiple‐site surrogate for the biotic ligand. 1384 

This figure shows that, even if the emerging relationships are not perfectly linear (except for the 1385 

classic BLM in the lower panel and the bidentate model in the upper panel), reasonably good linear 1386 

fits can be obtained. ECx = x% effect concentration; WHAM = Windermere humic aqueous model. 1387 

Figure 5. An example of nonunique solutions possible when deriving biotic ligand models by fitting 1388 

toxicity test data without regard to actual critical accumulations (LA50). The parameters for model A 1389 



are grounded in experimental findings. Model B fits the toxicity data just as well, even though the 1390 

large reciprocal changes to the log K and critical accumulation fractions make the latter 1391 

physiologically implausible (see online Supplemental Data SI‐2 in Farley et al. 2015). The solid 1392 

diagonal line is the line of 1:1 agreement; the dotted and dashed diagonal lines are a factor of ±2 1393 

deviations from the 1:1 line. BL = biotic ligand; LA50 = short‐term accumulation at the biotic ligand 1394 

that is predictive of 50% mortality at a later time; LC50 = median lethal concentration. 1395 

Figure 6. (A) Modeled 30‐d 20% lethal concentrations (LC20s) as a function of dissolved organic 1396 

carbon (DOC; at pH 7) for rainbow trout (more sensitive) and a 10 times less sensitive hypothetical 1397 

fish species, presented on linear and log scale, and (B) 30‐d LC20s as a function of DOC for rainbow 1398 

trout at pH 6 and 8, presented on linear and log scale. ECx = x% effect concentration. 1399 

Figure 7. Biotic ligand models (BLMs) assume equilibrium conditions, which may not be true with 1400 

metal–dissolved organic carbon (DOC) binding that can take up to 24 h to reach equilibrium in some 1401 

tests. The data shown here for Cu and DOC sampled in a stream during a rainstorm show that 1402 

concentrations can change rapidly and not necessarily in synchrony. Copper is expected to have 1403 

greater bioavailability and toxicity in nonequilibrium conditions than would be predicted by 1404 

equilibrium‐based BLMs. Data from Balistrieri et al. (2012). 1405 

Figure 8. Comparisons of biotic ligand model (BLM)–predicted and measured fathead minnow 1406 

median lethal concentrations (LC50s) in flow‐through and static test designs. (A) Repeated tests of 1407 

same‐age fish from the same broodstock in constant exposure water (unamended Lake Superior 1408 

reference water) varied by a factor of approximately ±2, which is the origin of the “factor‐of‐2” rule 1409 

of thumb for evaluating BLM performance. (B) Measured and BLM‐predicted LC50s from tests 1410 

amending Lake Superior water with added major ions or dissolved organic carbon. Both comparisons 1411 

show that Cu tended to be more toxic in flow‐through than static test designs, which is likely at least 1412 

partially related to nonequilibrium conditions in the flow‐through tests. Original data from Erickson 1413 

et al. (1996) plotted after Santore et al. (2001) but using the US Environmental Protection Agency's 1414 

(2007) updated fathead minnow species mean critical accumulation value of 2.97 nmol/g wet 1415 

weight. The solid diagonal line is the line of 1:1 agreement; the dotted and dashed diagonal lines are 1416 

a factor of ±2 deviations from the 1:1 line. 1417 

Figure 9. Kinetic patterns of free Cu concentrations over the course of a toxicity test in the presence 1418 

of 5 mg/L dissolved organic carbon in 4 different hypothetical experimental conditions. In each 1419 

simulation, the dissolved Cu concentration is 10 µg/L. In each panel, the free Cu concentration at 1420 

equilibrium is shown as a horizontal dashed blue line, and the simulated free Cu in the experiment as 1421 

a function of time is shown as a red line. For a static exposure with no pre‐equilibration (A), the free 1422 

Cu (Cu2+) at the start of the test is elevated but decreases over time until it is near equilibrium at 1423 

approximately 30 h. For a static exposure with a 24‐h pre‐equilibration period (B), the free Cu is 1424 

close to equilibrium for the entire test duration. For a static test with daily renewals (C), the free Cu 1425 

is elevated at the beginning of each renewal and then decreases but never reaches equilibrium. In a 1426 

flow‐through test (D) with a 1‐h residence time, the free Cu is constant but far from equilibrium. 1427 

Figure 10. Laboratory toxicity testing of metals with increased dissolved organic matter (DOM) 1428 

should consider metal–DOM equilibrium time. Silver was more toxic to Daphnia magna (lower 24‐h 1429 

LC50s) in tests initiated after 3‐h metal–DOM contact time than in tests initiated after 24‐h contact 1430 

time (Glover et al. 2005). DOC = dissolved organic carbon; LC50 = median lethal concentration. 1431 
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