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Abstract
Aim: Hotspots of human activity are focal points for ecosystem disturbance and non-
native introduction, from which invading populations disperse and spread. As such, 
connectivity to locations used by humans may influence the likelihood of invasion. 
Moreover, connectivity in freshwater ecosystems may follow the hydrological net-
work. Here we tested whether multiple forms of connectivity to human recreational 
activities promotes biological invasion of freshwater ecosystems.
Location: England, UK.
Time period: 1990–2018.
Major taxa studied: One hundred and twenty-six non-native freshwater birds, crus-
taceans, fish, molluscs and plants.
Methods: Machine learning was used to predict spatial gradients in human recrea-
tion and two high risk activities for invasion (fishing and water sports). Connectivity 
indices were developed for each activity, in which human influence decayed from 
activity hotspots according to Euclidean distance (spatial connectivity) or hydro-
logical network distance (downstream, upstream and along-channel connectivity). 
Generalized linear mixed models identified the connectivity type most associated 
to invasive species richness of each group, while controlling for other anthropogenic 
and environmental drivers.
Results: Connectivity to humans generally had stronger positive effects on invasion 
than all other drivers except recording effort. Recreation had stronger influence than 
urban land cover, and for most groups high risk activities had stronger effects than 
general recreation. Downstream human connectivity was most important for inva-
sion by most of the groups, potentially reflecting predominantly hydrological dis-
persal. An exception was birds, for which spatial connectivity was most important, 
possibly because of overland dispersal capacity.
Main conclusions: These findings support the hypothesis that freshwater invasion is 
partly determined by an interaction between human activity and species dispersal in 
the hydrological network. By comparing alternative connectivity types for different 
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1  | INTRODUC TION

Human transportation of species beyond their native ranges is an 
important driver of global ecological change, leading to biological in-
vasions that impact biodiversity and ecosystem function (Vilà et al., 
2011). As such, substantial effort has been dedicated to understand-
ing the risk factors explaining invasion and using these relationships 
to prioritize surveillance and management (McGeoch et al., 2016). 
Previous studies have linked variation in invasion at biogeographic 
scales to interactions between environmental, biotic and anthro-
pogenic drivers (Catford, Jansson, & Nilsson, 2009; Chapman et al., 
2016; Essl et al., 2011; Gallardo, Zieritz, & Aldridge, 2015; Pyšek 
et al., 2010; Theoharides & Dukes, 2007). Among these, human 
activities clearly play a major role. Firstly, humans are responsible 
for the propagule pressure by which species are introduced into 
new non-native regions and dispersed regionally from established 
non-native populations (Bullock et al., 2018; Chapman, Purse, Roy, 
& Bullock, 2017; Lockwood, Cassey, & Blackburn, 2005). Secondly, 
humans cause the ecosystem disturbance and resource inputs that 
are thought to lessen biotic resistance of recipient communities to 
establishment of non-native species (Davis, Grime, & Thompson, 
2001). As such, quantifying the link between human activity and in-
vasion is an important challenge for invasion biology.

Previous studies linking invasion rates to human activities have 
generally used proxies of human activity in a location to explain its 
level of invasion. For example, human population density was cor-
related to non-native fish occurrence in England (Copp, Vilizzi, & 
Gozlan, 2010), a human influence index combining information on 
local land cover, population density and transport infrastructure 
explained non-native freshwater species occurrence in north-west 
Europe (Gallardo et al., 2015) and non-native plant cover in river 
catchments was correlated to catchment-scale human indicators 
such as numbers of roads and buildings (Catford, Vesk, White, & 
Wintle, 2011). While local proxies for human activity have clearly 
proven to be useful predictors of invasion, here we argue for a more 
nuanced assessment of the relationship between humans and inva-
sion rates. In particular, we identify three ways to improve such ef-
forts. Firstly, specific activities with a high risk of non-native species 
transport or ecosystem disturbance should be better predictors of 
invasion than general human activity patterns. Secondly, aggregate 
levels of human activity in the surrounding landscape may be a bet-
ter predictor of invasion than local human activity. This is because 

invading populations and the disturbance impact of human activi-
ties may disperse from hotspots of human activity. Thirdly, dispersal 
processes may mediate the way in which human influence on inva-
sion rates percolates from locations of high activity. However, to our 
knowledge no previous studies have investigated whether consid-
eration of the mechanistic interactions between these three effects 
provides a better explanation of observed invasion than simple prox-
ies for overall human activity.

Concepts of spatial connectivity, developed in metapopulation 
ecology, provide a useful framework for inferring signals of spatially 
mediated processes in biodiversity data (Moilanen & Nieminen, 
2012). Adopting a connectivity framework involves the calculation 
of quantitative site-based indices for the proximity of a location to 
multiple sources of connectivity distributed across a landscape. In 
its original metapopulation formulation, the sources of connectiv-
ity were populations of the focal species, and connectivity to these 
sources declined with increasing distance, according to the species’ 
dispersal potential (Ovaskainen & Hanski, 2004). However, these 
connectivity indices can easily be generalized to accommodate al-
ternative measures of the source of connectivity, such as the level of 
human activity, and alternative measures for the distance-decay in 
connectivity, such as those informed by hydrological or other move-
ment networks (Altermatt, 2013; Heino et al., 2014). The strength 
of the correlation between variously defined connectivity indices 
and the biological observation of interest can then be compared in 
order to infer the underlying process that is most consistent with the 
observations. For example, use of alternative connectivity indices 
has previously identified barriers to dispersal and colonization within 
river networks (Chapman, Oxford, & Dytham, 2009) and identified 
international trade networks driving national-scale patterns of inva-
sion (Chapman et al., 2017).

In this study, we tested whether connectivity to different types 
of human activity explains the invasion of freshwater ecosystems. 
Freshwater ecosystems are disproportionately impacted by bio-
logical invasion, having high propagule pressure from intentional 
and accidental introduction pathways, major habitat alteration 
and large impacts of invasion (Ricciardi & MacIsaac, 2011). Indeed, 
there are many examples of ecosystem transformation caused by 
predatory or competitively dominant non-native species (Strayer, 
Caraco, Cole, Findlay, & Pace, 1999). Here, we analysed the rela-
tionships between human activity and invasion rates by non-na-
tive birds, crustaceans, fish, molluscs and plants across England. 

human activities, our approach could enable robust inference of specific pathways 
and spread mechanisms associated with particular taxa. This would provide evidence 
to support better prioritization of surveillance and management for invasive non-na-
tive species.

K E Y W O R D S

anthropogenic, biological invasion, connectivity, dispersal, fishing, human influence, 
recreation, river catchment, species richness, water sports



     |  647CHAPMAN et Al.

To develop national-scale spatial gradients in connectivity to hu-
mans, we first used machine learning to generalize from known 
locations where recreation occurs and predict spatially compre-
hensive gradients in the relative likelihoods of three types of rele-
vant human activity (all recreation, fishing and water sports). Next, 
we developed a suite of indices for connectivity to these human 
activities that varied in terms of the measure of human activity 
used, the manner in which human influence percolated through 
the surrounding landscape and the rate at which human influence 
decayed with increasing distance. Using these human connectivity 
indices, we tested which ones best explained the species richness 
of each group of freshwater non-native species. The results were 
interpreted in terms of the predominant introduction pathway and 
dispersal mode of each group of species.

2  | MATERIAL S AND METHODS

The analysis was designed to test the link between human activities 
and the spread of non-native species in freshwater environments in 
England. To achieve this we characterized national gradients of rec-
reational activity in freshwater environments, derived multiple in-
dices for connectivity to human activity hotspots and tested which 
human connectivity indices best explained the richness patterns of 
non-native freshwater species (see Figure 1).

2.1 | Machine learning to predict human activity

To predict spatial gradients of human activity in freshwater environ-
ments, machine learning was used to model the locations of known 

recreational visits to freshwater ecosystems in England. Data on 
the locations of human recreational visits were obtained from the 
Monitor of Engagement with Natural Environment (MENE) survey 
(Natural England, 2017). MENE is an ongoing random stratified sur-
vey of the population of England, in which people are asked about oc-
casions when they spent time outdoors. From the 2009–2016 MENE 
database, information on 11,567 visits to rivers, lakes or canals were 
extracted, all of which contained information on the distance trav-
elled and most (9,952) had georeferenced destinations. MENE also 
includes information on visit activity. Therefore, as well as model-
ling all recreation, we also modelled subsets of the data representing 
fishing (608 visits) and water sports (228 visits), known to be two 
high risk activities for introducing and spreading non-native species 
(Anderson, White, Stebbing, Stentiford, & Dunn, 2014; Peoples & 
Midway, 2018).

MENE visit locations were modelled using the h2o R package 
for scalable open source machine learning (Landry, 2018) with 
R version 3.5.3 (R Core Team, 2019). Specifically, supervised bi-
nary classifiers were used to predict the relative probability of an 
English 1 km × 1 km grid cell (Ordnance Survey British National 
Grid) being visited in the MENE database. Since the MENE visits 
are an unbiased sample of all visits in England, the model-fitted 
values provide a relative measure of the likelihood of human ac-
tivity. To perform the classification, a suite of potentially relevant 
features with which to model visit locations was assembled on the 
same spatial grid (Table 1). These features broadly represented ac-
cessibility, infrastructure and freshwater conditions. Continuous 
features were logged if strongly right skewed and all were centred 
on zero and scaled to unit variance prior to the classification.

Using h2o, five machine learning algorithms were trained to 
classify visited and unvisited grid cells in the MENE database. The 

F I G U R E  1   Schematic overview of the analysis to test whether human activities explain the diversity of non-native freshwater species 
in England. First, machine learning was used to model gradients in general recreation, fishing and water sports. Urban land cover was also 
included as a direct indicator of human presence. Next, indices of connectivity to human activity hotspots were derived. These indices 
scaled the distance decay in connectivity by the spatial (Euclidean) distance or by downstream, upstream or along-channel hydrological 
flow distance. Finally, generalized linear mixed models were used to optimize the distance decay in each connectivity index and compare 
the associations between the optimized connectivity indices and the richness of non-native freshwater taxa [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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algorithms used were: generalized linear model (GLM); generalized 
boosting model (GBM) with tuning of the number of trees, maximum 
tree depth and learning rate; distributed random forest (DRF) with 
tuning of the number of trees, maximum tree depth and number of 
variables used per split; deep learning (DL) neural network with tun-
ing of the number and size of hidden layers and the input dropout 
ratio; and super learning (SL) through creation of a stacked ensemble 
that combines the former algorithms using a GLM constrained to fit 
positive coefficients (Landry, 2018).

In all cases, balance sampling was used to equalize the overall 
influence of the small number of MENE visits with that of the large 
number of grid cells without recorded visits (Landry, 2018). As such, 
the models predicted relative rather than absolute likelihoods of 
human activity. To avoid overfitting, we excluded predictor features 
performing no better than chance by first fitting the algorithms with 
an additional predictor containing normally distributed random num-
bers. Then, the algorithms were re-fitted using only those predictor 
features performing better than the random numbers, according to 
h2o's variable importance measure.

The best performing of the five algorithms was selected by rank-
ing predictive discrimination performance. This was assessed through 

fivefold latitudinal block cross-validation using predictive area under the 
receiver operating characteristic curve (AUC) as the performance mea-
sure. In other words, England was divided into five equal area regions by 
latitude and predictions were made and evaluated for each region using 
models trained on the other four regions. From the best performing 
trained algorithms, gridded relative likelihoods of recreational visitation, 
fishing and water sports were then produced for the whole of Great 
Britain, providing maps of relative human activity gradients.

2.2 | Human connectivity indices

We derived a range of indices for the connectivity of grid cells to 
human activity in the surrounding landscape. These were all derived 
from the same general connectivity model based on the summation of 
proximity-weighted contributions from all possible sources of human 
influence (Chapman et al., 2009, 2017; Moilanen & Nieminen, 2012). 
In this model, the connectivity to human activity Si of grid cell i is:

(1)Si=
∑

j∈Ni

hje
Dij ln 0.5

D
50 ∕aij

TA B L E  1   Variables used for machine learning of spatial gradients in human recreation, fishing and water sports in freshwater ecosystems 
in England. All features were assembled on a 1 km × 1 km grid

Feature Source and details

Human population 
density (per km2)

Population density disaggregated with Corine land cover 2,000 (Gallego, 2010)

Human population in 
potential range of 
the grid cell

Focal smoothing of the human population grid using log-normal distributions fitted to the distribution of travel  
distances for each activity type in the Monitor of Engagement with Natural Environment (MENE) data

Urban and suburban 
cover in the grid cell 
(km2)

UK land cover map (LCM2007) (Morton et al., 2011)

Distance to nearest 
car park (km)

Calculated from 128,430 car parks in OpenStreetMap (https ://www.opens treet map.org)

Distance to nearest 
boat access point 
(km)

Calculated from the locations of sailing, yachting and canoeing clubs listed in five online directories (Royal Yachting 
Association, Yachts and Yachting magazine, British Canoeing, findasailingclub.com and Noble Marine) and from  
marinas and slipways in OpenStreetMap

Distance to nearest 
navigation infra-
structure (km)

Calculated from the locations of lock gates in OpenStreetMap and locks in Scottish Environment Protection Agency and 
Environment Agency databases of obstacles to fish passage

Distance to nearest 
navigation barrier 
(km)

Calculated from the locations of weirs and dams in OpenStreetMap and weirs, dams and sluices in Scottish Environment 
Protection Agency and Environment Agency databases of obstacles to fish passage

Distance to nearest 
inland fishery (km)

Calculated from the locations of inland fisheries listed in three online directories (www.where tofish.co.uk, www.fisha 
round.net and www.getfi shing.org.uk)

Lake area (km2) From UK Lakes portal (https ://eip.ceh.ac.uk/apps/lakes )

Lake perimeter (km) From UK Lakes portal (https ://eip.ceh.ac.uk/apps/lakes )

River length (km) From Centre for Ecology & Hydrology (CEH) digital river network of Great Britain

Protected area Grid cell under any level of protection in the World Database on Protected Areas (UNEP-WCMC & IUCN, 2018)

Elevation (m) Mean elevation from the shuttle radar topography mission digital elevation model (Jarvis et al., 2008)

Easting (m) To represent unexplained spatial gradients

Northing (m) To represent unexplained spatial gradients

https://www.openstreetmap.org
http://www.wheretofish.co.uk
http://www.fisharound.net
http://www.fisharound.net
http://www.getfishing.org.uk
https://eip.ceh.ac.uk/apps/lakes
https://eip.ceh.ac.uk/apps/lakes
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Ni represents the grid cells in the connectivity neighbourhood of 
the focal cell i, while j indexes over all cells belonging to this neigh-
bourhood. For this application, the focal cell i was included within Ni 
so that the connectivity measure captured both the local and neigh-
bouring human influence. The term hj is the human activity level in 
grid cell j, while Dij represents the distance between the two grid 
cells. An exponential decay in connectivity with increasing distance is 
scaled by the parameter D50, the distance at which connectivity falls 
to 50% of the value at zero distance (i.e., at the focal cell). Finally, aij 
normalizes connectivity for the dimensionality of the system in which 
spread occurs, for example aij=2�D2

ij
 for spread in two dimensions or 

aij = 1 for spread constrained within a one-dimensional system.
As indicated in Figure 1, a suite of connectivity measures can 

be produced by combining different variables for human activity 
(h), distance (D) and connectivity neighbourhood (N) and by vary-
ing the distance weight parameter (D50). In this study, four differ-
ent options for h were used, namely the modelled relative likelihood 
of recreation, fishing and water sports, as well as the proportion of 
urban and suburban land (henceforth “urban cover”), derived from 
the 2007 UK land cover map (Morton et al., 2011). Urban cover was 
included to test whether modelled human activity had greater pre-
dictive value for invasion than a simpler, directly observed proxy.

Five combinations of distances (D) and connectivity neighbour-
hoods (N) were considered, resulting in five alternative metrics for 
connectivity to human activity h that represent a range of possibil-
ities for dispersal and spread in hydrological networks (Altermatt, 
2013; see Supporting Information Appendix S3 for example maps). 
Firstly, as an index of local connectivity to humans we simply used the 
values of h in the focal grid cell. This is a special case of Equation 1 in 
which Ni = {i}, Dii = 0 and so Si = hi. Secondly, to develop a simple spa-
tial connectivity index, D was set to the Euclidean distance between 
grid cells and N included all grid cells in Great Britain and connectiv-
ity was normalized in two dimensions. This may be an appropriate 
connectivity measure for species dispersing over land. Thirdly, we 
included one-dimensional connectivity measures informed by the 
topology of the hydrological network that may be more appropriate 
for species predominantly dispersing within or along river channels. 
To model downstream connectivity, Ni included all cells upstream of 
the focal cell in the same hydrological catchment and D was set to 
the downstream hydrological flow path distance (Domisch, Amatulli, 
& Jetz, 2015). To model upstream connectivity, Ni included all cells 
downstream of the focal cell in the same hydrological catchment and 
D was set to the upstream flow path distance. Finally, an along-chan-
nel connectivity index was produced by setting Ni to the entire hy-
drological catchment and using either the direct up- or downstream 
flow paths for D. Note that this simple measure does not capture 
connectivity caused by downstream movement to a confluence and 
then upstream movement in another tributary channel.

In all cases, hydrological catchments and flow paths were cal-
culated from the HydroSHEDS flow grid (Lehner, Verdin, & Jarvis, 
2008) using the R packages gdistance v. 1.2.-2 (van Etten, 2017) and 
raster v. 2.6–7 (Hijmans, 2019). To tune the distance weighting pa-
rameter (D50), the spatial and hydrologically informed connectivity 

indices were calculated using a range of D50 values from 1–25 km 
(specifically we used D50 = 1, 2, 3, …, 10, 15, 20 and 25 km). R code 
for calculating the connectivity indices is available in Supporting 
Information Appendix S1.

2.3 | Effect of human connectivity on invasion

Generalized linear mixed models (GLMMs) with Poisson errors were 
used to test the effect of human connectivity on the non-native 
richness of freshwater species in five taxonomic groups—birds, crus-
taceans, fish, molluscs and plants. Other taxonomic groups were 
considered for analysis but yielded too few non-native species or 
occurrence records. The goal of the analysis was to identify the 
human connectivity index most strongly correlated to invasion by 
each taxonomic group.

For each group, a list of non-native species classified as occur-
ring in UK freshwater habitats was compiled from multiple sources 
(Gunn et al., 2018; Hill, 2005; Katsanevakis et al., 2015; McInerny et 
al., 2018; Roy et al., 2014; Zieritz, Armas, & Aldridge, 2014). This list 
was filtered to remove predominantly terrestrial or marine species 
and some potentially native species (e.g., those with unclear status or 
that are native to parts of the UK). For all groups, other than birds, re-
cent georeferenced occurrence records were obtained from the UK’s 
National Biodiversity Network (NBN) Atlas (http://www.nbnat las.
org), with minimum coordinate precision of 1 km and year no earlier 
than 1990. For birds, equivalent occurrence data were obtained from 
the British Trust for Ornithology's BirdTrack database (https ://app.
bto.org/birdt rack2 ), which we considered to be of higher quality than 
NBN for this group. From the occurrence records, we calculated the 
observed non-native richness of each taxonomic group in each 1 km 
× 1 km grid cell in England. As a proxy for spatial gradients in record-
ing effort, we also obtained gridded densities of NBN or BirdTrack 
records for each taxonomic group (all native and non-native species).

To test the effect of human connectivity on non-native rich-
ness, GLMMs were fitted using the lme4 v. 1.1–21 R package 
(Bates, Mächler, Bolker, & Walker, 2015). In addition to the fixed 
effect of human connectivity, the models included a random effect 
of hydrological catchment identity and the following fixed effects, 
mainly derived as in Table 1. Record density of the focal taxonomic 
group was included to capture effects of recording effort. River 
length, lake presence and flow accumulation calculated using the 
HydroSHEDS flow grid (Lehner et al., 2008) were included as mea-
sures of freshwater habitat amount. Proportion cover of agricul-
tural land and improved grassland and presence of protected areas 
were included as measures of human disturbance. Elevation and 
annual mean temperature for 1980–2010 derived from HadUK-
Grid data (Hollis, McCarthy, Kendon, Legg, & Simpson, 2019) were 
included as primary environmental controls on freshwater habitats. 
We expected these fixed effects may have a strong influence on 
observed invasion in addition to any effects of human connectiv-
ity, so included them in the analysis as “nuisance variables”. Prior to 
the analysis, all fixed effect covariates were Box–Cox transformed 

http://www.nbnatlas.org
http://www.nbnatlas.org
https://app.bto.org/birdtrack2
https://app.bto.org/birdtrack2
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to normality and then centred and scaled to zero mean and unit 
variance to reduce heteroscedasticity and aid GLMM convergence.

The GLMMs were fitted on the subset of 1 km × 1 km grid cells 
satisfying the following criteria for analysis of each group. Firstly, we 
restricted the models to England, from where the MENE data came. 
Next, we selected grid cells on the hydrological network (river length 
or lake area greater than zero). Then, we selected cells with at least 
one record from the entire taxonomic group to exclude entirely un-
suitable or un-surveyed grid cells. Next we excluded all hydrological 
catchments not known to have been invaded by any member of the 
focal taxonomic group to prevent problems with random effect con-
vergence. Finally, we excluded very small catchments (<10 km2) and 
catchments with <5 remaining valid grid cells, in order to satisfy min-
imum requirements for replication of random effect levels (Bolker et 
al., 2009). The species remaining in the analysis and numbers of valid 
grid cells for each are given in Supporting Information Appendix S4.

With the remaining data, a total of 1,060 GLMMs were fitted 
for every combination of taxonomic group, human activity mea-
sure (proportion urban land cover or modelled recreation, fishing 
and water sports) and connectivity type (local, spatial, downstream, 
upstream and along-channel) with distance decay parameters vary-
ing between 1 and 25 km. For each connectivity specification, the 
optimal distance decay parameter was selected based on minimal 

GLMM Akaike information criterion (AIC; Burnham, Anderson, & 
Huyvaert, 2011). Then, the optimized connectivity models for each 
taxonomic group were compared based on their AIC to identify the 
connectivity type best explaining invasion.

3  | RESULTS

3.1 | Machine learning to predict human activity

The best performing machine learning algorithm for predicting rec-
reational visitation in the MENE database was GBM, with 1,000 
trees, a learning rate of 0.01 and a maximum tree depth of three 
splits. For modelling fishing, the best algorithm was a DRF with 100 
trees, five randomly selected variables per tree split and a maximum 
tree depth of five. DRF was also the best algorithm for modelling 
water sports, with 500 trees, one variable per split and a maximum 
tree depth of 10. Block cross-validated AUC values of the best mod-
els were 0.853 for recreational visitation, 0.837 for fishing and 0.907 
for water sports, indicating a high accuracy for predicting human 
usage in new regions of England.

The importance of predictor features in the machine learning 
models varied between activity types (Figure 2). For predicting 

F I G U R E  2   (a) Variable importance in the machine learning models for general recreation, fishing and water sports activity in freshwater 
environments in England. Importance values are scaled relative to the most important feature. See Table 1 for a full explanation of the 
features. (b–d) Model predicted gradients in relative activity produced from the machine learning models, shaded linearly on the logit scale. 
See Supporting Information Appendix S2 for larger maps [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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recreational visitation, distance from car parks and local population 
density were most important, and strong effects of inland fisheries, 
boating infrastructure and river length were also detected. For pre-
dicting fishing, distance to inland fisheries was the strongest feature, 
while the model for water sports was most influenced by distance to 
boating infrastructure, car parks, population density and elevation.

3.2 | Effect of human connectivity on invasion

For all the taxonomic groups analysed, the GLMMs detected highly 
significant positive associations between non-native species richness 
and human activity, after accounting for recording effort and other 
environmental and anthropogenic drivers of invasion (Table 2, see 
also Supporting Information Appendix S5). For all groups other than 
fish, non-local human connectivity measures clearly explained inva-
sion better than local human activity, although in general the best 
fitting connectivity indices had rapid optimal distance decay (small 
value of the D50 parameter; Table 2 and Figure 3). The different non-
native taxonomic groups varied in the measure of human connectiv-
ity that best explained their invasion (Table 2 and Figure 3). Water 
sports was the human activity most closely associated with invasion 
by birds, fishing was most strongly correlated to non-native richness 
of fish and molluscs, while non-native crustacean and plant richness 
was associated most strongly with all recreation (Table 2). In gen-
eral, the best performing connectivity indices were computed using 
distance measures informed by downstream flow within the hydro-
logical network, rather than spatial (Euclidean), upstream or along-
channel distances (Figure 3). The one exception to this was for birds, 
for which spatial connectivity gave the best fitting model (Table 2).

In the best fitting GLMMs, connectivity to humans had a stron-
ger effect on invasion than all other environmental or anthropogenic 
predictors considered, with the exception of recording effort and 
also lake presence for non-native birds (Figure 4a and Supporting 
Information Appendix S5). It was clearly evident that heavily invaded 

grid cells tended to have higher connectivity values across all taxon 
groups (Figure 4b and Supporting Information Appendix S6), despite 
influences of additional predictors that were controlled for in the 
GLMMs, but not in Figure 4b. Regarding these additional predictors, 
recording effort always had a strong positive effect on observed 
non-native richness, river length and disturbed land use types (ara-
ble and improved) generally had positive effects on invasion, while 
elevation and protected areas generally had negative effects. Effects 
of lake presence and flow accumulation were less consistent across 
groups, while temperature surprisingly had no significant effect on 
any group (Figure 4a and Supporting Information Appendix S5).

4  | DISCUSSION

Our findings support the hypothesis that measures of human ac-
tivity in the surrounding landscape, quantified using connectivity 
indices informed by hydrological network topology, provide a bet-
ter explanation of the invasion of freshwater ecosystems than local 
human activity. This was the case for all taxonomic groups analysed 
other than fish, for which non-native richness was better explained 
by local fishing activity than any connectivity metric. This may be 
explained by comparatively low recorded invasion rates among this 
group (see Table 2 and Supporting Information Appendix S4), an-
glers favouring areas with suitable habitat for non-native fish or, 
potentially, fish containing disproportionately more casual species 
whose presence relies on repeated stocking by anglers.

Previous studies testing correlations between invasion of fresh-
water habitats and human activities have generally used proxies for 
local human activity (Catford et al., 2011; Copp et al., 2010; Gallardo 
et al., 2015; Johnson, Olden, & Vander Zanden, 2008). Therefore, our 
findings suggest that previous analyses could have under-estimated 
the role of humans in promoting invasion, relative to other environ-
mental risk factors. However, it is worth noting that this study used 
a relatively high spatial resolution (1 km × 1 km) and that the optimal 

TA B L E  2   Summary of the analysis to identify human connectivity measures with the strongest correlations to species richness of five 
groups of non-native freshwater taxa. First, the number of species and grid cells in the analyses and their observed invasion rates are given. 
Then the effect of human connectivity in the best-fitting generalized linear mixed models (GLMMs) is reported (see Figure 3). Akaike weights 
(wAIC; Burnham et al., 2011) compare each connectivity specification with optimized distance decay (D50) and all models with reasonable 
support (wAIC > .05) are reported. The effect of the human connectivity measure is given as its z value (fixed effect coefficient divided by 
standard error), indicating the significance and direction of the effect. All z values are highly significant positive effects (p < .001)

Taxon group Non-native species

1 km × 1 
km grid 
cells % invaded

Best GLMMs for non-native species richness

Human activity Connectivity type D50 (km) wAIC

Human 
effect (z)

Birds 54 55,724 15.5 Water sports Spatial 2 0.630 10.73

    Water sports Downstream 25 0.352 10.62

Crustaceans 17 14,233 42.3 Recreation Downstream 3 1 13.28

Fish 13 14,832 8.9 Fishing Local 0 0.752 8.17

    Fishing Spatial 1 0.247 8.00

Molluscs 10 20,850 52.6 Fishing Downstream 2 1 10.70

Plants 32 40,408 21.5 Recreation Downstream 7 1 37.33
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F I G U R E  3   Optimization of indices for connectivity to human activity hotspots that predict non-native species richness of five freshwater 
taxon groups. The connectivity indices combine different measures of human activity, the form of connectivity to that activity and the 
distance weight parameter (D50). Model fits are compared by the difference in Akaike information criteria (ΔAIC) for generalized linear mixed 
models (GLMMs) fitted to non-native species richness using each connectivity index. ΔAIC = 0 indicates the connectivity index giving the 
best explanation of invasion (Burnham et al., 2011). Grey text labels point to the optimal connectivity index for each group [Colour figure can 
be viewed at wileyonlinelibrary.com]

F I G U R E  4   (a) Standardized effects of anthropogenic and environmental drivers of non-native freshwater species richness in 1 km × 
1 km grid cells in England, from the optimal generalized linear mixed models (GLMMs) (Figure 3). Shading shows the GLMM coefficients for 
scaled predictors (for visualization, values > 0.5 are shaded as 0.5). Connectivity to humans and recording effort generally have the strongest 
effect sizes. All effects have p < .05 unless labelled as not significant (n.s.). (b) Boxplots showing the raw relationships between non-native 
richness and the connectivity measures, after transformation to normality. Boxes are shaded according to the frequency of 1 km × 1 km grid 
cells used in the analysis, and boxes with frequencies < 10 are not drawn. Boxes show the median (notches approximate its 95% confidence 
interval) and extend from the 25th and 75th percentiles. Whiskers extend no further than 1.5 interquartile ranges from the box edges in 
both directions, and points show outliers [Colour figure can be viewed at wileyonlinelibrary.com]

(a)

(b)

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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connectivity indices generally selected rapid distance decay in the 
human connectivity. As such, direct measures of human activity may 
have performed better at predicting invasion patterns at the coarser 
spatial resolutions typically used in previous studies. With coarser 
resolutions, data were aggregated across a larger region and hence 
neighbourhood effects at higher resolutions become local.

The best fitting connectivity indices generally used distance 
decay informed by the hydrological network, and especially repre-
sented downstream connectivity rather than simple Euclidean dis-
tances. This finding is consistent with other studies showing that 
network topology has better explanatory power than Euclidean dis-
tance for native biodiversity patterns in aquatic systems (Altermatt, 
2013; Chapman et al., 2009; Heino et al., 2014). One explanation for 
our result is that non-native species are predominantly introduced 
at hotspots of human activity and then disperse and spread unas-
sisted into the surrounding landscape following the hydrological net-
work. Supporting this interpretation, downstream connectivity most 
strongly promoted invasion by crustaceans, molluscs and plants, 
which are predominantly passively dispersed by downstream flow, al-
beit with some potential for upstream dispersal (Hänfling, Edwards, & 
Gherardi, 2011). By contrast non-native birds were best explained by 
spatial connectivity, consistent with their ability to disperse via over-
land flights. A second explanation for our results is that the connec-
tivity measures also reflect the percolation of human disturbance that 
facilitates the establishment of non-native species (Davis et al., 2001). 
This may explain why bird invasion was most strongly associated with 
connectivity to locations used for water sports, as recreational boats 
are not considered a pathway for introducing or spreading non-na-
tive birds. Instead, large lakes and rivers used for boating, canoeing 
and other sports may be disproportionately invaded by non-native 
birds because they have features not captured in the models that are 
attractive to non-native water fowl (e.g., shallow lake depth, reser-
voir usage) or are more disturbed through hydrological modification, 
urbanization, noise pollution or supplementary feeding. These two 
explanations for our results are not mutually exclusive and it seems 
plausible that both have helped to drive the patterns observed.

Our analysis revealed fishing and water sports to be two human 
activities strongly linked to invasion, vindicating a strong focus on 
public warnings about invasion risks at facilities used by these activ-
ities. Both activities have previously been identified as carrying high 
risks for accidentally introducing and spreading non-native aquatic 
species because of frequent inter-catchment and international move-
ments by anglers and boaters, and an ability of many non-native taxa 
to survive for periods of time in transported equipment (Anderson 
et al., 2014; Peoples & Midway, 2018). In addition, fishing plays a 
direct role in invasion through the deliberate stocking of non-native 
fish and live baiting (Ricciardi & MacIsaac, 2011). However, we also 
found that all recreation was more strongly linked to invasion than 
either fishing or water sports for crustaceans and plants. Although 
they include a minority of fishing and water sports observations, the 
recreation data were numerically dominated by general recreational 
activities that have less direct interaction with the water (e.g., walk-
ing). This suggests that these groups may be introduced and spread 

through pathways linked to general accessibility, as well as the two 
high risk activities of fishing and water sports. For example, releases 
from personal indoor aquaria are a major pathway for introducing 
non-native freshwater species (Hänfling et al., 2011; Zieritz et al., 
2017) and it seems likely that these are most likely to occur in loca-
tions accessible for general recreational usage.

A novel feature of this study was that we used machine learning 
to model survey data on individual human visits made for different 
purposes. Conceptually, our approach to predict human activity 
gradients has a strong affinity to presence-only species distribution 
modelling (Pearce & Boyce, 2006). However, because the visit data 
were derived from a large nationally representative survey rather 
than the biased field observations usually used for species model-
ling (Chapman, Pescott, Roy, & Tanner, 2019; Phillips et al., 2009), 
the data available to us for modelling human activity are of much 
higher quality (Guillera-Arroita et al., 2015). In addition we used spa-
tially blocked cross-validation of the models to ensure extrapolation 
within England was robust (Chapman, 2010). Extrapolation far out-
side England was less reliable however. For example, the algorithms 
predicted water sports activity in north-west Scotland where many 
remote lakes occur but with little human activity.

Importantly, our modelling revealed that different human activ-
ities in freshwater habitats vary in distribution and underlying driv-
ers. Unsurprisingly, general recreation was most strongly predicted 
by vehicle parking facilities and local human population density, fish-
ing was most strongly related to inland fisheries and water sports 
were strongly associated with boat access infrastructure and vehi-
cle parking. More interestingly, human population densities in the 
surrounding region, weighted by travel distances for each activity 
type, were generally not strong predictors of human activities. This 
suggests that widely used but relatively simple indices of human in-
fluence based on proximity to human populations (Uchida & Nelson, 
2009; WCS & CIESIN, 2005) could be improved by modelling data on 
where different human activities actually occur and using predictors 
of higher risk human activities that are more relevant than proximity.

Comparing the correlations we found between non-native rich-
ness of multiple taxonomic groups and alternative forms of connec-
tivity to different human activities suggests that our analysis detected 
signals of introduction pathways and spread mechanisms specific 
to the different groups. For example, fishing explained invasion of 
non-native fish, which are predominantly introduced by deliberate 
stocking for angling. By contrast, general recreation was more import-
ant for groups such as crustaceans and plants that are predominantly 
introduced and spread unintentionally. Furthermore, downstream 
connectivity was important for crustaceans, molluscs and plants, 
which have strongly downstream-biased dispersal, while spatial con-
nectivity was important for birds with overland movement capability. 
This suggests that our approach could be applied for robust infer-
ence of the specific introduction or long-distance human dispersal 
pathways and spread mechanisms of individual taxa. Doing so could 
involve applying similar analyses to the occurrence or abundance of 
individual non-native species. Also, given the importance of multiple 
introduction pathways in freshwater invasions (Copp et al., 2010; 
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Zieritz et al., 2017), extending our current models to include connec-
tivity to multiple human activities could be of interest (Chapman et 
al., 2017). We suggest that this could provide a better evidence base 
for risk mapping to support invasive non-native species surveillance 
and management, where high resolution predictions of invasion risk 
are valuable for prioritizing resources (McGeoch et al., 2016). Future 
efforts should therefore develop the connectivity-based approach of 
this study into a general framework for inferring invasion processes 
from spatial data and improving predictions of risk.
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