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Abstract Choosing appropriate scales for remotely sensed image classification is extremely 14 

important yet still an open question in relation to deep convolutional neural networks (CNN), 15 

due to the impact of spatial scale (i.e., input patch size) on the recognition of ground objects. 16 

Currently, the optimal scale selection processes are extremely cumbersome and time-17 

consuming requiring repetitive experiments involving trial-and-error procedures, which 18 

significantly reduces the practical utility of the corresponding classification methods. This 19 

issue is crucial when trying to classify large-scale land use (LU) and land cover (LC) jointly 20 

(Zhang et al., 2019). In this paper, a simple and parsimonious scale sequence joint deep 21 

learning (SS-JDL) method is proposed for joint LU and LC classification, in which a sequence 22 

of scales is embedded in the iterative process of fitting the joint distribution implicit in the joint 23 

deep learning (JDL) method, thus, replacing the previous paradigm of scale selection. The 24 

sequence of scales, derived autonomously and used to define the CNN input patch sizes, 25 

provides consecutive information transmission from small-scale features to large-scale 26 

representations, and from simple LC states to complex LU characterisations. The effectiveness 27 
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of the novel SS-JDL method was tested on aerial digital photography of three complex and 28 

heterogeneous landscapes, two in Southern England (Bournemouth and Southampton) and one 29 

in North West England (Manchester). Benchmark comparisons were provided in the form of a 30 

range of LU and LC methods, including the state-of-the-art joint deep learning (JDL) method. 31 

The experimental results demonstrated that the SS-JDL consistently outperformed all of the 32 

state-of-the-art baselines in terms of both LU and LC classification accuracies, as well as 33 

computational efficiency. The proposed SS-JDL method, therefore, represents a fast and 34 

effective implementation of the state-of-the-art JDL method. By creating a single, unifying 35 

joint distribution framework for classifying higher order feature representations, including LU, 36 

the SS-JDL method has the potential to transform the classification paradigm in remote 37 

sensing, and in machine learning more generally.  38 

Keywords: multi-scale deep learning; optimal scale selection; convolutional neural network; joint 39 

classification; hierarchical representations 40 

1 Introduction 41 

Land use and land cover (LULC) information is essential for diverse applications in geospatial 42 

domain, such as urban and regional planning, environmental monitoring and management (Liu 43 

et al., 2017, Zhang et al., 2019). LULC information can also provide insights to tackle a 44 

multitude of socioeconomic and environmental challenges, including food insecurity, poverty, 45 

climate change and disaster risk (Stürck et al., 2015). Recent advances in sensor technologies 46 

have led to a constellation of satellite and airborne platforms, from which a large amount of very 47 

fine spatial resolution (VFSR) remotely sensed imagery is available commercially. While great 48 

opportunities are offered by VFSR imagery to capture fine-grained LULC detail, information 49 

extraction and retrieval is still immature and inefficient, primarily undertaken by means of 50 

traditional field survey and manual interpretation (Hu and Wang, 2013). Such routine tasks are 51 

labour-intensive and time-consuming. At the same time, our environment is constantly changing 52 

requiring frequent updates of LULC information to support scientific decision-making. It is, 53 
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therefore, of paramount importance to develop highly efficient and effective techniques to derive 54 

LULC information in an automatic and intelligent fashion.  55 

Over the past twenty years, significant efforts have been made towards the automation of LULC 56 

classification methods using VFSR images. Traditional techniques can be categorised into pixel-57 

based and object-based approaches. Pixel-based methods focus on classifying individual pixels 58 

based on spectral reflectance, which often result in speckle noise effects with limited 59 

classification accuracy, given the spectral and spatial complexity presented in VFSR remotely 60 

sensed imagery. Textures (Herold et al., 2003) and contextual information (Wu et al., 2009) can 61 

be integrated to characterise spatial patterns using moving kernels or windows. These approaches, 62 

however, are built on arbitrarily structured images (e.g. squares), whereas real world objects are 63 

often irregularly shaped and structured in specific patterns (Herold et al., 2003). Object-based 64 

methods are now adopted widely for LULC image classification based on segmented objects 65 

(group of pixels), thereby allowing the extraction of discriminative features (e.g., spectral, 66 

texture, shape) within the objects and contextual information between adjacent regions. However, 67 

those object-based approaches are often challenged by selecting appropriate segmentation scales 68 

to achieve meaningful objects (e.g., particular land cover categories), with under- and over-69 

segmentation occurring within the single image (Ming et al., 2015). Besides, the extracted 70 

features that characterise the objects are essentially hand-coded via feature engineering, which 71 

is subject to individual user experience and expertise, making it difficult to achieve comparable 72 

results when transferring the classifier to other datasets. Additionally, the spatial configurations 73 

of land use objects can be extremely difficult to hand-code into explicit features, thus, limiting 74 

representation and discrimination through traditional methods. Moreover, traditional methods 75 

lack a clear definition of the classification hierarchy (i.e. the level of representations of the 76 

landscape) and LULC classes are often used interchangeably in remotely sensed image 77 

classification. Ontologically, however, land cover (LC) and land use (LU) are manifested at 78 
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different levels of representation: LC represents low-level states whereas LU characterises high-79 

level functions of the landscape. 80 

Recently, deep learning-based methods have attracted enormous interest in the field of pattern 81 

recognition and computer vision, owing to their capability to learn the most representative and 82 

discriminative features hierarchically in an end-to-end fashion (Arel et al., 2010). Deep 83 

convolutional neural network (CNN), as a popular deep learning method, has achieved 84 

significant breakthroughs in image processing and analysis (Krizhevsky et al., 2012), with 85 

impressive results beyond the state-of-the-art in a variety of disciplines, not only in classical 86 

computer vision fields such as visual recognition, target detection and robotics, but also in many 87 

other practical applications (Hu et al., 2015; Nogueira et al., 2017). In the remotely sensed 88 

domain, the CNN has shown huge potential in diverse tasks through high-level feature 89 

representations, such as road extraction (Cheng et al., 2017), vehicle detection (Dong et al., 90 

2015), scene classification (Liu et al., 2018), semantic segmentation (Wang et al., 2017), and 91 

LULC image classification (Zhang et al., 2018a; 2018b).  92 

Within a CNN network, a patch-based architecture is used to learn and extract higher-level 93 

features in image patches autonomously through a hierarchy of filters. As a consequence, the 94 

choice of image patch size, as a key CNN parameter, has a significant influence on the scale of 95 

representations that are manifested over the landscape and, consequently, the accuracy of 96 

remotely sensed image classification. These scales are also dependent on the definition of the 97 

LULC classification hierarchy, which is unclear so far. Therefore, the determination of the CNN 98 

scale for a specific LULC classification task is still an open question in the remote sensing 99 

community, and a common approach is to consider scale variations, that is, not constrain to a 100 

single scale representation (Pan and Zhao, 2018). Previous research has attempted to incorporate 101 

multiple scales into the CNN network to improve spatial feature representations across different 102 

scales (e.g., Lv et al., 2018; Yang et al., 2018; Zhang et al., 2018b). For example, a set of CNNs 103 
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with different patch sizes and scales were integrated by Deng et al., (2018) and Liu et al. (2018) 104 

to enhance feature representations across multiple scales, thereby achieving increased accuracy 105 

of scene classification. Yang et al. (2018) utilised multi-scale CNNs to differentiate complex 106 

scenes (e.g., airport, residential, commercial) in remotely sensed imagery, and demonstrated 107 

increased accuracy compared with single-scale CNN networks. Deep features at a range of scales 108 

have also been embedded into the CNN to identify vehicles (e.g., ships, cars) within remotely 109 

sensed scenes, leading to increased accuracy of target detection (Li et al., 2018). In remotely 110 

sensed image classification, Lv et al. (2018) combined region-based CNNs at multiple scales to 111 

differentiate land cover objects with high accuracy and efficiency. In addition, object-based 112 

CNNs comprising of two distinctive scales were developed to solve the complex land use 113 

classification task (Zhang et al., 2018b). Finally, deep features at multiple scales were extracted 114 

through CNN networks, and used to boost land cover classification accuracy for hyperspectral 115 

images (He et al., 2019). A challenge for these multi-scale CNN techniques, however, is to 116 

determine the optimal scales (patch sizes) from a large sampling space that is extremely difficult 117 

to explore exhaustively across the full range of scales.  118 

In summary, current LULC classification approaches (both traditional and deep learning 119 

methods) suffer from two major issues: (1) definition of the classification hierarchy; and (2) 120 

definition of the optimal scale to represent the landscape. In terms of the classification hierarchy, 121 

land use (LU) and land cover (LC) are often defined interchangeably, without differentiating 122 

their intrinsic differences in semantic meaning. LC represents the physical characteristics of the 123 

Earth’s surface, whereas LU is defined as a higher-order function within a particular space 124 

through a mosaic of different LC categories. The spatially nested and hierarchical relationships 125 

between LU and LC are given little consideration in LULC image classification, except for the 126 

recently proposed joint deep learning (JDL) method (Zhang et al., 2019). As for the choice of 127 

scale, it is challenging to determine an optimal scale that can represent the entire scene of a 128 
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complex and heterogeneous landscape, and multi-scale feature representations are often 129 

incorporated to capture large or small land features over different scales. These multiple scales 130 

are searched exhaustively through trial and error and tested through extensive experiments with 131 

different combinations of candidate scales (Kim et al., 2011; Ming et al., 2015). For deep 132 

learning methods (e.g., CNN), such scale parameterisation processes are extremely time-133 

consuming with a large amount of CNN model training. The process can be labour-intensive 134 

with repetitive experiments, especially for joint LU and LC classification such as through the 135 

JDL method. Furthermore, the selected multiple scales are considered independently as 136 

individual evidence to support integrated decisions, which do not capture the mutual connections 137 

among the different scales. As such, these scale selection processes are far from operational for 138 

deep learning in remotely sensed image classification.  139 

The objective of this research was to develop an automatic approach that is applicable in 140 

engineering practices to model the nested relationships between LU and LC, with the ability to 141 

address scale issues effectively and efficiently in remotely sensed image classification. A novel 142 

scale sequence joint deep learning (SS-JDL) method for LU and LC classification is proposed, 143 

in which, scales (input patch sizes) of the CNN networks are autonomously derived as a sequence 144 

of representations. The scale sequence is designed to mimic the human cognition of image 145 

pattern recognition through continuously increasing scales, with information transmission 146 

between neighbouring scales from small-scale features to large-scale visual representations. The 147 

SS-JDL has the key advantage that it is simple and parsimonious in the way that it constructs the 148 

sequence of scales and determines an efficient solution, such that the cumbersome and time-149 

consuming process of optimal scale selection is avoided. The rest of the paper is organized as 150 

follows: the proposed method is detailed in section 2; followed by experiments and results 151 

analysis in section 3; discussions and conclusions are made in section 4 and 5, respectively.  152 

2 Methods 153 
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2.1 Multilayer perceptron (MLP)  154 

A multilayer perceptron (MLP) is a feed forward neural network that transforms the input data 155 

(e.g., image pixels) into the output representations (e.g., LC labels) (Atkinson and Tatnall, 1997). 156 

Typically, a MLP is composed of input, hidden, and output layers with computational nodes 157 

fully connected by weights and biases (Del Frate et al., 2007). These weights and biases are 158 

learned through backpropagation using a specific loss function (e.g., cross-entropy), to minimise 159 

the distinction between model predictions and the desired results.  160 

2.2 Convolutional Neural Networks (CNN)  161 

A convolutional neural network (CNN) takes an image patch (a group of pixels) as its input to 162 

predict high level feature representations (e.g., LU categories). The CNN network is basically 163 

cascaded by multiple convolutional, max-pooling, and batch normalisation layers to characterise 164 

the functional semantics at abstract and deep levels. Specifically, the convolutional layers 165 

involve a kernel function to convolve across input feature maps to recognise spatial features, 166 

followed by an activation function, such as Rectified Linear Unit, to strengthen and enhance the 167 

non-linearity. The max-pooling layers sub-sample the feature maps to enhance the generalisation 168 

capability with a reduced number of parameters (Romero et al., 2016). The batch normalisation 169 

layers are used to accelerate the training process of the deep network by standardising the training 170 

sample batches (Li et al., 2018). The parameters within the CNN network (e.g., kernel weights 171 

and biases) are learnt by a stochastic gradient descent in a feed-forward fashion (LeCun et al., 172 

2015). Finally, a fully connected layer is utilised together with a softmax classification to predict 173 

the final output.  174 

2.3 Object-based Convolutional Neural Network (OCNN) 175 

Object-based CNNs (OCNN) were designed on the basis of CNN models to classify segmented 176 

objects into specific LU classes (Zhang et al., 2018c). Different from the standard pixel-wise 177 
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CNN that predicts image patches densely overlap at the pixel level, the OCNN places an image 178 

patch at the centroid of an object for prediction, which significantly enhances the computational 179 

efficiency while reducing the uncertainties caused by the convolutional process (e.g., geometric 180 

distortion). The image patch size is empirically tuned as sufficiently large to capture patterns of 181 

objects and their contexts. In Zhang et al. (2018c), the OCNN was trained to learn LU semantics 182 

through deep networks, and the boundaries of each object were maintained through image 183 

segmentation. The prediction of LU for each object was then assigned to the constituent pixels 184 

to formulate the final land use thematic map.  185 

2.4 Scale sequence joint deep learning (SS-JDL) 186 

The proposed scale sequence joint deep learning (SS-JDL) method has two major aspects: the 187 

creation and use of a scale sequence and joint learning between the LU and LC predictions at 188 

each scale in the scale hierarchy. The scale sequence is composed of a set of observational scales 189 

(image patch sizes) that transfers the information from a small scale to larger scales sequentially, 190 

in which fine details produced by convolution over a small window are integrated into a broader 191 

context through convolution over increasingly larger windows. Within each scale, the LU and 192 

LC are represented at different classification hierarchies and jointly classified through iteration. 193 

The general procedure of the proposed SS-JDL method is illustrated by Figure 1, where the LU 194 

and LC classifications are jointly derived across the scale sequence.  195 

 196 
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Figure 1. The general workflow of scale sequence joint deep learning (SS-JDL) for land cover and land 197 

use classification 198 

In the SS-JDL method, a scale sequence (denoted as the set S) is needed to characterise the LU 199 

and LC across different scales. The S requires the parameterisation of the minimum scale (θmin), 200 

the maximum scale (θmax), and the total number of elements within S (n), in which the scale is 201 

derived by Eq. 1 as:  202 

                                                  min max( ,  ,  )Linespace nθ θ=S                                                             (1) 203 

Where, Linespace refers to the function of linear interpolation. By using Eq. 1, a scale sequence 204 

S = (s1, s2, …, si,…, sn) is obtained, in which si ( ⊂i [1, n]) corresponds to the i-th scale value. 205 

Both θmin and θmax are computed based on the sizes of objects segmented from the imagery. The 206 

θmin is equal to or smaller than the minor axis of the smallest object, whereas the θmax is larger 207 

than the major axis of the largest object.  208 

At each scale, the LU and LC classifications are derived from a pixel-based MLP classifier and 209 

a patch-based OCNN classifier, respectively (Zhang et al., 2019). The LU classification 210 

probabilities are conditional on the LC classification probabilities, and the results of i-th iteration 211 

are influenced by the previous iteration. Such a hierarchical classification framework is 212 

formulated as a Markov process as:  213 

                            1 1(LU( ) , LC ) (LU( ) , LC | LU( ) , LC )i i i i i iP Pθ θ θ − −=                                               (2) 214 

Where i denotes the number of iterations within the Markov process. The θ parameter provides 215 

the CNN input window size as the scale of the current iteration. The LU(θ)i in Eq. 2 refers to the 216 

LU classification probabilities at the i-th iteration. The LC i corresponds to the land cover 217 

classification probabilities at the i-th iteration.  218 
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Given a scene of remotely sensed imagery M (x, y) with x and y representing the spatial 219 

coordinates, the training samples of LU and LC are described as TLC = (tLC1, tLC2, …, tLCi, …, 220 

tLCu) and TLU = (tLU1, tLU2, …, tLUi, …, tLUv), where u and v denote the total numbers of LU and 221 

LC training samples, respectively, and tLCi and tLUi refer to the i-th samples of LU and LC 222 

respectively. tLCi = {xi, yi, LLC} refers to the LC class label (LLC) of the i-th sample and its spatial 223 

location (xi, yi) on imagery M, whereas tLUi = {xi, yi, LLU} denotes the LU class label (LLU) and 224 

its position (xi, yi) in image M. The TLC and TLU were used to train the MLP and OCNN models 225 

to predict the LU and LC classification probabilities, respectively (Figure 1).  226 

Based on Eq. 2, for the image M, the classification results of LU at previous iteration LU(θ)i-1 227 

(NULL for the first iteration), LC samples TLC, LU samples TLU, and the scale value of the 228 

current iteration θ serve as the input data and parameters. The probabilistic outputs of the LC 229 

(MLCpro(i)) and LU (MLUpro(i)) classifications are achieved through the iterative process. Detailed 230 

methods for achieving LU and LC classification probabilities and their output maps are 231 

demonstrated as follows:  232 

(i) LC classification probabilities 233 

LU classification probabilities at previous iteration LU(θ)i-1 and the original image M are 234 

integrated as conditional probabilities for land cover classification (MLC 
i) as:  235 

                                                 1
LC ( ,  LU( ) )i iM Concate M θ −=                                                     (3) 236 

Where, Concate is a function to concatenate the image M with the LU classification probabilities 237 

at the previous iteration (i-1). Note, Eq. 3 corresponds to the case of i>1. If i=1, MLC
i is equivalent 238 

to the original image M as the LU probabilities are empty (NULL) initially. 239 

Based on Eq. 3, the MLP model is trained through the LC training samples (TLC) as follows:  240 

                                           LC LCMLP.Train( ,  )i imlpmodel M= T                                                  (4) 241 
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The trained MLP model (mlpmodeli) at the i-th iteration is used to predict the LC classification 242 

probabilities (MLCpro
i) as:  243 

                                              LCpro LC.Predict( )i i iM mlpmodel M=                                                   (5) 244 

Here, the extent of MLCpro
i is equal to the size of image M, and the dimensions of MLCpro

i are the 245 

same as the number of LC classes, with each dimension corresponding to the probabilities of a 246 

specific LC class predicted by the MLP classifier.  247 

(ii) LU classification probabilities 248 

LC classification probabilities derived from the MLP (MLCpro
i) are taken as the input image (MLU

i) 249 

for LU classification. The CNN model is trained by using TLU as:   250 

                                        LU LUCNN.Train( ,  , )i i icnnmodel M θ= T                                                 (6) 251 

The cnnmodeli model is further used to classify the image MLU
i to link the LC probabilities with 252 

the LU classifications, and the LU classification probabilities (MLUpro
i) are obtained as follows:  253 

                                          LUpro LU.Predict( )i i iM cnnmodel M=                                                      (7) 254 

In Eq. 7, the object-based CNN is adopted for LU classification (Zhang et al., 2018c), by which 255 

the prediction of the cnnmodeli is assigned to the constituent pixels of the corresponding object. 256 

MLUpro
i has the same image size as M, and the dimension is equal to the number of LU classes, 257 

with each dimension corresponding to the softmax probabilities acquired at the last layer of the 258 

CNN model.  259 

Both land cover (MLCpro
i) and land use (MLUpro

i) probabilities are achieved in each iteration. The 260 

output at the final iteration (n) comprises MLCpro
n and MLUpro

n, where the LU and LC thematic 261 

maps are acquired as:  262 

                                               LCresult LCproarg max( )nM M=                                                            (8) 263 
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                                               LUresult LUproarg max( )nM M=                                                             (9) 264 

In Eqs. 8 and 9, the probabilistic land cover (MLCpro
n) and land use (MLUpro

n) are converted into 265 

the corresponding LC (MLCresult) and LU (MLUresult) classes by outputting the maximum 266 

probabilities, respectively.  267 

Essentially, the SS-JDL method inherits all the benefits of the JDL method (Zhang et al., 2019) 268 

which are: 269 

1. Joint classification of LU and LC in an automatic manner. 270 

2. Increased classification accuracies for LU and LC through joint reinforcement. 271 

3. Faithful representation of the hierarchical relationships between LU and LC 272 

characterisations. 273 

4. Increased model robustness and generalisation capability with small sample size 274 

requirement for the CNN. 275 

Combining scale sequencing with the JDL method brings three additional benefits: 276 

1. Incorporation of a sequence of scales (patch sizes) within a single unified JDL 277 

framework. 278 

2. Increased computational efficiency with rapid convergence to the optimal solution 279 

through simple and parsimonious scale sequence. 280 

3. Autonomous implementation without the need to choose a specific or optimal scale of 281 

analysis. 282 

3 Experiment and Results 283 

3.1 Study area and data materials 284 

Three study areas, including Bournemouth (S1), Southampton (S2) and Manchester (S3), and 285 

their surrounding terrestrial regions (Figure 2) were chosen in this research. Both S1 and S2 lie 286 
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on the southern coast of England, whereas S3 is located inland in the north west of England. S1 287 

represents a mixture of anthropogenic and semi-natural environments (e.g., Queen’s Park Golf 288 

Course, Heath). S2 is a major port influenced by human activities in both urban and rural settings 289 

(e.g., large-scale industry, agriculture), whereas S3 is a major inland city and metropolitan 290 

borough with a high-density of urban and suburban areas notable for its commercial and social 291 

impact. They are, therefore, highly distinctive and heterogeneous in both LU and LC 292 

configurations and are, thereby, able to be used to test the generalisation ability of the proposed 293 

method.  294 

 295 

Figure 2. Three study areas: Bournemouth (S1), Southampton (S2) and Manchester (S3) in England, 296 

with typical land use categories highlighted for each study site. 297 

Aerial photos of S1 (23,070×18,526 pixels), S2 (23,250×17,500 pixels) and S3 (17,590×14,360 298 

pixels) composed of four spectral bands (R, G, B and NIR) with 50-cm spatial resolution, were 299 

captured by Vexcel UltraCam Xp digital aerial cameras on 20 April 2016, 22 July 2012, and 20 300 

April 2016, respectively. Ten, nine and nine LC categories were recognised in S1, S2, and S3, 301 

respectively (Table 1). Eight LC classes appear consistently at three study sites: Concrete Roof, 302 

Clay Roof, Metal Roof, Asphalt, Bare Soil, Rail, Grassland, and Woodland. The remaining two 303 

LC classes in S1 were Heath and Sand, the one in S2 was Crops, and the one in S3 was Water. 304 

Those LCs characterise the physical characteristics of the ground surface, whereas the LUs 305 

represent functional use induced by human beings. Eleven LU types, including Commercial, 306 
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Industrial, Residential, Institutional, Highway, Railway, Parking Lot, Park and Recreational 307 

Area, Redeveloped Area, Herbaceous Vegetation, and Sandy Beach, were identified in S1. As 308 

for S2, 10 major types of LUs were involved, namely, Commercial, Industrial, Medium-density 309 

Residential, High-density Residential, Railway, Highway, Parking Lot, Redeveloped Area, Park 310 

and Recreational Area, and Agricultural Area. In terms of S3, nine main LU categories were 311 

found, including: Commercial, Industrial, Residential, Railway, Highway, Parking Lot, 312 

Redeveloped Area, Park and Recreational Area, and Canal. These LU and LC classes were 313 

defined based on the European Environment Agency Urban Atlas 2012 and the Land Cover Map 314 

2015 produced by NERC Centre for Ecology & Hydrology, together with the UK national land 315 

use system developed by Ministry of Housing, Communities and Local Government. Detailed 316 

LU classes and their sub-classes as well as major LC components were listed in Table 1. 317 

Table 1. The land use (LU) classes with their sub-class descriptions, and the associated major land cover 318 

(LC) components across the three study sites (S1, S2 and S3). 319 

LU Study site Sub-class descriptions Major LC 

(High-density) residential S1, S2, S3 Residential houses, terraces, green space Buildings, Grassland, Woodland 

(Medium-density) residential S2 Residential flats, green space, parking lots Buildings, Grassland, Asphalt 

Commercial S1, S2, S3 Shopping centre, retail parks, commercial services Buildings, Asphalt 

Industrial S1, S2, S3 Marine transportation, car factories, gas industry Buildings, Asphalt 

Highway S1, S2, S3 Asphalt road, lane, cars Asphalt 

Railway S1, S2, S3 Rail tracks, gravel, sometimes covered by trains Rail, Bare soil, Woodland 

Parking lot S1, S2, S3 Asphalt road, parking line, cars Asphalt 

Park and recreational area S1, S2, S3 Green space and vegetation, bare soil, lake Grassland, Woodland 

Redeveloped area S1, S2, S3 Bare soil, scattered vegetation, reconstructions Bare soil, Grassland 

Sandy beach S1 Costal line, sand, seaside beaches Asphalt, Bare soil  

Herbaceous Vegetation S1 Grasses and Forbs, shrubs Grassland, Woodland 

Agricultural area S2 Pastures, arable land, and permanent crops  Crops, Grassland 

Canal S3 Water drainage channels, canal water Water, Asphalt 

 320 
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Reference polygons for LU and LC are collected by field surveyors and manually digitised by 321 

photogrammetrists at Ordnance Survey (Britain’s National Mapping Agency). These reference 322 

polygons (covering the majority of study sites) were split randomly into 60% for training and 323 

40% for validation. Sample points were chosen by means of stratified random sampling within 324 

the training and testing polygons, and the numbers of each LU and LC class were made 325 

proportional to the area of the total reference polygons for each class. For classes that were 326 

sparsely covered (e.g., railway), their sample sizes were enlarged to achieve a representative 327 

distribution. Approximately, 600 and 1000 samples per class for both LU and LC were adopted, 328 

allowing the MLP and the CNN networks to be sufficiently trained with a relatively large sample 329 

size. These sample points were cross-validated by the Ordnance Survey MasterMap Topographic 330 

Layer, Open Street Maps, and the CEH Land Cover® plus: Crops 331 

(https://www.ceh.ac.uk/crops2015) to ensure precision and the fidelity of the selected samples.  332 

3.2 Experimental design and parameters 333 

Within the SS-JDL method, the MLP and OCNN classifiers need to predefine parameters to 334 

obtain the highest classification accuracy and generalisation for both study sites. These models 335 

were parameterised in S1 and directly applied to S2, as recommended by Zhang et al. (2018c) 336 

and Zhang et al. (2019). The structures of the model and parameters are detailed below.  337 

For MLP, the initial input is four-band image at the pixel level, and the initial prediction of each 338 

pixel corresponds to the LC category. Two hidden layers were chosen as optimal with 20 nodes 339 

in each layer. The activation functions for the hidden layers were set as ‘Rectified Linear Unit’ 340 

to achieve nonlinearity within the MLP network, and the number of epochs was tuned to 1000 341 

to allow full convergence to a stable state through backpropagation.  342 

The OCNN requires pre-processing of the image into homogeneous objects that are 343 

representative of specific LCs through object-based image segmentation. Multi-resolution 344 

segmentation was implemented using the eCognition 9.2 software to acquire the segmented 345 
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objects. The scale parameter was varied from 10 to 100 to explore the influence of object size 346 

on segmentation performance, and 40 was found to be the optimal parameter to obtain slightly 347 

over-segmented results.  348 

For each object, a standard CNN was applied to an image patch located at the object centre to 349 

learn the within-object information and its spatial context. Nine hidden layers that alternate with 350 

convolution, max-pooling, and batch normalisation, were designed to capture the deep LU 351 

feature representations (Figure 3). Small filters (3×3) in convolutional layers were adopted 352 

following the common deep network structures (e.g., VGG-16), and the number of filters was 353 

tuned as 64 to extract the multi-dimensional deep feature representations. The learning rate and 354 

the epoch were set as 0.01 and 800, respectively, to learn the deep features through iteration.  355 

 356 

Figure 3. Model structures and architectures of the deep CNN network with nine hidden layers. 357 

3.3 Benchmarks and parameter settings 358 

In this research, five typical methods served as benchmarks for LC classification, including the 359 

MLP (spectral only), GLCM-MLP (spectral and textural features), Markov random field (MRF, 360 

contextual-based), Multi-scale CNN applied to land cover (MCNN-LC), and the recently 361 

proposed Joint Deep Learning method applied to land cover (JDL-LC; as for SS-JDL but without 362 

scale sequencing). As for LU classification, five state-of-the-art approaches were benchmarked, 363 

including MRF, object-based image analysis (OBIA), the standard pixel-wise CNN, Multi-scale 364 

CNN applied to land use (MCNN-LU), and Joint Deep Learning applied to land use (JDL-LU). 365 

The classification experiments were implemented using Keras/Tensorflow under a Python 366 
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environment using a laptop with a NVIDIA 940M GPU and 12.0 GB memory. The parameters 367 

of these benchmark comparators are detailed below.  368 

MLP took pixel-based four spectral bands as input, with two hidden layers inside the network 369 

and 20 nodes for each of them as parameterised by Zhang et al. (2018a). The output was the LC 370 

label for each pixel.  371 

GLCM-MLP used the same structure as the MLP, while grey-level co-occurrence matrix 372 

(GLCM) texture variables were added as additional input features. The prediction was the LC 373 

class label at the pixel level.  374 

MRF took the support vector machine as its basic spectral classifier for both LU and LC 375 

classification, in which the Radial Basis Function was adopted as the kernel function. Following 376 

the recommendations of Zhang et al. (2018b), the window size of the MRF was tuned as 5×5, 377 

and the smoothing parameter was set as 0.7 to achieve smoothed results using contextual 378 

information.  379 

MCNN was designed for both land cover (MCNN-LC) and land use (MCNN-LU) classification 380 

based on majority voting at three input scales (CNN window sizes) as proposed by Lv et al. 381 

(2018). Following the recommendation of Lv et al. (2018), three CNN window sizes at 15×15, 382 

25×25, and 35×35 were used as the input patch sizes to classify regions produced by multi-383 

resolution segmentation with a scale parameter of 20. The predictions of the triple-scale CNNs 384 

were fused through majority voting to obtain LC and LU classification results, respectively. 385 

JDL-LC incorporated an MLP and OCNN to learn iteratively the LU and LC classification 386 

probabilities, respectively. The number of iterations was set to 15 to allow full convergence to a 387 

stable state. The prediction of the MLP at the final iteration was taken as the JDL-LC 388 

classification result (Zhang et al., 2019).  389 
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OBIA was implemented on objects derived from multi-resolution segmentation. Various 390 

features were then extracted from the objects, including spectral features (mean and standard 391 

deviation), GLCM texture variables and geometry. An SVM was used for object-based 392 

classification using these hand-coded features.  393 

CNN was a trained deep network to predict pixel-wise densely overlapping patches across entire 394 

image. The input patch size was parameterised as 48×48 as recommended by Längkvist et al. 395 

(2016), and the number of layers was set as six (alternating between convolution and max-396 

pooling). Softmax regression was adopted to predict the final LU classification results.  397 

JDL-LU was performed by a pixel-based MLP to predict LC probabilities which were used as 398 

input features for LU prediction using an object-based CNN. This system can jointly learn the 399 

LU and LC classes through iteration. The JDL-LU classification result was achieved at 15 400 

iterations with a steady state (Zhang et al., 2019).  401 

3.4 Classification Results and Analysis 402 

3.4.1 Results and analysis of the scale sequence 403 

The minimum scale for the SS-JDL was set as 28×28 to capture the within-object information, 404 

given that the main axis of the smallest object size was found to be less than 14 metres in S1, S2 405 

and S3. The maximum scale was parameterised as 140×140 by considering the largest object 406 

within the three scenes to cover the wider spatial context while leveraging the representation 407 

capability of the CNN network. Between the minimum and maximum scales, a range of scales 408 

were interpolated into the network to obtain a sequence of scales (i.e., CNN window sizes). The 409 

smallest number of iterations for the SS-JDL was two representing the minimum and maximum 410 

scales only. The number of iterations increases as more scales are introduced. Figure 4 411 

demonstrates the influence of the number of iterations on the overall accuracy, and the SS-JDL 412 

method is compared with the recently proposed JDL method on both the S1 and S2 images 413 
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through iteration. The SS-JDL method consistently shows rapid convergence, with the optimal 414 

accuracy achieved in just 5 iterations (red dashed line), significantly faster than the JDL method 415 

for both LU and LC classification at 10 iterations (green dashed line). Specifically, for S1, the 416 

SS-JDL accuracy started at around 82% and 79% for the LC and LU classifications at iteration 417 

2, and rapidly increased to approximately 91% (LC) and 88.5% (LU) at iteration 5. In contrast, 418 

the JDL accuracy was slightly higher than that of the SS-JDL at iteration 2, with around 82.5% 419 

(LC) and 80% (LU), and increased slowly towards the optimum accuracy of ~90% (LC) and 420 

~87% (LU) at iteration 10.  421 

A similar trend was found in S2 and S3 (Figure 4), where the SS-JDL accuracy began at around 422 

80% for LC and 79% for LU, and reached 90% (LC) and 88% (LU) at iteration 5. The accuracy 423 

of the JDL-LC classifier was slightly higher at iteration 2 (81%), and gradually increased to 424 

around 89% at iteration 10, which is still lower than that of the LC classification of SS-JDL 425 

(90%). The accuracy of the JDL-LU, in contrast, started lower than that of the SS-JDL, at around 426 

78.5% at iteration 2, and slowly increased with iteration. The optimal accuracy was found at 427 

iteration 10 with around 86% accuracy (2% lower than for the LU classification of SS-JDL).  428 

 429 

Figure 4. The influence of iteration upon overall accuracy for the LU and LC classifications using the 430 

proposed SS-JDL and the JDL method.  431 



20 
 

 432 

Figure 5. The effects of window size (scale) on overall accuracy of the LU and LC classifications using 433 

the SS-JDL (dashed lines) and the JDL method (solid lines).  434 

The SS-JDL involves multiple scales across the scale sequence and, thus, does not require 435 

optimal scale selection. Figure 5 shows the scale selection processes for JDL in comparison to 436 

the SS-JDL method with 5 iterations (scales). A range of CNN window sizes were considered, 437 

including 28×28, 42×42, 56×56, 70×70, 84×84, 98×98, 112×112, 126×126, and 140×140, and 438 

the classifier at each window size was run 20 times to achieve the converged LU and LC 439 

classification results. As shown in Figure 5, the SS-JDL method (dashed lines) always 440 

outperforms the JDL (solid lines) for both LC classification (OA of 91.06%, 90.43% and 90.62%) 441 

and LU classification (OA of 88.94%, 88.26% and 88.48%) for S1, S2 and S3, respectively. For 442 

JDL, both LU and LC classifications demonstrate variation along the changing window size, and 443 

it is hard to judge the optimal scale. In S1, 28×28, 70×70 and 112×112 are potentially the 444 

“optimal” LC window size, whereas the optimal scale for LU classification might be 98×98. 445 

Likewise, for S2 multiple accuracy peaks are produced for LC (70×70, 112×112, 140×140), 446 

while a single optimum scale (84×84) is found for LU. Similar trends are found in S3, with three 447 

accuracy peaks for LC (42×42, 84×84, 112×112) and one optimum scale (70×70) for LU. Clearly, 448 

the LU classification is much more sensitive to scale effects with larger accuracy differences 449 

(around 81% to 88%), whereas the LC classification does not have as clear a correlation to the 450 
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CNN window size. In addition, the “optimal” scales for LU and LC are completely different. For 451 

example, the optimal scale for LU in S1 is found at 98×98, but this does not coincide with the 452 

optimal scales for LC (28×28, 70×70 and 112×112). The SS-JDL, therefore, demonstrates 453 

greater classification accuracy for all study sites (S1, S2 and S3) without requiring an optimal 454 

scale selection process.  455 

In this paper, a forward scale sequence (FSS) derived by the minimum and the maximum sizes 456 

of the segmented objects in the imagery was adopted for JDL classification. The potential 457 

sampling space for the scale sequences, however, is enormous (from completely random to 458 

sequential scales), and it is extremely hard to examine exhaustively the entire set of possible 459 

scale choices. To better explore the space, four typical sampling schemes were considered, 460 

including the forward scale sequence (FSS) from small to large scale, the backward scale 461 

sequence (BSS) from large to small scale, the random scale sequence (RSS) with scales in a 462 

completely random order generated by a Monte Carlo method, as well as the iterative greedy 463 

scale sequence (IGSS) that chooses the scale with the best accuracy increase at each iteration. 464 

Table 2 demonstrates the superiority of FSS in OA and computational efficiency compared with 465 

IGSS, RSS, and BSS. The high OA is achieved by gradually enlarging the observational scales 466 

from the minimum to the maximum, while retaining the precise information achieved initially at 467 

the smaller scales through subsequent scales. In the meantime, exhaustive search (e.g., IGSS) 468 

was not required by the FSS, thereby significantly reducing the computational time through fast 469 

implementation.  470 

Table 2. The overall accuracy and the computational time of four sampling schemes, including forward 471 

scale sequence (FSS), backward scale sequence (BSS), random scale sequence (RSS), and iterative 472 

greedy scale sequence (IGSS).  473 

Sampling scheme 
Overall Accuracy (%) Computational time (h) 

S1 (LC, LU) S2 (LC, LU) S3 (LC, LU) S1, S2, S3 
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FSS 91.06, 88.94 90.43, 88.26 90.62, 88.48 7.52, 7.86, 7.32 

BSS 86.73, 83.84 86.68, 83.05 87.04, 84.26 7.52, 7.86, 7.64 

RSS 87.24, 84.32 87.59, 84.13 87.74, 83.85 8.95, 9.37, 9.28 

IGSS 90.35, 87.69 89.76, 87.14 89.43, 87.25 35.58, 37.94, 36.65 

 474 

3.4.2 Classification results and analysis for all study sites 475 

To gain a better spatial visualisation of how the classification accuracy increases with iteration, 476 

the converged five iterations of the SS-JDL for both LC (Figure 6, 7 and 8) and LU (Figure 9, 477 

10 and 11) are demonstrated at iteration 1 (28 × 28) to iteration 5 (140 × 140) using three subsets 478 

of S1 and S2 as well as one subset of S3, respectively (Figures 6 to 11).  479 

The LC classification result at iteration 1 (28 × 28) contained severe salt-and-pepper effects, as 480 

shown in Figure 6 (a, b and c), Figure 7 (a, b and c), and Figure 8(b). Such problems were tackled 481 

through iteration by incorporating spatial context from the LU probabilities and increasing the 482 

scale at each iteration. Iteration 2 significantly smoothed the classification results while keeping 483 

the fidelity in the representations, thereby enhancing the classification accuracy, accordingly. 484 

Figure 6(b) illustrates the clear increase in accuracy achieved by reducing the noise (salt-and-485 

pepper effects) in the Asphalt road and the Rail classes as well as the Concrete roof class. Both 486 

iterations 1 and 2, however, failed to differentiate Concrete roof and Asphalt (e.g., the red circles 487 

in Figure 6(a) and 6(c) as well as Figure 7(b)), given the extremely similar spectral reflectance 488 

between them. Those pixels misclassified as Concrete roof were rectified to Asphalt after 489 

iteration 3 and remained the same throughout further iterations (e.g. Figure 8(c)). Another 490 

remarkable improvement demonstrated through iteration was the elimination of Bare soil within 491 

the classification maps. For example, the falsely classified Bare soil pixels at iterations 1 to 4 of 492 

Figure 6(a) and iterations 1 to 3 of Figure 6(c) were corrected as Asphalt and Sand, respectively. 493 

More impressively, the shadow effects cast by the woodland and buildings shown in Figure 7(b) 494 

and Figure 8(a) were falsely classified as Rail and Concrete roof at iterations 1 and 2, but were 495 
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gradually rectified to Asphalt or partial Woodland at iterations 3 and 4, and the shadow adjacent 496 

to the trees was completely replaced as entirely Woodland at iteration 5. In terms of agricultural 497 

land, the Crop and Grassland classes were more clearly differentiated through further iteration. 498 

Figure 7(c) demonstrates the misclassified Grassland at iterations 1, 2 and 3, which was partially 499 

rectified to Crops at iteration 4, and completely identified as Crops with high accuracy at iteration 500 

5.  501 

 502 
Figure 6. Three subset (i.e., a, b, c) of LC classification in S1 using Scale Sequence Joint Deep 503 

Learning (SS-JDL) from iteration 1 (28 × 28) to 5 (140 × 140). The correct and incorrect classifications 504 

are highlighted by circles in yellow and red, respectively. 505 

 506 

Figure 7. Three subset (i.e., a, b, c) of LC classification in S2 using Scale Sequence Joint Deep 507 

Learning (SS-JDL) from iteration 1 (28 × 28) to 5 (140 × 140). The correct and incorrect classifications 508 

are highlighted by circles in yellow and red, respectively. 509 
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 510 

Figure 8. The land cover classification in S3 using Scale Sequence Joint Deep Learning (SS-JDL) from 511 

iteration 1 (28 × 28) to 5 (140 × 140). 512 

In terms of LU classification, the most significant increase in accuracy was obtained for the 513 

Parking lot class, which was correctly differentiated after iteration. For example, the confusion 514 

between Parking lot and Highway is shown in Figure 9(b) at iterations 1 to 4 and Figure 10(b) 515 

at iterations 1 to 3 (red circles) and Figure 11(b) and 11(c), which was resolved and clearly 516 

identified as Highway at iteration 5 (yellow circles). Those pixels misclassified as Commercial 517 

at iterations 1 to 3 (Figure 10(a)) were correctly modified to Parking lot at iterations 4 and 5. 518 

Furthermore, the misclassification between Highway and Railway was rectified throughout the 519 

iterative process. For example, Figure 9(b) and 11(d) show that some Railways were affected by 520 

shadows and wrongly identified as Highway at iterations 1 to 3. Likewise, some of the Highways 521 

in Figure 9(c) were falsely classified as Railway at iterations 1 to 4 when adjacent to sandy 522 

beaches. These problems were addressed and differentiated accurately at iteration 5 in all cases. 523 

Moreover, the mutual confusion between Agricultural area and Redeveloped area is shown in 524 

Figure 10(c) with red circles, which was precisely distinguished with sharp boundaries at the 5th 525 

iteration (in yellow circles).  526 
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 527 

Figure 9. Three subset (i.e., a, b, c) of LU classification in S1 using Scale Sequence Joint Deep 528 

Learning (SS-JDL) from iteration 1 (28 × 28) to 5 (140 × 140). The correct and incorrect classifications 529 

are highlighted by circles in yellow and red, respectively. 530 

 531 

 532 

Figure 10. Three subset (i.e., a, b, c) of LU classification in S2 using Scale Sequence Joint Deep 533 

Learning (SS-JDL) from iteration 1 (28 × 28) to 5 (140 × 140). The correct and incorrect classifications 534 

are highlighted by circles in yellow and red, respectively. 535 
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 536 

Figure 11. The land use classification in S3 using Scale Sequence Joint Deep Learning (SS-JDL) from 537 

iteration 1 (28 × 28) to 5 (140 × 140). 538 

 539 

Figure 12. Image subset benchmark comparison among various methods for S1, S2 and S3. The LC 540 

classifications include (a) MLP, (b) GLCM-MLP, (c) MRF, (d) MCNN-LC, (e) JDL-LC, and the (f) 541 

SS-JDL-LC. The LU classifications include (g) MRF, (h) OBIA, (i) CNN, (j) MCNN -LU, (k) JDL-LU, 542 

and the (l) SS-JDL-LU. Refer to Figures 6 to 11 for details of the corresponding classification legends. 543 

The classification accuracy of the proposed SS-JDL was further compared with a range of 544 

benchmark approaches for S1, S2 and S3, respectively. The LC results (SS-JDL-LC) were 545 

benchmarked with other comparators, including the MLP, the GLCM-MLP, the MRF, the 546 
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MCNN-LC, and the JDL-LC; whereas, the LU results (SS-JDL-LU), were compared with MRF, 547 

OBIA, CNN, MCNN-LU, and the JDL-LU. Visual inspections and accuracy assessment, based 548 

on the overall accuracy (OA), Kappa coefficient (κ) and the per-class mapping accuracy, were 549 

used to test the classification results.  550 

Figure 12 demonstrates visually the classification results of S1, S2 and S3 amongst the various 551 

benchmark methods. For LC, the pixel-based MLP showed the lowest classification accuracy 552 

due to the severe salt-and-pepper effects in all study sites (Figure 12(a)). Confusion was found 553 

between the Asphalt and Concrete roof classes together with the severe issues of shadow cast by 554 

buildings and woodlands. The GLCM-MLP incorporated spatial texture within the image, which 555 

increased the capability to capture ground objects with distinctive textures. For example, the 556 

woodlands with course textures were identified accurately in Figure 12(b). Such GLCM-MLP 557 

based classification results, however, still suffered from difficulties in differentiating those LC 558 

classes with similar spectra and textures (e.g., the Asphalt and Concrete roof classes). The MRF 559 

significantly increased the ability to characterise the Asphalt road class by borrowing adjacent 560 

neighbourhood information, but suffered from some issues with respect to other classes (e.g., 561 

Concrete roof and Clay roof) as illustrated in Figure 12(c). The MCNN-LC clearly showed 562 

increased accuracy in differentiating Asphalt and Concrete roof, but some edges along the roads 563 

and bare soils were misclassified as Clay roof (Figure 12(d)). The JDL-LC significantly 564 

increased the classification accuracy using LU and LC characteristics iteratively (Figure 12(e)). 565 

It, however, failed to resolve some problems along the object boundaries (e.g., for the Asphalt 566 

class). The proposed SS-JDL-LC method solved all these problems achieving a high accuracy 567 

overall (Figure 12(f)).  568 

In terms of LU classification, the MRF demonstrated serious deficiencies in identifying 569 

residential and commercial areas with noisy results (Figure 12(g)). OBIA smoothed the LU 570 

classification to a large extent, but failed to differentiate complex objects such as the Parking lot 571 
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and Industrial classes, and lost some fine-grained details (e.g., Highway) (Figure 12(h)). The 572 

pixel-wise CNN showed some advantages in capturing complex LU classes (e.g., Parking lot, 573 

Commercial). It, however, produced severe geometric distortions (e.g., the enlarged commercial 574 

buildings) and poorly defined boundaries (e.g., the edge between the Residential and Highway 575 

classes) (Figure 12(i)). The MCNN-LU achieved increased accuracy in classifying the Parking 576 

lot class, but failed to capture continuous linear features such as Highway or Railway (Figure 577 

12(j)). JDL-LU (Figure 12(k)) and the proposed SS-JDL-LU (Figure 12(l)) share similar 578 

classification results with high precision and fidelity. The SS-JDL-LU, surprisingly, 579 

demonstrated some further improvements in identifying detailed objects and their boundaries 580 

(e.g., Highway).  581 

The quantitative accuracy assessment for LC classification is reported in Tables 3, 4 and 5 for 582 

S1, S2 and S3, respectively. The SS-JDL-LC consistently achieved the highest OA of 91.06%, 583 

90.43% and 90.62% (κ = 0.90, 0.89 and 0.89) for S1, S2 and S3, respectively, greater than the 584 

JDL-LC of 89.68%, 88.29% and 88.48% (κ = 0.88, 0.87 and 0.87), the MCNN-LC of 87.54%, 585 

86.95% and 86.57% (κ = 0.86, 0.86 and 0.85), the MRF of 84.32%, 84.78% and 84.54% (κ = 586 

0.84, 0.84 and 0.83), the GLCM-MLP of 83.24%, 82.85% and 83.06% (κ = 0.82, 0.82 and 0.82), 587 

and the MLP of 82.06%, 81.29% and 82.22% (κ = 0.81, 0.80 and 0.81), respectively. In terms of 588 

LU classification, the SS-JDL-LU yielded the greatest OA (88.94%, 88.26% and 88.48%) for 589 

S1, S2 and S3 with the highest κ (0.89, 0.88 and 0.88), consistently higher than the JDL-LU (OA 590 

= 87.68%, 87.58% and 86.26%, κ = 0.88, 0.87 and 0.86), the MCNN-LU (OA = 85.94%, 85.29% 591 

and 85.08%, κ = 0.86, 0.85 and 0.84), the CNN (84.32%, 84.08% and 83.32%, κ = 0.84, 0.83 592 

and 0.82), the OBIA of (82.17%, 80.26% and 80.42%, κ = 0.82, 0.80 and 0.80), and the MRF 593 

(81.06%, 79.38% and 79.29%, κ = 0.80, 0.79 and 0.79).  594 

The per-class mapping accuracy further demonstrated the superiority of the SS-JDL method, 595 

with the most accurate results shown in bold font in Tables 3 to 8. Specifically, for LC 596 
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classification, the Clay roof, Metal roof, Woodland, Grassland, Asphalt classes were accurately 597 

classified in S1, S2 and S3 using the SS-JDL-LC (accuracy > 90%) by incorporating spatial and 598 

spectral feature representations across different scales. Such high accuracies were also achieved 599 

for Heath (90.07%) and Sand (92.62%) in S1, Crops (90.74%) in S2 and Water (98.27%) in S3. 600 

The accuracies of these LC classes, in particular Woodland and Grassland (90.99% and 91.62% 601 

on average), were significantly higher than for the benchmarks, with average accuracies for the 602 

MLP (69.36% and 71.74%), GLCM-MLP (72.78% and 71.63%), MRF (76.15% and 75.47%), 603 

MCNN-LC (85.95% and 86.05%), and JDL-LC (88.75% and 90.35%), respectively. The 604 

Concrete roof class was the most challenging LC class to be classified, producing the lowest 605 

accuracy of 83.07% on average for the SS-JDL-LC, which was nevertheless significantly higher 606 

than for the MLP (70.19%), GLCM-MLP (72.62%), MRF (73.89%), MCNN-LC (77.56%), and 607 

JDL-LC (79.56%), respectively. Accuracies for other classes, such as Rail and Bare soil (88.57% 608 

and 87.16%) were less significantly increased using the SS-JDL-LC compared with the 609 

benchmark methods, in which less than 5% accuracy differences were found among them. 610 

Tables 6, 7 and 8 show the quantitative accuracy assessment for LU classification for S1, S2 and 611 

S3, respectively. The greatest accuracy increases were shown for the Commercial, Industrial, 612 

Parking lot and Highway classes, with average accuracies of 85.10%, 85.58%, 91.71%, and 613 

84.74%, respectively, for the proposed SS-JDL-LU, much higher than for the MRF (70.75%, 614 

70.78%, 79.12%, 78.37%), OBIA (71.24%, 71.06%, 81.42%, 78.85%), CNN (73.85%, 73.64%, 615 

84.16%, 79.10%), MCNN-LU (78.19%, 80.14%, 86.20%, 80.44%), and JDL-LU (82.61%, 616 

83.74%, 88.08%, 81.57%). For the Residential, Redeveloped area, and Park and recreational area 617 

classes, moderately increased accuracies were obtained by the SS-JDL-LU (88.49%, 91.59%, 618 

and 95.02%), greater than for the MRF (80.27%, 81.74%, 88.29%), OBIA (81.39%, 83.79%, 619 

90.06%), CNN (82.06%, 86.79%, 91.29%), MCNN-LU (83.86%, 88.24%, 91.42%), and JDL-620 

LU (86.63%, 89.70%, 93.69%), respectively. Other LU classes, including Railway, Herbaceous 621 
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vegetation, Sandy beach, Canal, and Agricultural area, did not show significant increases in 622 

accuracy in comparison with the benchmarks, with similar accuracies being achieved by the 623 

JDL-LU and SS-JDL-LU classifiers. 624 

Table 3. LC accuracy comparison for each class and overall between MLP, GLCM-MLP, MRF, MCNN-625 

LC, JDL-LC, and the proposed SS-JDL-LC method in S1. The largest classification accuracies and Kappa 626 

coefficients are shown in bold font. 627 

LC Class (S1) MLP GLCM-MLP MRF MCNN-LC JDL-LC SS-JDL-LC 

Clay roof 90.12% 88.62% 89.58% 88.27% 91.87% 92.16% 

Concrete roof 70.54% 73.95% 74.23% 77.59% 80.25% 84.05% 

Metal roof 90.17% 90.28% 90.16% 90.82% 91.34% 91.64% 

Woodland 69.45% 73.02% 76.28% 85.43% 88.24% 90.82% 

Grassland 72.36% 72.94% 75.53% 86.32% 90.65% 92.43% 

Asphalt 89.42% 88.57% 89.42% 88.29% 90.22% 90.68% 

Rail 83.21% 83.26% 83.56% 86.37% 88.54% 88.95% 

Bare soil 80.23% 81.05% 82.44% 83.52% 85.59% 86.78% 

Heath 82.63% 83.84% 86.18% 87.24% 89.74% 90.07% 

Sand 88.39% 88.98% 89.54% 89.43% 91.42% 92.62% 

Overall Accuracy (OA) 82.06% 83.24% 84.32% 87.54% 89.68% 91.06% 

Kappa Coefficient (κ) 0.81 0.82 0.84 0.86 0.88 0.90 

Table 4. LC accuracy comparison for each class and overall between MLP, GLCM-MLP, MRF, MCNN-628 

LC, JDL-LC, and the proposed SS-JDL-LC method in S2. The largest classification accuracies and Kappa 629 

coefficients are shown in bold font. 630 

LC Class (S2) MLP GLCM-MLP MRF MCNN-LC JDL-LC SS-JDL-LC 

Clay roof 89.57% 88.27% 89.17% 90.05% 91.36% 91.92% 

Concrete roof 69.45% 71.82% 73.24% 77.56% 79.48% 82.43% 

Metal roof 89.36% 89.43% 90.18% 90.74% 91.56% 91.86% 

Woodland 69.03% 72.18% 76.84% 86.39% 88.54% 90.74% 
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Grassland 70.64% 71.36% 75.42% 84.28% 90.06% 91.87% 

Asphalt 88.42% 88.75% 89.43% 88.62% 87.64% 90.22% 

Rail 82.06% 82.64% 83.57% 85.34% 87.25% 88.16% 

Bare soil 80.12% 80.92% 82.45% 83.27% 85.74% 87.23% 

Crops 84.15% 85.28% 86.58% 88.21% 89.63% 90.74% 

Overall Accuracy (OA) 81.29% 82.85% 84.78% 86.95% 88.29% 90.43% 

Kappa Coefficient (κ) 0.80 0.82 0.84 0.86 0.87 0.89 

Table 5. LC accuracy comparison for each class and overall between MLP, GLCM-MLP, MRF, MCNN-631 

LC, JDL-LC, and the proposed SS-JDL-LC method in S3. The largest classification accuracies and Kappa 632 

coefficients are shown in bold font. 633 

LC Class (S3) MLP GLCM-MLP MRF MCNN-LC JDL-LC SS-JDL-LC 

Clay roof 90.06% 87.45% 89.55% 90.05% 90.82% 91.35% 

Concrete roof 70.58% 72.08% 74.21% 77.53% 78.96% 82.74% 

Metal roof 90.12% 88.36% 90.09% 90.19% 90.88% 91.28% 

Woodland 69.59% 73.14% 75.32% 86.02% 89.47% 91.42% 

Grassland 72.22% 70.59% 75.45% 87.54% 90.35% 90.56% 

Asphalt 89.46% 88.62% 89.42% 88.57% 88.24% 90.73% 

Rail 83.18% 83.42% 84.36% 85.42% 87.89% 88.59% 

Bare soil 80.21% 80.75% 82.25% 82.76% 84.92% 87.46% 

Water 97.54% 96.28% 97.43% 96.53% 98.06% 98.27% 

Overall Accuracy (OA) 82.22% 83.06% 84.54% 86.57% 88.48% 90.62% 

Kappa Coefficient (κ) 0.81 0.82 0.83 0.85 0.87 0.89 

Table 6. LU accuracy comparison for each class and overall between MRF, OBIA, Pixel-wise CNN, 634 

MCNN-LU, JDL-LU, and the proposed SS-JDL-LU method in S1. The largest classification accuracies 635 

and Kappa coefficients are shown in bold font. 636 

LU Class (S1) MRF OBIA CNN MCNN-LU JDL-LU SS-JDL-LU 

Commercial 71.11% 68.47% 74.16% 78.52% 82.72% 85.95% 
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Industrial 72.52% 72.05% 74.84% 79.68% 83.26% 85.73% 

Residential 78.41% 80.38% 82.45% 84.02% 86.56% 88.26% 

Redeveloped area 82.57% 84.15% 87.04% 88.96% 90.75% 92.84% 

Park and recreational area 88.42% 89.54% 90.76% 90.47% 94.59% 96.59% 

Parking lot 79.63% 82.06% 84.37% 86.58% 88.02% 92.58% 

Highway 81.43% 79.26% 80.59% 83.04% 84.37% 88.29% 

Railway 85.94% 88.14% 88.32% 89.54% 91.48% 91.89% 

Herbaceous vegetation 82.71% 84.37% 85.24% 86.82% 88.57% 89.02% 

Sandy beach 85.63% 88.28% 87.18% 88.25% 90.74% 91.45% 

Overall Accuracy (OA) 82.06% 82.17% 84.32% 85.94% 87.68% 88.94% 

Kappa Coefficient (κ) 0.80 0.81 0.84 0.86 0.88 0.89 

Table 7. LU accuracy comparison for each class and overall between MRF, OBIA, Pixel-wise CNN, 637 

MCNN-LU, JDL-LU, and the proposed SS-JDL-LU method in S2. The largest classification accuracies 638 

and Kappa coefficients are shown in bold font. 639 

LU Class (S2) MRF OBIA CNN MCNN-LU JDL-LU SS-JDL-LU 

Commercial 70.07% 72.83% 73.25% 77.62% 82.43% 84.76% 

Industrial 67.26% 69.04% 71.22% 80.14% 84.74% 85.28% 

High-density residential 81.55% 80.37% 80.04% 82.32% 86.46% 88.32% 

Medium-density residential 82.72% 84.38% 85.23% 86.75% 88.58% 88.62% 

Park and recreational area 88.02% 91.12% 92.34% 92.74% 93.06% 94.02% 

Parking lot 78.04% 80.12% 83.75% 85.29% 88.14% 91.78% 

Highway 77.24% 78.06% 76.15% 77.84% 79.65% 82.37% 

Railway 88.05% 90.63% 86.53% 89.02% 91.89% 91.92% 

Agricultural area 85.08% 88.55% 87.43% 88.36% 90.94% 91.85% 

Redeveloped area 80.08% 83.07% 86.24% 87.82% 88.62% 90.69% 

Overall Accuracy (OA) 79.38% 80.26% 84.08% 85.29% 87.58% 88.26% 

Kappa Coefficient (κ) 0.79 0.80 0.83 0.85 0.87 0.88 
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Table 8. LU accuracy comparison for each class and overall between MRF, OBIA, Pixel-wise CNN, 640 

MCNN-LU, JDL-LU, and the proposed SS-JDL-LU method in S3. The largest classification accuracies 641 

and Kappa coefficients are shown in bold font. 642 

LU Class (S3) MRF OBIA CNN MCNN-LU JDL-LU SS-JDL-LU 

Commercial 71.08% 72.43% 74.13% 78.44% 82.67% 84.58% 

Industrial 72.57% 72.08% 74.85% 80.59% 83.22% 85.73% 

Residential 78.39% 80.42% 80.52% 82.36% 84.91% 88.76% 

Park and recreational area 88.43% 89.52% 90.78% 91.05% 93.43% 94.47% 

Parking lot 79.68% 82.05% 84.36% 86.74% 88.09% 90.92% 

Highway 76.43% 79.22% 80.57% 80.43% 82.02% 83.59% 

Railway 85.96% 88.17% 88.31% 89.15% 90.39% 91.65% 

Redeveloped area 82.57% 84.14% 87.09% 87.95% 89.72% 91.24% 

Canal 90.68% 92.27% 94.16% 95.48% 96.58% 96.84% 

Overall Accuracy (OA) 79.29% 80.42% 83.32% 85.08% 86.26% 88.48% 

Kappa Coefficient (κ) 0.79 0.80 0.82 0.84 0.86 0.88 

 643 

4 Discussion 644 

Spatial scale is a fundamental concern in remotely sensed feature representations, as real-world 645 

features are often manifested over a range of scales (e.g., small football pitch and large-scale 646 

shopping centres). The importance of scale is well recognised in the remote sensing community 647 

through hand-coded and learnt features (e.g., Chen and Tian, 2015; Zhao et al., 2016). However, 648 

the current need for scale selection and multi-scale representations are cumbersome and 649 

extremely inefficient, and often fail to capture the scale variations of objects and their local and 650 

global stationary characteristics. Such issues are crucial for deep learning methods that require a 651 

large amount of effort for parameterisation, such as choosing the optimal scale or multiple scales 652 

as CNN input window sizes for feature representations. These hyper-parameters within the deep 653 

networks are extremely difficult to tune effectively, which severely restricts their practical utility 654 
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in remotely sensed image classification. To overcome these issues, a scale sequence joint deep 655 

learning (SS-JDL) method was developed to solve the complex LU and LC classification 656 

problem in an efficient and effective manner.  657 

Scale sequence joint deep learning (SS-JDL) provides a novel paradigm that embeds multiple 658 

scales explicitly within joint deep learning across different classification hierarchies (e.g., LU 659 

and LC). Two major characteristics of SS-JDL include (1) information pathways from small to 660 

large scales by mimicking the human visual cognition system, and (2) integrated hierarchical 661 

learning between a pixel-based MLP and patch-based CNN across multiple scales.  662 

Regarding the former, a forward scale sequence (FSS) was autonomously derived based on the 663 

minimum and maximum sizes of objects found within the remotely sensed images to be 664 

classified. The FSS represents a sequential observation and identification process from small 665 

scale features to large scale contexts and from LC states to LU representations, which is 666 

consistent with human visual cognition from simple parts and components towards more 667 

generalised and complex concepts as well as higher-level characteristics (Lappe et al., 2013). 668 

With the scale sequence, the SS-JDL intrinsically involves multi-scale representations, where 669 

input patch sizes for the CNNs change from small to large along the iteration sequence to capture 670 

the scale effects manifest in high-order LU features. In contrast, the recently proposed JDL 671 

requires a pre-defined CNN window size to be found. This may require experimenting with a 672 

wide range of window sizes, to find the potentially “optimal” scale for both LU and LC 673 

representations. The entire process of scale selection takes potentially an extremely long time 674 

(20 JDL iterations at each scale), and it is impossible to fit a single “optimal” scale for LU and 675 

LC simultaneously as shown in Figure 5. Whereas the SS-JDL does not aim to find such an 676 

“optimal” scale, but integrates multiple scales through an iterative classification process to 677 

represent the scale effects across the scene. For the three study sites, the SS-JDL converged to 678 

the optimal solution rapidly (just five iterations or input scales; Figure 4), Thus, five scales are 679 
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recommended as the default settings for the scale sequence depending on the complexity of the 680 

landscape. Within each iteration, the CNN networks learn the LU representations in deep and 681 

abstract levels (nine layers in the experiments), which captures the spatial pattern successively 682 

in a hierarchy at a specific scale, and continuously learns along the sequence of scales through 683 

the iterative process. Such a scale sequence needs only the minimum and the maximum scales, 684 

and autonomously interpolates the scale at each iteration, which is simple to implement for 685 

practitioners and end-users. Therefore, the proposed SS-JDL is highly suitable for remotely 686 

sensed image classification due to its simplicity and effectiveness. 687 

For the latter hierarchical learning issue, the complex LU and LC classification problems were 688 

addressed jointly through iteration, where the pixel-based MLP and patch-based CNN were 689 

integrated through a hierarchy in a way that is mutually beneficial (Zhang et al., 2019). 690 

Specifically, at each iteration, the spectral-based MLP was fitted to predict the LC at the pixel 691 

level, and based on this, the CNN was applied at the patch level to predict the LU of objects 692 

through spatial feature representations. Such joint learning was able to model the hierarchical 693 

relations between LU and LC iteratively while retaining the precise pixel-level spectral 694 

information. When the MLP is used alone for iteration, the process will lead to model overfitting 695 

towards training samples and failure to capture the spatial context relevant to LU (e.g., 696 

commercial areas involve large buildings and retail together with parking lots). Using the CNN 697 

only through iteration will result in blurred object boundaries within the classification results 698 

caused by the densely overlapping patches and spatial convolution, thereby missing fine-scale 699 

detail and degrading the classification accuracy (Zhang et al., 2018c). By combining the MLP 700 

and CNN in a hierarchy, the blurred boundaries in the LU obtained by the patch-based CNN can 701 

be pulled back to the pixel-level detail in the LC by employing the MLP classifier. Similarly, the 702 

spatial context of the neighbourhood information in the LU is utilised by the MLP to support the 703 

production of a less noisy and more accurate LC classification. Such joint classification 704 
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formulates a cyclic process of information as: “neighbourhood – pixel – neighbourhood – pixel”, 705 

where the precise LU and LC are characterised through the appropriate hierarchical 706 

representation and in a joint fashion.  707 

Together with the scale sequence and integrated hierarchical learning, the proposed SS-JDL is, 708 

therefore, parsimonious with high computational efficiency, and effective in that it delivers 709 

superior classification accuracy relative to benchmarks, some of which can be considered to be 710 

state-of-the-art. Both efficiency due to simplicity and effectiveness in accuracy were supported 711 

by the experimental results, in which the SS-JDL constantly achieved the highest classification 712 

accuracies for LU and LC with the least computational time in both study areas.  713 

From an artificial intelligence perspective, the SS-JDL mimics the human visual system, 714 

combining the information across multiple scales to increase semantic meanings through joint 715 

reinforcement processes. Within the SS-JDL, the information learnt from lower scales passes 716 

forward to the higher scales, and high-level semantic information is learned gradually through 717 

continuously increasing window sizes of the CNN. Likewise, the human visual system can 718 

capture high level semantic representations (e.g., LU feature representations) without conscious 719 

effort, and such that the spatial outlines and the fine grained detail are integrated for vision and 720 

image understanding. Human brains are not required to exhaustively search for the so-called 721 

“optimal” scales, but rather are able to identify and label objects with both low and higher-order 722 

semantic meaning, drawing from labels that exist in a changing hierarchical ontological 723 

relationship, with great ability for generalisation and practical utility. The joint reinforcement in 724 

SS-JDL across scales, therefore, has great potential to catalyse a step change in the future of 725 

machine learning and AI, as well as applications in remote sensing and machine vision. 726 

5 Conclusion 727 
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Scale effects are a fundamental concern in remotely sensed image classification and are 728 

manifested in the landscapes to be classified. For land use (LU) classification and land cover 729 

(LC), it has been demonstrated that greatly increased classification accuracy for both can be 730 

achieved by predicting LU using an object-based CNN, predicting LC via an MLP, and 731 

modelling explicitly the relationship between the predicted LU and LC variables as a joint 732 

distribution (Zhang et al., 2019), thus, representing the obvious hierarchical relationship between 733 

LU and LC in both the scale and the ontological sense. However, its implementation requires the 734 

selection of an optimal patch size for the OCNN, which requires extensive searching and is, thus, 735 

computationally expensive. In this paper, an innovative scale sequence joint deep learning (SS-736 

JDL) framework, that involves the same MLP and OCNN classification models, was proposed 737 

for joint LU and LC classification. Based on the minimum and the maximum sizes of image 738 

objects, the SS-JDL method autonomously incorporates multiple scales within its iterative 739 

process, such that it removes the requirement for tedious optimal scale selection. The 740 

experimental results demonstrate excellent classification accuracy and computational efficiency 741 

in comparison with the benchmark methods, including the recently proposed joint deep learning 742 

(JDL) method. The proposed method is simple to implement, and has great generalisation 743 

capability and practical utility with the default parameter settings. The SS-JDL, therefore, has 744 

the potential to transform image classification in the field of remote sensing, and machine 745 

learning generally, by creating a fast and effective implementation of the unifying joint deep 746 

learning (JDL) framework for classifying higher order feature representations, including LU in 747 

the context of remote sensing. 748 
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