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Abstract 

Vegetation interception and the time of year will largely determine the contamination of foodstuffs 
immediately following an accidental release. During the transition phase, uptake of radionuclides 
by vegetation from soil will increase in importance and root uptake will dominate during the long-
term rehabilitation phase. Predictions made using radioecological models will be used to make long-
term decisions, e.g., with regard to remediation strategies. 

Models must be sufficiently robust and fit for purpose with uncertainties reduced where practicable. 
Most radioecological models use empirical transfer factors to estimate soil-to-plant transfer of 
radionuclides and these do not credibly cope with variation in root uptake caused by variation in 
soil properties. Consequently, process-based soil-to-plant models were developed to predict 
radionuclide (predominantly radiocaesium) transfer based upon relatively readily available soil 
properties. 

The model originally developed by Absalom et al. (1999) and further improved by Absalom et al. 
(2001) and Tarsitano et al. (2011) is a typical example of a process-based transfer model. It has been 
applied to predict radiocaesium transfer under a range of environmental conditions with varying 
degrees of success. 

The objective of the CONFIDENCE project’s Work Package 3 (WP3) was to improve the capabilities 
of radioecological models used to predict activity concentrations in foodstuffs and to better 
characterise, and where possible, reduce uncertainties. The focus of this deliverable is to consider 
the use of process based models for post-accident predictions. We begin with assessing the 
applicability of the ‘Absalom model’ to a range of European soil and plant types that were not 
included in its initial parameterization. We also demonstrate how the model can be incorporated 
into the Food Chain and Dose Module for Terrestrial Pathways (FDMT), which is part of the European 
decision support system, JRODOS. To date, most consideration in the development of process-based 
transfer models has been focused on radiocaesium. In this deliverable we develop process-based 
soil-plant transfer models for radiostrontium.  Finally, the deliverable reports on end-users views of 
process-based models.  

Our assessment of the Absalom model shows that it is a useful tool for predicting radiocaesium 
transfer to the human food chain. Its predictions for grass and radish (edible root) were mostly 
within an order of magnitude of the measurements for most of the study soils. We recommend 
expanding the model database by considering more soils (with different mineralogies) and plant 
types in its parameterisation. The Absalom model has successfully been incorporated into the FDMT. 

We have successfully established two process-based models to predict strontium concentrations in 
a range of crops using relatively few soil parameters and the calcium concentration in crops as 
inputs. To support these methodologies we have produced a collation of calcium concentrations in 
crops consumed by humans and farm animals (Chaplow et al., submitted). The approach removes 
the need for empirical concentration ratios and is able to make predictions for crop types for which 
no radioecological data exist. 

Whilst the approaches developed for strontium produced predictions that compared well with 
measured data, and better than predictions using the commonly used concentration ratio approach, 
they require further testing against a wider range of soil types and crops.  
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A weakness of the strontium approaches developed is that they can only be used to make 
equilibrium predictions. However, they would be sufficient to aid the identification of longer-term 
‘at risk areas’ in the event of an accidental release. The models could be used to estimate 
parameters to replace existing concentration ratios in models such as FDMT, which would enable 
their application in dynamic predictions. However, it would be preferable for future studies to 
consider trying to parameterise dynamic processes in soils within these process-based approaches.  
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1 Introduction 

Following an accidental release of radioactive substances into the environment, food production systems 
(e.g. pasture and agricultural lands) may become contaminated for a long time. Therefore, reliable 
prediction of radionuclide transfer to the food chain from contaminated lands is essential for effective 
protection of the public from exposure to harmful radiation through consumption of contaminated 
foodstuffs. 

The Chernobyl accident highlighted that some areas may be more ‘sensitive’ or ‘vulnerable’ (e.g. have 
comparatively high transfers to foodstuffs or contribute relatively high fluxes of radionuclides to the public 
via contaminated foodstuffs) to radiological contamination than other areas. Vulnerability depends upon, 
for instance, soil type, farming practices and local consumption habits (e.g. Desmet and Myttenaere, 1988; 
Howard, 2000; Howard et al., 2002; Wright et al., 2002). Because of such factors, predictive models should 
be able to cope with spatial and temporal variation in radionuclide transfer. 

Commonly used models to predict radionuclide activity concentrations in human foodstuffs tend to use 
empirical soil-to-plant transfer factors (also known as soil-plant concentration ratios) to describe the 
transfer of radionuclides from soil to crops (e.g. Brown and Simmonds, 1995; Brown et al., 2018). Such 
models cannot easily cope with variation in root uptake caused by variation in soil properties. In the 1990’s 
– 2000’s, semi-mechanistic, or process-based models were developed that could be implemented spatially 
and predict radiocaesium (RCs) transfer based upon relatively readily available soil properties (e.g. pH, 
soil organic matter content (OM), clay content, exchangeable potassium) (e.g. Absalom et al., 2001; Gillett 
et al., 2001; Wright et al., 2003). As well as being able to make predictions based upon local soil properties, 
the model described by Absalom et al. (2001) could also be used to predict the impact of K-fertilisation as 
a remediation measure. Consequently, the model was included within a decision support system (Cox et 
al., 2005). 

Following the Fukushima accident, there was interest in applying the model, as presented by Absalom et 
al. (2001), to predict RCs transfer for impacted areas in Japan. However, the model tended to over-predict 
RCs retention in Japanese soils and hence underestimate the likely uptake by crops (Uematsu et al., 2015, 
2016; Almahayni et al., 2019). 

To date, most consideration in the development of process-based soil-to-plant transfer models has been 
focussed on RCs. Of the other radionuclides, which might be released following a nuclear accident, 90Sr is 
the one that may be of long-term concern. For instance, 90Sr is present in soils within the Chernobyl 
exclusion zone at concentrations approaching those of 137Cs (Kashparov et al., 2001). In areas 
contaminated by releases from the Mayak facility (Russian Urals), 90Sr is a major contributor to dose 
(Akleyev et al., 2017; Tolstykh et al., 2017). 

The Strategic Research Agenda for radioecology (Hinton et al., 2013) prioritised further work on process-
based models, stating that: ‘By making the models more process-based, we expect (i) a significant 
reduction in model uncertainty; (ii) a better quantification of environmental variability; (iii) identification 
of the most influential parameters; and (iv) improved modelling tools capable of predicting radionuclide 
exposure to humans and wildlife under a variety of conditions, thereby enhancing the robustness of both 
human and wildlife assessments of exposure to ionising radiation’. However, whilst offering an approach 
to reduce the uncertainties associated with empirical, ratio-based models, process-based models have 
not been adopted for application in emergency planning/management.  
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In this report, we will:  

i) revisit process-based soil-plant models for RCs assessing their applicability to a range of European 
soil types and crops; 

ii) develop process-based soil-to-plant transfer model for radiostrontium;  
iii) demonstrate how process-based models can be incorporated into decision support systems;  
iv) report on end-users views of process-based models. 
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2 Radiocaesium soil-to-plant transfer 

2.1 Review of modelling approaches 

Several RCs soil-to-plant transfer models have been developed and published over the years. Within 
CONFIDENCE WP3, Almahayni et al. (2019) reviewed these models and assessed their fitness for the 
purpose of emergency preparedness and response. Specifically, the ability of existing soil-to-plant transfer 
models to aid decision makers regarding identification and targeting areas vulnerable to RCs deposition 
and implementation of long-term countermeasures. Existing RCs transfer models belong to the following 
broad approaches: empirical, semi-mechanistic and mechanistic.

2.1.1 The empirical approach 

Empirical transfer models are simple equilibrium concentration ratios (CR), or transfer factors (TF), that 
relate RCs concentration in plant biomass to RCs concentration in soil. This empirical approach is practical 
since it only requires RCs concentration in soil as an input and a TF value. Transfer factors have been 
determined for a wide range of soils and plant species. For instance, the International Atomic Energy 
Agency (IAEA) maintains and periodically updates a large compendium of TF values (e.g. IAEA, 2009, 2010). 
Where possible, transfer factors in the IAEA compendium are grouped according to soil texture (i.e. sand, 
loam and clay) and plant types (e.g. grass, leafy vegetables, root crops, etc.) with the aim of facilitating 
the selection of the most appropriate value. 

Although simple and practical, the empirical approach predictions for a given soil-plant may vary by up to 
four orders of magnitude (Figure 1). The TF predicts plant uptake of RCs from soil based on total activity 
concentration in soil, which does not represent the `bioavailable` pool of RCs in soil. A proportion of the 
total RCs in soil is strongly fixed within soil minerals (e.g. certain types of clays) and is unavailable for plant 
uptake. Furthermore, the empirical approach does not consider soil pH, OM content or exchangeable 
potassium (typically influenced by local agricultural practices). These soil parameters strongly affect RCs 
bioavailability. Other parameters which may affect RCs transfer to plants include chemical speciation of 
RCs (form deposited or used in a controlled study), time between measurement and contamination, plant 
cultivar and agricultural practices. Additionally, most existing TF data are appropriate for temperate 
regions, whereas those appropriate for tropical and arid regions are limited.
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Figure 1 Variation in RCs TF for common soils and plant types (IAEA, 2010). Note logarithmic scale on x-axis. 

2.1.2 The semi-mechanistic approach 

Unlike the empirical approach, the semi-mechanistic approach accounts for influential soil parameters 
such as pH, OM content, clay content and exchangeable potassium. The model of Absalom et al. (1999, 
2001) and its revised version (Tarsitano et al., 2011) are typical examples of the semi-mechanistic 
approach. They predict RCs transfer based on RCs deposition and soil pH, organic matter, clay content and 
exchangeable potassium.  

Because the ‘Absalom’ model includes soil parameters and processes, it is suitable for predicting RCs 
transfer from soils with differing physical and chemical characteristics. It is also capable of simulating the 
effect of agricultural practices such as potassium fertilisation and liming. The semi-mechanistic approach 
of the Absalom model is applicable to any area if appropriate soil parameters are available. The model is 
also suitable for predicting long-term transfer since it considers time-dependent variation in RCs 
availability due to fixation to soil minerals. The model has been applied in various contexts (i.e. in different 
regions and for different foodstuffs) (e.g. Gillett et al., 2001; Beresford et al., 2002; Wright et al., 2002; 
Cox et al., 2005; Keum et al., 2007; Uematsu et al., 2016).  

In Almahayni et al. (2019) we evaluated the Absalom model in terms of mechanistic basis and practicality. 
We concluded that the model was more mechanistic than the transfer factor approach since it relates RCs 
uptake to soil physical and chemical characteristics, which in turn are estimated from basic soil parameters 
(e.g. pH, clay content and OM content). Recently, the model has been extended to include wheat and 
barley, and restructured following an assessment of parameter redundancy (Tarsitano et al., 2011). This 
led to the development of a slightly modified version of the original model. 
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The Absalom model still has some limitations. Because the model was parameterised for European soils 
and grasses, it predicts RCs transfer under these conditions better than when it is used to predict RCs 
transfer for different crops (e.g. rice, potatoes, radish, etc.) and/or non-European (e.g. Japanese) soils (e.g. 
Keum et al., 2004; Rahman and Voigt, 2004; Rahman et al., 2005). For instance, the Absalom model uses 
clay content to predict RIP (Radiocaesium Interception Potential), which is a quantitative measure of soil 
intrinsic capacity and selectivity for sorbing RCs, and consequently RCs transfer to plants. This 
simplification however is not valid when applied to soils with different mineralogies from those included 
in the initial model calibration (i.e. common European soils). For example, the model overestimated the 
RIP of Fukushima soils by up to a factor of 16 (by a factor of 3 on average, N=51); the RIP per unit clay in 
the Fukushima soils was on average threefold lower than that in common Europeans soils (Uematsu et 
al., 2015). An empirical model with soil OM content and CEC (Cation Exchange Capacity) of the Fukushima 
soils data predicted RIP in the Fukushima soils more realistically than the Absalom model. Moreover, the 
model predictions of the TF for grass and Japanese soils differed (by less than two orders of magnitude) 
depending on whether RIP and dissolved potassium concentration were estimated by the model, or were 
measured values used as inputs (Uematsu et al., 2016). Recently, RCs transfer to brown rice from 50 
Japanese soils was successfully predicted when using a version of the model that used measured soil RIP 
as an input (Sadao, 2019). 

2.1.3 The mechanistic approach 

Mechanistic RCs transfer models are largely based on nutrient transport and uptake in soil-plant systems. 
They often couple dispersion to rate-controlled process such as mineral dissolution-precipitation 
reactions and enzyme kinetics. These models are predominantly used for research purposes to test 
hypotheses and to identify important processes and sensitive parameters. 

The structure of mechanistic transfer models is complex in comparison with empirical and semi-
mechanistic models. Mechanistic models require many parameters that are not readily available or easy 
to measure (e.g. rate constants and root structure). Consequently, these models are seldom used to 
predict RCs transfer to plants in the context of nuclear emergency. Additionally, many mechanistic RCs 
transfer models do not account for the influence of exchangeable potassium on RCs transfer. Potassium 
has been shown to compete with RCs for plant uptake, especially in soils with low exchangeable potassium 
(Zhu and Smolders, 2000). This has led to using potassium fertilisers as a countermeasure to reduced RCs 
uptake from contaminated lands (Salt and Rafferty, 2001). Failure to account for potassium-RCs 
competition for plant uptake may produce unrealistic (e.g. high) uptake predictions.

2.1.4 Summary and recommendations 

The advantages and disadvantages of the main RCs transfer modelling approaches are summarised in 

Table 1 Advantages and disadvantages of existing RCs transfer modelling approaches as predictive tools in nuclear 
emergencies. 

. In conclusion, the semi-mechanistic Absalom model is practical, robust and fit for predicting RCs transfer 
to plants in a nuclear emergency context. However, the model should be parameterised for soils and 
plants that were not included in its initial parameterisation. To optimise resources, parameterisation could 
focus on regions around major nuclear power plants to build a model database that is sufficiently 
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representative of soils and plants not only in the temperate environment, but also in tropical, arctic and 
arid environments.

Table 1 Advantages and disadvantages of existing RCs transfer modelling approaches as predictive tools in nuclear 
emergencies. 

Modelling approach Advantages Disadvantages 

Empirical 
(e.g. transfer factor) 

 Simple 

 Practical  

 Does not account for key soil processes 
and parameters 

 Large variability 

 Lack of data for tropical and arid regions 

Semi-mechanistic 
(e.g. Absalom 
model) 

 Practical 

 Accounts for key soil 
parameters and processes 

 Accounts for time-
dependent variation in RCs  

 Practical 

 Robust 

 Required soil parameters 
are often readily available. 

 Predictions of RIP and dissolved 
potassium concentration may not be 
poor for soils that are outside the 
calibration range 

 Works best for European soils and grass 
(data for other soils and plant types are 
limited) 

Mechanistic 
(e.g. nutrient 
transport and 
uptake) 

 Instrumental research tool 

 Test hypotheses and 
sensitivity of processes and 
parameters 

 Model structure is complex 

 Requires many non-readily available 
parameters 

 Some do not account for key processes 
and parameters 
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2.2 Transfer experiments and models 

The review of existing RCs soil-to-plant transfer models (Almahayni et al., 2019) identified the semi-
mechanistic Absalom model as a practical and robust predictive tool that can be used to plan and prepare 
countermeasures following nuclear emergencies. To further test the Absalom model and to identify soil 
parameters that influence RCs transfer to plants, SCK•CEN conducted controlled RCs transfer experiments 
using European soils (including some from more arid areas) and plants that had not been included in the 
Absalom model parameterisation.  

In the following sections, the experimental setup and the results of these transfer experiments are 
presented and discussed.

2.2.1 Soil characterisation 

Work package 3 partners (SCK•CEN, CEH, DSA and University of Extremadura) provided the soils that were 
used in the transfer experiments (Table 2). The soils represented temperate (Belgium and UK), 
Mediterranean (Spain) and boreal (Norway) European regions and were collected from arable land (N=5) 
and pastures (agricultural and semi-natural) (N=15); arable soils were underrepresented in the study soils.  

Most soils had already been characterised in terms of pH, OM content (estimated by loss on ignition) and 
particle size distribution (sand, silt and clay content); where this information was not already available, 
analyses were conducted to obtain it. Soil CEC and RCs interception potential (RIP) were determined on 
subsamples of the soils using standard laboratory procedures (CEC was determined using silver thiourea 
complex cation, and soil RIP was determined according to Wauters et al (1996)). 

Table 2 Soils used in the RCs soil-to-plant transfer experiments. 

Country N Land use Soil label 

Belgium 6 Pasture C, F, I, J, M, N 

UK 6 Pasture, arable Brimstone, Bromyard, Chiltern, Corney, North Wales, Spark 
Bridge  

Spain 6 Pasture, arable Bazagona, Casar de Caceres, Monfrague, Retortillo, Torreorgaz, 
Valero 

Norway 2 Pasture R13_14, R_15* 
*The R_15 soil was included in the transfer experiments but not in subsequent analyses since no information on its 

clay content was provided. 

 

2.2.2 Experimental setup 

For the soil-to-plant transfer experiments, moist soils (at field capacity; see Table 2) were sieved to 2-mm 
and contaminated with approximately 400 Bq g-1 dw 137Cs. The soils were then fertilised with the 
recommended amount of nitrogen, phosphorous and potassium, (NPK) fertiliser, homogenised and left 
to equilibrate for 3 weeks. The soils were subsequently sown with ryegrass seeds (density of 0.65 g pot-1). 
Water lost by evaporation and root uptake was replenished regularly using demineralised water. 



 

 

 

page 14 of 71 

Deliverable D9.15 

Grass was harvested after 23 days. The plants were cut at 2 cm above soil surface and washed to avoid 
soil contamination. Plant biomass was oven-dried (70°C), ashed and dissolved in hydrochloric acid ready 
for analysis. To prepare the soils for the next experiment, plant roots were removed from soils; the soils 
were then re-fertilised and equilibrated for 5 days. 

The same procedure as described for grass was repeated for spinach (leaves) and radish (edible root). The 
growth period for these two plants was 35 days.
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Soil collection RIP measurements: soil equilibration 

  
Grass transfer experiment Spinach transfer experiment 

  
Radish transfer experiment 

Figure 2 The setup of the RCs soil-to-plant transfer experiments. 
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2.2.3 Results and discussion 

The study soils (N=20) covered a wide range of physical and chemical characteristics (Figure 3). Soil pH 
ranged between 5 (Corney) and 8 (Brimstone); OM content varied between 4% (Bromyard) and 60% 
(Corney); clay content was between 1% (Bazagona and R13_14) and 40% (Bromyard) and the range in RIP 
was between 8 cmolc/kg (R13_14) and 1049 cmolc/kg (M). 

The characteristics of the study soils varied between regions within the same country and between land 
management practices. For instance, the coefficient of variation in OM content, clay content and RIP 
between the British soils amounted to 107%, 70%, 101% respectively. The arable soils had greater clay 
contents, CEC and RIP than the pasture soils (Figure 4 and 5). Particularly, the greater RIP of the arable 
soils suggests that RCs transfer to crops grown in these soils would be lower than that from crops grown 
in the pasture soils.
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Figure 3 Physical and chemical characteristics of the study soils   
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Figure 4 Range of the physical and chemical characteristics of the study soils grouped by land use. In the box and 
whisker plots: the thick horizontal line is the median, the lower and upper edges of the box are the 25th and 75th 
percentiles and the extending lines from both ends of the box are the minimum and maximum. 
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Figure 5 RIP of the study soils and its distribution according to land use; the thick horizontal line on the box whisker plot  is the median, the lower and upper 
edges of the box are the 25th and 75th percentiles and the extending lines from both ends of the box are the minimum and maximum (excluding outliers: full 

circles). 
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2.2.3.1 Estimating RIP from basic soil parameters 

It has been suggested that RIP strongly influences soil capacity to retain RCs and hence RCs availability to 
plants (Cremers et al., 1988; Delvaux et al., 2000; Waegeneers et al., 2005; Uematsu et al., 2016). 
Additionally, RIP is a key parameter in the semi-mechanistic Absalom model, which can either be 
estimated from OM and clay content or used directly as an input. However, soil RIP values are neither 
readily available or are they routinely measured.  

 

Table 4: Results of the linear regression of RIP against pH, clay (%), OM (%) and CEC (cmolc/kg) of the study 
soils (N=19). R2 is the adjusted coefficient of determination of the model (RIP = 𝛽0 + 𝛽1 × 𝑐𝑙𝑎𝑦) and related 
P value in parenthesis. 

Coefficient Value Std. error P value R2 
𝜷𝟎 943 961 0.3  
𝜷𝟏 203 56 <0.01 0.40 (<0.01) 

 

 

Table 5: Results of the linear regression of RIP against CEC (cmolc/kg) of the Belgian soils only (N=6). R2 is 
the adjusted coefficient of determination of the model (RIP = 𝛽0 + 𝛽1 × 𝐶𝐸𝐶) and related P value in 
parenthesis. 

Coefficient Value Std. error P value R2 
𝜷𝟎 -598 116 <0.01 1 (<0.01) 
𝜷𝟏 168 3 <0.01 

We investigated whether the RIP in our dataset could be estimated from pH, clay content, OM content 
and CEC. Overall, the RIP correlated significantly to pH and clay content (Table 3). Stepwise regression 
with RIP as the dependent variable and these parameters as the independent variables retained the clay 
content as the only significant predictor (Table 4). 

However, RIP and CEC correlated well in the Belgian soils as shown in Figure 6. Further analysis of the 
relationship between the two parameters in these soils revealed a strong and significant linear association 
(Table 5). We found no such correlation in the British soils despite having RIP and CEC ranges comparable 
to those of the Belgian soils, suggesting that other factors (not measured in our study) may have 
influenced the RIP-CEC dependence. 

Table 3 Kendall’s rank correlation coefficients and related P values between RIP and soil parameters in the 
study soils (N=19).  

Soil parameter Correlation coefficient P values 

pH 0.39 0.02 

OM (%) 0.05 0.8 

Clay (%) 0.43 0.01 

CEC (cmolc/kg) 0.32 0.06 
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We also tested the empirical equations of Absalom et al. (2001) that estimate soil RIP mainly from clay 
content, OM content and pH. We compared RIP values estimated for our soils (Table 2) based on the 
relationships with RIP measurements given in Absalom et al. (2001). Whilst the two sets of RIP values 
correlated significantly, the estimates were significantly lower than the measurements (Table 6), 
suggesting that the empirical equations of Absalom et al. (2001) overestimated RCs mobility (RCs sorption 
in soil is proportional to RIP), and possibly its uptake, in the test soils. 

Table 6: Results of the linear regression of measured RIP (cmol/kg) against Absalom-predicted RIP (cmol/kg) in the 
study soils (N=19). R2 is the adjusted coefficient of determination for the model (RIP (measured) = 𝛽0 + 𝛽1 ×
𝑅𝐼𝑃 (𝐴𝑏𝑠𝑎𝑙𝑜𝑚)) and related P value in parenthesis. 

Coefficient Value Std. error P value R2 
𝜷𝟎 114 92 0.2 0.40 (<0.01) 
𝜷𝟏 37 10 <0.01 

In our study, the RIP of the M soil was 12 times that of the J soil despite having identical clay contents 
(16%) (Figure 6). We observed similar behaviour in the British soils; the RIP of the Brimstone soil was three 
times that of the Chiltern soil despite their comparable clay content. Similarly, the average RIP of the 
Belgian and British soils was twice the average RIP of the Spanish soils despite having 5 times the amount 
of clay content. These results support findings from previous studies regarding the likely influence of clay 
mineralogy on soil RIP (Vandebroek et al., 2012; Uematsu et al., 2015; Almahayni et al., 2019).  
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Figure 6 Soil RIP as a function of soil characteristics. 
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2.2.3.2 Soil-to-plant transfer factors 

Radiocaesium transfer from the contaminated soils (see section 2.2.2) varied between soils and plant 
species (Figure 7). The TF varied between soils by up to three orders of magnitude. The TF was on 
average lower for the arable soils than for the pasture soils, indicating that arable soils retained RCs 
more effectively, thus reducing the potential for RCs plant uptake compared to their pasture 
counterparts (Figure 8). Indeed, these soils had on average a greater RIP (median of 418.2 cmol/kg) 
than the pasture soils (median of 196.2 cmol/kg). These differences may explain the lower RCs transfer 
from the arable soils.  

We acknowledge that the difference in uptake from the arable and pasture soils may be due to our 
sampling strategy. The study soils were not purposefully selected to compare transfer between arable 
to pasture soils but to represent a range of environmental conditions. 

 

Figure 7 Variation in RCs soil-to-plant transfer factor over all soils. Green circles are the 
geometric mean (GM) of the TF reported in the IAEA (2010) for grass, root crops and leafy 
vegetables. 
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Figure 8 Variation in RCs soil-to-plant transfer factor, across all study crop types, between the main land uses 
in our study; the thick horizontal line is the median, the lower and upper edges of the box are the 25th and 75th 
percentiles and the extending lines from both ends of the box are the minimum and maximum. 

The TF data we obtained for our study soils compare reasonably (same order of magnitude) to those 
reported in the IAEA (2010) compendium for similar plant types (Table 7). The GSD values in Table 7 
highlight the large uncertainty in TF values. 

Table 7: Geometric mean (GM) and geometric standard deviation (GSD) of TF measured in our 
experiments and those reported in IAEA (2010) for similar plant species. 

 Confidence WP3 IAEA 

 N GM GSD  N GM GSD 

Grass 20 7.8×10-2 9 Grass 64 6.3×10-2 37 

Radish 20 7.8×10-2 5 Root 
crops 
(roots) 

81 4.2×10-2 3 

Spinach 20 4.2×10-2 11 Leafy veg. 290 6.0×10-2 6 

 

2.2.3.3 Predicting Transfer Factors from basic soil parameters 

Predicting TFs from basic soil parameters would have advantages for predicting RCs transfer to the 
food chain. Predicting TFs from soil parameters would allow us to bridge the data gap in existing TF 
compendia, which generally lack data for specific soil categories, plant types or both. The approach 
could utilise soil data in existing soil databases allowing spatially-distributed prediction of RCs transfer 
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to pasture and food crops and for the construction of soil vulnerability maps (as has been previously 
demonstrated by Wright et al. (2003) who applied a model parametrised using soil OM content to 
upland areas of England).  

We investigated the potential to predict RCs TF for grass, radish edible root and spinach from pH, OM 
content, clay content, CEC and RIP of the study soils. Despite the apparent association between the TF 
and some of these parameters (clay content, CEC and RIP in the radish dataset as shown in Figure 9 to 
Figure 13), the overall association between the TF and the aforementioned soil parameters was not 
statistically significant (Table 8), indicating that these parameters, on their own, could not predict the 
TF reliably.

 

Table 8: Results of the stepwise regression analyses of the TF against pH, OM content (%), clay 
content (%) and RIP (cmol/kg) of the study soils (N=19). R2 is the adjusted coefficient of 
determination of the model (𝑇𝐹 = 𝛽0 + 𝛽1 × pH + 𝛽2 × clay + 𝛽3 × OM + 𝛽4 × RIP) and 
related P value in parenthesis. 

Soil parameter Coefficient Std. error P value R2 

Grass  

𝜷𝟎  3.05 1.3 0.04 0.26 (0.07) 

𝜷𝟏 -3.13E-1 2.0E-1 0.04 

𝜷𝟑 -2.05E-2 1.4E-2 0.2 

𝜷𝟒 -9.10E-4 5.1E-4 0.1 

Radish (edible roots)  

𝜷𝟎  4E-1 1.2E-1 <0.01 0.12 (0.09) 

𝜷𝟒 -4.7E-4 2.6E-4 0.09 

Spinach 

𝜷𝟎  3.3 1.3 0.02 0.18 (0.08) 

𝜷𝟏 -0.42 0.2 0.04 

𝜷𝟑 -0.02 0.01 0.1 
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Figure 9 Measured TF for grass, radish edible root and spinach as a function of clay content of the study soils. 
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Figure 10 Measured TF for grass, radish edible root and spinach as a function of CEC of the study soils. 
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Figure 11 Measured TF for grass, radish edible root and spinach as a function of soil RIP. 



 

 

 

page 29 of 71 

Deliverable D9.15 

 

Figure 12 Measured TF for grass, radish edible root and spinach as a function of soil OM content (estimated by loss on ignition). 
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Figure 13 Measured TF for grass, radish edible root and spinach as a function of soil pH. 
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2.2.3.4 Predicting Transfer Factors using the Absalom model 

As we demonstrated in Section 2.2.3.3, the TF did not correlate significantly to any of the basic soil 
parameters we measured during our experiments.  

We have applied the Absalom et al. (2001) model to predict RCs TF from our soils to grass, radish edible 
root and spinach using as inputs RCs concentration in soil, pH, OM content, clay content and 
exchangeable potassium. The model was applied with default parameter values for grass (see 
Almahayni et al., 2019 for full description of the model and its parameters). Consequently, model 
predictions presented in this report represent RCs transfer to grass from our study soils, and variation 
in those predictions reflect variations in the model inputs rather than variations in uptake between 
plants. Predictions for grass are compared to measured values form our studies for grass, radish and 
spinach. 

The Absalom model predicted RCs TF for grass reasonably well for most soils with predictions being 
within an order of magnitude of the measurements (the 1:1 line in Figure 14). Predictions for a few 
soils (N and J from Belgium, North Wales from UK and Valero from Spain) were within two orders of 
magnitude of the measured values. The variation of two orders of magnitude in model predictions 
across all soils is similar to the overall range for grass TF values as reported in IAEA (2010) for a wider 
range of soils. 

The Absalom model reproduced RCs concentration in grass biomass for most soils (Figure 15); 
predictions in grass biomass correlated significantly with our measurements (Table 9). However, 
estimates of RCs concentration in grass biomass based on an average TF (GM in IAEA (2010)) and soil 
contamination, did not correlate with our measurements, and we were unable to reproduce the 
variation in the RCs concentrations across our study soils (Figure 15).  

The results of the Absalom model validation are encouraging and increase confidence in the model. 
The model predictions of the TF correlated significantly with our TF measurements for grass and radish 
edible root (Table 9), indicating relevance of the Absalom predictions to the actual data (predictions 
were mostly within an order of magnitude of our measurements as shown in Figure 14). However, the 
Absalom model TF predictions correlated poorly with our TF measurements for spinach. These results 
suggest that the model—even with the default parameters—is useful for estimating TF for some 
species other than grass (e.g. edible root). Making predictions for leafy vegetables appears to require 
further model calibration based on a sufficiently large datasets. 

 

Table 9 Kendall’s rank correlation coefficients and related P values (in parenthesis) between Absalom 
predictions and the measurements of grass, radish (edible root) and spinach TF. 

 Grass TF (measured) Radish TF (measured) Spinach TF (measured) 

Grass TF (Absalom) 0.49 (< 0.01) 0.25 (>0.1 0.18 (>0.3) 
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Figure 14 Measured versus Absalom-predicted TF. The diagonal line represents the 1:1 line, which defines the perfect match between the predictions and the measurements.  
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Figure 15 Measured versus predicted (with Absalom and TF) RCs concentration in dry grass biomass across all soils. The Absalom model reproduced the measured concentration 
and its variation across study soils, whereas the TF-based predictions (using IAEA (2010) GM TF for grass) were poor. 
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2.2.4 Summary and recommendations 

We determined RCs transfer to grass, radish edible root and spinach from 20 European arable and 
pasture soils with varying pH, OM content, clay content, CEC and RIP. The median TF, a measure of RCs 
transfer to plants, increased in the following order: spinach < grass < radish edible root, and the values 
determined in our study were generally comparable to those reported in the IAEA (2010) compendium. 
Our TF values varied by up to three orders of magnitude across each soil—plant combination. This 
variability is in line with the variability in published TF data for similar plant categories. 

We attempted to derive an empirical equation that predicts soil RIP from readily available soil 
parameters to alleviate the need to measure RIP or rely on model predictions, which requires special 
procedures and involves using radioactive isotopes. The RIP correlated significantly to clay content of 
the study soils, but the correlation was not sufficiently strong to derive a useful predictive equation. 
The RIP correlated significantly to the CEC of the Belgian soils, whereas no such correlation existed in 
the British soils, for which RIP and CEC values were comparable to their Belgian counterparts. This calls 
for further investigation of the correlation between RIP and CEC. 

We also tested the ability of the Absalom model to estimate the RIP of the study soils from their clay 
content, OM content and pH. The model significantly and systematically underestimated the RIP of the 
study soils suggesting a need to revise how it predicts soil RIP (e.g. consider not only the clay content 
but also clay mineralogy). 

We also attempted to derive an empirical equation that predicts TF from readily available soil 
parameters (available from existing soil maps and/or databases), which would enable spatial 
predictions of RCs transfer to food chains. However, the TFs in our dataset did not correlate 
significantly to any particular soil parameter or set of parameters. Additionally, the size of our dataset 
(19 soils) is relatively small; a larger soil collection might potentially reveal statistically meaningful 
correlations between TF and soil parameters. 

The Absalom (2001) model is a useful tool for predicting RCs transfer to the food chain. The model 
predictions of the TF for grass and radish edible root were mostly within an order of magnitude of the 
measurements for most of the study soils. This is encouraging considering that we applied the model 
with the default parameter values (the experimental data were too few to allow proper calibration of 
the model). We recommend expanding the model database by considering more soils (with different 
mineralogies) and plant types in its parameterisation. 
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3 Implementation of the Absalom model into FDMT 

FDMT (Food Chain and Dose Module for Terrestrial Pathways) is a model developed to simulate 
transfer of radionuclides along the human food chain and to calculate activity concentrations in food 
and feedstuff. It is the food chain transfer module of the European JRodos and ARGOS decision support 
systems (Brown et al., 2018) 

FDMT is largely based upon the earlier dynamic model ECOSYS-87 (Müller and Prohl, 1993) that was 
originally implemented within Microsoft EXCEL™. Much of the developmental work including the 
numerical specification of many of the parameters used in ECOSYS-87 (and therefore FDMT) was 
completed in the 1980s and hence many of the later, large numbers of radioecology studies prompted 
by the 1986 Chernobyl accident were not considered. This latter shortcoming has now been addressed, 
to a degree, within CONFIDENCE (Brown et al., 2018) and elsewhere (Staudt, 2016; Thørring et al., 
2016) through an extensive updating process. 

As described in Brown et al. (2018), there are numerous limitations associated with the FDMT model 
as incorporated within the decision support systems noted above. Lack of flexibility with regards to 
modifying model components and the assessor being restricted to only run simulations 
deterministically, have been identified as the main limitations. Overcoming these restrictions has 
provided the rationale for extracting the model and implementing it within a probabilistic-enabled 
modelling platform called ECOLEGO. In so doing, more simulation options were introduced, further 
enabling an exploration of the factors that introduce variability within model predictions, e.g. region 
specific parameters such as growing seasons and dietary habits. ECOLEGO is a platform for creating 
dynamic models and performing deterministic or probabilistic simulations (Avila et al., 2005); 
http://ecolego.facilia.se/ecolego/show/HomePage).  

Transferring FDMT to the ECOLEGO platform provided us with flexibility to modify and develop the 
existing models, by either including new processes or adding sub-models. For the present work, the 
default soil model of FDMT has been replaced by the ‘Absalom’ soil-to-plant transfer model, which 
predicts 137Cs in soil solution and selected vegetation with time (as described above), originally 
developed for grass. The mathematical specification and description of Absalom et al. (2001) model as 
presented in Appendix 1 of Tarsitano et al. (2011) is the version that has been implemented within 
ECOLEGO platform (after fixing some errors in Tarsitano et al. in consultation with the originating 
authors). 

The Absalom model has the advantage that soil gravimetric clay content (g/g), gravimetric organic 
content (g/g), pH and exchangeable potassium (cmolc/kg) can be considered specifically as inputs. To 
date within CONFIDENCE, effort has been placed on defining these parameters for Ukrainian 
podzoluvisols for which empirical data exist that could be used to evaluate model performance. Lind 
et al. (2019) introduced and discussed these data in relation to the development of models that 
account for ‘hot particles’ in soils.  

Soil pH was one of the few parameters reported explicitly in the datasets for the Ukrainian soils. In the 
process of model parameterisation in Lind et al. (2019) an indicative value of soil acidity, with pH 6.61, 
was selected from the available datasets for relevant Ukrainian soils (for use in the implementation of 
the Absalom model). Ivanov and Khomutinin (2015) provides information on exchangeable potassium, 
expressed as K2O (mg/kg), from which representative values for exchangeable potassium [K]exch. can 
be derived for podzoluvisols in nearby contaminated areas of Ukraine. Finally, since data for site 
specific clay and organic matter data were not available, indicative values for podzoluvisols (sampled 
in Poland) were used from Vandebroek et al. (2012). The parameter defined in Tarsitano et al. (2011) 
as ‘a1’ was taken as that relating specifically to wheat (this particular crop was selected because we 

http://ecolego.facilia.se/ecolego/show/HomePage
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had a reasonable coverage with empirical data against which our prediction could be compared). These 
indicative input parameters are provided in Table 10, all other parameters have been left as defaults.

Table 10 Parameters used in the Absalom model set-up. 

Clay content  
(%) 

Organic matter 
content  
(%) 

[K]exch  
cmolc/kg  

pH a1wheat 

log10(L/kg) 

9.1 1.22 0.1 6.61 3.45 

3.1 Solid-liquid distribution coefficient (Kds) 

Solid-liquid distribution coefficients (Kds) for 137Cs based on empirical collations (IAEA, 2010)  can be 
compared with values that have been calculated from the Absalom et al. (2001) model. 

Table 11 137Cs Kds based on collated empirical data (IAEA 2010) and from applied models. GM: geometric mean, 
GSD: geometric standard deviation. 

Soil Type Kd L/kg  
GM GSD Min Max 

All soils* 1.20E+03 7 4.3 3.80E+05 

Sand* 5.30E+02 5.8 9.6 3.50E+04 

Loam + clay* 3.70E+02 3.6 39.0 3.80E+05 

Organic* 2.70E+02 6.8 4.3 9.50E+04    
Best Estimate 

Podzoluvisol - Absalom  
 

1.31E+04 

*IAEA TRS-472 (IAEA, 2010) 

The Absalom model estimates of 137Cs Kd fall at the higher end of the empirical range for all soil types 
(in Table 11) suggesting that most of the 137Cs activity in soil would be predicted to be associated with 
the solid phase. This result is consistent with field observations that show a significant fraction of RCs 
being associated with strongly bound phases in soils sampled from the Ukrainian part of the Chernobyl 
exclusion zone, several years after the accident (Oughton et al., 1992). Consequently, the Absalom 
model’s prediction of Kd seems reasonable. 

3.2 Modelled radionuclide activity concentrations in wheat 

A comparison of the results of FDMT (as implemented into ECOLEGO, see Brown et al. (2018)) and two 
variants of Absalom model outputs with respect to 137Cs (Bq/kg) activity concentrations in wheat 
following a deposition event is shown in Figure 16. Soil conditions do not affect the FDMT model output 
for activity concentrations in wheat, because a generic soil-to-plant concentration ratio is applied by 
default, for all soil types. 
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Figure 16 137Cs activity concentrations (Bq/kg) in wheat simulated using 2 models: Absalom (grey dotted line) and 
FDMT (solid orange line); Deposition = 1 kBq/m2 137Cs. The dark grey, short-dashed line shows the Absalom model 
output using the models default depth (over which 137Cs is assumed to be distributed) of 2.5 cm.

The application of two variants of the Absalom model requires some elaboration. Initially, for the 
derivation of activity concentration in soil, a depth of 0.2 m (in line with the default specified in a new 
soil model developed for particles, as described in Lind et al. (2019)) was used for the Absalom model. 
This approach required substantial adjustment of the deltaZ (m) parameter (defining the depth over 
which 137Cs is assumed to be distributed) in the Absalom model from the default of 0.025 m. Both 
FDMT and the Absalom models predict a continual decline in the levels of 137Cs in wheat following the 
deposition event. Whereas one variant of the Absalom model (using 20 cm rooting depth) yields values 
substantially below FDMT, using the variant of Absalom with default depth (2.5 cm) provides results 
with a high degree of similarity with FDMT. Reverting to the default deltaZ (m) value, therefore, yields 
results from the Absalom model that are much more in line with values generated using the FDMT 
model simply reflecting the observation that for the 20 cm model run we are essentially diluting the 
activity in soil by a level approaching a factor of 10. The Absalom model returns the most elevated 137Cs 
activity concentration in wheat of the model predictions for the first 500 or so days using this default 
configuration.  

Note further that the Absalom model returns activity concentrations on a dry mass basis, whereas the 
FDMT models make predictions for fresh mass. No attempt has been made to adjust for this. The dry 
matter content of wheat grain is relatively high with a value of 88% being provided in IAEA (2010) and 
hence accounting for a fresh to dry matter conversion for wheat grain would make little difference to 
the model estimates. 

3.3 Comparison with validation data 

Simulations have been run using 137Cs depositions based on measured 137Cs activity concentrations in 
soils, from locations in Ukraine, that were decay-corrected to the date of deposition (26th April 1986). 
The comparison of empirical data versus FDMT model predictions is given in Figure 17. The 
comparisons were made for the period 2011 to 2018 for which an empirical dataset on soil and 
selected crop 137Cs activity concentrations was available, as described by Lind et al. (2019). 137Cs activity 
concentrations in grain from the FDMT and Absalom models (using a distribution depth, deltaZ (m), of 
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0.2 m as opposed to a default of 0.025 m) result in values that are lower than empirical determinations 
by approximately a factor of 10 and 100 respectively. Using the Absalom model with the default deltaZ 
(m) parameter yielded results similar to those of FDMT, i.e. decrease to a value of approximately a 
factor of 10 below measured values. The substantial underprediction of the FDMT and Absalom models 
may be counterintuitive, in the sense that part of the contamination in the studied areas is associated 
with particles that might be expected to restrict the availability of 137Cs for plant uptake. However, a 
detailed analysis of the system using a bespoke ‘hot particle’ model has provided us with insights into 
the dynamics of transfer (Lind et al., 2019). Although 137Cs bioavailability may be diminished within the 
first years after deposition, at later stages, once particles have weathered many years after deposition, 
transfer to crops may actually become augmented above predictions based upon ‘commonly-applied’ 
models that do not account for particle behaviour. Further details are provided in Lind et al. (2019). 
The predictive efficacy of the FDMT model is low. In addition to the aforementioned substantial under-
prediction by the model, there is only a weak correlation between predicted and observed 137Cs activity 
concentrations in crops. 

 
Figure 17 Activity concentrations of 137Cs (Bq/kg) in crops (wheat, Rye, barley); x-axis = measured (grain data 
2011-2018) and y-axis = predicted using FDMT for the corresponding year. 

3.4 Summary and recommendations 

Having implemented FDMT into the ECOLEGO platform, we have access to a flexible tool for 
incorporating and exploring new or modified model components and parameters. This flexibility has 
been demonstrated here by replacing FDMT’s default soil model with a process-based model. In this 
way, the impact of various processes and factors can be modelled. The next step is to incorporate and 
study the influence of other process-based models (which have been developed elsewhere in the 
CONFIDENCE project) upon the FDMT’s outputs. This, combined with the new possibility of being able 
to conduct sensitivity analysis, can be used to guide future research related to the transfer of 
radionuclides through the human food chain and also allow us to identify the focus of further model 
developments in this field. 
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4 Development of process-based soil plant models for radiostrontium 

Although previous studies have derived relationships between soil properties and (i) Kd for Sr and/or 
(ii) the transfer of Sr to specific plant species (e.g. Camps et al., 2004; IAEA, 2006), to our knowledge 
there has been no development of more generic process-based approaches as has been attempted for 
Cs. In this chapter, we describe our development of two process-based models to predict the soil-plant 
transfer of (radio)strontium. The first approach involves derivation of a novel and relatively simple (in 
terms of required inputs) methodology, whereas the second approach adapted a well-established, 
chemical speciation model (Tipping, 1994; Tipping et al., 2011) to predict radiostrontium 
concentrations in plants.  Before discussing model development, we will describe plant growth studies 
conducted to provide data with which we could test the predictions of the developed models. 

4.1 Plant growth studies 

Studies were conducted using six different soils selected with a range of characteristics anticipated to 
influence the transfer of radiostrontium to plants (Table 12).  Three of these soils were obtained from 
England and one from Spain; the ‘Spark Bridge’ (England) and ‘Casar de Cáceres’ (Spain) soils were also 
used in the radiocaesium studies described in Chapter 2. Two further soils were obtained from a UK 
commercial supplier (these were sourced from southeast England); the commercially supplied soils 
were unsterilized. 

A variety of different crops were selected: radish (Raphanus sativus); lettuce (Lactuca sativa); grass 
(Agrostis capillaris); chard (Beta vulgaris subsp. vulgaris); courgette (Cucurbita pepo var. cylindrical); 
strawberry (Fragaria × ananassa) and potato (Solanum tuberosum). The radish (variety ‘Sparkler’), 
lettuce (cultivar ‘Clarion’), grass, chard (cultivar ‘White Silver 2’) and courgette (cultivar ‘Midnight’) 
were grown in the study soils from seed. Potatoes (cultivar ‘Charlotte’) were obtained as ‘seed 
potatoes’ and ‘bare root’ strawberry (cultivar ‘Romina’) plants were obtained from a commercial 
grower. A variety of pot sizes (1.8 L to 12 L) were used depending upon plant size. All plants were 
grown in the soils from England, including the two obtained from a commercial supplier, at CEH 
Lancaster during 2018. After starting in a greenhouse, potatoes, courgettes and chard were moved 
outside; all other plants remained in the greenhouse for the course of the study. All plants were grown 
to maturity with the edible portion, including radish leaves, being collected (leaves and ‘runners’ from 
strawberry plants were also retained). All plants were grown in Spain (Extremadura) in the Casar de 
Cáceres soil in 2018 with the exception of strawberries; the selected variety could not be obtained in 
Spain and for reasons of plant health legislation, it was not possible to export the plants from the UK 
to Spain. In Spain, all plants were germinated and grown to maturity outside. At the end of the study 

pore waters were collected using rhizon samplers (https://en.eijkelkamp.com/products/ground-

water-samplers/rhizon-soil-moisture-samplers.html). 

Because strawberries could not be grown in Spain in 2018, some of the Spanish study soil was exported 
to the UK where studies were conducted in 2019. For comparative purposes, strawberries and grass 
were grown in 2019 in both the Casar de Cáceres and Spark Bridge soils. As the radish harvest had 
been generally poor in 2018, radish was grown again in all six study soils. 

4.1.1 Sample analyses 

Following weighing and washing in de-ionised water, plant samples were stored frozen prior to being 
freeze-dried and then finely ground (<2 mm). Potatoes were peeled after washing and prior to being 
frozen (the peel was retained for analyses but results are not discussed here). Soil samples were dried 

https://en.eijkelkamp.com/products/ground-water-samplers/rhizon-soil-moisture-samplers.html
https://en.eijkelkamp.com/products/ground-water-samplers/rhizon-soil-moisture-samplers.html
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at 20oC (soils sent from Spain to the UK for analyses were first dried at 60oC) and then finely ground 
using an agate ball mill.  

In preparation for ICMPS/ICPOES analysis, the finely ground soil and plant samples were digested using 
aqua regia (3:1 mixture of concentrated HNO3 and HCl ‘Aristar’ grade acids) at 175°C for 12 minutes 
using a microwave oven (CEM, MarsXpress). A second sub-sample of the soils was also digested using 
a BaCl2 extraction method (see Lofts et al., 2001). Filtered and acidified pore waters were analysed 
directly. All samples were then diluted 100-fold prior to analyses. Analysis of the digests and pore 
waters was conducted by ICP-MS (Perkin Elmer, NeXION 300D) (for Cs and Sr) or ICP-OES (Perkin Elmer, 
Optima 7300 DV) (for Ca, K and Mg). ICP-MS and ICP-OES quantitative measurements were made using 
external calibration after spiking the digests with 10 µg l-1 Ga, In and Re as internal standards to 
compensate for instrumental drift and matrix effects. ICP-MS and ICP-OES instrument limits of 
detection (LOD) were calculated by using the mean and three standard deviation measurements for 
the digestion reagent blank. Total method LODs for each element were then calculated to take account 
the sample mass and the dilution arising from the digestion procedure.    

A Shimadzu TOC-L analyser, equipped with a TNM-L module, was used to measure NPOC (non-
purgeable organic carbon) in pore waters. Before analysis, samples were acidified with 1M HCl and 
then purged with Zero grade air for 6 minutes to remove any inorganic carbon. The sample was then 
injected into the analyser and the remaining carbon, as NPOC, measured by combustion at 720°C, with 
a catalyst, which converted all carbon to carbon dioxide. The carbon dioxide was measured by an 
infrared detector. 

To determine the percentages of clay, silt and sand in the study soils, three 0.5 g replicate sub-samples 
of each soil type were treated with H2O2 to remove soil organic matter.  The remaining sample was 
then put into a 5% Calgon solution and left on an orbital shaker overnight. A Beckman Coulter LS13 
320 laser diffraction particle size analyser was then used to determine particle size in the resultant 
suspension. Soil textural classifications (according to the Soil Survey of England and Wales) were 
attributed to the study soils using the results of these measurements and the calculator available on 
http://www.landis.org.uk/services/tools.cfm. 

Soil pH was determined on samples of fresh soil using the method of Allen (1989). Soil loss on ignition 
(LOI) was determined on replicates of each soil type (Allen, 1989). 

4.1.2 Results 

Table 13 presents summarised data for the dry matter (DM) concentrations of Ca, Mg and Sr in study 
soils and Table 12 presents Ca and Sr values for plants (pore water results are shown in Figure 22 
below). It can be seen from Table 12 and Table 13 that the study soils encompassed a range of soil 
properties.  

 

http://www.landis.org.uk/services/tools.cfm
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Table 12 Properties of soils used in plant growth studies. Values shown are arithmetic mean ± standard deviation 

Soil Descriptor Land use/ source Textural 
classification4 

 

pH  
[N] 

% LOI  
[N] 

% Sand* 
 

% Silt*  
 

% Clay*  
 

Spark Bridge1 Horticultural Sandy silt loam 6.2±0.3 
[14] 

21.0±1.5  
[14] 

39.8±0.4 
 

44.0±0.4 
 

16.2±0.1 
 

Clay loam  
 

Arable Clay loam - 
Sandy silt loam5 

7.5±0.4  
[11] 

4.9±0.3   
[9] 

49.4±4.9 33.0±3.1 17.6±1.8 

Heath Commercial supplier2   Loamy sand 4.9±0.4  
[11] 

13.5±1.1  
[9] 

84.0±5.2 13.3±4.3 2.7±1.0 

Loamy sand  Arable Loamy sand 7.0±0.3  
[11] 

3.4±0.1  
[9] 

78.9±1.1 13.0±0.8 8.1±0.3 

Top Commercial supplier2     Sandy loam 7.3±0.2  
[11] 

3.5±0.3  
[9] 

60.3±1.4 31.1±1.1 8.6±0.3 

Casar de Cáceres3 Pasture  
(semi-natural) 

Sandy loam 7.0±0.6  
[9] 

5.5±2.2  
[9] 

52.7±1.3 39.4±1.0 7.9±0.3 

1Referred to as ‘Allotment’ in dataset associated with the with the plant growth study (Barnett et al., submitted); 2Available from Bailey’s 

of Norfolk Ltd. https://www.norfolktopsoil.co.uk/;3Referred to as ‘Spanish’ in dataset associated with the plant growth study (Barnett et al. 
submitted); n/a data not available; 4according to http://www.landis.org.uk/services/tools.cfm; 5the individual samples for this site were 
classified as either ‘clay loam’ or ‘sandy silt loam’; *All % Clay, % Sand and % Silt measurements are based on three measurements. 

https://www.norfolktopsoil.co.uk/
http://www.landis.org.uk/services/tools.cfm
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Table 13 Extractable concentrations of soils used in plant growth studies as determined by aqua regia and BaCl2 extractions. Values shown are arithmetic mean ± standard deviation. 

Soil Descriptor Ca  
aqua regia 
extractable 

concentration 
(mg kg-1 DM) 

[N] 

Ca 
BaCl2  

extractable 
concentration 
(mg kg-1 DM) 

[N] 

Mg 
aqua regia  
extractable 

concentration 
 (mg kg-1 DM) 

[N] 

Mg 
BaCl2  

extractable 
concentration 
 (mg kg-1 DM) 

[N] 

Sr 
aqua regia 
extractable 

concentration 
(mg kg-1 DM) 

[N] 

Sr 
BaCl2  

extractable 
concentration 
(mg kg-1 DM) 

[N] 

Spark Bridge1 13600±920 
[22] 

8530±486 
[22] 

6610±450 
[22] 

467±40.0 
[22] 

59.3±4.82 
[22] 

35.1±1.71 
[22] 

Clay loam 6200±1330 
[13] 

2750±67.6 
[13] 

12400±1160 
[13] 

672±19.6 
[13] 

13.4±1.77 
[13] 

9.23±0.35 
[13] 

Heath3 2380±225 
[17] 

2000±308 
[17] 

266±61.9 
[17] 

176±30.7 
[17] 

7.01±0.90 
[17] 

7.02±0.74 
[17] 

Loamy sand  2690±225 
[13] 

1470±130 
[13] 

2390±127 
[13] 

264±19.4 
[13] 

4.83±0.72 
[13] 

2.93±0.26 
[13] 

Top3 3990±518 
[14] 

2460±169 
[14] 

732±75.4 
[14] 

56.1±12.2 
[14] 

9.97±1.19 
[14] 

6.59±0.58 
[14] 

Casar de Cáceres2 3500±1470 
[18] 

2190±544 
[18] 

1560±288 
[18] 

220±86.9 
[18] 

22.4±5.75 
[18] 

12.2±1.66 
[18] 

1Referred to as ‘Allotment’ in dataset associated with the plant growth study (Barnett et al., submitted); 2Referred to as ‘Spanish’ in dataset associated with the plant 

growth study (Barnett et al. submitted); 3Obtained from Bailey’s of Norfolk Ltd. https://www.norfolktopsoil.co.uk/. 

https://www.norfolktopsoil.co.uk/
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     Table 14 Concentrations of Ca and Sr in study plants. Values shown are arithmetic mean ± standard deviation and (range); table continues to page 49. 

Crop Soil descriptor Ca concentration 
(mg kg-1 DM) 

N  Sr concentration 
(mg kg-1 DM) 

N 

Chard Spark Bridge1 11500±2580 
(8680-14400) 

5 39.6±7.13 
(31.3-49.2) 

5 

Courgette Spark Bridge1 2840±970 
(2680-5220) 

5 9.36±2.34 
(6.55-12.8) 

5 

Grass - 2018 Spark Bridge1 6580±1400 
(4110-7590) 

5 32.9±5.83 
(22.8-37.3) 

5 

Grass - 2019 Spark Bridge1 8690±448 
(7980-9060) 

5 41.3±2.25 
(38.3-43.7) 

5 

Lettuce Spark Bridge1 12600±1640 
(11300-15400) 

5 28.0±3.11 
(26.1-33.5) 

5 

Potato (without peel)  Spark Bridge1 253±5.20 
(247-259) 

5 0.79±0.05 
(0.74-0.83) 

5 

Strawberry fruit - 2018 Spark Bridge1 1990±223 
(1810-2330) 

5 5.44±0.45 
(5.14-6.23) 

5 

Strawberry fruit - 2019 Spark Bridge1 1640±199 
(1430-1950) 

5 4.37±0.90 
(3.63-5.78) 

5 

Strawberry leaf - 2018 Spark Bridge1 16100±1920 
(13900-19100) 

5 47.9±5.34 
(43.3-56.8) 

5 

Strawberry leaf - 2019 Spark Bridge1 11900±1180 
(10100-13200) 

5 38.0±4.44 
(32.2-43.2) 

5 

Radish edible root Spark Bridge1 3940±235 
(3650-4200) 

5 17.4±1.51 
(15.3-18.8) 

5 

Radish leaf  Spark Bridge1 36900±2010 
(34500-39400) 

5 79.7±4.72 
(74.4-84.0) 

5 

Chard Clay loam  9960±4240 
(6610-17300) 

5 19.7±10.0 
(14.0-37.5) 

5 

Courgette Clay loam  12500 1 30.7 1 

Grass  Clay loam  8680±1270 
(7170-9880) 

5 29.3±4.78 
(24.6-35.8) 

5 
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Crop Soil descriptor Ca concentration 
(mg kg-1 DM) 

N  Sr concentration 
(mg kg-1 DM) 

N 

Lettuce Clay loam  24100±2220 
(21200-27100) 

5 50.3±5.54 
(442-57.8) 

5 

Potato (without peel)  Clay loam  192±21.4 
(175-221) 

4 0.58±0.06 
(0.52-0.65) 

4 

Strawberry fruit Clay loam  3280 1 8.19 1 

Strawberry leaf Clay loam  13600 1 36.6 1 

Radish edible root  Clay loam  3230±484 
(2630-3750) 

5 13.9±2.61 
(10.6-16.3) 

5 

Radish leaf  Clay loam  34200±9210 
(23800-44400) 

5 69.2±20.2 
(48.9-92.8) 

5 

Chard Heath 20000±4290 
(13200-23200) 

5 55.1±12.5 
(38.1-66.6) 

5 

Courgette Heath 2940±2180 
(1030-6310) 

5 6.72±5.18 
(2.08-15.4) 

5 

Grass - 2018 Heath 4690±214 
(4380-4910) 

5 26.6±1.54 
(24.5-27.9) 

5 

Lettuce Heath 29600±2150 
(4380-4910) 

5 69.1±6.94 
(60.5-79.2) 

5 

Potato (without peel) Heath 193±8.54 
(186-204) 

4 0.52±0.024 
(0.49-0.55) 

4 

Strawberry fruit Heath 1850±497 
(1320-2520) 

6 4.23±1.07 
(2.93-5.59) 

6 

Strawberry leaf Heath 15100±6290 
(11400-26300) 

5 41.0±17.2 
(29.6-71.5) 

5 

Radish edible root  Heath 2490±283 
(2090-2750) 

5 9.66±1.34 
(8.27-11.4) 

5 

Radish leaf  Heath 18500±2230 
(16600-22300) 

5 40.3±6.48 
(35.7-51.0) 

5 

Chard Loamy sand  8760±1880 
(7430-11800) 

5 10.9±2.70 
(8.59-14.8) 

5 
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Crop Soil descriptor Ca concentration 
(mg kg-1 DM) 

N  Sr concentration 
(mg kg-1 DM) 

N 

Courgette Loamy sand  3070±1950 
(1850-6490) 

5 3.50±2.26 
(2.17-7.52) 

5 

Grass  Loamy sand  8550±464 
(7970-9270) 

5 24.1±2.23 
(21.3-27.3) 

5 

Lettuce Loamy sand  17000±3240 
(13400-19900) 

5 19.4±4.29 
(14.5-23.1) 

5 

Potato (without peel)  Loamy sand  302±62.7 
(241-364) 

4 0.48±0.01 
(0.39-0.59) 

4 

Strawberry fruit Loamy sand  2720±1110 
(1800-4530) 

6 4.76±1.98 
(3.12-7.87) 

6 

Strawberry leaf Loamy sand  16800±2460 
(13800-19000) 

5 26.6±5.70 
(19.6-31.8) 

5 

Radish edible root  Loamy sand  4030±266 
(3660-4270) 

5 11.0±1.23 
(9.66-12.4) 

5 

Radish leaf  Loamy sand  31200±2850 
(28200-35600) 

5 35.7±4.23 
(31.0-41.6) 

5 

Chard Top 14800±5050 
(10200-21300) 

5 55.0±24.8 
(32.4-87.7) 

5 

Courgette Top 7020±5210 
(3330-10700) 

2 12.1±9.66 
(5.24-18.9) 

2 

Grass  Top 9410±1040 
(7750-10600) 

5 29.4±4.29 
(23.0-33.7) 

5 

Lettuce Top 17200±6440 
(9390-26900) 

5 26.0±8.58 
(15.1-38.6) 

5 

Potato (without peel)  Top 464±66.5 
(420-563) 

4 1.05±0.15 
(0.94-1.27) 

4 

Strawberry fruit Top 3470±641 
(2730-4290) 

4 7.94±2.34 
(6.33-11.4) 

4 

Strawberry leaf Top 15600±2540 
(12700-19600) 

5 34.3±5.65 
(26.9-41.8) 

5 
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Crop Soil descriptor Ca concentration 
(mg kg-1 DM) 

N  Sr concentration 
(mg kg-1 DM) 

N 

Radish edible root Top 3854±426 
(3120-4160) 

5 19.9±2.10 
(16.3-21.6) 

5 

Radish leaf  Top 35400±4050 
(28800-39500) 

5 95.2±11.8 
(76.9-106) 

5 

Chard Casar de Cáceres2 14800±5050 
(10200-21300) 

5 55.0±24.8 
(32.4-87.7) 

5 

Courgette Casar de Cáceres2 12000±2000 
(10100-14100) 

3 36.2±5.21 
(30.9-41.3) 

3 

Grass - 2018 Casar de Cáceres2 6770±649 
(6220-7580) 

5 49.9±9.80 
(41.2-65.9) 

5 

Grass – 2019* Casar de Cáceres2 7290±445 
(6930-8030) 

5 39.8±4.68 
(33.2-45.9) 

5 

Lettuce Casar de Cáceres2 9820±537 
(9440-10200) 

2 29.2±1.77 
(27.9-30.4) 

2 

Potato (without peel)  Casar de Cáceres2 441±54.6 
(384-493) 

3 1.41±0.23 
(1.19-1.64) 

3 

Radish edible root* Casar de Cáceres2 3850±426 
(3120-4160) 

5 19.9±2.10 
(16.9-21.6) 

5 

Radish leaf* Casar de Cáceres2 35400±4050 
(28800-39500) 

5 95.2±11.8 
(76.9-106) 

5 

Strawberry fruit* Casar de Cáceres2 1430±121 
(1290-1620) 

5 4.04±0.61 
(3.03-4.54) 

5 

Strawberry leaf* Casar de Cáceres2 12700±696 
(12100-13600) 

5 48.3±5.64 
(42.1-55.4) 

5 

1Referred to as ‘Allotment’ in dataset associated with plant growth study (Barnett et al., submitted); 2Referred to as ‘Spanish’ in dataset associated 

with plant growth study (Barnett et al., submitted); *Plants grown in UK in Spanish soil, other crops were grown in Spain.  



 

 

 

Page 47 of 71 

Deliverable D9.15 

4.2 A ‘simple’ approach to estimating plant Sr concentrations 

The derivation of this methodology starts with two basic equations (see below) that define the soil-to-
plant transfer factor (TF) and the observed ratio (ORplant-soil). The ORplant-soil was proposed in the 1950’s 
as a measure of the discrimination in Ca and Sr transfer between different environmental 
compartments (e.g. Comar et al., 1957): 

𝑇𝐹 =  
𝐷𝑟𝑦 𝑚𝑎𝑠𝑠 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑝𝑙𝑎𝑛𝑡 (𝐵𝑞/𝑘𝑔)

𝐷𝑟𝑦 𝑚𝑎𝑠𝑠 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑠𝑜𝑖𝑙 (𝐵𝑞/𝑘𝑔)
       [1] 

𝑂𝑅𝑝𝑙𝑎𝑛𝑡−𝑠𝑜𝑖𝑙 =  
𝑃𝑙𝑎𝑛𝑡 𝑆𝑟 𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 𝑎𝑐𝑡𝑖𝑣𝑖𝑦 𝑐𝑜𝑛𝑐.  (𝐵𝑞/𝑘𝑔) 

𝑃𝑙𝑎𝑛𝑡 𝐶𝑎 𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 𝑐𝑜𝑛𝑐.  (𝑚𝑔/𝑘𝑔)⁄

𝑆𝑜𝑖𝑙 𝑆𝑟 𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑛𝑐.  (𝐵𝑞/𝑘𝑔) 
𝑆𝑜𝑖𝑙 𝐶𝑎 𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 𝑐𝑜𝑛𝑐.  (𝑚𝑔/𝑘𝑔)⁄

    [2] 

Strontium concentrations (conc.) can be radioisotope activity concentrations (Bq/kg) or stable element 
concentrations (mg/kg) depending upon the available data. These equations can be rearranged to give 
the following: 

𝑂𝑅 × 
𝑃𝑙𝑎𝑛𝑡 𝐶𝑎 𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 𝑐𝑜𝑛𝑐.(𝑚𝑔/𝑘𝑔)

𝑆𝑜𝑖𝑙 𝐶𝑎 𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 𝑐𝑜𝑛𝑐.(𝑚𝑔/𝑘𝑔)
=  

𝑃𝑙𝑎𝑛𝑡 𝑆𝑟 𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 𝑎𝑐𝑡𝑖𝑣𝑖𝑦 𝑐𝑜𝑛𝑐.(𝐵𝑞/𝑘𝑔)

𝑆𝑜𝑖𝑙 𝑆𝑟 𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 𝑎𝑐𝑡𝑖𝑣𝑖𝑦 𝑐𝑜𝑛𝑐.(𝐵𝑞/𝑘𝑔)
   [3] 

Whicker & Schultz (1982) state that ORplant-soil generally approximates to a value of 1; this is supported 
by White & Broadley (2003) who suggest that there is no discrimination between Ca2+ and Sr2+ 
transport to plant shoots. The data from our studies described in Section 4.1 give a mean ORplant-soil 
value of 0.9 further supporting the assumption of an approximate value of 1. Therefore, we can 
rearrange the above equation to give an expression that predicts the strontium (activity) concentration 
in plants: 

𝑃𝑙𝑎𝑛𝑡 𝑆𝑟 𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 𝑎𝑐𝑡𝑖𝑣𝑖𝑦 𝑐𝑜𝑛𝑐. (𝐵𝑞/𝑘𝑔) =

 
(𝑃𝑙𝑎𝑛𝑡 𝐶𝑎 𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 𝑐𝑜𝑛𝑐.  (𝑚𝑔/𝑘𝑔))×(𝑆𝑜𝑖𝑙 𝑆𝑟 𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 𝑎𝑐𝑡𝑖𝑣𝑖𝑦 𝑐𝑜𝑛𝑐.  (𝐵𝑞/𝑘𝑔)) 

𝑆𝑜𝑖𝑙 𝐶𝑎 𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 𝑐𝑜𝑛𝑐.  (𝑚𝑔/𝑘𝑔)
    [4] 

Calcium is an essential plant nutrient under homeostatic control (Tang and Luan, 2017). Consequently, 
for a given crop type it is likely that there will be relatively little variation in plant Ca concentrations. 
Consequently, if we assume typical Ca concentrations for crops are available, then all that is required 
to estimate the Sr activity concentration in a crop type at a given site are estimates of the Sr activity 
concentration and calcium concentration in soil.  

4.2.1 Testing the ‘simple model’ 

We could have used the Ca concentrations as determined in the study crops in the experiments 
described above (i.e. Table 3.3) to test the proposed model. However, to enable a more independent 
test we have compiled a database of Ca concentrations in crops (including farm animal foodstuffs) 
from various published and on-line compilations (the resultant database has been published as 
Chaplow et al. (submitted)). Table 15 presents Ca concentrations from this database for the crops we 
studied in the above experiments. Note that values in Table 15 may be based on multiple 
measurements depending upon the source database. 

Using the values from Table 15 we can predict Sr concentrations in the study crops using the measured 
concentrations of Sr and Ca in soils (i.e. from Table 13). Predicted and measured Sr crop concentrations 
are compared in Figure 18. Figure 18 presents comparisons using the aqua regia soil extraction results; 
there was no significant difference between measured and predicted plant Sr concentrations  using 
either the aqua regia or BaCl2 extraction results for soils (P > 0.1, paired t-test). No crop or soil type 
was consistently under- or over-predicted. It can be seen from Figure 18 that there is encouraging 
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agreement between the predicted and measured values. The agreement is considerably better than if 
predictions are made using plant concentration ratio values recommended in IAEA (2010) (Figure 19). 
There was also consistent under prediction for most crops and soil types using the IAEA concentration 
ratios, the exception being the Spark Bridge soil for which predictions were generally higher than the 
measured values. Predictions for potatoes were over-predicted for all soil types using the IAEA 
concentration ratios. 

Table 15 Typical Ca concentrations in study crops from Chaplow et al. (submitted) 

Crop Ca concentration 
arithmetic mean (range)   

mg kg-1 (DM) 

Number of entries  

Chard 6990 
(-) 

1 

Courgette 4610 
(3000-5420) 

3 

Grass 5660 
(3600-7400) 

15 

Lettuce 7380 
(3570-15300) 

9 

Potato 373 
(320-495) 

4 

Radish edible root 5755 
(4286-6860) 

3 

Radish leaf 19400 
(-) 

1 

Strawberry 1930 
(1840-2020) 

2 
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Figure 18 A comparison of measured Sr concentrations in the study crops and predictions using the simple model 
derived above. 

 

Figure 19 A comparison of measured Sr concentrations in the study crops and predictions using the recommended 
concentration ratios in IAEA (2010). 
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4.3 Adapting a chemical speciation model 

The Windermere Humic Aqueous Model (WHAM) (Tipping, 1994; Tipping et al., 2011) is a process-
based model of chemical equilibrium applicable to soils, waters and sediments. The model comprises 
sub-models for computation of cation binding to organic matter (represented by humic and fulvic 
acids), mineral oxides of iron(III), aluminium, manganese and silicon (Lofts and Tipping, 1998), a clay 
cation exchanger, and to small ligands (e.g. carbonate) in solution. WHAM has been extensively 
parameterised for the binding of cations, including Sr, to humic and fulvic acids (Tipping et al., 2011) 
and mineral oxides (Lofts and Tipping, 1998). 

To calculate speciation in a soil, WHAM requires as inputs, concentrations of the solute(s) of interest, 
of the solute(s) that compete with those solute(s) for binding to solid and solution phase ligands, of 
major ions that contribute to the ionic strength of the system, and of the major binding phases (soil 
and dissolved organic matter, mineral oxides, clay). In practice, this means that as well as the 
concentrations of the solute(s) of interest, WHAM requires concentrations of the major ions Na, Mg, 
K, Ca, Cl, NO3 and SO4. To calculate speciation of metals that bind strongly to organic matter and/or 
mineral oxides, WHAM also requires concentrations of the competing ions Al and Fe(III) in the soil 
solution, although their concentrations can be estimated a priori (Tipping, 2005; Lofts et al., 2008). 

In application to the speciation of soils, the solute concentrations required by WHAM are not the total 
concentrations, because these will include a portion that is not ‘geochemically active’, i.e. that is not 
participating in chemical equilibria on a sufficiently short timescale to be contributing to the solubility 
of the solute. This includes, for example, metals incorporated into the structure of primary and 
secondary minerals, and precipitates (e.g. CaCO3 (s)). Thus, the required concentrations of 
‘geochemically active’ solutes must be estimated by measurements, which is typically by chemical 
extraction. 

The above discussion shows that WHAM, as a relatively complex, process–based model, requires a 
large amount of driving data and can require extensive fitting to optimise agreement between 
measurements and outputs. For the purposes of practical post-accident predictions of 90Sr, the model 
is over parameterised. Below we describe how we have reduced the model to make it more applicable 
for use in radiological assessments. 

4.3.1 Soil speciation model setup 

The WHAM model has already been parameterised for Sr binding to humic and fulvic acids and to 
mineral oxides. The model is not set up for ion binding to specific clays instead, a generic clay cation 
exchanger with a specific surface area of 100 m2 g-1 and a cation exchange capacity of 1 µeq m-2 is used 
as a default. Strontium binding by cation exchange is likely to be an important process controlling its 
partitioning in soils and so parameterisation of the clay sub-model is a useful first step in model 
assessment. 

Parameterisation of a clay model comprises selection and/or fitting of the specific surface area (SSA, 
m2/g), cation exchange capacity (CEC, eq/m2) and selectivity coefficients for binding. The Donnan 
cation exchange model in WHAM assumes that cations accumulate at the clay surface, within a diffuse 
Donnan layer, to fully neutralise the fixed negative charge. The volume of the Donnan layer, (𝑉DL, 
dm3/g clay) is a function of the solution ionic strength. The concentration of a cation within the Donnan 
layer, 𝑐D,𝑖 (in units of moles per unit volume of the Donnan layer), is related to its concentration in the 
solution phase water, 𝑐S,𝑖, by the expression: 

𝑐D,𝑖 = 𝐾sel,𝑖𝑐S,𝑖𝑅𝑧𝑖          [5] 
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where 𝐾sel,𝑖 is the selectivity coefficient for cation i, 𝑧𝑖  is the cation charge and 𝑅 is a ratio value (with 

units of dm3 solution phase water per dm3 Donnan layer water). Values of 𝑐D,𝑖 are found by adjusting 
𝑅 until the total cation charge in the Donnan layer neutralises the fixed charge on the clay: 

∑ 𝑧𝑖𝑐D,𝑖

𝑉DL
= −CEC ∙ SSA [CLAY]         [6] 

where [CLAY] is the mass of clay per unit volume of water (g/dm3). Thus, accumulation of higher 
charge cations (e.g. Mg2+, Ca2+, Sr2+) is favoured over lower charge cations (e.g. Na+, K+, NH4

+).  

While it would be possible to use parameters of an existing clay cation exchanger and adjust the 
amount of ‘active’ clay to fit observations of Sr speciation, the current parameterisation does not 
include selectivity coefficients, and thus predictions will be prone to unknown error. In order to 
address this, the clay sub-model was re–parameterised based on the work of Missana et al. (2008) and 
Huertas et al. (2001). Both studies used a bentonite clay, comprising 96% smectite, from Spain.  

Missana et al. (2008) studied the pH dependence of the Sr partition coefficient under varying 
conditions of ionic strength (NaNO3, I = 0.002, 0.01, 0.05 and 0.1 mol/dm3). These data were suitable 
for establishing 𝐾sel,Sr relative to Na (i.e. where 𝐾sel,Na = 1). Data from pH 3.5 to 8.0 were used for 
fitting, higher (more alkaline) pH data were rejected as being likely unrealistic soil conditions. The SSA 
was fixed to 700 m2/g and the CEC to 1.5 µeq/m2, both derived from the measurements of the clay 
properties. Initial fitting showed that the model was not able to reproduce the trend in partition 
coefficient with changing ionic strength at a given pH by adjusting 𝐾sel,Sr only. A better trend could be 
achieved by fixing the Donnan layer volume at 0.005 dm3/g, rather than allowing it to vary with pH. 
Using this layer volume value, an optimal 𝐾sel,Sr of 6.0 was found. Fitting results are shown in Figure 
20. 

 
Figure 20 WHAM fits to the Sr-smectite partitioning data of Missana et al. (2008). 
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Missana et al. (2008) also measured the binding of ranges of concentrations of Sr to the smectite at a 
constant pH of 6.5 and varying ionic strength. These data were used to check the model predictions 
for the clay. The results are shown in Figure 21. There is a tendency to underestimate the sorbed Sr, 
but trends with ionic strength are predicted very well. 

Huertas et al. (2001) measured the binding of Mg, K and Ca to the smectite in competition with Na, at 
a constant pH of 5.6. Optimal selectivity coefficients of 1.8, 6.7 and 2.4 respectively were found by 
fitting to observed partition coefficients (Figure 22). 

 

 
Figure 21 WHAM predictions of the Sr-smectite isotherm data of Missana et al. (2008). 
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Figure 22 WHAM fitting to the dataset of Huertas et al. (2001): modelled partition coefficients of Mg, K and Ca 
on smectite in the presence of Na at pH 5.6. 

 

4.3.2 Model sensitivity assessment 

The sensitivity of the parameterised model to removal of input variables was assessed using a 
published set of Sr soil partitioning data (Gil-García et al., 2008). This dataset comprised measurements 
of the Sr partition coefficient for 30 Spanish soils. The soils were characterised for their pH, organic C 
concentration and exchangeable major cations (Na, Mg, K, Ca, NH4) by barium chloride-
triethanolamine extraction. This extraction is particularly suitable for estimation of the chemically 
active pools of major cations in soils, due to the swamping action of the Ba2+ cation in removing major 
cations from exchange sites by competition, without the potential confounding effects of harsher 
extractants, e.g. dissolution of precipitates.  

WHAM was initially applied with the following input variables: 

 The measured pH; 

 Exchangeable Na, Mg, K, Ca and NH4; 

 Humic and fulvic acid concentrations computed from the measured organic C concentration, 
assuming them to be present in a ratio of 1:1; 

 The carbonate system was simulated by assuming a partial atmospheric pressure of CO2 of 
400ppm; 
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 Al and Fe were not measured. Their chemistry was simulated using the empirical expressions 
of Tipping (2005) and (Lofts and Tipping, 2011), respectively, for estimation of the free ion 
activity in the soil solution, which allows their full speciation to be computed; 

 To provide for a realistic ionic strength, the concentration of Cl in each soil was computed by 
forcing a charge balance (i.e. adjusting the Cl concentration until the ratio of positive to 
negative charge was unity); 

 No concentrations of DOM (dissolved organic matter) in the solution phase of the experiment 
were measured. The concentration of DOM was estimated by assuming that 0.5% of the SOM 
(soil organic matter) was in solution. This is an oversimplification but allows for a rough 
assessment of the influence of DOM on predicted partitioning. 

The initial model prediction overestimated the Sr partition coefficient for 29 of the 30 soils. Therefore, 
to provide a useful baseline for sensitivity testing, the model was optimised to the observed partition 
coefficients by adjusting the concentrations of clay and SOM to find the best fit to the observed Sr 
partition coefficients. Clay and SOM concentrations at 40% of the observed values provided the best 
fit (Figure 23). 

 

Figure 23 Blind-predicted (open circles) and optimised (closed circles) modelling of Sr partition coefficients in the 
dataset of Gil–García et al. (2008). 

The sensitivity of the model to removal of input variables was assessed by selective removal of one or 
more variables to construct a series of test files. The results are summarised in Table 16, with the final 
test (#12) being that with the minimal set of input variables. 
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Table 16 Summary of model variable removal tests and outcomes. Note that soil pH could not 
be removed from the model and was included in all tests. 

Test number Variable(s) removed Sum of squares error in log Kd 

 none 0.259 

1 Na 0.222 

2 K 0.244 

3 NH4 0.259 

4 Na, K, NH4 0.208 

5 Mg 0.696 

6 Ca 0.402 

7 Mg, Ca 2.901 

8 SOM 0.366 

9 DOM 0.259 

10 Clay 0.779 

11 CO2 0.260 

12 all except Mg, Ca, SOM, clay 0.227 
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The outcomes of the sensitivity testing can be summarised as follows: 

 Removal of monovalent cations (Na/K/NH4) has little effect on the goodness of prediction, 
showing that these cations are not greatly important influencers on Sr speciation and 
partitioning; 

 Removal of divalent cations (Mg/Ca) has a clear effect on the goodness of prediction. In this 
exercise Mg had the greater effect, likely because it had on average a higher concentration 
than Ca in the experimental systems; 

 Removal of both SOM and clay has a clear effect on the goodness of prediction, suggesting 
that in these soils both phases are important for binding Sr; 

 Removal of either DOM or CO2 had negligible effect. 

The final chosen combination of input variables (exchangeable Mg and Ca, SOM, clay) is clearly able to 
predict the Sr partition coefficients as well as the full input variable set. It comprises the two main 
binding phases for Sr and the two main competing ions. 

4.3.3 Predicting Sr concentrations in crops 

To estimate Sr concentrations in crops we replace soil Sr and Ca concentrations in Equation 4 with 
those for predicted concentrations of Sr and Ca in soil pore waters.  

Predictions of the Ca and Sr concentrations in soil pore waters using the simplified WHAM model were 
poor (see Figure 24). However, to predict Sr concentrations in vegetation it is in-effect the ratio of Sr:Ca 
concentrations in pore waters which need to be reliably predicted and not necessarily the absolute 
pore water concentrations. Substituting pore water concentrations into Equation 4 gives relatively 
good predictions of Sr concentrations in crops (Figure 25). Unlike for the simple model discussed 
above, there was some bias in predictions using the modified WHAM model. All predictions for the 
clay loam soil were under-predicted, as were all of those for grass, chard and lettuce. 

 

Figure 24 A comparison of measured and predicted pore water concentrations (Ca mg kg-1; Sr µg kg-1). 



 

 

 

Page 57 of 71 

Deliverable D9.15 

 

Figure 25 A comparison of measured Sr concentrations in the study crops and predictions using a modified version 
of the WHAM model. 

4.4 Summary and recommendations 

We have successfully established two process-based models to predict strontium concentrations in a 
range of crops using relatively few soil parameters and the calcium concentration in crops as inputs. 
To support these methodologies we have produced a collation of Ca concentrations in crops consumed 
by humans and farm animals (Chaplow et al., submitted). The approach removes the need for empirical 
concentration ratios and is able to make predictions for crop types for which no radioecological data 
exist. 

Whilst the approaches produced predictions that compared well with measured data, and better than 
predictions using the commonly used concentration ratio approach, they require further testing 
against a wider range of soil types and crops. It may also be worthwhile investigating if the inclusion 
of Mg concentrations in plants and soil (or soil solution) improves predictions of root uptake.  

A weakness of the approaches is that they can only be used to make equilibrium predictions. However, 
they would be sufficient to aid the identification of longer-term ‘at risk areas’ in the event of an 
accidental release. The models could be used to estimate parameters to replace existing concentration 
ratios in models such as FDMT (see Brown et al., 2018), which would enable their application in 
dynamic predictions. However, it would be preferable for future studies to consider trying to 
parameterise dynamic processes in soils within these process-based approaches. It would also be 
preferable to improve predictions of pore water concentrations using the modified WHAM model.  
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5 Discussion 

5.1 Overview of progress on process-based models 

We have successfully tested the Absalom et al. (2001) model using a wide range of European soils, with 
different physical and chemical characteristics, and common plant species. The test highlighted the 
strengths of the model and areas for further improvements. The model reproduced RCs transfer to 
grass well for most soils; predictions were better than those based on the TF approach. Even without 
calibration, the model predictions of RCs transfer to radish and spinach from many soils were 
acceptable considering the uncertainty associated with published TF data. Our tests also suggest that 
to improve the Absalom model, it should be further calibrated using more soils and plant types than 
had been considered in its initial parameterisation (see Section 5.3). 

We have successfully developed process-based approaches to predict the strontium concentration in 
crops which need a minimal number of soil parameters and some knowledge of the calcium 
concentration of crops under consideration (to support this we have published a compendium of Ca 
concentrations in crops used as human and farm animal foodstuffs (Chaplow et al., submitted)).  

We have demonstrated that process-based models can be relatively simply incorporated into the food 
chain model of an existing decision support system.  

5.2 End-user views 

Whilst progress was made on the development of process-based models for Cs in the 1990’s-2000’s 
such models have not been adopted for application in emergency planning/management. To begin a 
discussion of process-based models with end-users a workshop was held; the workshop was attended 
by representatives of industry, regulatory organisations, international organisations and scientists (see 
Appendix A for a report on this workshop). 

Participants in the workshop expressed the following reservations about process-based models: 

 Process-based models are too complicated requiring a considerable amount of data to implement 
them. 

 Because of their complexity, process-based models are difficult to communicate to stakeholders, 
including the public. 

 Process-based models have not been sufficiently tested and hence end users are not confident in 
their use. 

 Scientists have not ‘made the case’ for process-based models. 

Conversely, a number of advantages offered by process-based models were also highlighted: 

 Process-based models offer an approach to understand/cope with the high degree of variability in 
empirical plant-soil concentration ratios and provide predictions more relevant to a given site. 

 Process-based models (if not too complex) may be easier to explain to the public than a ‘black-box’ 
model as they better reflect reality (e.g. a model that bases predictions on easily understandable 
soil parameters such as percentage clay, organic matter content and/or soil potassium is easier to 
explain than a ‘black-box’ model with ratios and rate constants).  

 Process-based models may be useful for site-specific assessments of existing exposure scenarios. 

 Process-based models may be useful in emergency planning (though site-specific data such as soil 
properties would be needed). 

 Process-based models may help to justify model simplifications. 
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5.3 Future studies and the way forward 

The Absalom RCs transfer model represents a useful basis, but we recommend that the model be 
tested (and if required adapted) for a wider range of soil types with differing mineralogies and crops. 
The model predicted RCs transfer to grass from our study soils well (see Section 2). One option that 
should be considered to expand the range of crops the model can be applied to is to consider using 
‘phylogenetic’ models (e.g. Willey, 2010). In this way predicted RCs activity concentrations in grass 
from the Absalom model could be used to make predictions for a wider range of crops. Some 
consideration is required with respect to the default soil depth used in the Absalom model for its 
application in decision support systems. 

The Sr models developed here require further testing and there needs to be consideration with respect 
to their incorporation into dynamic human food chain models (i.e. how do we parameterise dynamic 
processes in soils within these process-based approaches).  

The adaptation of an established chemical speciation model to predict Sr concentrations in crops is 
encouraging but predictions of pore water Sr and Ca concentrations were poor; the prediction of Sr 
concentrations in crops requires a good prediction of the Sr:Ca ratio in pore waters rather than their 
absolute values.  Until we understand why pore water concentrations are poorly predicted we cannot 
recommend consideration of using such models in the development of process-based soil-plant 
models for other radionuclides.  

There are clearly some issues we need to address before soil-plant process-based models become 
more widely accepted. To gain wider acceptance, when communicating process-based models to 
regulators and other stakeholders we need to make it clear that process-based models are not 
necessarily very complicated and/or resource intensive (e.g. one of the Sr models proposed in section 
3 requires only an estimate of soil and crop Ca concentrations). We also acknowledge the need to 
validate available soil-plant process-based models for a wider range of soil types and crops than have 
currently been studied. Once this is done, then uptake of process-based models would benefit from 
some well-designed training provision aimed at different stakeholders with demonstrations of the 
comparative predictions of process-based and conventional empirical concentration ratio-based 
models. 
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Appendix A: Workshop ‘Do process-based models have a role in human 

food chain assessments’  

(Madrid 9-10 September 2019) 

 

The aim of the workshop was to discuss process-based soil-to-plant transfer models. Forty 
stakeholders representing the industry, regulators, scientists and international organisations (see 
attendance list) attended the workshop and participated in the discussions regarding whether end-
users saw benefit in the use and development of process-based soil-to-plant transfer models. In part, 
this was motivated by the priority given to process-based models by scientists (e.g. Hinton et al., 2014) 
versus a perceived lack of uptake of previously developed process-based models (i.e. Absalom et al., 
2001) by end-users. 

To enable discussion, presentations were given on: ‘conventional’ food chain models (e.g. the FDMT 
module of JRodos (Müller et al., 2004)) and FARMLAND (Brown and Simmonds, 1995); an overview of 
soil-to-plant transfer models for Cs; application of process-based soil-to-plant transfer models for Cs 
post Fukushima in Japan; and CONFIDENCE activities on Cs and Sr process-based soil-to-plant transfer 
models (as described in Sections 2 and in Sections 3 of this report). 

Presentations were followed by facilitated ‘breakout’ sessions to discuss process-based models and 
their use. To prompt discussion, the following questions were posed:  

 Q1) What is stopping 'you' from using process-based models?  

 Q2) Do process-based models have a use in post-accident management?  

 Q3) When should process-based models be used/when are they useful?  

 Q4)Are we confident that process-based models have been sufficiently parameterised/tested? 

 Q5) Are they useful in communicating information? 

Below we summarise the discussions ‘for and against’ process-based models and the main ‘take home’ 
messages for CONFIDENCE. These discussions will also help to revise the Strategic Research Agenda 
for the radioecology (https://radioecology-exchange.org/content/strategic-research-agenda). 

The case against process-based models 

A number of participants expressed some doubts about process-based models, which can be 
summarised as: 

1) Process-based models are too complicated requiring a considerable amount of data to 
implement them. 

2) Because of their complexity, process-based models are difficult to communicate to 
stakeholders including the public. 

3) Process-based models have not been sufficiently tested and hence end users are not confident 
in their use. 

4) Scientists have not ‘made the case’ for process-based models. 
5) Change to an established system has financial and time implications. 

 

https://radioecology-exchange.org/content/strategic-research-agenda
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The case for process-based models 

Other participants (including regulator/industry end-users) were of the opinion that process-based 
models could be useful: 

1) Process-based models offer an approach to understand/cope with the high degree of 
variability in empirical plant-soil concentration ratios and provide predictions more relevant 
to a given site. 

2) Process-based models (if not too complex) may be easier to explain to the public than a ‘black-
box’ model as they better reflect reality (e.g. a model that bases predictions on easily 
understandable soil parameters such as percentage clay, organic matter content and/or soil 
potassium is easier to explain than a ‘black-box’ model with ratios and rate constants). A good 
example of this was given by a regulator who used a process-based model to describe wild 
boar RCs levels that took into account consumption of deer truffles (Urso et al., 2015). 

3) Process-based models may be useful for site-specific assessments of existing exposure 
scenarios. 

4) Process-based models may be useful in emergency planning (though site-specific data such as 
soil properties would be needed). 

5) Process-based models may help to justify model simplifications. 

‘Take home’ messages for CONFIDENCE  

There are clearly some issues we need to address before process-based (or other sorts of) soil-to-plant 
transfer models become more widely accepted. Scientifically, for Cs, although we appear to be able to 
make relatively good predictions of activity concentrations in grass, predictions for other crops are 
currently relatively poor (see Section 2). For Sr, CONFIDENCE has made good progress in developing 
process-based soil-to-plant transfer models (see Section 3). Whilst useful, these models currently can 
only make equilibrium predictions of Sr activity concentrations in crops. However, this is an 
improvement on the equilibrium concentration ratio/transfer factor approach. We have to 
acknowledge the need to validate available process-based soil-to-plant transfer models for a wider 
range of scenarios (soil types and crops) than have currently been studied. Once (or if) this is done, 
then uptake of process-based models would benefit from some well-designed training provision aimed 
at different stakeholders with demonstrations of the comparative predictions of process-based and 
conventional empirical concentration ratio-based models. 

To gain wider acceptance, when communicating process-based models to regulators and other 
stakeholders, we need to make it clear that process-based models are not necessarily very complicated 
and/or resource intensive. For instance, the Tarsitano et al. (2011; Figure A.1) implementation of the 
‘Absalom’ model for Cs soil-to-plant transfer requires only soil clay and organic matter contents and 
exchangeable K. However, the model can be presented in a relatively complicated manner (Figure A.1) 
which may be off-putting to stakeholders. If described as ‘we are using a model which takes into 
account the clay, organic matter and potassium contents of your soil’ it is likely that stakeholders would 
appreciate that the model is aiming to make predictions that are more relevant to the assessment area 
(and will likely reduce uncertainty compared to predictions from conventional empirical models). In 
the case of Sr, the simplest model proposed by CONFIDENCE requires only calcium concentrations in 
soil and plants (there are published compilations of Ca concentrations in a wide range of crops openly 
available (see Section 3). For most European countries many of the soil parameters required by 
process-based models will likely be available in spatial datasets such that the models could be 
implemented in geographical information systems to make spatial predictions (e.g. Gillett et al., 2001). 
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One presentation1 emphasised that users (regulators, governmental agencies and ministries) need to 
have confidence in the outputs of models at their disposal. The example was given of the lack of 
confidence of Japanese authorities to use predictions from the Japanese government’s System for 
Prediction of Environmental Emergency Dose Information (SPEEDI) in the management of the post-
Fukushima situation (see Funabashi and Kitazawa, 2012). This further demonstrates the importance of 
communicating models to end users and of model validation and inter-comparison exercises (e.g. as 
advocated through programmes such as the IAEA’s MODARIA2). 

During the workshop, it was suggested with some agreement, that when being developed process-
based models (or conceptual representations) could consider many processes. However, as they are 
developed the processes/parameters included in the model should be optimised to those few key 
parameters that really matter (i.e. through sensitivity testing). The development of models for Sr in 
CONFIDENCE is an example of such parameter optimisation/model reduction (see Section 3). 

 

 

Figure A.1. A diagrammatic representation of the soil-to-plant transfer Cs model as proposed by 
Tarsitano et al. (2011) (courtesy of Prof. N.M.J. Crout, University of Nottingham). 

With respect to post-accident response, the majority of participants agreed that the application of 
process-based models would become more relevant as time progressed and when more specific 
questions with regard to contaminated areas had to be answered. A presentation during the workshop 
on the application of a modification of the ‘Absalom’ model to optimise potassium fertilisation of rice 
paddy fields in areas of Japan impacted by the Fukushima accident, was considered a good example of 
how processed-based models could be used to address specific questions. In the earlier stages after 
an accidental release, many considered that conventional models (e.g. FDMT, FARMLAND etc.) would 
be adequate to make predictions of ingestion dose and to identify if countermeasures would be 

                                                           
1Presentation available: https://radioecology-
exchange.org/sites/default/files/The%20ECOSYS%20FDMT%20model%20Overview%20advantages%2C%20limi
tations%20and%20suggestions%20for%20further%20development%20Proehl.pdf 
2https://www-ns.iaea.org/projects/modaria/modaria2.asp?s=8&l=129 

https://radioecology-exchange.org/sites/default/files/The%20ECOSYS%20FDMT%20model%20Overview%20advantages%2C%20limitations%20and%20suggestions%20for%20further%20development%20Proehl.pdf
https://radioecology-exchange.org/sites/default/files/The%20ECOSYS%20FDMT%20model%20Overview%20advantages%2C%20limitations%20and%20suggestions%20for%20further%20development%20Proehl.pdf
https://radioecology-exchange.org/sites/default/files/The%20ECOSYS%20FDMT%20model%20Overview%20advantages%2C%20limitations%20and%20suggestions%20for%20further%20development%20Proehl.pdf
https://www-ns.iaea.org/projects/modaria/modaria2.asp?s=8&l=129
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required. That said if process-based models were sufficiently validated and spatially implemented, they 
could also play an early role in identifying areas where food chain issues may persist into the longer-
term. The comment (made a number of times) that, conventional models would be sufficient in the 
short-term but perhaps not optimal in the longer-term, implies that long-term predictions from 
conventional models should be communicated with care. 

The observation that the model complexity may change depending upon need led to the suggestion 
that it would be useful to have one modelling package from which different components could be 
selected. The implementation of both FDMT and the ‘Absalom’ model into the EGOLEGO package 
within CONFIDENCE (Brown et al., 2018) is a step to meeting this recommendation. 

Finally, it was observed that the majority of soil-to-plant transfer process-based modelling 
development had focussed on radionuclides of longer-term importance following an accidental release 
from a nuclear facility. It was suggested that process-based models may be of relevance to other 
scenarios, and hence radionuclides, including long-term assessments of waste disposal facilities (some 
work beginning to consider repository relevant radionuclides has recently been conducted, e.g. Shaw 
et al. (2019), RATE (2018)).
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