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Anewcontinuous-discontinuousmodel for fracture that ac-
counts for crack branching in a natural manner is presented.
It combines a gradient-enhanced damage model based on
non-local displacements to describe diffuse cracks and the
extended finite element method (X-FEM) for sharp cracks.
Its most distinct feature is a global crack tracking strategy
based on the geometrical notion of medial axis: the sharp
crack propagates following the direction dictated by the
medial axis of a damage isoline. This means that, if the
damage field branches, the medial axis automatically de-
tects this bifurcation and a branching sharp crack is thus
easily obtained. In contrast to other existing models, no
special crack-tip criteria are required to trigger branching.
Complex crack patterns may also be described with this ap-
proach, since the X-FEM enrichment of the displacement
field can be recursively applied by adding one extra term
at each branching event. The proposed approach is also
equipped with a crack-fluid pressure, a relevant feature in
applications such as hydraulic fracturing or leakage-related
events. The capabilities of themodel to handle propagation
and branching of cracks are illustrated by means of differ-
ent two-dimensional numerical examples.
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1 | INTRODUCTION

In many applications, one may use a continuous model based on damage mechanics, with a diffuse (i.e. smeared)
representation of cracks. This is the case if the goal of the analysis is to model damage inception and the progressive
stiffness degradation and loss of load-carrying capacity. In other applications, dating back to classical fracture me-
chanics, a sharp (i.e. explicit) representation of cracks is preferred. Continuous-discontinuous models are becoming
increasingly popular in computational fracture mechanics. The goal is to put together into a combined approach the
strong features of these two classical viewpoints, damage and fracture mechanics.

Many recent continuous-discontinuous models are capable of capturing a crack that propagates along a path not
known in advance. With only a few exceptions, however, these models do not handle complex crack patterns in a
natural manner. The modelling of a branching crack poses specific challenges, such as the fact that the model needs
to decide when a propagating crack branches into two distinct cracks, possibly in a recursive manner. The explicit
representation of a (branching) crack may be convenient for a number of reasons. It allows, for instance, to compare
experimental and numerical crack opening displacements, or to take into account the relative orientation between
the crack faces and the fibres in the simulation of fibre-reinforced concrete. Consider also applications related to
hydraulic fracturing or leakage in concrete structures. In these processes, cracks are filled with a pressurised fluid
whose hydraulic pressure depends on the shape of the crack.

The goal of this paper is to present a continuous-discontinuous model that handles branching in a natural way,
without resorting to any ad-hoc branching criteria. The model is also equipped with the capability of injecting a
pressurised fluid into the cracks.

An outline of this paper follows. The remainder of this introduction briefly reviews continuous-discontinuous
models of fracture (section 1.1) and the physics and modelling of crack branching (section 1.2). The proposed model
is described in section 2. The starting point is a continuous-discontinuous model for non-branching cracks [1, 2] that
is briefly reviewed in section 2.1. The improvement of this model to account for branching cracks and crack-fluid
pressure is discussed in sections 2.2 and 2.3 respectively. Such new capabilities are illustrated in section 3 by means
of several numerical examples. The concluding remarks of section 4 close the paper.

1.1 | Overview of continuous-discontinuous models of fracture

In continuous-discontinuous models, diffuse and sharp crack representations coexist. Crack inception and the initial
stages of propagation are represented in a diffuseway bymeans of a continuousmodel. Later in the analysis, when dic-
tated by a switching criterion, a sharp discontinuity is injected. Designing a continuous-discontinuous model amounts
to making the following four decisions:

1. How to model diffuse cracks by means of a continuous model. Typical choices are integral-type [3] or gradient-
enriched [4] non-local continuum damage models, and phase-field approaches [5, 6].

2. When to switch from a diffuse crack to a sharp crack. This transition may be controlled by a damage threshold
[1, 2, 7, 8, 9] or energetic considerations [10, 11, 12], for instance.

3. Where to locate the sharp crack. Crack tracking techniques may be local (that is, based on crack-tip strain/stress
fields) [10, 13, 14, 15] or global (that is, based on the background damage field in a neighbourhood of the crack
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tip) [1, 2, 12].
4. How to model sharp cracks. This refers both to the mechanical model (traction-free cracks vs cohesive cracks

equipped with a traction-separation law) and to the discretisation of the discontinuous displacement fields, either
with a fittedmesh and node duplication (cohesive zonemodel, CZM [11]) or an unfittedmesh. Unfitted techniques
consist either on a global nodal enrichment (extended finite element method, X-FEM [16, 17]) or a local element-
based enrichment of the displacement field (strong discontinuity approach, SDA [18]).

In their pioneering work, Mazars and Pijaudier-Cabot [19] establish the thermodynamic link between the two
classical theories, by showing that it is possible to obtain the fracture energy from a non-local damage model and
vice versa. Jirásek and Zimmermann [13] combine smeared cracks for the early stages of material degradation with
embedded discontinuities after strain reaches a critical value. Wells et al. [20] use the partition of unity concept to
couple a softening viscoplasticity model with traction-free discontinuities. Simone et al. [14] replace viscoplasticity
by a gradient-enhanced continuum damage model and choose the direction of maximum accumulation of non-local
equivalent strain for crack propagation. Seabra et al. [21] propose a continuous-discontinuous model where a non-
local integral damage formulation is used to determine the direction and length of a traction-free discontinuity. In
these approaches, a traction-free crack is introduced when the inelastic bulk is fully degraded. Comi et al. [7] define
a critical damage Dcrit < 1 as switching criterion, and combine the not fully degraded bulk with an energetically
equivalent cohesive crack. Similar energetic considerations are made by Cazes et al. for elastic-damage models [22]
and for damage-plasticity [23], and by Cuvilliez et al. [24].

Benvenuti and Tralli [25] propose the regularised extended finite element approach (Re-XFEM), in which cracks
are represented first by means of a continuous damage approach, later by a regularised discontinuous approach (Re-
XFEM) and finally by a purely discontinuous strategy, where the standard X-FEM is retrieved.

Recently, various continuous-discontinuous models with additional features have been proposed. Roth et al. [10]
use a regularised local anisotropic continuum damage model for the first stages of fracture process zone formation
and a stress-based integral-type non-local damage model [26] for crack tracking. The transition from continuum
damage to cohesive X-FEM cracks is based on energetic considerations. The sharp crack grows perpendicularly to
the maximum non-local principal stress and crosses all finite elements above a critical damage. The interpenetration
of crack surfaces is avoided by means of a penalty term.

The approach of Wang and Waisman [9] is also based on the combination of an integral-type non-local damage
model and cohesive cracks, in this case represented by means of discrete springs. The displacement jump across the
sharp cracks is discretised with the X-FEM. The continuous-to-discontinuous transition, at a critical damage level, is
based on energetic considerations. The crack grows in the direction of maximum bulk damage, and the increment of
crack length is a user-defined parameter. Interestingly, the damage field is frozen in the wake of the sharp crack. The
interpenetration of crack surfaces is avoided by means of a penalty term in the spring mechanics.

The main ingredients in the proposal of Bobiński and Tejchman [27] are a non-local softening model (elastoplastic-
ity or isotropic damage) and energetically equivalent X-FEM sharp cracks. The continuous-to-discontinuous transition
takes place when the hardening/softening parameter (for elastoplasticity) or a damage history parameter (damage) ex-
ceeds a threshold. In order to prevent locking or a delay in the crack growth, this condition is not only checked at the
crack tip but also in all the integration points lying inside a specific circular window.

Lé et al. [11] propose a continuous-discontinuous model based on the combination of the Thick Level Set (TLS)
[28] with the cohesive zone model. The two key ideas are to express the traction-separation law of the CZM in
terms of an interfacial damage field, and to describe this interfacial damage and the bulk TLS damage by means of
the same level set function. This is done by means of careful energetic considerations to enforce equivalence in a
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one-dimensional setting.
Other recent proposals are based on the phase-field framework. The Xfieldmethod of Giovanardi et al. [15] uses

the phase-field approach around the crack-tip tomodel crack propagation in a diffuse way. In the wake of the crack tip,
the X-FEM is used to model a sharp discontinuity in an elastic bulk. A key ingredient of this approach is the boundary
conditions in the phase-field window around the crack tip. The crack tip location is determined by means of a local
criterion based on the maximum gradient of the phase field in the direction of crack propagation (see the discussion
on local vs. global crack tracking in section 2.1.2).

The proposal of Geelen et al. [12] is also based on the combination of phase-field and X-FEM. The two main
distinct features are a crack length functional that triggers the continuous-to-discontinuous transition when the in-
crement of diffuse crack length reaches a prescribed value, and an optimisation-based global crack tracking strategy
that consists in fitting the actual damage field provided by the phase-field model and an auxiliary geometrical damage
field that can be thought of as a diffuse crack.

All themodels cited above are based on the finite elementmethod. Approaches based on alternative discretisation
techniques can also be found. Wu et al. [29], for instance, propose a meshfree continuous-discontinuous approach
for dynamic ductile fracture, based on the combination of a gradient-enriched damage model with a visibility criterion
[30] for sharp cracks, whereas the meshfree approach ofWang et al. [31] for brittle solids is based on the peridynamic
theory. Peridynamics grids are also used by Zaccariotto et al. [32], who combine themwith the standard finite element
method to describe crack propagation phenomena.

1.2 | Crack branching

A propagating crack may branch for a number of reasons. In dynamics, energetic considerations play a crucial role.
Each branching event can be regarded as the generation of an additional crack tip, so that more energy can be dissi-
pated [33, 34]. An important –albeit still debated– notion in dynamic fracture mechanics is that of critical crack tip
velocity [33, 35], abovewhich a crack tends to branch. In quasistatics, the key ingredient of branching is heterogeneity.
In heterogeneous media, holes (or soft inclusions) act as crack attractors, whereas stiffer inclusions tend to repel them
[34]. Both in statics and in dynamics, the crack and heterogeneity patterns are related [34].

A key ingredient of any computational model for fracture that aims to capture complex crack patterns is a branch-
ing criterion. That is, a mechanism to trigger crack bifurcation. If an elastic background continuum model is assumed,
the crack-tip velocity [35] or the energy release rate [36] may be used as branching criteria. If, on the other hand, an in-
elastic non-local continuummodel is chosen, such as gradient-enriched damage models or phase-field approaches, an
extrinsic branching criterion is not required since such models naturally capture branching, both in statics [1, 2, 12, 37]
and in dynamics [34, 38].

Any continuous-discontinuous (or purely discontinuous, i.e. based on an elastic continuum) model of branching
also requires a way to numerically represent the bifurcation of a sharp discontinuity. Like for the simpler case of a
single, non-branching crack, this may be done by means of either fitted or unfitted meshes. Regarding the former,
the cohesive finite element method has amply demonstrated its capability to capture complex crack patterns (see, for
instance, the work of Arias et al. [39] and references therein), at the expense of some mesh dependency of the crack
geometry and the need of very fine meshes. Regarding the latter, only a few unfitted continuous-discontinuous (or
purely discontinuous) models of fracture exhibit branching capabilities.

In their pioneering work, Daux et al. [40] extended the then recent X-FEM formulation to account for branching
cracks by employing additional enrichment functions. The material regions approach of Richardson et al. [41] is based
on the combination of X-FEM and an algorithm for cutting triangulated domains. Since the focus is on the geometrical
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and discretisation aspects, branching criteria are not discussed in these two works.
The discontinuous model of Linder and Armero [35] for dynamic crack branching in brittle materials is based on

embedded strong discontinuities. When the crack-tip velocity reaches a critical threshold velocity, branching occurs.
The incoming crack branches at the centre of the corresponding finite element. The two new branches propagate in
opposite normal directions, so a T-shaped crack pattern is obtained. In the spirit of the strong discontinuity approach
[18], the displacement jumps in the branching element are defined by means of a branching separation mode, and the
associated degrees of freedom are statically condensed.

The approach of Lloberas-Valls et al. [36] combines weak and strong discontinuity injections to describe dynamic
fracture. In their model, branching is explained from an energetic point of view. The region of crack branching is
enhancedwith aweak displacement discontinuity, whereas the rest of the crack ismodelledwith a strong discontinuity.
In contrast with the model of Linder and Armero [35], no special elements with branched strong discontinuities are
required.

The continuous-discontinuous model of Geelen et al. [12] described in section 1.1 also handles crack branching.
In order to do so, the sharp crack insertion algorithm makes an initial guess of two (rather than only one) new sharp
segments. If the angle between the two optimal segments is above a threshold, branching is assumed; if not, the two
segments are collapsed into one.

2 | MODEL FORMULATION

Our starting point is the continuous-discontinuous model for fracture with geometrical crack tracking, based on the
medial-axis concept, presented by Tamayo-Mas and Rodríguez-Ferran [1, 2, 8]. This model is briefly reviewed in
section 2.1. In those references, various two- and three-dimensional examples of propagating (non-branching) cracks
are shown. The remainder of section 2 describes the two new features of this contribution: the X-FEM enrichment
of the displacement field to account for crack branching in section 2.2 and the inclusion of crack-fluid pressure in
section 2.3. Standard notation is used. Vector fields in the continuum are represented by slanted boldface type (u:
displacement field). Nodal vectors associated to the FE discretisation are denoted by upright boldface type (a: nodal
displacements).

2.1 | A continuous-discontinuous model with geometrical crack tracking

The main ingredients of the continuous-discontinuous model for fracture [1, 2, 8] are: i) a gradient-enhanced damage
model based on non-local displacements; ii) a geometrical crack tracking approach based on the medial axis of the
damaged region; iii) X-FEM enrichment to insert a discontinuity in the local and non-local displacement fields along
the medial axis.

2.1.1 | Gradient-enhanced damage model

The gradient-enhanced damage model is summarised in table 1. It is a two-field formulation that involves two dis-
placement fields: the usual local displacements u and non-local (or smoothed) displacements ũ. Stresses depend on
these two displacements via the corresponding strains, see equations (1a)-(1c), where +s denotes the symmetrised
gradient. Note that the non-local strains ε̃ drive the damage parameter D .

The model consists of two coupled field equations in the problem domain Ω: the equilibrium equation (1d) –
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TABLE 1 Gradient-enhanced damage model based on non-local displacements

Stress definition σ(u, ũ) =
(
1 − D (ε̃)

)
C : ε (1a)

Local strains ε = +su (1b)

Non-local strains ε̃ = +sũ (1c)

Equilibrium equation + · σ(u, ũ) = 0 in Ω (1d)

Prescribed displacements u = u? on Γu (1e)

Prescribed tractions σ · n = t? on Γt (1f)

Regularisation equation ũ − `2+2ũ = u in Ω (1g)

Normal component: Dirichlet ũ · n = u · n on ∂Ω (1h)

Tangential component: Neumann n · +ũ · τ = n · +u · τ on ∂Ω (1i)

where inertia effects and body forces are neglected– and the regularisation equation (1g). The equilibrium equation
is complemented with the usual boundary conditions (1e) and (1f): prescribed displacements u? in Γu and prescribed
tractions t? in Γt, with ∂Ω = Γu ∪ Γt. The regularisation (or smoothing) equation, which has the crucial role of injecting
the characteristic length ` into the formulation, is complemented with the so-called combined boundary conditions
[1, 2]: Dirichlet for the normal component of displacements, equation (1h) andNeumann for the tangential component,
equation (1i). Vectors n and τ represent respectively the outward unit normal and unit tangent to the boundary ∂Ω
of the two-dimensional domain Ω. For a three-dimensional domain Ω, equation (1i) is stated for the two unit tangents,
τ1 and τ2 .

The key difference with respect to other gradient damage models is that the regularisation equation (1g) is ex-
pressed in terms of displacements, rather than a state variable [4]. We have argued in [42, 43, 44] that this choice
has a number of attractive features, such as straightforward linearisation for Newton iterations, clear meaning of the
boundary conditions, and correct damage initiation at the crack tip in pre-cracked specimens.

2.1.2 | Geometrical crack tracking

A key decision in the design of a continuous-discontinuous models is where to locate the sharp crack. We classify
the approaches available into two groups: local and global crack tracking strategies. Local approaches are based on
information at (or in a small neighbourhood of) the crack tip. Various near-tip field features may be used to decide the
direction of crack tracking: maximum principal stress, maximum principal non-local strain [13] or maximum accumu-
lation of non-local equivalent strain [14]. In our view, these local approaches —of a mechanical nature—, make little
use of the background continuous model, and this may be regarded as a “waste” of valuable information.

We prefer to use a more global approach, of a geometrical nature. In the medial-axis approach [1, 2], the sharp
crack is placed “in the middle” of the damage band defined by the isoline D = D?. This intuitive notion has a precise
geometrical definition: the medial axis of a line in Ò2 is the locus of the centres of the interior bi-tangent circles, see
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figure 1. This definition can be extended to three dimensions in a natural way: the medial surface of a surface in Ò3

is the locus of the centres of the interior bi-tangent spheres. Various codes to extract the medial axis are available
[45, 46].

The discontinuity is inserted along the medial axis when damage reaches a critical value of D = Dcrit. This is
done progressively, by checking the damage field at the end of each load step: as soon as D ≥ Dcrit for one or more
elements ahead of the crack tip, their nodes are marked for X-FEM enrichment. This results in displacement jumps at
the next load step. Either a traction-free crack [2] or a cohesive crack [8] may be inserted. For simplicity, the case of
non-cohesive cracks is considered here.

(a) (b) (c) (d)

F IGURE 1 Geometrical crack tracking: (a) Given a domain Ω, (b) the bi-tangent interior circles are computed, and
(c) joining their centres, (d) the medial axis is obtained. Note that the medial axis is very sensitive to details in the
boundary of the object and thus, simplified and stable versions are usually preferred, see section 2.2.1. Figure
adapted from [2].

Another global approach is that of Geelen et al. [12]: in the context of a continuous-discontinuous phase-field
model, the crack is located by fitting two fields: themechanical damage phase-field and a geometrical auxiliary damage
field, which can be regarded as a diffuse representation of the discontinuity. This fitting is carried out by solving a
minimisation problem [47].

2.1.3 | X-FEM enrichment of the displacement fields

The two displacement fields, u and ũ, are made discontinuous across the crack by means of the eXtended Finite
Element Method [16, 17]. They are represented as

u(x) = a(x) +ψ(x)b(x) (2a)

ũ(x) = ã(x) +ψ(x)̃b(x) (2b)

where a(x), b(x), ã(x) and b̃(x) are continuous fields and ψ(x) is the sign function (i.e. −1 to +1 step) across the
discontinuity Γ. In order to describe the jumps, fields b(x) and b̃(x) with a compact support along the discontinuity
may be used. In practice, this means that, upon finite element discretisation, only the nodes belonging to elements
crossed by the discontinuity are enriched with degrees of freedom bJ and b̃J , whereas all nodes in the mesh have aI
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and ãI degrees of freedom, see figure 2. That is, the finite element approximations of the displacement fields are

u(x) ≈ uh (x) =
∑
I ∈É

NI (x)aI +
∑
J∈Ê⊆É

NJ (x)ψ(x)bJ (3a)

ũ(x) ≈ ũh (x) =
∑
I ∈É

NI (x)̃aI +
∑
J∈Ê⊆É

NJ (x)ψ(x)b̃J (3b)

where É is an index set of all nodes in the mesh, Ê is an index set of enriched nodes and NI (x) are the standard
finite element shape functions. Note also that if the crack tip is assumed to be in an element edge (and not inside an
element), then the nodes in that edge should not be enriched, see figure 2.

crack initiation

D = 0

D = 0

D = Dcrit

crack

enriched nodes

dictated crack growth

F IGURE 2 Finite element enrichment by means of X-FEM. Figure adapted from [2].

The variational formulation and finite element discretisation of this continuous-discontinuous model is discussed
in [1, 2]. The extension to branching cracks is discussed in full detail by Feliu-Fabà [48] and summarised in appendix
A.

2.2 | Crack branching

The continuous-discontinuous model reviewed in section 2 is extended here to handle branching cracks. Interestingly,
and due to to the versatility of the main ingredients of the original approach, only a few modifications are required.
The effect of crack branching on the geometrical crack tracking and on the X-FEM enrichment of the displacement
fields is discussed in sections 2.2.1 and 2.2.2 respectively. The continuous gradient-enriched damagemodel of section
2.1.1 applies without any change.

2.2.1 | Geometrical tracking of crack branching

A very appealing feature of the geometrical crack tracking based on the medial axis of section 2.1.2 is that it applies
naturally to branching cracks and other complex crack patterns. Indeed, if the damage field of the background con-
tinuum model branches (due to the boundary conditions, heterogeneities or any other cause), see figure 3(a), this
branching is of course reflected in the damage isoline, so it is captured by the medial axis, see figure 3(b). This is
a direct consequence of the generality of the geometrical notion of medial axis. Like in the case of non-branching
cracks, we use the so-called θ-simplified medial axis [49] to “prune” the small branches and retain the “spine”, see fig-
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ure 3(c). The simplification consists in discarding the circles with a separation angle between tangency points below a
prescribed angle θ. Note that, in contrast with other approaches for branching [35], no specific tip criteria are required
to trigger branching, neither for the diffuse crack nor for the sharp crack.

(a) (b) (c)

F IGURE 3 The medial axis of a branching crack: (a) damage isoline; (b) medial axis; (c) simplified medial axis.
Figure adapted from [2].

2.2.2 | X-FEM enrichment for crack branching

The X-FEM enrichment of section 2.1.3 can be extended in a straigthforward manner to multiple cracks [40]. Let
us consider first the case of one branching crack, see figure 4. The crack is understood as a primary crack Γ1 and a
secondary crack Γ2. The discontinuous displacement fields are represented as

u(x) = a(x) +ψ1(x)b1(x) +ψ2(x)b2(x) (4a)

ũ(x) = ã(x) +ψ1(x)̃b1(x) +ψ2(x)̃b2(x) (4b)

where ψ1(x) and ψ2(x) are the sign functions across the discontinuities Γ1 and Γ2 respectively. Note that the labelling
of one of the two branches (in the case of figure 4, the right one) as secondary crack is arbitrary. One could label
alternatively the left branch as the secondary crack, or even treat the “trunk” and the two branches as three different
cracks. What is relevant is to ensure the jumps across the Y pattern.

The fact that the discontinuous displacement fields now have two enrichment terms rather that only one, cf.
equations (3) and (4), must be reflected both in the variational formulation and in the finite element discretisation, as
discussed in appendix A.

For the case of a more complex branch pattern as the one depicted in figure 5, equation (4) is extended into

u(x) = a(x) +
ncracks∑
i=1

ψi (x)bi (x) (5a)

ũ(x) = ã(x) +
ncracks∑
i=1

ψi (x)̃bi (x) (5b)
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F IGURE 4 X-FEM enrichment: (a) a branching crack is modelled as (b) a primary crack and (c) a secondary crack.
The numbers in (a) indicate the two endpoints of each crack.

where i is a crack counter that spans all the cracks, and ψi (x) for i = 1, . . . , ncracks are the corresponding step
functions. Upon finite element discretisation, nodal enrichment with fields bi and b̃i is only needed in elements
crossed by crack i .






















FI

1

1

2
2

3
3

4
4

5
5

F IGURE 5 Complex pattern with several cracks (ncracks = 5). The numbers indicate the two endpoints of each
crack.

2.3 | Crack-fluid pressure

2.3.1 | Simple physical model of a pressurised crack

As discussed in the introduction, the explicit representation of cracks provided by continuous-discontinuous models
is an attractive feature in a number of applications. To illustrate this point, we analyse here the effect of a pressurised
fluid inside the crack [50].

Consider a domain Ω with boundary ∂Ω = Γu ∪ Γt and a crack Γ filled with a fluid at pressure p , see figure



Tamayo-Mas et al. 11

6(a). To keep the discussion simple and focus on the treatment of the pressure and the handling of a discontinous
displacement field in the variational formulation, a local linear elastic bulk is assumed. Regarding continuity, it is
convenient to consider also the cracked domain Ωcracked with boundary ∂Ωcracked = Γu ∪ Γt ∪ Γ

+ ∪ Γ−, where Γ+ and
Γ− are the two faces of crack Γ, see figure 6(b). The governing equations are then

+ · σ = 0 in Ωcracked (6a)

u = u?on Γu (6b)

σ · n = t?on Γt (6c)

σ · n = −p n on Γ+ ∪ Γ− (6d)

In addition to the usual equations (6a)-(6c), already shown in table 1, equation (6d) is the pressure boundary condition.
Note that the fluid exerts pressure p on both faces of the crack. In this simple physical model, pressure is assumed
to be an input. A possible alternative would be to use a poro-mechanical model [51] that couples bulk mechanical
deformation and fluid flow, where pressure is an additional unknown field.

Ω

Γt

t?

Γ
p

Γu

u?

(a)








































































































Ωcracked

Γt

t?

Γ+
Γ−

n+

n−

p

Γu

u?

(b)

F IGURE 6 Fluid-pressurised crack: (a) domain Ω with crack Γ; (b) domain Ωcracked with the two faces of the
crack, Γ+ and Γ−, and the corresponding unit normals, n+ and n−.

2.3.2 | Variational formulation

The derivation of the weak form of problem (6) follows the standard procedure, because displacements and weight
functions are continuous in Ωcracked (albeit discontinuous in Ω across Γ). Weighted residuals, integration by parts and
Gauss divergence theorem lead to the weak form
“Find u in Ωcracked such that u |Γu = u? and∫

Ωcracked
+sωωω : σdΩ =

∫
Γt

ωωω · t?dΓ +
∫
Γ+
ωωω · (−p n+)dΓ +

∫
Γ−
ωωω · (−p n−)dΓ (7)
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for any ωωω in Ωcracked such that ωωω |Γu = 0”. The last two terms in equation (7) represent the external virtual work of the
pressure forces.

If a fitted mesh is used, then the finite element discretisation of equation (7) is standard. If, on the other hand, the
crack Γ is not meshed but handled by means of X-FEM, then it is convenient to rewrite the weak form (7) as an integral
equation over domain Ω. We consider a discontinuous displacement field u(x) = a(x)+ψ(x)b(x)with a |Γu = u? and
b |Γu = 0, see equation (2a), and arbitrary test functionsωωω(x) = ωωωa (x)+ψ(x)ωωωb (x)withωωωa |Γu = ωωωb |Γu = 0. Substituting
ωωω in equation (7) and taking into account that i) both contributions ωωωa and ωωωb are arbitrary, ii) the two normals are
opposite vectors, n− = −n+ and iii) ψ |Γ+ = +1 and ψ |Γ− = −1 leads finally to the weak form:

“Find a and b in Ω such that a |Γu = u? and b |Γu = 0 and∫
Ω
+sωωωa : σdΩ =

∫
Γt

ωωωa · t
?dΓ (8a)∫

Ω
ψ+sωωωb : σdΩ =

∫
Γt

ψωωωb · t
?dΓ + 2

∫
Γ
ωωωb (−p n

+)dΓ (8b)

for any ωωωa and ωωωb in Ω such that ωωωa |Γu = ωωωb |Γu = 0.”

This weak form clearly reflects the role of crack-fluid pressure. If the virtual displacements are continuous (ωωωb = 0),
the net virtual work of pressure forces is zero, because the contributions on the two crack faces have opposite signs.
This is why there is no pressure contribution in equation (8a). If, on the other hand, the virtual displacements are dis-
continuous across the crack (ωωωb , 0), then pressure forces open the crack and do a non-zero virtual work, reflected in
the last term of equation (8b). Note also the factor 2, associated to the step height of the sign function,ψ |Γ+−ψ |Γ− = 2.

2.3.3 | Finite element discretisation

Finite element discretisation of the weak form (8) leads to the linear system of algebraic equations[
Kaa Kab

Kba Kbb

] {
a
b

}
=

{
fa
fb

}
(9)

where a is a “long” vector of length ndof (number of standard degrees of freedom) and b is a “short” vector of length
ndofEnr (number of enriched degrees of freedom).

The stiffness matrix and force vector are defined as

Kaa =
∫
Ω
BTaC BadΩ Kbb =

∫
Ω
BTbC BbdΩ (10a)

Kab =
∫
Ω
ψBTaC BbdΩ Kba =

∫
Ω
ψBTbC BadΩ (10b)

and

fa =
∫
Γt

NTa t?dΓ fb =
∫
Γt

ψNTb t
?dΓ + 2

∫
Γ
ψNTb (−p n

+)dΓ (11)

where Na and Ba are the usual matrices of shape functions and shape function derivatives, and Nb and Bb are the
corresponding matrices for enriched degrees of freedom. Since ndofEnr is typically much less than ndof, the compu-
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tational burden of the X-FEM enrichment is moderate.

Note in equation (11)2 the contribution of crack-fluid pressure in vector fb. The line integral over crack Γ is
computed by mapping, for each cracked element, the corresponding segment to the reference [−1, 1] segment, where
a standard Gaussian quadrature is applied.

3 | NUMERICAL EXAMPLES

Two types of numerical examples are shown here. Section 3.1 deals with cracks in a local elastic bulk. The crack
geometry is known in advance and non-local displacements are not used; the focus is on X-FEM enrichment for crack
branching and on crack opening due to internal fluid pressure. Section 3.2 deals with damage-driven crack branching.
All the ingredients in the proposed approach are combined: the gradient-enhanced continuous damage model, the
geometrical crack tracking based on the medial axis and the X-FEM discontinuous enrichment.

3.1 | Cracks in an elastic bulk

3.1.1 | Kinematics of one branching element

As a first example, we explore the kinematics of one quadrilateral finite element with a branching crack. As shown in
figure 7, the vertical “trunk” and the left branch are regarded as crack Γ1 and the right branch is crack Γ2. The definition
of sign functions ψ1(x) and ψ2(x) is also shown.

Γ1

1 2

34

Γ2

(a)

1 2

34

𝜓ρ=π1

𝜓1=+1

𝜓ρ=+1

(b)

1 2

34

𝜓ς=-1

𝜓2=-1

𝜓2=+1

(c)

F IGURE 7 One finite element with a branching crack: (a) cracks Γ1 and Γ2; (b) sign function ψ1 for crack Γ1; (c)
sign function ψ2 for crack Γ2.

All four nodes are enriched with degrees of freedom b1 and b2, in addition to the standard degrees of freedom
a, see equation (4). This means that the dimension of the elastic stiffness matrix is 24 (nsd × nnodes × nfields, with
nsd = 2, nnodes = 4 and nfields = 3).

A good test to validate the X-FEM enrichment for this branching element is to compute and plot the rigid eigen-
modes of the elastic stiffness matrix (by means of command eig in Matlab). Figure 8 shows the expected result: two
rigid translations and one rigid rotation for each of the three pieces (that is, a total of nine rigid modes). This clearly
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shows that the X-FEM enrichment effectively cuts the finite element into three fully independent pieces, with no spu-
rious stress transmission between them. This full separation does not occur if the branching element is only enriched
with weak discontinuities [36].

Introduction X-FEM CD Application example Conclusions

RIGID MODES OF CRACK BRANCHING ELEMENT 13/31

F IGURE 8 Rigid modes in a crack-branching element.

3.1.2 | Fluid pressure on a crack system

We study next the effect of fluid pressure on a crack system, see figure 9. The rectangular domain has length L = 10
m, height H = 7 m, Young’s modulus E = 20 GPa and Poisson’s coefficient ν = 0. Displacements are restrained in the
left and right edges.

Γ1

Γ2

Γ3H

L

(a)

Elastic bulk

� Alignment independence

19

(b)

F IGURE 9 Fluid pressure on a crack system: (a) problem statement; (b) deformed mesh (amplification factor: 20).
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The domain contains three independent, non-connected cracks Γ1, Γ2 and Γ3. Nodes enrichedwith the correspond-
ing sign function ψi (i = 1, 2, 3) are shown in red. Note that crack tips are assumed to be located in element edges,
and that the two nodes in each crack-tip edge are not enriched, because the displacement field is not discontinuous
along them.

Cracks are filled with a fluid with pressure p = 0.05 GPa. This leads to nodal forces in the enriched nodes, com-
puted according to equation (11)2. The resulting deformed mesh is plotted in figure 9(b). Note how the crack opening
is larger in Γ1, which is less confined by the boundary conditions, than in the other two cracks.

In this simple scenario of a pre-existing and non-evolving crack system, the dimension of the linear system (9)
is fixed, with ndof=176 and ndofEnr=36. It can be checked that the X-FEM enrichment has a moderate impact on
the conditioning of the stiffness matrix. The 2-norm condition number (command cond in Matlab) of the stiffness
matrix of the bulk without cracks (i.e. matrix Kaa in equation (10), with restrained displacements imposed by means
of Lagrange multipliers, see [50]) is 2.2× 103, whereas for the cracked bulk (that is, accounting also for blocks Kab, Kba

and Kbb) it is 3.0 × 103.

3.1.3 | Recursive crack branching

In this example we illustrate that the X-FEM enrichment of the displacement field can be applied recursively to an
arbitrary number of cracks, see equation (5a), by means of a simple test.

Consider the rectangular specimen of dimensions 60 mm × 100 mm and elastic parameters E = 20 GPa and ν = 0
shown in figure 10. We assume that a pressurised fluid with p = 0.05 GPa causes the evolving crack system shown in
figures 10(a)-10(d) and compute the corresponding crack opening patterns, shown in figures 10(f)-10(j). The boundary
conditions and the finite element mesh are shown in figure 10(e).

These opening patterns are obtained bymeans of the X-FEMenrichment of the displacement field in equation (5a).
The variable ncracks increases progressively from 1 to 4. Note how the complete crack system composed of cracks
Γ1, Γ2, Γ3 and Γ4 finally fracture the medium into five fully independent pieces, with no spurious stress transmission
between them.

Table 2 reflects the evolving nature of the crack system. The length of nodal vector a (that is, ndof) is constant
throughout the process, whereas the number ncracks and length ndofEnri of vectors bi (with i = 1, . . . , 4) increase
as the cracks branch and propagate. There is also a noticeable but modest increase in the condition number of the
global stiffness matrix.

TABLE 2 Recursive crack branching: evolution of vector dimensions and problem conditioning

Phase ncracks ndof ndofEnr1 ndofEnr2 ndofEnr3 ndofEnr4 Condition number

1 1 48 4 — — — 35.6

2 2 48 8 4 — — 588

3 2 48 12 8 — — 735

4 4 48 20 16 8 8 883

5 4 48 24 20 12 12 1400
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F IGURE 10 Recursive crack branching: (a-d) evolution of the crack geometry, with the endpoints of each crack
indicated by numbers; (e) ; (f-i) evolution of the crack opening (amplification factor: 20).
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3.2 | Damage-driven crack branching

The square specimen of figure 11 is clamped at the right edge and subjected to triangular distributions of prescribed
displacements at the top and bottom edges. The bulk is modelled as an elastic-damage material, with the Mazars
definition of the equivalent strain (based on positive principal strains) and a linear softening law (with damage-initiation
strain κi and ultimate strain κu [2]). The domain is meshed with a regular grid of 31 × 31 linear quadrilateral finite
elements. Mode I damage inception at the centre of the left edge is triggered by a notch of 3×1 finite elements. Table
3 summarises the geometrical and material parameters.

F IGURE 11 Damage-driven branching: problem statement

TABLE 3 Damage-driven branching: geometrical and material parameters

Meaning Symbol Value

Size of the specimen L 100 mm

Length of notch LW 3L/101

Height of notch hW L/101

Young’s modulus E 20 000MPa

Young’s modulus of weaker part EW 2 000MPa

Poisson’s coefficient ν 0.3

Damage initiation strain κi 10−4

Ultimate strain κu 1.25 × 10−2

Characteristic length `
√
7 × 10−1 mm

Figure 12(a)-(c) shows the evolution of the damage field D in the continuous regime for increasing values of the
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prescribed displacement u?. As expected, damage starts at the notch and propagates rightward up to to a point where
it becomes energetically more efficient to bifurcate into two symmetrical branches. There are no heterogeneities in
this problem; the boundary conditions are responsible for branching.

(a) (b) (c) (d)
Step64

(e)

Step67

(f)

Step71

(g)

Step78

(h)

(i) (j) (k) (l)

F IGURE 12 Damage-driven branching: (a)-(c) evolution of the damage field in the continous regime; (d) isoline
and medial axis at the transition point; (e)-(h) progressive X-FEM enrichment of nodes for crack Γ1 (blue circles) and
crack Γ2 (red crosses); (i)-(l) evolution of the damage field and opening of the sharp crack in the discontinuous regime
(amplification factor: 100).

When damage reaches the critical value Dcrit = 0.995 in the most damaged element, the model switches to the
continuous-discontinuous regime. Figure 12(d) shows the damage isoline D = D ∗ = 0.9 and its θ-simplified medial
axis, with a separation angle θ = 100o , see section 2.2.1. We stress the fact that the medial axis automatically captures
the branching of the damage field, without resorting to any ad-hoc branching criterion, and leads to a branching sharp
crack. Note also that the medial axis is rather insensitive to the values of both the separation angle and the damage
isoline D ∗ [2].

The nodes in the elements crossed by the medial axis are progressively enriched as the crack propagates when
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D reaches Dcrit, see figure 12(e)-(h). The X-FEM enrichment of the displacement field is carried out as discussed in
section 2.2.2. Note that the four nodes of the branching finite element are enriched with both b1 and b2 degrees of
freedom.

Hence, the complete modelling approach consists in applying the three main steps outlined above –that is, the
computation of the damage field, the determination of the medial axis, and the X-FEM enrichment– within the usual
load stepping in nonlinear analysis. As the damage field expands, so does the damage isoline D = D ∗ and its medial
axis. This results in a sharp crack that starts propagating rightward and then branches, see figure 12(i)-(l). Note how, in
this continuous-discontinuous approach, the background damage field governs in a natural manner the propagation
and branching of the crack.

Figure 13 shows the force-displacement response obtained with the proposed continuous-discontinuous ap-
proach. For comparison purposes, the response of the continuous approach (i.e. no X-FEM enrichment of the dis-
placement field) is also shown. The two curves are rather different after the transition point: in the continuous-
discontinuous approach, the insertion of a traction-free sharp crack results in a loss of load-carrying capacity. One
possible remedywould be to replace the traction-free crack by an energetically equivalent cohesive crack; work in this
direction is under progress. Energetic non-equivalence between the continuous and the continuous-discontinuous
approaches may also be the cause of the growth of damage along the middle line that can be seen in figure 12(k)-(l).

0 0.005 0.01 0.015 0.02 0.025 0.03
Displacement (mm)

0

5

10

15

20
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 (
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)
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Continuous-Discontinuous

F IGURE 13 Force-displacement curves for the continuous and continuous-discontinuous approaches.

4 | CONCLUDING REMARKS

A new continuous-discontinuous formulation for fracture that accounts for crack branching in a natural manner is
presented. Its key ingredients are i) a displacement-based nonlocal continuum damage model for diffuse cracks, ii)
a global geometrical crack tracking technique based on the medial-axis concept, and iii) the X-FEM enrichment of
the displacement field for sharp cracks. The capability of the model to capture branching cracks without any ad-hoc
branching criteria originates from the generality of the medial axis, which detects the bifurcation in the damage field.
This generality opens the door to the extension of the model to three dimensions, where the notion of medial axis
is replaced by that of medial surface. This idea has already been tested for simple, planar (i.e. non-branching) cracks
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[1, 2].
The proposed model also includes a crack-fluid pressure. In this work, it is regarded as an input. However, the

model could be further extended to add hydrodynamics, thus resulting in a coupled fluid-structure problem, with
pressure as an additional unknown. Another possible improvement of the model is the replacement of traction-free
sharp cracks by energetically equivalent cohesive cracks. This has also already been tested for non-branching cracks
[8].

Finally, we note that, since the goal of thiss contribution is presenting the model and illustrating its possibilities
for dealing with crack branching and crack pressure, uniform linear finite element meshes have been used in all the
numerical examples. Some sort of adaptivity should be used to increase the computational efficiency, especially in
3D problems.

Acknowledgments

The first author publishes with the permission of the Executive Director of the British Geological Survey.

references
[1] Tamayo-Mas E. Continuous-discontinuous modelling for quasi-brittle failure: propagating cracks in a regularised bulk.

PhD thesis, Universitat Politècnica de Catalunya; 2013.

[2] Tamayo-Mas E, Rodríguez-Ferran A. A medial-axis-based model for propagating cracks in a regularised bulk. Interna-
tional Journal for Numerical Methods in Engineering 2015;101(7):489–520.

[3] Pijaudier-Cabot G, Bažant Z. Nonlocal Damage Theory. Journal of Engineering Mechanics 1987;113(10):1512–1533.

[4] Peerlings R, de Borst R, BrekelmansW, GeersM. Gradient-enhanced damagemodelling of concrete fracture. Mechanics
of Cohesive-frictional Materials 1998;3(4):323–342.

[5] Bourdin B, Francfort G, Marigo JJ. Numerical experiments in revisited brittle fracture. Journal of the Mechanics and
Physics of Solids 2000;48(4):797–826.

[6] Ambati M, Gerasimov T, De Lorenzis L. A review on phase-field models of brittle fracture and a new fast hybrid formu-
lation. Computational Mechanics 2015;55(2):383–405.

[7] Comi C, Mariani S, Perego U. An extended FE strategy for transition from continuum damage to mode I cohesive crack
propagation. International Journal for Numerical and Analytical Methods in Geomechanics 2007;31(2):213–238.

[8] Tamayo-Mas E, Rodríguez-Ferran A. A new continuous-discontinuous damage model: Cohesive cracks via an accurate
energy-transfer process. Theoretical and Applied Fracture Mechanics 2014;69:90–101.

[9] Wang Y, Waisman H. From diffuse damage to sharp cohesive cracks: A coupled XFEM framework for failure analysis of
quasi-brittle materials. Computer Methods in Applied Mechanics and Engineering 2016;299:57–89.

[10] Roth SN, Léger P, Soulaïmani A. A combined XFEM-damage mechanics approach for concrete crack propagation. Com-
puter Methods in Applied Mechanics and Engineering 2015;283:923–955.

[11] Lé B, Moës N, Legrain G. Coupling damage and cohesive zone models with the Thick Level Set approach to fracture.
Engineering Fracture Mechanics 2018;193:214–247.

[12] Geelen R, Liu Y, Dolbow J, Rodríguez-Ferran A. An optimization-based phase-field approach for continuous-
discontinuous crack propagation. International Journal for Numerical Methods in Engineering 2018;116(1):1–20.



Tamayo-Mas et al. 21

[13] Jirásek M, Zimmermann T. Embedded crack model. Part II: combination with smeared cracks. International Journal for
Numerical Methods in Engineering 2001;50(6):1291–1305.

[14] Simone A, Wells G, Sluys L. From continuous to discontinuous failure in a gradient-enhanced continuum damage model.
Computer Methods in Applied Mechanics and Engineering 2003;192(41-42):4581–4607.

[15] Giovanardi B, Scotti A, Formaggia L. A hybrid XFEM-Phase field (Xfield) method for crack propagation in brittle elastic
materials. Computer Methods in Applied Mechanics and Engineering 2017;320:396–420.

[16] Belytschko T, Black T. Elastic crack growth in finite elementswithminimal remeshing. International Journal for Numerical
Methods in Engineering 1999;45(5):601–620.

[17] Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal
for Numerical Methods in Engineering 1999;46(1):131–150.

[18] Simo J, Oliver J, Armero F. An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic
solids. Computational Mechanics 1993;12(5):277–296.

[19] Mazars J, Pijaudier-Cabot G. From damage to fracture mechanics and conversely: A combined approach. International
Journal of Solids and Structures 1996;33(20-22):3327–3342.

[20] Wells G, Sluys L, de Borst R. Simulating the propagation of displacement discontinuities in a regularized strain-softening
medium. International Journal for Numerical Methods in Engineering 2002;53(5):1235–1256.

[21] Seabra M, César de Sá J, Andrade F, Pires F. Continuous-discontinuous formulation for ductile fracture. International
Journal of Material Forming 2011;4(3):271–281.

[22] Cazes F, Coret M, Combescure A, Gravouil A. A thermodynamic method for the construction of a cohesive law from a
nonlocal damage model. International Journal of Solids and Structures 2009;46(6):1476–1490.

[23] Cazes F, Simatos A, Coret M, Combescure A. A cohesive zone model which is energetically equivalent to a gradient-
enhanced coupled damage-plasticity model. European Journal of Mechanics - A/Solids 2010;29(6):976–989.

[24] Cuvilliez S, Feyel F, Lorentz E, Michel-Ponnelle S. A finite element approach coupling a continuous gradient damage
model and a cohesive zonemodelwithin the framework of quasi-brittle failure. ComputerMethods in AppliedMechanics
and Engineering 2012;237-240(0):244–259.

[25] Benvenuti E, Tralli A. Simulation of finite-width process zone in concrete-like materials by means of a regularized ex-
tended finite element model. Computational Mechanics 2012;50(4):479–497.

[26] Giry C, Dufour F, Mazars J. Stress-based nonlocal damage model. International Journal of Solids and Structures
2011;48(25-26):3431–3443.

[27] Bobiński J, Tejchman J. A coupled constitutive model for fracture in plain concrete based on continuum theory with
non-local softening and eXtended Finite Element Method. Finite Elements in Analysis and Design 2016;114:1–21.

[28] Moës N, Stolz C, Bernard P, Chevaugeon N. A level set based model for damage growth: The thick level set approach.
International Journal for Numerical Methods in Engineering 2011;86(3):358–380.

[29] Wu C, Ma N, Takada K, Okada H. A meshfree continuous-discontinuous approach for the ductile fracture modeling in
explicit dynamics analysis. Computational Mechanics 2016;58(3):391–409.

[30] Huerta A, Belytschko T, Fernández-Méndez S, Rabczuk T, Zhuang X, Arroyo M. Meshfree Methods. In: Stein E, de Borst
R, Hughes T, editors. Encyclopedia of ComputationalMechanics Second Edition, Part 2 Fundamentals Chichester: Wiley;
2017.



22 Tamayo-Mas et al.

[31] Wang Y, Zhou X, Wang Y, Shou Y. A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propa-
gation of cracks in brittle solids. International Journal of Solids and Structures 2018;134:89–115.

[32] ZaccariottoM,Mudric T, Tomasi D, Shojaei A, Galvanetto U. Coupling of FEMmeshes with Peridynamic grids. Computer
Methods in Applied Mechanics and Engineering 2018;330:471–497.

[33] Freund L. Dynamic fracture mechanics. Cambridge University Press; 1998.

[34] Bleyer J, Roux-Langlois C, Molinari JF. Dynamic crack propagation with a variational phase-field model: limiting speed,
crack branching and velocity-toughening mechanisms. International Journal of Fracture 2017;204(1):79–100.

[35] Linder C, Armero F. Finite elements with embedded branching. Finite Elements in Analysis and Design 2009;45(4):280–
293.

[36] Lloberas-Valls O, HuespeA,Oliver J, Dias I. Strain injection techniques in dynamic fracturemodeling. ComputerMethods
in Applied Mechanics and Engineering 2016;308:499–534.

[37] Wu T, Carpiuc-Prisacari A, PonceletM, De Lorenzis L. Phase-field simulation of interactive mixed-mode fracture tests on
cement mortar with full-field displacement boundary conditions. Engineering Fracture Mechanics 2017;182:658–688.

[38] Hofacker M, Miehe C. A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack
patterns. International Journal for Numerical Methods in Engineering 2013;93(3):276–301.

[39] Arias I, Knap J, Chalivendra V, Hong S,MichaelO, Rosakis A. Numerical modelling and experimental validation of dynamic
fracture events along weak planes. Computer Methods in Applied Mechanics and Engineering 2007;196(37-40):3833–
3840.

[40] Daux C, Moës N, Dolbow J, Sukumar N, Belytschko T. Arbitrary branched and intersecting cracks with the extended
finite element method. International Journal for Numerical Methods in Engineering 2000;48(12):1741–1760.

[41] Richardson C, Hegemann J, Sifakis E, Hellrung J, Teran J. An XFEM method for modeling geometrically elaborate crack
propagation in brittle materials. International Journal for Numerical Methods in Engineering 2011;88(10):1042–1065.

[42] Rodríguez-Ferran A, Morata I, Huerta A. Efficient and reliable nonlocal damage models. Computer Methods in Applied
Mechanics and Engineering 2004;193(30-32):3431–3455.

[43] Rodríguez-Ferran A, Morata I, Huerta A. A new damage model based on non-local displacements. International Journal
for Numerical and Analytical Methods in Geomechanics 2005;29(5):473–493.

[44] Mestre-Bellido H. Damage initiation and propagation in non-local gradient models based on displacement smoothing.
MSc thesis, Universitat Politècnica de Catalunya; 2016.

[45] Suresh K, 2D Medial Axis Computation; 2006. Accessed on 14 September 2018. http://www.mathworks.com/
matlabcentral/fileexchange/12399-2-d-medial-axis-computation.

[46] Yoshizawa S, SM03 Skeleton; 2008. Accessed on 14 September 2018. http://www.riken.jp/brict/Yoshizawa/
Research/Skeleton.html.

[47] Ziaei-RadV, Shen L, Jiang J, Shen Y. Identifying the crack path for the phase field approach to fracturewith non-maximum
suppression. Computer Methods in Applied Mechanics and Engineering 2016;312:304–321.

[48] Feliu-Fabà J. A continuous-discontinuous model to simulate crack branching in quasi-brittle failure. MSc thesis, Univer-
sitat Politècnica de Catalunya; 2016.

[49] Foskey M, Lin M, Manocha D. Efficient computation of a simplified medial axis. In: Proceedings of the eighth ACM
symposium on Solid modeling and applications SM ’03, New York, NY, USA: ACM; 2003. p. 96–107. http://doi.acm.
org/10.1145/781606.781623.



Tamayo-Mas et al. 23

[50] Casado-Antolin M. A continuous-discontinuous model to introduce fluid pressure in a crack. BSc thesis, Universitat
Politècnica de Catalunya; 2016.

[51] Prévost JH, Sukumar N. Faults simulations for three-dimensional reservoir-geomechanical models with the extended
finite element method. Journal of the Mechanics and Physics of Solids 2016;86:1–18.

[52] Ventura G, Benvenuti E. Equivalent polynomials for quadrature in Heaviside function enriched elements. International
Journal for Numerical Methods in Engineering 2015;102(3-4):688–710.



24 Tamayo-Mas et al.

A | VARIATIONAL FORMULATION AND CONSISTENT LINEARISATION

In this appendix, the variational formulation and the consistent tangent matrix of the proposed model are derived [48].
Particular emphasis is placed on the terms that are required to describe branching cracks, which were not included in
previous formulations [1, 2].

A.1 | Variational formulation

Consider a domain Ω with boundary ∂Ω = Γu ∪ Γt and a branching crack Γ = Γ1 ∪ Γ2, see figure 6(a). As discussed
in section 2.3.2, it is convenient to state the problem in the cracked domain Ωcracked, with boundary ∂Ωcracked =

Γu ∪ Γt ∪ Γ
+
1 ∪ Γ

−
1 ∪ Γ

+
2 ∪ Γ

−
2 , see figure 6(b). The coupled problem (equilibrium equation and regularisation equation) in

Ωcracked reads

+ · σ(u, ũ) = 0 in Ωcracked (12a)

u = u? on Γu (12b)

σ · n = t? on Γt (12c)

σ · n = −pn on Γ+1 ∪ Γ
−
1 ∪ Γ

+
2 ∪ Γ

−
2 (12d)

ũ − `2+2ũ = u in Ωcracked (12e)

ũ · n = u · n in ∂Ωcracked (12f)

n · +ũ · τ = n · +u · τ in ∂Ωcracked (12g)

Equations (12) are essentially the same as equations (1), but with the addition of the pressure boundary condition
(12d) on the two faces of the two cracks.

The weak form of problem (12) is obtained following standard procedures, because fields u (local displacements),
ũ (non-local displacements), ω (test functions for equilibrium equation) and ω̃ (test functions for regularisation equa-
tion) are continuous in the cracked domain Ωcracked. It reads

“Find u and ũ in Ωcracked such that u = u? on Γu , ũ · n = u · n on ∂Ωcracked and∫
Ωcracked
+sω : σ(u, ũ)dΩ =

∫
Γt

ω · t?dΓ +
∫
Γ+
1

ω · (−pn+)dΓ +
∫
Γ−
1

ω · (−pn−)dΓ +
∫
Γ+
2

ω · (−pn+)dΓ +
∫
Γ−
2

ω · (−pn−)dΓ

(13a)∫
Ωcracked
ω̃ · ũdΩ + `2

∫
Ωcracked
+ω̃ : +ũdΩ =

∫
Ωcracked
ω̃ · udΩ + `2

∫
∂Ωcracked
(ω̃ · τ )(n · +u · τ )dΓ (13b)

for any ω and ω̃ in Ωcracked such that ω = 0 on Γu and ω̃ · n = 0 on ∂Ωcracked.”

We now rewrite the weak form (13) over domain Ω with cracks Γ1 and Γ2. To do so, we consider discontinous
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fields in Ω,

u(x) = a(x) +ψ1(x)b1(x) +ψ2(x)b2(x) (14a)

ũ(x) = ã(x) +ψ1(x)̃b1(x) +ψ2(x)̃b2(x) (14b)

ω(x) = ωa (x) +ψ1(x)ωb1 (x) +ψ2(x)ωb2 (x) (14c)

ω̃(x) = ω̃a (x) +ψ1(x)ω̃b1 (x) +ψ2(x)ω̃b2 (x) (14d)

and replace them in the weak form (13). Taking into account that i) ωa , ωb1 , ωb2 , ω̃a , ω̃b1 and ω̃b2 are arbitrary; ii)
n− = −n+ in the crack faces and iii) ψi |Γ+

i
= +1 and ψi |Γ−

i
= −1 leads finally to the weak form

“Find a, b1, b2, ã, b̃1, b̃2 in Ω such that a = u?, b1 = b2 = 0 on Γu , ã · n = a · n, b̃1 · n = b1 · n, b̃2 · n = b2 · n on
∂Ω ∪ Γ1 ∪ Γ2 and∫

Ω
+sωa : σ(a, b1, b2, ã, b̃1, b̃2)dΩ =

∫
Γt

ωa · t
?dΓ (15a)∫

Ω
ψ1+

sωb1 : σdΩ =

∫
Γt

ψ1ωb1 · t
?dΓ + 2

∫
Γ1

ωb1 · (−pn
+)dΩ (15b)∫

Ω
ψ2+

sωb2 : σdΩ =

∫
Γt

ψ2ωb2 · t
?dΓ + 2

∫
Γ2

ωb2 · (−pn
+)dΩ (15c)

∫
Ω
ω̃a · (ã +ψ1b̃1 +ψ2b̃2)dΩ + `2

∫
Ω
+ω̃a : (+ã +ψ1+b̃1 +ψ2+b̃2)dΩ =∫

Ω
ω̃a · (a +ψ1b1 +ψ2b2)dΩ + `2

∫
∂Ω
(ω̃a · τ ) [n · (+a +ψ1+b1 +ψ2+b2) · τ ]dΓ+

2`2
∫
Γ1

(ω̃a · τ )(n
+ · +b1 · τ )dΓ + 2`2

∫
Γ2

(ω̃a · τ )(n
+ · +b2 · τ )dΓ

(15d)

∫
Ω
ψ1ω̃b1 · (ã +ψ1b̃1 +ψ2b̃2)dΩ + `2

∫
Ω
ψ1+ω̃b1 : (+ã +ψ1+b̃1 +ψ2+b̃2)dΩ =∫

Ω
ψ1ω̃b1 · (a +ψ1b1 +ψ2b2)dΩ + `2

∫
∂Ω
(ψ1ω̃b1 · τ ) [n · (+a +ψ1+b1 +ψ2+b2) · τ ]dΓ+

2`2
∫
Γ1

(ω̃b1 · τ )
[
n+ · (+a +ψ2+b2) · τ

]
dΓ + 2`2

∫
Γ2

(ψ1ω̃b1 · τ )(n
+ · +b2 · τ )dΓ

(15e)

∫
Ω
ψ2ω̃b2 · (ã +ψ1b̃1 +ψ2b̃2)dΩ + `2

∫
Ω
ψ2+ω̃b2 : (+ã +ψ1+b̃1 +ψ2+b̃2)dΩ =∫

Ω
ψ2ω̃b2 · (a +ψ1b1 +ψ2b2)dΩ + `2

∫
∂Ω
(ψ2ω̃b2 · τ ) [n · (+a +ψ1+b1 +ψ2+b2) · τ ]dΓ+

2`2
∫
Γ1

(ψ2ω̃b2 · τ )(n
+ · +b1 · τ )dΓ + 2`2

∫
Γ2

(ω̃b2 · τ )
[
n+ · (+a +ψ1+b1) · τ

]
dΓ

(15f)

for any ωa , ωb1 , ωb2 , ω̃a , ω̃b1 and ω̃b2 in Ω such that ωa = ωb1 = ωb2 = 0 on Γu and ω̃a · n = ω̃b1 · n = ω̃b2 · n = 0

on ∂Ω ∪ Γ1 ∪ Γ2.”

Equations (15a)-(15c) state equilibrium, whereas equations (15d)-(15f) represent the displacement regularisation.
Note that all boundary integrals over cracks Γ1 and Γ2 carry a factor 2, the step height in the sign function ψ .
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A.2 | Consistent linearisation

Linearisation of the weak form (15) results in the consistent tangent matrix

Ktan =



Ka,a Ka,b1 Ka,b2 Ka,̃a Ka,̃b1
Ka,̃b2

Kb1,a Kb1,b1 Kb1,b2 Kb1 ,̃a Kb1 ,̃b1
Kb1 ,̃b2

Kb2,a Kb2,b1 Kb2,b2 Kb2 ,̃a Kb2 ,̃b1
Kb2 ,̃b2

Kã,a Kã,b1 Kã,b2 Kã,̃a Kã,̃b1
Kã,̃b2

Kb̃1,a
Kb̃1,b1

Kb̃1,b2
Kb̃1 ,̃a

Kb̃1 ,̃b1
Kb̃1 ,̃b2

Kb̃2,a
Kb̃2,b1

Kb̃2,b2
Kb̃2 ,̃a

Kb̃2 ,̃b1
Kb̃2 ,̃b2


(16)

with the matrices defined in Table 4.

TABLE 4 Block matrices of the consistent tangent matrix.

Secant stiffness matrices, with ∂σ/∂ε = (1 − D )C

Ka,a :=
∫
Ω
BTa (∂σ/∂ε)BadΩ Ka,bi = KTbi ,a :=

∫
Ω
ψiBTa (∂σ/∂ε)Bi dΩ (i = 1, 2) (17a)

Kbi ,bi :=
∫
Ω
BTi (∂σ/∂ε)Bi dΩ (i = 1, 2) Kb1,b2 = KTb2,b1 :=

∫
Ω
ψ1ψ2BT1 (∂σ/∂ε)B2dΩ (17b)

Tangent stiffness matrices, with ∂σ/∂ ε̃ = −CεD ′(Ỹ ) ∂Ỹ
∂ε̃

Ka,̃a :=
∫
Ω
BTa (∂σ/∂ ε̃)BadΩ Ka,̃bi

= KTbi ,̃a :=
∫
Ω
ψiBTa (∂σ/∂ ε̃)Bi dΩ (i = 1, 2) (18a)

Kbi ,̃bi
:=

∫
Ω
BTi (∂σ/∂ ε̃)Bi dΩ (i = 1, 2) Kb1 ,̃b2

= KT
b2 ,̃b1

:=
∫
Ω
ψ1ψ2BT1 (∂σ/∂ ε̃)B2dΩ (18b)

Mass and diffusivity matrices

Kã,a := −
(
M + `2K∂Ω

)
Kã,bi = KT

b̃i ,a
:= −

(
Mψi + `

2K∂Ω,ψi + 2`
2KΓi

)
(i = 1, 2) (19a)

Kb̃i ,bi
:= −

(
M + `2K∂Ω

)
(i = 1, 2) Kb̃1,b2

= KT
b̃2,b1

:= −
(
Mψ1ψ2 + `

2K∂Ω,ψ1ψ2 + 2`
2KΓ1,ψ2 + 2`

2KΓ2,ψ1
)

(19b)

Kã,̃a :=M + `2D Kã,̃bi
= KT

b̃i ,̃a
:=Mψi + `

2Dψi (i = 1, 2) (19c)

Kb̃i ,̃bi
:=M + `2D (i = 1, 2) Kb̃1 ,̃b2

= KT
b̃2 ,̃b1

:=Mψ1ψ2 + `
2Dψ1ψ2 (19d)

Some remarks about the matrices in Table 4:

• Equation (17) shows the secant stiffness matrices. Ka,a is the standard secant matrix of the continuous model,
whereas the enriched secantmatricesKa,b1 andKb1,b1 are the ones already obtained for the single-crack. Matrices
Ka,b2 and Kb2,b2 are these same matrices for the secondary crack. The interaction between the two cracks is
represented by Kb1,b2 . A similar comment applies to the tangent stiffness matrices of Equation (18).

• In equations (17) and (18), Ba , B1 andB2 are the usual matrices of shape function derivatives. Note that the dimen-
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sions of Ba are fixed, because ndof does not change, whereas the dimensions of B1 and B2 change throughout
the simulation, because ndofEnr1 and ndofEnr2 grow as the cracks propagate.

• Equation (19) shows the matrices associated to displacement smoothing. M and D are standard mass and diffu-
sivity matrices,

M :=
∫
Ω
NTNdΩ , D :=

∫
Ω
+NT +NdΩ (20)

where N contains shape functions and +N their gradients. The enriched matrices Mψ1 , Dψ1 , Mψ2 , Dψ2 , Mψ1ψ2

and Dψ1ψ2 take into account the discontinuities. For instance,

Mψ1 :=
∫
Ω
ψ1NTNdΩ , Dψ1ψ2 :=

∫
Ω
ψ1ψ2+NT +NdΩ (21)

• Matrices K∂Ω , KΓ1 , KΓ2 in equation (19), and their enriched versions K∂Ω,ψ1 , K∂Ω,ψ2 , K∂Ω,ψ1ψ2 , KΓ1,ψ2 , KΓ2,ψ1 ac-
count for the tangential component of the boundary condition, equation (1i). For instance,

K∂Ω :=
∫
∂Ω

NT c+NdΓ , KΓ1,ψ2 :=
∫
Γ1

ψ2NT c+NdΓ with c =
[
nxτ

2
x ny τ

2
x nxτxτy ny τxτy

nxτxτy ny τxτy nxτ
2
y ny τ

2
y

]
(22)

• To compact the notation in equations (19)-(22), the subscript (a , 1 or 2) is dropped frommatricesN and+N, whose
dimensions should be understood from the context. With this abuse of notation, matrices Kã,̃a, Kb̃1 ,̃b1

and Kb̃2 ,̃b2
,

for instance, have dimensions ndof×ndof, ndofEnr1×ndofEnr1 and ndofEnr2×ndofEnr2 respectively, whereas
matrix Kb1 ,̃b2

has dimensions ndofEnr1 × ndofEnr2.
• The size of the global tangent matrix (16) increases from a fixed 2 ndof in the continuous regime to a varying

2(ndof+ndofEnr1+ndofEnr2) in the discontinuous regime. For the typical case of ndof > {ndofEnr1, ndofEnr2},
however, this represents only a moderate increase in the system size.

Due to X-FEM enrichment, the computation of matrices and vectors involves the computation of discontinuous
functions (see, for instance, all the matrices in Table 4 with sign functions ψ1, ψ2 or both). In this work, the cracked
quadrilateral is divided into two polygonal subelements (three for the case of a branching crack) that are further
divided into triangles, see figure 14. Each triangle subdomain is mapped into the parent unit triangle over which a
standard Gaussian quadrature is used. This subdivision intro triangles may be avoided by using alternative strategies,
such as the equivalent polynomial approach of Ventura and Benvenuti [52].
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F IGURE 14 X-FEM numerical integration: subdivision of finite elements with one or two cracks into triangles.


