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A B S T R A C T   

Embracing the concept of resilience within coastal management marks a step change in thinking, building on the 
inputs of more traditional risk assessments, and further accounting for capacities to respond, recover and 
implement contingency measures. Nevertheless, many past resilience assessments have been theoretical and have 
failed to address the requirements of practitioners. Assessment methods can also be subjective, relying on 
opinion-based judgements, and can lack empirical validation. Scope exists to address these challenges through 
drawing on rapidly emerging sources of data and smart analytics. This, alongside the careful selection of the 
metrics used in assessment of resilience, can facilitate more robust assessment methods. This work sets out to 
establish a set of core metrics, and data sources suitable for inclusion within a data-driven coastal resilience 
assessment. A case study region of East Anglia, UK, is focused on, and data types and sources associated with a set 
of proven assessment metrics were identified. Virtually all risk-specific metrics could be satisfied using available 
or derived data sources. However, a high percentage of the resilience-specific metrics would still require human 
input. This indicates that assessment of resilience is inherently more subjective than assessment of risk. Yet 
resilience assessments incorporate both risk and resilience specific variables. As such it was possible to link 75% 
of our selected metrics to empirical sources. Through taking a case study approach and discussing a set of re
quirements outlined by a coastal authority, this paper reveals scope for the incorporation of rapidly progressing 
data collection, dissemination, and analytical methods, within dynamic coastal resilience assessments. This could 
facilitate more sustainable evidence-based management of coastal regions.   

1. Introduction 

Creation of resilience in coastal areas is now commonly acknowl
edged to be a core requirement of sustainable coastal management 
practices (Farhan and Lim, 2011; Karavokiros et al., 2016; Kim et al., 
2014; McFadden, 2010; Nicholls and Branson, 1998; Viavattene et al., 
2018). Resilience is itself a broad concept and can be defined in different 
ways depending on how the term is applied (i.e. ecological resilience, 
engineering resilience). Ecological resilience focuses on the functioning 
of a system and persistence of relationships, and recognises the possi
bility of a resilient system shifting between stable states (Holling, 1973). 
Engineering resilience differs in that it relates to stability near an 
equilibrium state, and the ability of a system to return to an original 
state following a disturbance or perturbation by external stresses (Hol
ling, 1996; Pimm, 1984). In general, resilience is associated with the 
capability to absorb and respond, and the existence of an internal 

adaptive coping capacity (Gallopín, 2006). The Stockholm Resilience 
Centre (2015) define resilience as the capacity to deal with change and 
continue to develop. There is considerable discussion concerning how 
coastal resilience may be defined and measured (Coastal and Environ
mental Research Committee, 2015). Coastal resilience relates to societal, 
economic and ecological factors (NOAA, 2018a). In addressing coastal 
resilience, this article draws primarily on the ecological definition of 
resilience, focusing on the persistence of relationships, and the ability to 
shift to alternative stable states. Our main focus is the resilience of 
coastal communities to environmental hazards (particularly flooding 
and erosion). 

Planning for resilience in coastal areas extends beyond assessment of 
vulnerability and risk. Resilience planning can be characterized by an 
iterative process involving preparation for hazard events, immediate 
responses, and recovery (NOAA, 2018b). To achieve resilience, it is 
inadequate to rely solely on reactive responses to hazard events, it is also 
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necessary to undertake proactive adaptations, increasing the ability of 
coastal communities to ‘bounce back’ following shock events (Kete 
et al., 2018; Leal Filho et al., 2018; NOAA, 2018a; Twigger-ross et al., 
2015). Achievement of sustainable coastal management strategies 
therefore necessitates completion of evidence-based resilience assess
ments. To ensure these assessments generate usable outputs, they must 
address requirements outlined by coastal practitioners relating to 
vulnerability, impacts, and policy evaluation. This can contribute to the 
attainment of goals for sustainable economic development in coastal 
regions (DasGupta and Shaw, 2015). 

There are many studies focusing on resilience which adopt a theo
retical approach, developing as a result, conceptual resilience assess
ment frameworks. Amongst studies focusing on resilience (both 
theoretically based and those more practical) there is no widely agreed 
definite framework. This is in contrast to risk where many risk based 
studies are centred on approximations of the standard risk equation: 
Risk ¼ Hazard x Consequences (Defra, 2009; Goverment Office for Sci
ence, 2004; Nicholls et al., 2015). This ambiguity surrounding the 
practical application of resilience assessments is a contributing factor to 
greater emphasis being placed on evaluation of risk, rather than resil
ience, by those tasked with managing vulnerable coastal regions. Yet 
resilience is increasingly acknowledged as a key discourse within coastal 
management studies and by the wider practitioner community (Cai 
et al., 2018a; Defra, 2016; Deutz et al., 2018; Karavokiros et al., 2016; 
National Infrastructure Commission, 2018; Viavattene et al., 2018; 
Word Bank, 2017). Given this, a requirement exists for a standardised 
methodological approach to coastal resilience assessment. 

In addition to the lack of a single accepted methodology for coastal 
resilience assessment, many existing methodologies can be difficult for 
practitioners to apply, requiring high levels of specialist input. Assess
ments can also be subjective due to a reliance on expert opinion and 
value-based judgements. To overcome such limitations requires appli
cation of methodologies founded on analysis of empirical evidence. 
Today, a data-driven resilience assessment strategy is now a realistic 
possibility (Bellini et al., 2016) due to the ever expanding volumes of 
data being made available, much of which is obtainable open source, 
and has already been revealed as suitable for fulfilling coastal risk 
assessment requirements (Rumson and Hallett, 2018). Yet, under
standing coastal resilience requires consideration of a wider range of 
indicator variables than risk. Furthermore, general consensus is lacking, 
on the indicators or metrics that should be included within a resilience 
assessment. The requirement for such metrics, based on clear, simple 
data and information has been identified as forming the basis of 
long-term adaptation planning (Committee on Climate Change UK, 
2018). In particular the need for indicators which can be based on Big 
Data and open source data is now being acknowledged (Jovanovic et al., 
2016). In this paper, we set out to tackle the fundamental issue of the 
evidence base required for coastal resilience assessments. In doing so, 
we have drawn on a simple resilience assessment framework, populated 
by quantifiable assessment metrics. In addressing the requirement for 
empirical evidence, examples of data sources that could be drawn upon 
to address each metric are discussed, and example data sources are 
provided for a case study region in East Anglia, UK. Additionally, we 
identify areas where data is currently lacking, and where qualitative 
inputs must still be sought. 

Recent, rapid progression in the methods utilised for collection and 
analysis of data underpin our ability to reduce uncertainty in coastal 
planning. This can provide opportunities to steer investment decisions 
on the coast towards profitable developments. The central objective of 
this study is to reveal how assessments of coastal resilience can be 
founded on smart analytics (Jovanovic et al., 2016; Lee et al., 2014; 
Marr, 2015) of diversified and robust datasets. Furthermore, this can 
allow identification of stakeholders who are vulnerable yet potentially 
unaware and unprepared. We explore how coastal practitioners can 
incorporate important missing aspects of coastal resilience within their 
decision-making processes at both local and regional scales. This may 

provide opportunities to lessen impacts, enable bounce back and iden
tify contingencies. Moreover, it may permit future investments to be 
steered towards sustainable areas, creating economic development op
portunities, preserving and enhancing natural capital. Overall, the 
study’s intention is to contribute to furthering our understanding of the 
poorly known aspects of how to operationalize existing coastal resilience 
into every day decision-making. 

2. Case study: East Anglia and Coastal Partnership East (CPE) 

A case study region of East Anglia, in the East of England was 
selected for this study. The work benefited from input received from 
coastal practitioners tasked with managing this coastline: the key or
ganisations being CPE and the Environment Agency (EA). East Anglia is 
a highly vulnerable coastal region, experiencing both high levels of 
erosion and regular and extensive coastal flooding (Nicholls et al., 
2015). The region comprises a diverse range of coastal environments 
and anthropogenic activities. A number of coastal towns, such as Low
estoft and Great Yarmouth, have experienced economic decline in recent 
times, as a result of a declining tourism industry (Agarwal and Brunt, 
2006) and significant job losses in traditional industries such as fishing 
(Brookfield et al., 2005). This can result in densely populated and 
economically deprived communities, being exposed to hazard events, 
and with residents lacking the capacity to take mitigating actions or to 
finance recovery. Previous generations have responded to coastal hazard 
events, such as the 1953 storm surge, by installing hard engineered 
coastal adaptations (Mokrech et al., 2011). In many instances these 
measures have been associated with disruption of natural processes, 
such as alongshore sediment transport pathways, often resulting in 
exacerbated impacts in unprotected areas (Nicholls et al., 2015). 

East Anglia is also home to a range of diversified natural environ
ments and complex ecosystems, such as the Norfolk Broads. Recent shifts 
in the dominant approach taken by governments in managing the coasts 
of England has resulted in a greater focus being placed on the impor
tance of natural systems and ecosystems services (Defra, 2006). As such, 
soft adaptation measures, designed to work with nature, are increasingly 
being implemented (Milligan et al., 2009). Managed realignment is a 
prominent example of a soft adaptation measure considered in East 
Anglia (Myatt et al., 2003), and in the future other methods such as 
sandscaping are set to be implemented (Vikolainen et al., 2017). 
Following a second round of Shoreline Management Plans (SMPs) 
(Defra, 2006), sections of the coastline of East Anglia were 
re-categorised. This has resulted in deteriorating hard adaptation mea
sures not being replaced, or in many locations being completely 
removed. Based on the reclassification of stretches of coastline as either, 
‘No Active Intervention’ or ‘Managed Retreat’, projections have been 
made on sections of coast expected to erode, over the epochs of 20, 50 
and 100 years. This has resulted in the creation of Coastal Change 
Management Areas (CCMAs) (Environment Agency, 2010), in which 
restrictions are placed on future developments due to anticipated high 
levels of coastal retreat. This has direct implications for resilience as
sessments for the region, as communities, businesses and infrastructure 
located within the CCMAs, may not be expected to bounce back, or fully 
recover, following hazard events. 

Due to the range of unique contextual factors present in East Anglia, 
combined with high levels of vulnerability, the region has been moni
tored extensively. Large quantities of diversified datasets for the region 
are now freely available to the public, accessed via open source data 
portals (Rumson and Hallett, 2018). For this reason, the region proves 
especially suitable as a case study site for this research, as data sources 
associated with many of the selected assessment metrics (Appendix B), 
can easily be located. Additionally, the major stakeholder organisation, 
responsible for management of the eroding coastline of the region, CPE, 
agreed to provide input to this study. This input took the form of un
structured interviews, and questionnaire feedback, but most impor
tantly, a set of practitioner requirements were supplied, specifying 
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desirable outputs sought from resilience assessments for the region 
(Fig. 1). 

CPE is a consortium of four coastal groups, representing Gt. Yar
mouth Borough Council, North Norfolk District Council, Suffolk Coastal 
District Council and Waveney District Council. In 2016 the coastal 
management resources from these respective councils amalgamated to 
share their resources to manage the region more effectively (Coastal 
Partnership East, 2019). The aim of this wider regional focus was to 
foster collaboration and knowledge sharing and to pool resources for a 
larger contiguous area, which can promote risk and resilience assess
ments for larger spatial scales. As a body representing district level 
councils, the main hazard CPE is concerned with is erosion, whilst the 
EA are responsible for managing the risk of coastal flooding (Environ
ment Agency, 2010). CPE’s bias towards erosion is reflected in the re
quirements set out above. However, flooding and erosion in coastal 
areas are closely interrelated, and can occur in tandem (Defra, 2005). As 
such assessments of coastal resilience will generally need to account for 
impacts from both. The requirements listed above were deemed neces
sary for a coastal resilience assessment by the practitioners questioned, 
yet are not sufficient to account for all forms of resilience. Primarily, this 
study sets out to reveal how the requirements can be addressed through 
consideration of the framework, metrics, and data sources outlined. We 
also expand upon these requirements, indicating how the approach 
could be applied to a broader context. 

3. Quick scoping review (QSR) 

Standardised resilience assessment methodologies have rarely been 
applied directly to coastal settings. As such, agreeing on 
acceptable quantitative resilience assessment metrics has proved prob
lematic and remains a challenge for the research and practitioner 
communities (Coastal and Environmental Research Committee, 2015). 
In an attempt to gain a more thorough understanding of this issue a QSR 
was undertaken to establish what methods, metrics and datasets have 
been applied within previous coastal resilience assessments. The QSR 
methodology and results are presented within Appendix A. Through 
undertaking this QSR and securing an understanding of what coastal 
resilience assessments are being completed, and the data and informa
tion sources utilised, the most suitable metrics, and data sources could 
be selected. Evidence extracted from the 8 practitioner reports and 29 
academic articles, which passed through the QSR screening process, is 
presented in Tables 3 and 6 in Appendix A. Application of this evidence 
is discussed in the remainder of the paper. 

4. Simple resilience assessment framework and metrics 

Following completion of the QSR an extensive list of metrics, which 
can be drawn on within coastal resilience assessments, was established 
(Appendix B). This list is comprehensive yet not exhaustive. The metrics 
have been split into six categories, which comprise the framework pre
sented in Fig. 2. Four categories (1. Hazard Source, 2. Pathway, 3. Re
ceptor, and 5. Impacts/Consequence) are also common aspects 

addressed by coastal risk assessments, in particular the SPRC (Source- 
Pathway-Receptor-Consequence) model (Gouldby and Samuels, 2005; 
Villatoro et al., 2014). However, aspects of category 4. Risk Reducing 
Measures, and Category 6. Recovery, are more exclusive to assessment 
of resilience. Stage 4.1. Adaptations, contains measures generally 
considered to be resilience increasing; yet it is common for adaptations 
to be accounted for within risk assessments, as adaptation can alter risk 
levels and defer impacts. However, the metrics contained within Stage 6. 
Recovery and Stage 4.1. Preparations and Contingencies, are not so 
frequently associated with risk. Inclusion of these additional metrics 
provides a means of progression from assessment of risk to resilience, 
revealing the capacity of coastal regions to continue to function and 
recover following hazard events. 

The metrics were grouped into categories at the discretion of the 
authors. This drew primarily on the SPRC model (Gouldby and Samuels, 
2005), in which the coastline is divided into homogenous pathway units, 
based on a limited number of typologies and the hinterland divided 
equally into receptor units, based on features such as: land use, elevation 
and geomorphology. In short, the metrics falling into Stage 1, largely 
represent physical conditions, relating to hazard sources (i.e. environ
mental parameters); Stage 2, pathways through which the hazards 
propagate (i.e. the coastline); and Stage 3, hazard receptors (i.e. people, 
property, infrastructure and the environment). Those attributed to Stage 
4 were split between 4.1, Adaptations and 4.2, Preparations and Con
tingencies. Adaptations were either physical measures undertaken by 
humans to lessen impacts or services afforded by the natural environ
ment, whilst the metrics representing preparations and contingencies, 
are associated more with long term measures in place, potentially 
boosting resilience. The metrics assigned to Stage 5, represent the 
consequence aspect of the SPRC framework and give an indication of 
change associated with hazard propagation. Whilst Stage 6 metrics, 
represent how effectively communities have reacted to coastal hazards. 

Previous studies focusing on coastal risk assessment reveal how as
pects we have included within categories 1, 2, 3, and 5, such as hazard 
probability, intensity, and consequences (relating to land use, 

Fig. 1. CPE Practitioner requirements.  

Fig. 2. Coastal resilience assessment framework.  
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populations, business and infrastructure), have formed core inputs to 
risk evaluations (Narayan et al., 2014; Villatoro et al., 2014). Other 
studies, such as that of Bheeroo et al. (2016) reveal how metrics asso
ciated with physical coastal impacts have also formed the basis of risk 
assessments. However, reactions to coastal hazards, in the form of ad
aptations have been noted as being absent from many previous risk as
sessments, especially from those based on the CVI (Coastal Vulnerability 
Index) approach (Ramieri et al., 2011). The Coastal Risk Assessment 
Framework (CRAF) developed as part of RISCKIT (Christie et al., 2018; 
Ferreira et al., 2016; Viavattene et al., 2018), typifies a common 
approach to risk assessment, in its identification of hazards and conse
quences allowing classification of stretches of coast as vulnerability hot 
spots. The CRAF approach, does include metrics representing recovery, 
however it lacks the diverse range of indicators representing adapta
tions, preventative measures, and contingencies required by a resilience 
assessment. Part of the novelty of this current study, is that it identifies 
the means to evaluate these factors systematically, alongside the core 
aspects associated with risk assessments. 

The data and information requirements for each metric varied. For 
each metric, we indicate if it is possible to obtain the required datasets 
based on data available for the case study region. If so, example datasets, 
associated with East Anglia have been listed. A list of data sources is 
provided in Appendix C, and cross references to this are provided within 
a column, in each table of metrics, labelled ‘Available from’. The data 
sources detailed are only indicative and are not an exhaustive listing of 
those available. Both proprietary and open source datasets are listed in 
Appendix C; issues relating to the choice of open or proprietary data are 
further discussed in Section 4.2. 254 separate assessment metrics are 
listed in Appendix B. These metrics were mostly derived from the arti
cles, reviewed as part of the QSR, listed in Appendix A. For each metric, 
a cross reference is given in the respective table, in a column labelled 
‘Paper Ref.’, indicating the academic article(s) which included similar 
metrics. This is given in the form of a letter or symbol associated with the 
respective paper #, as detailed in Appendix A. 

5. Metric selection 

In collating the diverse range of indicator metrics listed in 
Appendix B and summarised in Table 1, we aim to provide a range of 
options from which different groupings of indicators could be selected. 
The choice of metrics for a data-driven resilience assessment would 
depend on data and information availability, the type of area (urban/ 
rural), at what scale an assessment is carried out (local/regional/na
tional), and if an assessment is concerned with a specific kind of resil
ience i.e. community, infrastructure, ecosystem. It is not envisaged that 
a single resilience assessment would include all metrics, as this would 
prove time consuming and resource intensive. However, consideration 
of the large number of metrics we have presented, can allow coastal 
practitioners to select the factors they deem most significant for the 
coastal region under consideration. Many of the metrics listed cover a 
broad range of potential indicators, such as metric 8: Oceanographic/ 
meteorological sensor networks, records and projections. In an effort to 
provide more options, and limit the number of metrics, these broad 
categories were not broken down further. However, during practical 
application, the precise indicator to be used, within such metrics, would 
need to be defined. Confidence levels in the results obtained for each 
metric would depend on data source veracity. Table 1 identifies the 
subcategories for each stage of the assessment framework detailed in 
Fig. 2 with their respective metric numbers. The stages of the framework 
are closely interrelated, and feedback loops exist between each. This also 
fits with a whole systems approach (Narayan et al., 2014), which tran
scends the notion of impacts considered in isolation, and acknowledges 
the interrelated nature of the multitude of disparate factors which need 
to be monitored and analysed. 

5.1. Stage 1–3 source – pathway – receptor 

Stage 1 of the resilience assessment framework (Fig. 2) relates to 
hazards. The metrics included generally represent quantifiable param
eters, which can be obtained through analysis of environmental 

Table 1 
Summary of metric listing. The metrics were broken down into 6 stages, these have been divided further into subcategories. The column ‘Metrics’ details the metric 
numbers included within each stage and sub-category.  

Stage Metric Sub-categories Metrics 

1 Hazard Source General 1–13 
Past environmental conditions during hazard events 14–16 

2 Pathway N/A 17–38 
3 Receptor General 39–44 

Public Amenities 45–54 
Economy & Business 55–71 
People 72–87 
Property 88–98 
Infrastructure 99–121 

4 Risk Reducing Measures 4.1 Adaptation Human Structural 122–127 
Human Soft 128–133 
Mitigation 134–143 
Ecosystem Services 144–157 
Planning 158–166 
Financial 167–168 

4.2 Preparation & Contingencies Monitoring/Warning Systems 169–174 
Infrastructure 175–180 
Drainage 181–184 
Shelter/Housing 185–186 
Emergency Relief 187–197 
Societal 198–203 
Hazard Awareness 204–207 

5 Impacts/Consequence Environmental physical impacts 208–215 
General 216–220 
Business 221–223 
People 224–227 
Property 228–230 
Infrastructure 231–237 

6 Recovery N/A 238–254  
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monitoring data, geostatistical datasets, or a combination of both. 
Hazard prediction information is paramount for assessment of coastal 
resilience, it can permit communities and civil protection agencies to 
respond and put in place hazard reduction measures (Defra, 2016). In 
addition to naturally occurring hazards, human actions or hazard re
sponses, can also be looked on as hazards in their own right. These can 
take the form of maladaptive actions which can exacerbate impacts. For 
this study, the hazards are mainly weather induced, relating to coastal 
erosion and flooding (as is typical for many studies focusing on coastal 
resilience (Ellison et al., 2017; Karamouz and Zahmatkesh, 2017; 
Schultz and Smith, 2016). The propagation of these physical hazards 
through various pathways (Stage-2), such as wave overtopping and 
flood plain inundation (Reeve et al., 2012)), results in threats to re
ceptors (Stage 3) (i.e. households, businesses, infrastructure (Fekete 
et al., 2017), and the functioning of ecosystems (Ellison et al., 2017)), 
and can result in adverse consequences to human health, welfare, and 
the natural environment. Therefore, metrics representing receptors, 
such as those which can be derived from population statistics, have been 
included in Stage 3. For East Anglia, information is readily available 
from the Office for National Statistics (ONS) documenting such variables 
(Fig. 3). 

5.2. Stage 4: risk reducing measures 

The sequential progression of the stages in the framework (Fig. 2), 
are representative of the impacts experienced (Stage 5) being directly 
related to adaptations in place (Stage 4.1). These can take the form of 
large-scale structural adaptations, implemented through engineering 
projects, i.e. sea defences and dykes, or local/household level mitigation 
measures, i.e. retrofitting buildings or raised accommodation (as was 
recognised to be important by Kim et al. (2014) for Galveston, Texas). 
Alternatively, adaptations can involve working with nature, utilising 
ecosystem services, and natural capital (National Infrastructure Com
mission, 2018; NOAA Office for Coastal Management, 2015). This can 

involve salt marsh restoration or preservation of woodland areas and 
pervious surfaces (which can limit flood water propagation and inun
dation extents). Such nature-based adaptations are increasingly looked 
to and are commonly implemented across the case study region of East 
Anglia. Many of these are termed soft adaptations and can take the form 
of green infrastructure (Song et al., 2018), beach nourishment, and 
managed realignment (Finkl, 2015). Measures such as insurance can 
also provide mechanisms to encourage resilience practices, increasing 
adaptive capacity, in its ability to distribute and communicate risk 
(Rumson and Hallett, 2019). These various modes of adaption are rec
ognised within the metrics included in Stage 4. Obtaining datasets to 
cover many of these metrics can be challenging. For example, details at a 
household (property) level, such as building attributes, or mitigating 
measures implemented, are difficult to obtain, yet are acknowledged as 
required (Bonfield, 2016), and are necessary to include in an assessment 
of resilience (Garvin et al., 2016). 

The metrics for Stage 4.2 relate to preparations for hazard events and 
the contingencies put in place. These are biased towards flooding and 
disaster incidents (as in Bostick et al., 2017; Keating et al., 2017; Ola
dokun et al., 2017). This is reflected in a number of the sub-category 
groupings, including: emergency services, shelter/housing, monitoring 
and warning systems, and drainage (NOAA Office for Coastal Manage
ment, 2015). Not all metrics for Stage 4.2 are restricted to these forms of 
resilience though, and the remaining groupings of metrics (infrastruc
ture, societal, hazard awareness), are not constrained to flooding and 
relate to both short- and long-term resilience (short-term taken as the 
immediate ability to respond to hazard events, whilst long-term resil
ience is taken to be the ability recover from the wider aftermath of many 
such events). 

The data/information requirements of Stage 4.2’s metrics, were not 
easily resolved (as was the case for Stage 6). Therefore, many of the 
required inputs would need to be derived directly from stakeholder or
ganisations (as in Bostick et al., 2017; Keating et al., 2017). The metrics 
included in Stage 4 are diversified, many of these differ substantially 
from those commonly found in a risk assessment. These metrics seek to 
represent societal capacity to cope with the unexpected. This requires 
incorporation of varied measures, representing planning and prepara
tions made at various levels of society, from the hazard awareness of 
individuals, to social groups and civil society organisations, government 
level planning, warning systems, emergency relief organisations and 
networks, and implementation of resilient infrastructure (Allen et al., 
2018). The post-impact provision of basic services, such as food, water, 
communications, and waste removal/treatment (EPICURO, 2018), are 
especially important considerations within this stage of a resilience 
assessment, but are not factors commonly considered within coastal risk 
assessments. Human behaviour also stands out as an important element 
to include within an assessment of resilience. Human responses to recent 
hazard events (such as the 2013 Storm Surge in East Anglia (Brooks 
et al., 2016)) or hazard information can influence decisions to take 
mitigating actions, to undertake more sustainable practices, or to move 
from risk zones (Aerts et al., 2018; Jenkins et al., 2017). 

5.3. Stage 5: impacts/consequence 

Hazard receptors are numerous and diversified. Stage 5 includes 
metrics representing the impacts to and consequences upon receptors 
including: the natural and built environments, business and the econ
omy, and coastal populations. To account for human receptors many 
metrics are included representing the size, distribution, and composition 
of coastal populations, including social indicators, i.e. health and 
wealth. In addition to this, more diverse receptors are accounted for in 
metrics representing the distribution and concentration of physical as
sets, business activity, infrastructure dependencies, and ecosystem ser
vices. Inclusion of such can provide a means to quantify exposure across 
multiple spheres. The metrics selected for assessment of impacts seek to 
reveal both immediate and long-term impacts (or consequences) 

Fig. 3. Example of data used to address metric 72: Poverty Levels. ONS data 
made available through Datashine. DataShine is produced by the BODMAS 
project at UCL (http://www.datashine.org.uk/). Households by deprivation 
dimension (Red – most deprived through to Green – least deprived) (University 
College London, n.d.; O’Brien and Cheshire, 2015). (For interpretation of the 
references to colour in this figure, the reader is referred to the Web version of 
this article.) 
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resulting from hazard propagation. Therefore, diverse elements are 
represented by the metrics associated with Stage-5’s subcategories 
(Table 1). Examples of these being: Environmental physical impacts - 
geomorphological change (i.e. shoreline recession such as that occurring 
in Norfolk, (Fig. 4), and extents of flooding (Fig. 5); General - physical 

damage and financial loss; People - human health and socio-economic 
feedback, i.e. job losses, and crime; Property - house prices; and, Busi
ness - business activity. Coastal hazards can result in cascading conse
quences (Cutter and Derakhshan, 2018), due to disruptions to business 
and supply chain shocks (Papadopoulos et al., 2017). As such, identifiers 

Fig. 4. Example of data used to address metric 210: Geomorphological change -records of beach/loss creation. Lidar data sourced from BGS and the EA, used to 
estimate coastal retreat at Sidestrand between 2005 and 2018, Norfolk. Measured retreat along the white line between red and yellow points ¼ 46m. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. Data used to assess metric 216: Extents of flooding and impacts (physical and human). Geotagged flood related social media data: Tweet revealing coastal 
flooding extents in North Norfolk, made available by FloodTags and IVM (https://www.floodtags.com). Note, the area highlighted in blue, does not represent 
flooding extents, but indicates the geographical limits for which the search of social media data was completed. 
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have been compiled, to assist in the estimation of more far reaching 
effects resulting from short- and long-term hazard propagation. These 
can, for example, include infrastructure failures, related to roads, power 
stations, and water supply (Allen et al., 2018). Data detailing damages 
and loss can be difficult to obtain and may need to be sourced from 
specialist suppliers, such as those associated with insurance companies 
(Rumson and Hallett, 2019). Furthermore, in order for assessments to 
retain their validity, continually updated information detailing new 
developments must also be included. 

5.4. Stage 6: recovery 

The metrics included within Stage 6 can provide an overview of how 
effectively communities have reacted to and recovered from hazard 
events. In this, recovery is defined as the ability for communities and 
systems to return to a stable functioning state, not necessarily their 
original state. This fits with definitions of ecological resilience, based on 
systems shifting between stable states (Holling, 1973). In line with this, 
the metrics we have included cover factors which can provide an indi
cation of the functioning of communities following an impact, such as 
financial recovery, restoration of the functioning of infrastructure 
(Joyce et al., 2018), industrial resupply, and the performance of relief 
and emergency services (Papadopoulos et al., 2017). In addition to this, 
indirect indicators associated with recovery, revealing more immediate 
responses have been included, i.e. functioning of warning systems, and 
evacuation of homes. In this work, we have not stipulated specific 
thresholds or benchmarks related to the individual metrics, however in 
order to determine if a system or community had fully recovered, this 
would be desirable. To establish such benchmarks for recovery would 
require more extensive inputs from a range of stakeholders representing 
multiple sectors and interest groups. As such, more subjective inputs 
could prove necessary to fully appreciate a community’s capacity to 
recover. Data for the metrics included within Stage 6, were also found 
more difficult to obtain and quantify for the case study area, than in
dicators associated with the SPRC model. The majority of Stage 6 met
rics were deemed, by the authors, to require specialist input or derived 
data (such as that extracted from social media feeds revealing public 
sentiment in relation to government actions (Fig. 5)). Practitioners 
questioned in East Anglia concurred with this. Indicators relating to 
response and recovery times are not generally published, yet this may 
change in the future, if demand for these variables increases. 

6. Data sources 

Data forms the foundation of the knowledge base required for 
effective coastal zone management (Zanuttigh et al., 2014). The ability 
for coastal populations to deal with the diverse impacts resulting from 
environmental hazards, hinges on the availability and use of 
suitable datasets. This can allow appropriate planning decisions and 
adaptive measure to be implemented (Rumson et al., 2017). A wide 
range of data sources should be included within a coastal resilience 
assessment, this is represented in those associated with the selected 
metrics. 

6.1. Evidence base for metric evaluation 

In attempting to source data for so many separate metrics, we sought 
to provide an indication of the existing evidence base available for an 
assessment of coastal resilience. Of the 254 metrics selected for this 
study, 149 (59%) were linked with the data sources located for the East 
Anglia case study area (Appendix C). Another 39 metrics (16%) were 
categorised as requiring data derived through combination or analysis of 
the datasets available from these sources (as detailed in Section 4.2.5). 
Data sources addressing the requirements of all metrics could not be 
located though, and 44 metrics were categorised as requiring informa
tion sourced directly from stakeholder organisations. Furthermore, the 

data sources required for 12 of the metrics were not defined. Of the 25% 
of the metrics for which more subjective, expert-based inputs were 
required, none were associated with aspects of the resilience assessment 
framework typically linked to risk assessments (Stages 1, 2, 3 & 5). 
Conversely, Stages 4 and 6, which are deemed more resilience specific 
by the authors, were revealed as the most difficult to satisfy through 
existing data sources. This implies that higher levels of subjectivity are 
associated with assessment of resilience than with risk. Nevertheless, 
this study indicates that the data requirements of 75% of a broad range 
of metrics, suitable for assessment of resilience, could be derived from 
empirical sources. 

6.2. Evaluation of data sources 

Due to the breadth of metrics selected, it was not possible to com
plete a comprehensive validation of all empirical data sources listed. 
This would need to be completed on a case by case basis. A single 
resilience assessment would require only a limited selection of the 
metrics listed, therefore at the application stage a more thorough eval
uation of data source suitability would be more feasible. The data source 
evaluation undertaken within this study, was limited and the sources 
associated with the metrics (Appendix C) are only indicative, not an 
exhaustive listing. Furthermore, the data sources which were selected 
for the case study area primarily act as a guide to the type of organisa
tion, which may hold data relevant to the selected metrics. This infor
mation can potentially allow similar organisational sources to be 
discovered for assessments undertaken in alternative locations. 

6.3. The cost of data 

Due to the diverse range of metrics included within this study, it was 
not possible to obtain data satisfying all their requirements from open 
sources. Therefore, proprietary data sources, and services were also 
included within the examples provided in Appendix C. There are mul
tiple issues which need consideration when making a choice to use 
either open or proprietary data sources. For East Anglia, a large volume 
and variety of open source data is available, however, this is not the case 
for many other parts of the world. The veracity of open data sources is 
also not guaranteed, and the data may require extensive processing and 
preparation before it can be utilised in assessment of the respective 
metrics. Given this, in many cases it can prove more effective to pur
chase data services or proprietary datasets, than attempt to locate and 
prepare the freely available sources which exist for an area. This deci
sion can also be dictated by technical operator skills, as many of the 
datasets associated with the selected metrics require specialist technical 
or scientific interpretation (especially many of the metrics associated 
with environmental monitoring data, included in Stage 1). Financial 
constraints imposed upon an organisation undertaking a resilience 
assessment can also affect the decision to include proprietary datasets. In 
such cases, using freely available data may appear logical, however, in 
some instances the use of open source data can actually result in higher 
costs internally than would be associated with using well calibrated and 
regulated proprietary sources. This can be due to the open sources which 
are available being incomplete, inconsistent, or error-bound. The ma
jority of open source datasets identified, for the case study region, are 
provided by public sector organisations, given this a question arises as to 
the potential future role of the public sector in imposing uniform data 
standards, and undertaking quality assurance of the datasets made 
available. This could potentially generate possibilities for more wide
spread assessments of resilience. Nevertheless, despite the concerns 
highlighted, an ever-increasing number of data sources are now being 
made available to the public at no cost; this alone can prove a decisive 
factor allowing evidence-based resilience assessments to be undertaken. 
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6.4. Emerging data sources 

The emergence of a new generation of unconventional data sources is 
another pertinent issue. In addition to data made available via open 
source portals or by proprietary vendors, data is now frequently ac
quired through mining, or scraping websites, for example, using hash
tags or geotags (de Bruijn et al., 2018; Li et al., 2018). These processes 
can allow important information to be derived from social media data, 
for example (Fig. 5). More dynamic sources of data can also take the 
form of web feeds, this can be the case for real-time ocean sensor data, 
and other (real-time) environmental monitoring outputs. CCTV footage 
is another useful source, which has been drawn on in assessment of 
street level damage following coastal hazard events, such as those 
related to a number of recent consecutive hurricanes, which impacted 
the southern states of the USA and the Caribbean (Lloyd’s Market As
sociation, 2017). This is pertinent given that many resilience studies 
focus on such hazard events (Burton, 2015; Karamouz and Zahmatkesh, 
2017; Kim et al., 2014; Lam et al., 2015). 

Vulnerability arises as a consequence of what is sited in a hazard 
prone area, yet land use and land cover changes are frequent and 
continuous. Given this, images supplied regularly from earth observa
tion (EO) satellites, can prove invaluable in revealing changes in near 
real-time, contributing to dynamic, accurate assessment of exposure. 
Associated analytical techniques such as image segmentation and object 
recognition can also serve to automate and speed up this process. A 
range of EO data outputs are commonly used in flood detection, map
ping and impact assessments (Ellison et al., 2017; Jongman et al., 2015; 
Lavender et al., 2016). In addition to these sources, IoT sensors are 
capable of generating data in near real-time, such as river gauge data 
(Koduru et al., 2018; SmartBay, 2017). Information relating to human 
movements and traffic flows can also be extracted from archives of 
mobile phone location-based service data (ONS, 2016; Ratti et al., 
2006), and many applications are emerging for crowd sourced data, 
which are relevant to assessment of risk and resilience (Loftis et al., 
2018). The high velocity of the data which can be obtained from a 
number of these sources, can act as driving factors, allowing resilience 
assessments to transgress the limitations of a static exercise, to form 
instead dynamic representations of the ever-changing situations on the 
ground. Crucial to this, is confidence in data source reliability and data 
quality. As such, a requirement exists for comprehensive metadata list
ings for each dataset, providing assurances over data veracity. More
over, if such information is lacking, undocumented data sources should 
be discounted. Given the rapid emergence of so many novel data sour
ces, which are being utilised in an uncommon manner, a requirement for 
national standards and guidance on the use of such data has arisen. If 
addressed, this could work to increase confidence and raise awareness of 
the possibilities presented by these new sources of information. 

6.5. Data derived through analytical methods 

6.5.1. Big Data 
A number of issues relating to data volume, variety, velocity and 

veracity, have been mentioned, these terms characterise the 4Vs of Big 
Data (Jagadish, 2015). The field of Big Data has been shown to be 
relevant to assessment of risk in coastal areas (Pollard et al., 2018; 
Rumson et al., 2017) and to the assessment of resilience (Bellini et al., 
2016; Jovanovic et al., 2016; Papadopoulos et al., 2017). The notion of 
drawing from high volumes and varieties of data, available from archive 
and streaming sources, is central to data-driven assessments of resil
ience. The extensive number and diversity of metrics, which we have 
highlighted as applicable to coastal resilience assessments, is indicative 
of the high variety of data types and sources required. These can involve 
large volumes of data, especially if high density, attribute rich datasets 
are included within assessments, and where assessments are completed 
over large spatial scales. To permit completion of dynamic assessments, 
requires inclusion of both archive and streaming data sources. We have 

discussed a range of data sources which should be considered within a 
resilience assessment, and now consider a number of advanced analyt
ical methods and processing technologies which can allow data to be 
combined, and to generate higher level derived outputs (which, in 
relation to this study, could potentially be drawn on when addressing 
the 39 metrics listed as requiring derived data inputs). 

6.5.2. Advanced analysis 
The application of advanced analytical processes holds the potential 

to allow unconventional data sources to be utilised, this can involve 
graph, text and time series analytics. Natural Language Processing 
(NLP), for example, can be used to derive meaning from unstructured 
and messy data, and for argument or location extraction (Gritta et al., 
2018). Application of automated machine learning processes, and 
Artificial Neural Networks (ANNs) can allow: pattern discovery, feature 
detection, classification of land use/land cover, and change detection 
(Bezuglov et al., 2016; Chang et al., 2018; Joseph and Kakade, 2014; 
Pijanowski et al., 2014). Computer vision is another emerging method, 
which has been applied to video/image analysis to detect extents of 
damage post flood event (Wang, 2018). Application of such processes 
can potentially generate updates on disaster events in real-time. 
Furthermore advanced techniques, coupled with Big Data, have been 
shown suitable to coastal emergency incident response (Qadir et al., 
2016). This indicates potential scope for using such methods to supply a 
number of the inputs required to assess the metrics outlined in Stage 6 of 
the framework (Fig. 2), relating to hazard event responses. 

6.5.3. Agent based models 
Agent-Based Models (ABMs) allow consideration of phenomena 

resulting from interactions between individual agents, with prescribed 
behavioural rules, in an evolving, shared spatial environment. This 
provides a bottom-up approach for understanding dynamic interactions 
in complex systems (Surminski and Oramas-Dorta, 2014), and feedback 
loops between humans and the environment. Outputs from ABMs can be 
used to add a layer of realism to assessments which have previously been 
based on static parameters. ABMs can achieve this through revealing 
hidden drivers that can alter outcomes, and in doing so uncover how 
human behaviour develops and evolves over time (both in the short and 
long term). ABMs can reveal how predictable human responses to situ
ations and information alters behaviour in ways that affect vulnerability 
and resilience. For example, ABMs have been used to reveal how 
exposure to flood events has resulted in more risk averse behaviour, 
which can take the form of implementation of mitigating measures and 
agents moving to less vulnerable locations (Han and Peng, 2019; Crick 
et al., 2018; Dawson et al., 2011; Dubbelboer et al., 2017; Haer et al., 
2017; Jenkins et al., 2017; Yang et al., 2018). ABMs have also been 
reported a useful tool for ‘simulating the effects of different adaptation 
options on reducing vulnerability’ as they allow representation of dy
namic changes in climate, and of the adaptive processes of different 
groups (Acosta-Michlik and Espaldon, 2008). Factors such as these need 
to be (but in the past have not been) considered so as to ensure resilience 
analysis is representative. 

The emergence of increasingly advanced ABM modelling processes 
focusing on human behaviour, can accommodate diverse ‘Big Data’ in
puts, representing a range of phenomena relating to environmental 
conditions and the human world. For example, mined social media data 
have recently been shown to form a valuable input to ABM processes. Du 
et al. (2017) demonstrate this in their model of individual flood evac
uation behaviour, in which they focus on transport networks. Outputs of 
such analysis could prove useful for revealing flood-related infrastruc
ture stresses and disruptions impacting supply chains. Analytical out
puts generated through ABM processes could form useful inputs to 
resilience assessments, also covering the wider consequences of infra
structure failures, for example, those related to roads, power stations, 
water supply, and port facilities (Kunreuther et al., 2016). In respect to 
this, a single flood event can potentially generate a multitude of 
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secondary impacts, such as disruptions to business, supply chains, and 
utilities failures. ABMs have been used for modelling such failures, and 
predicting the resulting duration of power outages (Walsh et al., 2018). 

6.5.4. Impact analysis 
Quantification of physical change to coastal landforms can now be 

undertaken more accurately due to advances in data collection and 
processing methods (Williams et al., 2018). This provides valuable in
puts to the estimation of physical impacts, such as geomorphological 
volumetric change of cliffs, beaches and nearshore areas. This has been 
required in resilience studies such as that undertaken by Ellison et al. 
(2017), and is crucial in the region of East Anglia where high rates of 
coastal erosion have been experienced (Nicholls et al., 2015). A range of 
techniques are available, which vary in complexity and data re
quirements (Rumson et al., 2019). Analysis conducted using data 
collected from Lidar (Caroti et al., 2018) and multibeam echo sounders 
(MBES), allows change estimates to be generated through surface cre
ation and comparison (Pollard et al., 2019; Williams, 2012). Alterna
tively, if high resolution scanning data is available, point cloud level 
change analysis can be completed, utilising advanced functionality 
(Lague et al., 2013) and automated processes (Kromer et al., 2017). 
Outputs generated from such analysis, can allow evidence-based as
sessments to be made of linear and volumetric change resulting from the 
propagation of coastal hazards (Fig. 4). Morphological change can also 
be derived from analysis of EO data; application of interferometric 
techniques, for example, can allow subsidence monitoring (Ramieri 
et al., 2011). The use of EO data also allows more general change 
analysis to be undertaken, allowing wider impacts from a hazard event 
to be revealed, such as flood extents/depths, and damage to infra
structure and property (Grason, 2018; Geller, 2017). Satellites have even 
been tasked to acquire images of flooded areas based on automated 
interpretation of social media data (Cervone et al., 2016). In respect of 
this, and of other opportunities presented by EO data, it could be pru
dent for coastal management organisations to complete a cost benefit 
analysis in relation to the use of EO datasets, as the cost of 
high-resolution EO data may be substantially offset by the reductions in 
economic losses on the ground made possible through having the ability 
to complete granular, up-to-date analyses. Furthermore, a range of op
tions now exist for obtaining EO data. Medium resolution data collected 
by miniaturised satellites can be obtained at a relatively low cost, whilst 
multiple possibilities exist for acquiring higher resolution imagery for 
specific locations, through tasking satellites (Rumson and Hallett, 
2019). 

6.5.5. Analysis of social media data 
The range of analytical methods making use of social media data is 

expanding. A number of recent studies have focused on how these ad
vances can be applied to flooding (de Bruijn et al., 2018; Jongman et al., 
2015; Smith et al., 2017; Wang et al., 2018). For example, techniques 
such as geoparsing have proved powerful in extraction of location data 
from flood/disaster related Tweets (de Bruijn et al., 2018). Twitter data 
has also been drawn on to determine flood extents (Li et al., 2018; 
Panteras and Cervone, 2018). Supply chain resilience and systemic risk 
modelling, is another area in which social media data has been applied 
(Papadopoulos et al., 2017). Within the metrics listed in Appendix B, a 
number of inputs are detailed as potentially being derived from analysis 
of social media data, these include tourism hotspot identification and 
traffic activity (Li et al., 2016), and flood extents (Fig. 5). 

6.5.6. Scale dependent data requirements 
When planning a coastal resilience assessment, scale is an important 

consideration. Depending on the scale of analysis (household/local/ 
regional/national), separate data sources may need to be drawn upon. 
This is apparent when contemplating the use of terrain data (Fig. 4). 
Localised analysis of granular cliff face deformations requires the use of 
high-resolution point cloud data, such as that acquired using Terrestrial 

Laser Scanning (TLS) systems, whilst for analysis concerned with linear 
cliff retreat over a wider scale (multiple kilometres), data obtained 
through aerial Lidar surveys may be more appropriate (Young, 2018). 
This can also be the case for analysis using aerial photography or EO 
data. If granular details are required for damage assessments at a 
building level, then the high spatial and temporal resolutions provided 
by commercial EO data suppliers, such as DigitalGlobe (2017), may be 
required. Whilst for assessment of land use change at a smaller scale, 
open source EO data such as that available from Copernicus (2019) may 
be adequate. 

Many of the variables relating to the metrics selected, are scale 
dependent. As a result, the availability of datasets at the required res
olution may place limitations on the scale at which an assessment can be 
undertaken. For example, the UK Office for National Statistic (ONS) hold 
many statistical datasets which are only decomposed by region, city or 
ward (Fig. 3). This precludes assessments to be undertaken at a sub- 
regional/city/ward level. When considering scale, it is also important 
to highlight how caution needs to be exercised when utilising aggre
gated land use data; past examples have revealed how this can prove 
unrepresentative (Jongman et al., 2012). 

6.5.7. Data utilisation opportunities and constraints 
Technical expertise is required for analysis of social media feeds, 

implementation of ABM processes, geomorphological change detection, 
EO data centred techniques, and application of the range of machine 
learning, NLP and ANN methods available. This short discussion of 
analytical techniques has highlighted methods which could potentially 
be drawn on within coastal resilience assessments, but so far it hasn’t 
covered the feasibility of these methods being utilised within assess
ments completed by coastal practitioners. It is likely that those organi
sations seeking to undertake resilience assessments may not hold the 
necessary technical skills to undertake such complex analyses, nor may 
they have adequate budgetary means to allow outsourcing of this 
analysis to external suppliers. This highlights the wider issue of 
increasing demands being placed on organisations, due to the rapid 
progression towards data-driven decision-making. Nevertheless, it has 
been revealed that techniques and methods do exist which can allow 
data to be generated, potentially providing answers to questions, which 
in the past could only be answered through more subjective expert in
puts. This marks an important progression, as expert opinion has pre
viously proven an inadequate method for capturing the dynamic nature 
of many coastal risks (Rumson and Hallett, 2019). Therefore, adoption 
of innovative data-driven methods within coastal management decision 
making practices should be prioritised, as they could prove 
cost-effective, allowing resources to be allocated more appropriately, so 
enabling more effective spatial planning. 

7. Resilience assessment method 

Once data inputs have been acquired, satisfying the requirements of 
the metrics selected for a resilience assessment, the data variables must 
be combined and analysed to expose the spatially variable levels of 
resilience. The studies reviewed as part of the QSR (Appendix A) 
employed a range of different analytical methods. These included 
probabilistic approaches, drawing on Bayesian techniques (Cai et al., 
2018a; Schultz and Smith, 2016), and Copulas analysis (Joyce et al., 
2018). Many drew on ‘composite indicator’ methods and ‘multi-
variate/multi-criteria analyses (Abenayake et al., 2018a; Burton, 2015; 
Cai et al., 2018a,b, Lam et al., 2018; Hung et al., 2018; Joyce et al., 2018; 
Karamouz and Zahmatkesh, 2017). Geospatial analysis, using 
Geographical Information Systems (GIS), was the most common method 
utilised, and 9 of the 29 studies listed in Appendix A, incorporated this 
approach. An extensive evaluation of the various analytical methods 
available is beyond the scope of this current study; however, through 
consideration of the data types associated with the metrics we have 
compiled, and of the requirements detailed by CPE (Section 2), the 
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authors deem geospatial, GIS-based analysis the most suitable option for 
collation and analyses of the various metric datasets, and also a 
suitable medium for presentation of the results to stakeholders. 

Most of the selected metrics are linked to data which can be spatially 
referenced, and many of the inputs required for a resilience assessment 
are frequently supplied as GIS datasets (Allen et al., 2018; Lam et al., 
2015). Given this, it would be possible to represent individual metric 
variables as spatial attributes in vector datasets (shapefiles) or as raster 
layers. This would permit further geospatial analyses (Fekete et al., 
2017; Lam et al., 2015), which could be used to: identify land use, 
natural habitats, terrain, land heights, water levels, the distribution of 
assets and resources, and many other features. Spatial analysis could be 
used to reveal vulnerable areas and populations which are unprepared 
(Lam et al., 2015; Szewra�nski et al., 2018). Also, the proximity of 
businesses, populations, and infrastructure, to hazards, emergency re
sources, and many other factors, could easily be determined (Hung et al., 
2016; Johnson and McLean, 2008). This analysis could be undertaken 
manually through comparison of GIS layers, or through the automated 
application of spatial analysis tools. 

Many of the resilience assessment methods highlighted within the 
QSR literature, rely on expert weighting of indicators (Abenayake et al., 
2018a; Karamouz and Zahmatkesh, 2017), generating an index linked 
multi-criteria score. This is an inherently subjective process, not neces
sarily representative of the diverse range of interrelated factors 
requiring consideration. However, it could potentially be avoided 
through the application of a range of geospatial analytical techniques. 
Communication of resilience is also challenging, and the outputs 
generated by some purely statistical techniques, can be difficult to un
derstand and can oversimplify complex processes. GIS tools are capable 
of generating a diverse range of geostatistical output, which have been 
shown to engage coastal stakeholders (Allen et al., 2018; Hung et al., 
2016; Wadey et al., 2015). These can prove particularly suited to 
communicating the outputs of a resilience assessment, and can be used 
to generate simulations of future scenarios (Allen et al., 2018). 
Furthermore, resilience related outputs, generated through GIS analysis, 
can be simplified and supplied to practitioners via configurable user 
interfaces, potentially accessed using web-mapping interfaces (Kar
avokiros et al., 2016). 

8. Discussion 

8.1. Operationalising the coastal resilience evidence base: Coastal 
Partnership East 

This work has sought to reveal how the wide range of data sources 
and information outputs, derived through analytical processes, can be 
drawn on to address the multitude of factors requiring consideration 
when undertaking a coastal resilience assessment. In doing so, an 
extensive listing of assessment metrics has been compiled. This also 
addresses the issue of a lack of definitive metrics being agreed on for 
measuring coastal resilience (Burton, 2015; Cai et al., 2018a). The case 
study approach adopted has facilitated an evaluation of how resilience 
assessment metrics can be selected and grouped, and how data sources 
can be identified addressing these metrics. The work has addressed a 
previously acknowledged requirement to incorporate empirical evi
dence within coastal resilience assessments (Cai et al., 2018a), and to 
embrace a dynamic approach to such assessments (Cai et al., 2018a; 
Cutter and Derakhshan, 2018; Lloyd et al., 2013; Martinez et al., 2017; 
Song et al., 2018). In Sections 5 and 4.2, we discussed metric selection, 
data sources, and data analytics. This section focuses on how the evi
dence base identified for East Anglia could be utilised. In doing so, we 
refer back to the set of stakeholder requirements provided by CPE 
(Section 2), and evaluate how these could be addressed using the 
approach discussed in this study. The approach taken has sought to 
address the pressing issue of inadequate information flows between 
scientists, policy makers and practitioners (O’Mahony et al., 2015), 

which can impair decision making by coastal practitioners. This has 
been acknowledged as a problem by those operating in the case study 
region of East Anglia. However, in addressing this issue we haven’t 
constrained our scope to East Anglia, and as such we have sought to 
provide an indication of the relevance of the approach to other areas, 
countries and to varying scales of application. In the following sections 
we discuss how the practitioner requirements outlined in Fig. 1 could be 
addressed using the metrics, framework, and data sources presented. 

8.1.1. Practitioner requirement 1: review and incorporate data for SMP 
CCMAs within an assessment to identify and aggregate what is at risk over 
the next 100 years (given current SMP predictions) 

In addressing this requirement, essentially data depicting SMP pre
dictions for the assessment area are required (metric #19) in addition to 
the spatial extents of the CCMAs. Following this a range of exposure data 
would need to be included, representing coastal populations, property, 
infrastructure, businesses, and local amenitites (similar analysis docu
mented in a recent study drew on the EA’s National Receptor Database 
and OS Mastermap datasets (Committee on Climate Change UK, 2018)). 
Given the need to predict vulnerability, planning information would also 
need to be included, along with information detailing any restrictions on 
land use or preservation orders. Hazardous areas sited within projected 
erosion zones would need to be identified, such as landfill, or other 
waste sites, along with any critical infrastructure. Metrics covering these 
information requirements are listed in Appendix B, with the majority of 
relevant metrics contained within Stages 1–3. 

Evaluation of this requirement using empirical sources, could also 
result in questioning its basis. The governance regime’s requirement for 
using 20, 50 and 100 year time periods as an indicator of flood and 
erosion hazards may need to be revisited based on data revealing the 
extents of recent impacts. Climate change is resulting in an increased 
probability of extreme events occuring at more frequent intervals, and 
current erosion prediction methods have been associated with high 
levels of uncertainty (Committee on Climate Change UK, 2018). As such, 
the basis of predictions of change may need to alter. This could result in 
more immediate requirements to take action. In line with this, design 
criteria for critical coastal facilities may require modification, in addi
tion to expectations of the lifespan of buildings located in exposed areas. 

8.1.2. Practitioner requirement 2: incorporation of outputs of the most 
appropriate and advanced methods for measuring and reporting on coastal 
change 

This requirement was interpreted to represent multiple types of 
change (not just physical), including: geomorphological change (Fig. 4), 
land use change, loss/gain in natural capital and species, change in the 
adaptation measures implemented, socio-economic changes (population 
densities and distribution), change in economic activity and industry, 
land/house valuation changes, and change in recorded human behav
iour. Again, indicators addressing all these factors are contained within 
the metric listing. Metrics addressing the majority of such changes can 
be found within Stage 5, Impacts. However, other appropriate metrics 
are also found in Stages 3 and 4.1, such as socio-economic indicators, 
and the presence of structural and natural adaptation measures. EO data 
could prove especially useful in identifying physical changes relating to 
land use and land cover, however the resolution required to monitor 
more granular changes, may not be obtainable from open sources, so 
commercial EO data suppliers may need to be used. Solutions addressing 
this practitioner requirement would directly benefit from the increasing 
volumes of data now available, allowing analyses to be completed across 
a wider range of scales, than would be possible if only human input was 
relied upon. 

8.1.3. Practitioner requirement 3: evaluate how prepared local authorities 
and communities are to respond to/recover from future coastal change and 
high intensity hazard events 

In answering this requirement, the metrics listed in Stages 4.2 and 6 
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would need to be analysed. It is unlikely that this requirement could be 
fulfilled for East Anglia, based only on currently available datasets or 
analytical outputs (as described in Section 4.2.5). Input would need to 
be sought from stakeholder organisations, especially local authorities 
and other community level organisations. Given this, it is envisaged that 
it would prove time consuming to address this requirement and the re
sults obtained could be more subjective. 

8.1.4. Practitioner requirement 4: identification of contingencies in place 
and adaptations 

This could be tackled through analysis of the metrics contained in 
Stage 4. A broad range of measures would need to be considered in 
addressing this requirement: household level mitigation measures, hard 
and soft adaptations, ecosystem services, non-structural adaptation such 
as insurance, and a broad range of the contingency measures outlined in 
Stage 4.2. CPE is primarily concerned with the eroding coast. Given this, 
the metrics selected should be erosion specific, i.e. covering engineered 
sea defences, soft adaptations (beach nourishment/sandscaping), and 
contingencies such as resettlement sites, rather than those more specific 
to flooding, i.e. drainage. There are fewer measures documented within 
the metrics listed, offering preparation and contingencies against 
erosion. This is due to impacts from erosion offering fewer options for 
recovery, with assets and infrastructure generally being permanently 
destroyed. However, flooding impacts can be temporary, with more 
options presented to enable systems to resume operation. 

In addressing both the third and fourth practitioner requirements, an 
alternative approach is to draw on the notion of adaptive capacity 
(Gallopín, 2006; Smit and Wandel, 2006). This places emphasis on the 
ecological definition of resilience (Holling, 1973), which centres on 
systems shifting between stable states. This is particularly suited to 
consideration of resilience in areas prone to erosion, where the status 
quo cannot be maintained. In assessing resilience based on adaptive 
capacity, metrics need to be drawn upon which are able to represent the 
capabilities of a coastal community to assume some form of functioning 
order, in the absence of options to return to a prior state following 
disturbance by a hazard event. To allow this, a complex range of mea
sures need to be in place, these must extend beyond planned or spon
taneous adaptations, such as sea defences or flood barriers, which aim to 
resist environmental change (Cooper and Pile, 2014). Metrics contained 
within Stages 4 and 6 are representative of some of the factors requiring 
consideration. These can relate to spatial planning, i.e. siting of gov
ernment offices, emergency services and critical infrastructure outside 
of hazard zones. Appropriate regulation and governance measures being 
in place, preventing maladaptive and unsustainable practices, and 
enforcing appropriate building codes. Long term measures such as 
preservation of wetlands and natural capital also factor into this, 
alongside installation and maintenance of sustainable infrastructure. 
Understanding the presence of societal capacity is also crucial, such as 
the presence of networks, groups and plans for coordination of the 
public. Public awareness of the proximity, probability, and magnitude of 
the hazards and potential impacts, also needs to be considered. In
dicators revealing past and projected responses to hazard events could 
also be included. Grouping metrics representing these diverse factors, 
within a single assessment, could prove instrumental in revealing the 
long-term resilience levels of vulnerable coastal communities. The re
sults of assessments, based on such metrics, could enable district level 
bodies such as CPE to greatly improve their adaptive capacity. It would 
also be beneficial to complete such assessments on a regular basis, 
allowing governance institutions and the public to track progress. Pos
itive results, from these routine assessments, could further act as an 
incentive or driver for economic development. 

Within this study a limited amount of time was devoted to estab
lishing metrics which could prove relevant to a resilience assessment 
focusing on adaptive capacity. Given this, scope exists to refine these 
metrics further and to identify other, potentially more important, met
rics, which could allow forward planning in the face of potential chronic 

or acute hazard damages. Evidence-based assessment of adaptive ca
pacity is crucial given the widespread policy resistance to adaptation 
(McGuire, 2018). 

8.1.5. Practitioner requirement 5: enable sustainable planning leading to 
resilient outcomes 

This is a comprehensive objective and necessitates consideration of 
metrics from all stages of the assessment framework (Fig. 2 and Table 1). 
The objective was interpreted as involving multiple aspects of planning, 
including spatial planning, therefore geospatial analysis, involving a 
GIS-based resilience assessment (as outlined in Section 4.3), is particu
larly suitable. Metrics which are especially relevant to this requirement 
are associated within Stage-4 of the framework, especially those detailed 
under the heading ‘planning’. Sustainable planning necessitates that all 
potential hazard sources and threats be considered. Given this, metrics 
covering hazards and environmental conditions (Stage 1) are relevant. A 
thorough appraisal is required of the role played by natural capital. This 
can potentially prevent approval of unsustainable future developments, 
which may result in destruction of natural systems and loss of ecosystem 
services. The role of structural adaptations would also need accounting 
for, especially their impact on natural systems, such as sediment budget 
distortion. Sustainable (whole shoreline) responses to erosion threats 
can be contentious and difficult to implement (Nicholls et al., 2015), 
metrics would need to be included revealing who and what would be 
exposed if proposed strategies were adopted. There can be options to 
repair flood damaged properties, so metrics related to insurance should 
be included, as appropriate cover could increase the resilience of those 
living in areas prone to flooding. Insurance covering erosion is not 
currently available, therefore alternative financial measures associated 
with erosion impacts, such as support for rollback schemes (Defra, 
2012), should also be accounted for. Metrics detailing socio-economic 
and demographic factors should be included, as planners need to 
know what socio, cultural and economic gain future adaptations, miti
gations and planning options may generate. This could relate to trans
port links, population densities, income and dependency levels, 
potential options for regeneration, employment levels and business 
activity. 

8.2. Wider application 

Coastal flooding and erosion are global hazards, therefore the coastal 
management requirements addressed above, which were specific to East 
Anglia, are taken to be representative of the wider issues experienced in 
coastal regions globally. One potential key difference, in terms of 
assessment of resilience, is that data availability may be more limited for 
coastal areas in many other regions and countries. Therefore, this may 
result in a much higher number of metrics which cannot be satisfied 
using empirical data. However, alternative measures could be looked to 
in overcoming a lack of available datasets. For example, it may be 
possible to derive outputs through proxy measures or analytical 
methods, such as those highlighted in Section 4.2.5. This could act as a 
substitute for many of the preconfigured data sources listed in 
Appendix C. EO derived datasets have been recognised as providing such 
an alternative for analysis undertaken in developing countries where 
data sources are lacking, especially in relation to flooding (Ekeu-wei and 
Blackburn, 2018; OECD, 2016). The literature reviewed as part of the 
QSR (Appendix A), documented coastal resilience assessments under
taken in many different parts of the world, in varying contexts. The 
resilience assessment metrics listed in Appendix B were derived from 
these studies. Therefore, the methodology outlined in this current study, 
is representative of varying contextual factors, found in coastal regions 
across the world. 
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8.3. Novelty and limitations of the coastal resilience assessment 
framework, metrics, and evidence base approach 

In summarising the approach adopted within this study, for selection 
of resilience assessment metrics and associated data sources, we have 
highlighted novel aspects which we believe contribute to the current 
academic discourse associated with this field. We have also highlighted 
a number of limitations of the approach employed within this paper. 
These are detailed in Table 2. 

9. Conclusions 

The ability to understand, assess, and monitor resilience is essential 
for decision makers tasked with management of coastal regions. In 
providing the capacity for such, it is possible to build on standard coastal 
risk assessment frameworks, which have focused on hazards and 

vulnerabilities, and anthropogenic and ecological exposure. However, 
whilst risk assessments tend to limit their evaluation of hazard responses 
to a focus on physical adaptation mechanisms, an assessment of resil
ience must also account for more incident specific details, such as re
covery times, and the broad range of preparations and contingencies 
which have been implemented. As such, it is crucial for assessments to 
account for measures which minimise disruption, whilst maximising the 
ability of coastal systems (ecological, economic, infrastructure, and 
community) to continue to function following a hazard event. The 
concept of resilience is wide, assessment of resilience therefore requires 
a multifaceted approach, involving consideration of a range of holistic 
data and information sources. This paper has focused on the evidence 
base available for assessment of coastal resilience and the specific in
dicator metrics which should be included within a holistic assessment. 
Many previous examples of coastal resilience assessments have relied 
heavily on human, opinion-based, input (Abenayake et al., 2018a; 
Bostick et al., 2017; Keating et al., 2017). Reliance on such, can prove 
time consuming and subjective. In an attempt to address these issues, 
this work has sought to identify metrics which can be assessed using 
empirical evidence. Accordingly, a case study approach was adopted, 
and the region of East Anglia (UK) was focused on. 

Through review of past studies covering coastal resilience, an 
extensive range of indicator metrics were selected. For each metric an 
indication has been provided of data sources, specific to the case study 
region, from which input variables could be obtained. It was not found 
possible to fulfil the input requirements of all metrics listed in 
Appendix B, through drawing on available preconfigured data sources. 
However, it was considered possible to satisfy the requirements of 75% 
of the proposed metrics, through utilisation of empirical sources. Some 
16% of these metrics would require outputs derived through analytical 
processes, to satisfy their requirements. A clear divide was observed 
between levels of data available for the metrics associated with tradi
tional risk assessments (i.e. those related to hazard source, pathway, 
receptor, and consequence) and the metrics more unique to resilience 
assessment (representing hazard event response, recovery, preparations 
and contingencies). This revealed that, irrespective of data availability, 
assessment of resilience is inherently more subjective than assessment of 
risk. However, this study revealed how the number of metrics within a 
resilience assessment requiring such subjective inputs can be minimised. 

Combining novel data sources, such as crowd sourced and EO data, 
can improve our ability to account for ecosystem services, land use 
change, impacts from hazard events, and system recovery. There are 
caveats associated with using information derived through such tech
niques, these include requirements for technical skills, time, and the 
ability to establish the veracity of data sources. The example data 
sources highlighted within this study, for the case study region of East 
Anglia (Appendix C), include both freely available and proprietary data 
sources. When planning a resilience assessment, it is necessary to 
consider the relative benefits of both open source and proprietary data. 
Time constraints, budget, and the internal capacity of the organisation 
seeking to undertake the resilience assessment, are all factors influ
encing the type of data sources used. 

An extensive listing of metrics is provided in Appendix B, however, it 
is not intended that all of these metrics be utilised within a single 
resilience assessment. Separate indicators should be selected depending 
on the scale at which an assessment is undertaken (local/regional/na
tional), the type of area focussed on (rural/urban/mixed), and the spe
cific form of resilience considered (long-term/short-term/disaster). 
Grouping appropriate metrics, from those proposed, can provide the 
opportunity to track progress in the resilience of a coastal region or 
district. This could expose ineffective planning and hazard responses, 

Table 2 
Novelty and limitations of this research.  

Contributions of the data-centric approach to the field of coastal resilience 

1 An original approach was taken in grouping such an extensive range of indictor 
variables based on a simple resilience assessment framework (Fig. 2); 
consideration of the disparate data variables, highlighted as pertinent to coastal 
resilience, can aid identification of relationships between factors not obviously 
connected. 

2 The approach presented within this study can form a basis for development of 
further, more refined, context specific, coastal resilience assessments. 

3 The framework and metrics (Fig. 2 and Table 1) are founded on input parameters 
used in assessment of resilience in multiple contexts (as documented in previous 
research (Appendix A)), so are internationally representative. 

4 The data-driven approach we advocate provides a means of operationalising the 
concept of resilience within coastal management for multiple settings. 

5 Through revealing how existing datasets can be drawn on within resilience 
assessments, we present options for expanding awareness of the evidence base 
available to coastal management practitioners. 

6 Derived data output from advanced analytical processes (Section 4.2.5) are 
shown to be capable of displacing more subjective methods used for obtaining 
the required inputs to resilience assessments. 

7 Our data-centric approach builds on progress made in assessing coastal risk 
(especially in relation to the SPRC scheme), incorporating this within assessment 
of resilience. 

8 A number of the data sources outlined and discussed are available as near real- 
time feeds, this potentially provides a means to allow dynamic assessment of 
resilience. 

LIMITATIONS OF THIS RESEARCH 
1 To date, the approach presented within this research lacks practical validation 

within a complete resilience assessment. 
2 The data source evaluation completed in this study was limited to one country 

and region. 
3 Due to the high number of metrics (Appendix B) and data sources (Appendix C), 

only a limited review was undertaken of the suitability of the data sources 
outlined, for each metric they were associated with. 

4 If the datasets and the associated variables, which are listed in Appendix C, were 
to be used within a resilience assessment, additional scrutiny of metadata, data 
consistency, validity and veracity, would need to be undertaken. 

5 The number of metrics listed in Appendix B, could prove overwhelming, and 
may require significant levels of scrutiny to determine which are most suitable to 
any given context. 

6 A hierarchy has been established (Table 1) to aid collation of factors represented 
by the selected metrics (Appendix B); some degree of flexibility exists in the 
categories assigned within this. The process of sorting the metrics into stages and 
sub-categories was inherently subjective. 

7 This study has identified a list of metrics suited to assessment of coastal 
resilience, and revealed how these could be applied, however it has not discussed 
benchmarks related to the variables assessed within the metrics. Such 
benchmarks could prove important for charting progress. 

8 The price tag associated with data sources required for evaluation of a number of 
the metrics may prove prohibitive for their utilisation within assessments 
completed by public sector/academic organisations.  
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and a lack of adaptive capacity, and holds the potential to improve 
future coastal management policy responses. Selection of appropriate 
indicator metrics forms only one part of a resilience assessment. How
ever, the variables considered are of crucial importance to later stages, 
involving analysis and communication of results. Application of the 
primarily data-driven mode of resilience analysis we suggest would 
require technical skills and an understanding of the input datasets. 
Stakeholder organisations, such as CPE, may not possess this. However, 
the main objective of this study was not to evaluate or propose a single 
method of resilience assessment, but to establish a set of metrics, and 
data sources suitable for inclusion within a data-driven coastal resilience 
assessment. In addressing this objective, we have presented options 
permitting emerging sources of data and analytics to be drawn on within 
a structured, holistic assessment of coastal resilience. Through careful 
selection of metrics that cover ecological, economic, and social aspects 
of resilience, this data-centric approach could assist coastal practitioners 
in achieving sustainable, resilient outcomes. 
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Appendix A 

Quick Scoping Review 

A QSR is a type of evidence review that aims to provide an informed conclusion on the volume and characteristics of an evidence base and a 
synthesis of what that evidence indicates in relation to a question (Collins et al., 2015). The QSR detailed here seeks to collate evidence from academic 
articles and grey literature, synthesising this in order to address the following questions:  

1. What indicator metrics need to be included within a coastal resilience assessment?  
2. What methodological approaches have been used to combine such metrics?  
3. What data sources have been associated with these metrics? 

Initially a wide search was completed of websites and grey literature. From this, a number of non-academic, sources were identified as particularly 
relevant to coastal resilience. The most prominent among these, and those specifically relevant to the UK and the case study region, are detailed in 
Table 3; in this some of the most prominent metrics referred to are detailed. Together, these documents provide material detailing the key resilience 
initiatives currently undertaken within the UK and select studies from further afield. The data sources and frameworks utilised were also detailed. 
Consideration of these sources contributed to the subsequent selection of assessment metrics and data sources detailed in Appendix B and C.   

Table 3 
Non-academic literatures sources, with prominent metrics mentioned in these detailed.  

# Author and Publication Metrics 

1 Defra (2016) National Flood Resilience Review. Flood hazard threat, past frequency of hazard events, flooding from other sources (pluvial, fluvial), 
extreme rainfall, past storm surge events, climate projections, river and estuarine data, inundation 
zones, flood risk exposure, key infrastructure at risk -rail, highways, ports, airports-, water supply and 
treatment, telecommunications, energy, medical facilities, assessment of flood defences, health, 
temporary defences, incident response, local planning, flood risk communication 

2 The Environment Agency’s SMP Plans (Defra, 2006; Environment 
Agency, 2009); 

Past frequency of hazard events, erosion prediction, flood risk exposure, main employers and sectors, 
land use, natural habitats, maladaptive practices, sediment supply, farming/agriculture, tourism, 
coastline length, urbanisation, distance from the coastline to major developments, presence/ 
functioning of coastal defences, natural capital, habitats/specie numbers, recreational use of the coast, 
port usage, critical infrastructure, highways, rail, assets in flood/erosion zones, funding for resilience 
measures 

3 The Committee on Climate Change UK (2018) report ‘Managing the 
coast in a changing climate’ 

Climate change induced hazards, assets located in flood/erosion zones, distance from the coast of 
developments, predictions of weather and climate patterns, exposed infrastructure, spatial distribution 
of hazard events, functioning of coastal defences, property level mitigation, insurance coverage/ 
availability, tidal data, salinization, flood and erosion event casualties, financial impacts of flood and 
erosion damage, health impacts, housing density, inundation zones, flood hazard threat, principle 
arterial roads and rail miles in hazard zones, landfill sites, agriculture, population age dependency ratio, 
natural capital, habitats and species, governance, land use and urban planning, resettlement sites, 
funding for resilience measures, awareness of local population 

4 Twigger-ross et al. (2015), Flood Resilience Community Pathfinder 
Evaluation 

Awareness of local population, population distribution and structure, poverty levels, age dependency 
ratio, disability ratio, recent immigrants, employment, incomes, insurance coverage/availability, civil 
society groupings, informal coordination of citizens activities, resettlement sites, volunteer networks, 

(continued on next page) 
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Table 3 (continued ) 

# Author and Publication Metrics 

risk management plans, maintenance of storm sewers, availability of emergency aid, funding for 
resilience measures, household mitigation measures, exposed infrastructure 

5 The National Infrastructure Commission’s (2018) National 
Infrastructure Assessment 

Presence/functioning of coastal defences, inundation zones, natural flood buffers, natural capital, 
properties flooded, insurance coverage, insured losses, financial impacts of flooding, habitat creation, 
predictions of weather and climate patterns, exposed infrastructure, population change, assets in flood/ 
erosion zone, population density, funding for resilience measures, SMP erosion predictions, flooding 
from other sources, land use planning 

6 NOAA Office for Coastal Management (2015) Coastal Community 
Resilience Indicators and Rating Systems; 

Exposed critical infrastructure, critical facilities (i.e. emergency services) in hazard zones, assets in 
hazard zones, maintenance of adaptations -storm sewers etc, availability of potable water, ecosystems 
services, natural capital, habitats, impacts on tourism and recreation, business plans and equipment, 
existence of risk management plans, hazard awareness of local population, capacity of waste water 
treatment plants, climate change predictions, emergency services readiness, availability of flood maps, 
flood/erosion education, insurance cover, financial impacts of past events, early warning systems, 
availability of communication systems, business recovery times, population characteristics, public 
buildings and infrastructure locations, health impacts, evacuation plans, emergency response plans, 
stormwater management plans, implementation of building codes, community cohesion/social capital, 

7 EPICURO (2018) European Partnership for Innovative Cities within 
an Urban Resilience Outlook, Best practice analysis. 

Spatial planning, population structure, climate and weather predictions, waste water management, 
solid waste management, energy security, transport exposure, transportation access -port, rail, roads-, 
electricity outages, availability of resilience funding, effective leadership and management, continuity 
of critical services, communications reliability, alternative energy sources, building codes 
implementation, civil society participation, social capital 

8 Resilience Alliance (2010) Assessing resilience in Social-Ecological 
Systems - A workbook for practitioners v.2.0 

Ecosystem services, salinization, specie distribution, sediment distribution, climate variables, erosion/ 
accretion rates, health impacts, job losses related to hazard events, land cover, water quality, social 
networks, governance systems, incomes, soil type, funding for resilience measures  

These reports represent a sample of only a limited body of work currently addressing issues relevant to coastal resilience beyond academia. The 
main body of information drawn upon in the QSR was sourced from academic journals. Yet due to the limited quantity of literature available, which is 
focused specifically on assessment of coastal resilience, search terminologies used were extended to include wider hazards and scenarios, such as 
inland flooding and disaster resilience. The academic literature search was undertaken primarily using Web of Science (https://apps.webofknowledge. 
com), and SCOPUS (https://www.scopus.com). 

Table 4 indicates the original search terms applied and the number of results these generated, in the respective search engines. The search strategy 
ensured all aspects of the QSR questions were covered. A range of possible subject descriptors for each of the keywords in Table 4 were identified in 
order to ensure that useful references were not missed. A wildcard (*) was also used where possible to pick up multiple word endings.   

Table 4 
Keywords used in the literature search (noting ‘and’ qualifiers where considered important to focus 
search).  

Search Terms # Results 

Scopus WoS 

“coast* resilience” 130 99 
“coast* infrastructure*” AND “resilience” 22 16 
“coast* area*” AND “Resilience” 268 536 
“coast*” AND “resilience assessment” 26 18 
“coast*” AND “resilience” AND “data source*” 13 6 
“coastal resilience assessment” 1 0 
“coast*” AND “flood” and “resilience” AND “assessment*” 125 62 
“coast*” AND “flood” AND “resilience” AND “evaluation*” 26 14 
“data” AND “resilience assessment*” 72 66 
“climate change” AND “resilience assessment*” 46 57 
“resilience assessment*” AND “disaster*” 118 82 
“information” AND “resilience assessment*” 64 54 
“method*” AND “resilience assessment*” AND “coast*” 16 13  

The initial web search outputs were screened using the following steps:  

1. Initial review of the article titles resulting from the searches based on key words. Where this screening provided material of interest then:  
2. The material was screened at abstract/contents page level to determine if the material was of further interest.  
3. After passing these two screening stages (and also if any uncertainty remained regarding the material’s value) then articles were consulted in full 

to:  
a Confirm whether or not the document was of relevance to the questions being addressed,  
b Extract the required evidence. 

From the original academic literature search results detailed in Table 4, 73 papers were selected for further review (screening stage-2). Following 
subsequent analysis of the material covered in these articles, the list of relevant papers was further reduced to the 29 listed in Table 6 (screening stage- 
3). Selection of these articles was based principally on their content, covering explicit details of the methods, metrics and datasets used in resilience 
assessments. Efforts were made to include studies addressing a mix of spatial scales, those applied to both rural and urban settings, and those covering 
assessments of multiple types of resilience (including: social, economic, infrastructure, community, institutional, environmental, and structural 
(Burton, 2015)). The search results obtained, indicate an exponential increase in the number of papers published covering aspects of coastal resilience 
during the last 5 years. Furthermore, the majority of the works selected for further review (stage-2 and -3) were published during the last three years, 
and studies focusing on the USA represent over a third of those selected. Table 5 provides a summary of the number of works selected, by year 
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published. No time limit was imposed on the literature searches, yet no relevant works were located which were published earlier than 1998. Evidence 
extracted from the 29 articles, which passed through the QSR screening process is presented in Table 6.   

Table 5 
Academic articles reviewed, by year published. Those relating to the 
second review are listed in Table 6.  

Year Number of Articles 

First Review Second Review 

2019 1 1 
2018 31 12 
2017 14 8 
2016 9 3 
2015 3 3 
2014 3 1 
2013 1 – 
2012 1 1 
2011 3 – 
2010 2 – 
2009 1 – 
2008 1 – 
2003 1 – 
2001 1 – 
1998 1 – 
Total 73 29   

Table 6 
The 29 most relevant studies identified in QSR, from which metric themes were derived. Details provided only indicate author(s) and year of study, full details of each 
study are found in the reference section. The table indicates study case study area (if appropriate), type of resilience or hazard focussed on, scale, nature of study, type 
of method used for resilience assessment, and mentions pertinent issues relating to metrics and data sources used.  

# Paper Ref. Location Focus Scale/Area Details Resilience Assessment 
Method 

Metrics and data 

A Lam et al. 
(2018) 

Mississippi 
River Delta 

Community 
disaster resilience 

Regional Social, economic, infrastructure, 
cultural and economic sectors 
considered. 

Resilience Inference 
Measurement (RIM). 
ABM, Cellular 
Automata (CA) 

2 main indicators: Coast 
hazard events -property 
damage; recovery- population 
change 

B Cai et al., 
2018b 

Mississippi 
River Delta 

Community 
resilience. 

Regional, 
Urban and 
rural. 

Variable identification 
–Population change an indicator. 
Complex assessment. 

Bayesian Network 
Model: EM method 
–conditional 
probability, JT 
algorithm –posterior 
probabilities 

Variables identified as 
important: Threat level to 
coastal hazards; hazard 
damage; employment rate; 
distance to coastline; % 
houses built before 1970; % 
HH containing females 

C Song et al. 
(2018) 

Busan, 
Republic of 
Korea. 

Flooding damage 
and Socio- 
ecological 
resilience. 

Urban Green Infrastructure. 
Quantitative results generated in 
study. System 
resilience ¼ system performance 
x cumulative value. Causal loop 
diagrams used. 

System Resilience 
Dynamic Model 
(SRDM), 4 R model 
Simulation with 
spatial modeller in 
ArcGIS 

Presence of impervious 
surfaces highlighted as 
important. 

D Abenayake 
et al. (2018b) 

Colombo Sri 
Lanka. Multi 
district 

Community 
resilience 
Floods 

Urban/ 
rural 

Validation of geospatial 
indicators. 

System Performance 
based method 

Resilience capacities 
identified: transform, absorb, 
and recover. Metrics 
represents all 3 capacities. 16 
indicators found to be 
pertinent. 

E Joyce et al. 
(2018) 

Florida, USA Flooding and 
engineering 
resilience 

Mainly Urban, 
local scale 

Drainage infrastructure. Look at 
physical adaptation measures. 
Resilience ¼ recovery time 
reduction. Exposure determined 
by adaptive measures 

Multi-criteria method 
incorporating Copulas 
Analysis 

Careful formulation of metrics 
around common vulnerability 
criteria. Hazard variables: 
wave, pressure, wind, rainfall, 
tides. Adaptive measure 
criteria outlined. 

F Cutter & 
Derakhshan 
(2018) 

Entire USA Community 
Disaster 
Resilience 
assessment 

Urban/ 
rural 
National level 

Cascading effect analysis 
flowchart. 3D visualisation. Basis 
of long terms spatial or 
development planning and 
emergency preparedness. 
Natural hazards. 

Baseline Resilience 
Index for Communities 
(BRIC) (Cutter et al., 
2014) 

6 resilience categories 
represented: social, economic, 
environmental, housing/ 
infrastructure, community 
capital, institutional. Data 
sources outlined. 

G Hung et al. 
(2018) 

Taiwan. Flood, not total 
resilience 

Household 
level focus, 
Communities 

Public measures. Behaviour 
component. Focus on 
implementation of HH adaptive 
measures. 

Multi-variate analysis. 
Resilience Framework 
of Household 
Autonomous 
Adaptation to Climate- 
and Weather- Related 

Metrics representing: Risk 
information; Threat appraisal; 
Household attributes; Social 
capacity and participation; 
Adaptation appraisal; 
Adaptation actions 

(continued on next page) 
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Table 6 (continued ) 

# Paper Ref. Location Focus Scale/Area Details Resilience Assessment 
Method 

Metrics and data 

Hazard Risks 
(ROHACHR) 

H Ellison et al. 
(2017) 

Tarawa, the 
republic of 
Kiribati. 

physical shoreline 
change and 
ecological 
resilience  

Satellite data used, sediment 
analysis, and beach surveys. 

Spatial analysis using 
ArcGIS 

Metrics including: vegetation 
condition, topography, spatial 
change analysis, sediment 
supply, human impacts 

I Karamouz & 
Zahmatkesh 
(2017) 

New York, 
Bronx 

Flooding Impacts 
from Superstorm 
Sandy 

Urban, local Identification and ranking of 
most important factors for 
increasing system resiliency 
based on decision makers’ 
judgements. 

Multi-criteria decision 
making techniques, 
linear combination of 
metrics; Algorithm 
Workflow generated, 
incorporating ‘4Rs’. 

Appropriate metric to enable 
ranking of factors: economic, 
social-political, hydrological, 
physical 

J Bostick et al. 
(2017) 

Mobile Bay, 
Alabama, USA 

Disasters 
indirectly assess 
resilience, 
Stakeholder 
awareness raising 

Urban, local Methodology developed 
addresses the stages of 
resilience—prepare, absorb, 
recover, and adapt—and 
integrates performance 
assessment with scenario 
analysis. 

Multi-criteria decision 
analysis (MCDA), 
scenario-based 
preference process. 

Stakeholder driven process of 
identifying and ranking 
factors impacting resilience. 
Problem: aggregation of data 
can blur vulnerability. 

K Fekete et al. 
(2017) 

Cologne 
Germany 

Critical 
infrastructure, 
risk from flooding 
and blackouts. 

Urban Combined vulnerability/ 
resilience assessment. Spatial 
and demographic data utilised. 
Analyse criticality of 
infrastructure. Not a static 
assessment. 

4 R model; GIS method 
– inc. network analysis 
to determine optimal 
routes. 

Use EO data to determine 
flood extents and Flood 
exposure maps. Critical 
infrastructure identified and 
interdependencies (i.e. 
Hospitals and fire stations). 
Criticality of rail, civil 
protection, electricity 
blackouts, routing constraints, 
emergency shelters, exposed 
population density, 
evacuation hotspots, use of 
civil protection authorities. 

L Joyce et al. 
(2017) 

Bayou 
watershed 
Florida USA 

Coastal drainage 
infrastructure 

Urban 
Watershed 

Establishment of quantitative 
resilience metrics. 

Informatics based 
Multi-scale Modelling; 
GIS. 

Lidar Bathymetry included as 
data source. 

M Schultz & Smith 
(2016) 

New York. Response and 
recovery of 
infrastructure 
system following 
storms  

Data requirements for resilience 
assessment addressed. 
Application to coastal 
management. 

Bayesian probabilistic 
approach 

Primary resilience indicator: 
time to recover system 
performance. 4 functional 
performance objectives 
represented by indicators: life 
safety, housing, utilities, 
transportation. 

N Abenayake 
et al. (2018a) 

Colombo, Sri 
Lanka 

ecosystem 
flooding/services, 
link to community 
resilience 

Not coastal 
specific, 
Regional scale 

Main focus is physical 
environment. Aggregating proxy 
indicators for ecosystems. Expert 
opinion drawn on for utility 
scores of land use. 

Composite 
environmental 
indicators, Weighted 
linear combination 
method (WLCM) 

Ecosystem services indicators 
included: flood regulation, 
climate regulation, nutrient 
recycling. 4 proxy indicators: 
soil, hydraulic properties, 
slope, land use, precipitation 
factor. Land use parameters: 
density of land cover, surface 
roughness of cover, waste 
assimilation capacity of 
ecosystem, quantity and 
toxicity of waste. 

O Karavokiros 
et al. (2016) 

Rethymno, 
Greece 

Preparing for 
Extreme and Rare 
Events 

City level Documents the project outputs 
from PEARL, online tool 
developed. User self-quantifiable 
metrics and determined. 

Pearl Flood Resilience 
Index Tool. Web GIS 
based collaboration 
toolbox 

Filters-metrics employed in 
tool: flood problem type; 
measurement type; spatial 
scale; land use. 

P DasGupta & 
Shaw (2015) 

India (Asian 
mega deltas). 

Community Socio- 
ecological system. 

Developing 
world. Rural 

Framework tool. Focus on 
development of dimensions, 
indicators and variables. 

Coastal Communities 
resilience index 
(Composite resilience 
index) 

Reference given to Indicators 
used in other studies. 
Requirement identified to 
integrate metrics 
representing: social, 
ecological, human and natural 
factors 

Q Burton (2015) Mississippi 
coastal 
counties USA. 

Disaster 
resilience. 
Incident specific - 
Hurricane Katrine 

Urban/Rural Assesses the ability of Composite 
indicators enabling distinction 
between non-relevant and 
relevant data. 

Multi-variate analysis 
drawing on composite 
indicators. GIS used in 
recovery analysis, and 
to represent resilience. 

Recovery process monitored 
using repeat photography. 

R Kim et al. 
(2014) 

Texas USA. Disaster 
resilience. 
Flooding Incident 
specific 
Social ecological  

Indicators focus Analytical Framework Metrics identified: flood plain 
area; wetlands; erosion rate; 
impervious surfaces; 
biodiversity; taxation and 
financial incentives; 

(continued on next page) 
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Table 6 (continued ) 

# Paper Ref. Location Focus Scale/Area Details Resilience Assessment 
Method 

Metrics and data 

resilience to 
Hurricanes. 

conservation and restoration 
of natural systems; Structural 
and non-structural hazard 
mitigation (natural capital); 
Land use planning; local 
infrastructure and public 
services; building and 
structural resilience; 
identification of resilient 
infrastructure, drainage; 
preservation and restoration 
of ecosystems and ecological 
infrastructure. 

S Menoni et al. 
(2012) 

Sondrio, Italy. Flash floods 
vulnerability of 
physical and 
socio-economic 
assets and systems 

Local. Informs land use planning. 
Metric based on judgemental 
selection of aspects. 

Resilience assessment 
matrix: ENSURE 
Framework 

Metrics covering: natural 
environmental, physical, 
systemic, social, economic and 
institutional vulnerability. 
Lack of data identified. 
Generic or hazard specific 
vulnerability indicators used. 

T Papadopoulos 
et al. (2017) 

Nepal. supply chain 
networks 
Incident specific 
Nepal earthquake 
in 2015  

Tests a theoretical framework 
using unstructured data (Tweets, 
news, Facebook, WordPress, 
Instagram, Google, and 
YouTube), and structured data, 
via responses from disaster relief 
managers 

Big Data Framework Indicators: social media 
responses to distribution of 
aid and reconstruction. 

U Oladokun et al. 
(2017) 

Not Specified Flood property level  Fuzzy logic (FL)-based 
resilience measuring 
model 

Input factors: inherent 
resilience, supportive facilities 
and resident capacity. 
Property level factors, 
retrofitting. 

V Garvin et al. 
(2016) 

UK Flooding. Insurers 
structural and 
building 
adaptation 
measures 

property level Combine environmental datasets 
on flood risk with resilience 
measures –allow insurance 
industry to account for 
investment in resilience 

Property Flood 
Resilience Database 

Indicators highlighted; 
geocoding; elevation; land 
use; rainfall; river geometry; 
flow rates; tidal data; flood 
depths; Flood protection work 
by councils, authorities, 
property owners (aggregated); 
retrofitting measures; 
Logistics; flood plan 
development, operation; post 
event barrier removal and 
cleaning site clearance, waste 
removal; suitable drainage; 
flood warning systems; local 
flood groups and forums, 
actions initiated in flood 
events. 

W Lam et al. 
(2015) 

Caribbean, 25 
countries. 

Hurricane  Based on indices of three 
dimensions: exposure, damage, 
and recovery. 

Resilience Inference 
Measurement (RIM) 
model. GIS analysis. 

Metric indicating: 
Exposure: Hurricane 
recurrence; Damage: per 
capita; 
Recovery: population growth 
post event. 

X Szewra�nski 
et al. (2018) 

Poland. Environment, 
Social 
vulnerability 
Flood  

Identification of areas populated 
by vulnerable social groups. 

Location Intelligence 
System. GIS analysis. 

Metrics including; Household 
vulnerability due to 
unemployment; flood hazard 
maps; age structure of 
population. 

Y Keating et al. 
(2017) 

75 
communities 
across 8 
countries 

flooding Community 
level 

Framework and tool developed 
https://floodresilience.net/frmc 
Comparing pre-flood 
characteristics, with post flood 
outcomes. Manual grading of 
resilience by an assessor 

Zurich Alliance 
community flood 
resilience 
measurement 
framework and tool; 
4R and 5C 

Derived data used to populate 
metrics. Assessors assigned to 
collect data to grade resilience 
through: HH surveys, 
Community consultations, key 
informant interviews, interest 
group discussions, 
Third party sources deemed 
secondary –i.e. census data. 

Z Zhang et al. 
(2019) 

Shenzhen 
China. 

Rainfall induced 
landslide 
resilience. 

Urban Automated method. Data-driven 
study, weightings derived 
through analytical techniques. 
Resilience ratings derived 
through machine processes not 
subjectively. 

Support Vector 
Machine (SVM) 
(physical resilience) & 
Delphi-analytic 
hierarchy process 

Datasets covering: For 
physical resilience 
-meteorology, soil, terrain, 
slope vegetation cover and 
land use; for social resilience 
-socio economic statistics. 

(continued on next page) 
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Table 6 (continued ) 

# Paper Ref. Location Focus Scale/Area Details Resilience Assessment 
Method 

Metrics and data 

(Delphi-AHP) (social 
resilience). 

DEM Landsat data used to 
assess the capacity of urban 
physical system against 
rainstorms, and combined 
with feedback capacity of the 
human community when a 
landslide occurs. 

Å Allen et al. 
(2018) 

Carolina, USA. Resilient 
infrastructure.  

Geospatial Simulation, combined 
with Table top exercises. 
Debate on scale. 

GIS based method; 
Resilience matrix. 
Strom surge 
simulations from 
SLOSH display system 
to ArcGIS. 

Indictors for human health 
impacts; damage to water 
infrastructure: sewage 
overflow, loss of 
potable water, health facilities 
closure, loss of running water. 
Geospatial data representing 
water infrastructure assets. 
Assimilated population and 
health care provider data for 
analysis of population 
susceptibility. 

£ Cai et al., 2018a N/A Disaster Multiple Review of disaster resilience 
assessment methods and metrics, 
systematic review of 174 articles. 
Only 10.3% of these included 
empirical evaluation of indices. 

Comparative study. 
Multi-variate 
regression most 
common quantitative 
method. 

Metrics highlighted: income, 
employment, education, age, 
previous disaster experience, 
shelter capacity, social 
connectivity, municipal 
capacity, place attachment, 
transportation access, 
mitigation, housing capital, 
medical capacity recovery, 
civic involvement. 

$ van Dongeren 
et al. (2018) 

10 sites in 
Europe’s 
regional seas 

Disaster 
Flood 

Local, Urban/ 
Rural 

Tools developed in project: 
Storm impact database, Coastal 
Risk Assessment Framework, 
Web-based management guide, 
Hotspot tool, Multi-Criteria 
Analysis 

Multiple methods: 
storm impact DB. 

Metrics highlighted: wave 
overtopping, flooding and 
shoreline erosion, land use, 
social, transport, utilities and 
economic activities, flood 
modelling outputs, flood 
depth and discharge.  

Appendix B 

Resilience assessment metrics 

Stage 1 Hazard source  

# Metric Available from Paper Ref.  

General 
1 Past frequency of hazard events 3,34,35,36 M,P,Q,Y 
2 Climate change induced hazards -Sea-level Rise predictions, increased frequency and magnitude of extreme events 16,33 I,P,W 
3 Extreme rainfall 3,30,34 D,N,T,Z,Å 
4 Past storm surge events 35,36 Å 
5 Rivers, estuaries –waterbody density (waterbody area/total land area), river miles 28,30 D,P 
6 Predictions, short- and long-range projections of weather and climate patterns 3,16,33,57,58 N,S,Å 
7 Archive climate data 34,13,16,3 N 
8 Oceanographic/meteorological sensor networks, records and projections (including real time outputs) 2,3,5,7,10,13,14,27,34 S,W,Z 
9 River and estuarine data (river levels, flow rates) 10,19,26,28,30,33,55 O 
10 Tidal data 2,4,5,10,14,36 M,Å 
11 Water Quality 5,6,7,14,29,30,33,38 P 
12 Industrial pollutants (sources and impacts) 1,10,29,33 P 
13 Quantity and toxicity of waste (solid waste and water waste) –generation potential by land use 10,12,19 M,N,P  

Record of environmental conditions during hazard events 
14 Maximum storm surge elevations 36 I 
15 Maximum/average flood water levels –inundation depths 10,30,62,64,65 C,I 
16 Flood water chemical contaminants 9,10,11,30 Y  

Stage 2 Pathway  

# Metric Available from Paper Ref. 

17 Maladaptation practices and hazards generated through previous installation of protection structures 2,13,17 G,H,P 
18 Flood hazard threat (warning zones - predictions), flood maps 10,55,62 I,O,W,Y,Å 
19 Erosion prediction - SMP and academic modelling outputs 10,17 B,H,N,P,R,Z 
20 Flooding from other sources pluvial/fluvial 3,6,10,30,34,62 O,N,V,X 
21 2,10,6,12 

(continued on next page) 
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(continued ) 

# Metric Available from Paper Ref. 

Topography, slope, terrain data derived through laser scanning surveys - point cloud datasets, (Digital Terrain Models 
(DTMs), Digital Surface Models (DSM)) 

B,D,E,H,N, 
W,Z 

22 Beach/cliff surveys, transects 2,6,10 H,M 
23 Nearshore bathymetry –point cloud, or gridded data 2,4,10,12,14,18,38 Q 
24 Sediment supply 2 H 
25 Soil map and hydraulic properties 6,9,30,39 D,N,Z 
26 Local geology 6,12 N 
27 Geological stability, subsidence 6,9,30,39 A 
28 Landslide subsidence areas 6 P,Q,T 
29 Coastline length 28 I 
30 Inundation zones –flood inundation maps (Inundation modelling outputs linked to forecasting and monitoring) 10,17,55 A,B,D,I,O, 

Q,Y 
31 Contaminant and pollution sources in flood plains 6,9,10,11,30 J,P 
32 Flood risk exposure (modelling outputs) 10,17,55,63,64,65 E,I 
33 Land cover 13,30,38,67 B,I,N,Q 
34 Perviousness of land cover - percent of land areas that does not contain impervious surfaces EO Derived: 

13,17,34,38,68,69,70,73,74 
C,D,E,F,I 

35 Surface roughness of land cover (material) EO Derived: 
13,17,34,38,68,69,70,73,74 

N 

36 Percent deep permeable soil per ward 6,39 D,N 
37 Land area that does not contain erodible soil 6,15,39 D,N,Q 
38 Distance from coastline of major developments 28 B,E  

Stage 3 Receptor 

General  
# Metric Available from Paper Ref. 

39 Land use classification (marsh/mangrove, abandoned paddy, playground, sports ground, park, cemetery, residential, 
commercial, industrial, hotel/condo, institutional, road, waterbodies, agriculture, forest) 

8,9,13,15,28,30,31,33,37,38,67 B,D,N,O,P, 
Q,R,Z 

40 Urbanisation/industrialisation 1,2,10,13 B,D,P 
41 Percent of developed open spaces 13,28,37 D,Q 
42 Uncontrolled planning zones 1 I 
43 Geocoding data - boundary datasets, area codes, wards 1,4,25,28,29,59 M,V,W,Z,Å 
44 Location of waste treatment works, sewage and landfill sites (in-use and historic) 1,10,12,19,33 M  

Public amenities  
# Metric Available from Paper Ref. 

45 Spatial density of schools, hospitals, emergency services, hotels location 1,28 B,D,F,I,Q,S,T,Y,Å,£ 
46 Density of commercial infrastructure 1,28 D,Q 
47 Percent of commercial establishments outside high hazard zones Derived: 1,28 D,Q 
48 Number of food suppliers (local) 1,28 F,Y 
49 Child care facility locations 1,28 Q 
50 Location of care homes, assisted living, mental health care, drug treatment centres, pharmacies, prisons 1,28 F,S,Å 
51 Retail centres per unit population 1,28 F,Q 
52 Food security Derived: 42 F,Y 
53 Doctors per 10,000 people 21,80 F,P,Q 
54 Medical care capacity (number of hospital beds per 10,000 people) Derived: 21,80 F,Q,Z,£  

Economy and business  
# Metric Available from Paper Ref. 

55 Main employers and sectors 21,22 A 
56 Employment rate 1,21,22 B,F,Q,R,S,U,£ 
57 Dependency on primary industries (farming, fishing, forestry, extractive industries) or tourism 21 B,F,P,Q,T,Y 
58 Income inequality/distribution 21 A,F,G,I,Q,R,U,W, Y,Z,£ 
59 Economic diversification 1,21,22 P,Y 
60 Business/industrial activity 1,21,22,60 Q,R 
61 Business sizes –ratio of large to small businesses 21,60 F,Q,R 
62 % of population who are government employed 21 F 
63 Investment in coastal areas 1 I 
64 Land/house prices –stability –change 25,66 B,I 
65 Availability and accessibility of financial resources 60 O,U,Y 
66 Supply chains -revealing complex risks Derived: 60 K,S 
67 Farming/agricultural data –crop yields 9,11,15,33 O,P 
68 Fisheries and aquaculture – resources and revenue 5,7,11,14,26,29 P 
69 Tourism hotspots; tourist numbers (footfall) on beaches/coastal paths 1,21,19 T 
70 Shipping cargo statistics 20,21 J 
71 Number of businesses in risk zones Derived: 1,10,17 I  

People 
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# Metric Available from Paper Ref. 

72 Poverty levels 40,21,22 B,I,P,W 
73 Spatial trends in human health 1,21,22 S,U,Y 
74 Population density, distribution and structure 1,21,22 B,I,K,P,W,Å 
75 Population age dependency ratio 21 B,F,I,P,Q,R,S,U,Z,£ 
76 Split, urban/rural population Derived: 21,28 P 
77 Population change (population stability) Derived: 1,19,28 B,F,I,P,S,W 
78 Percent of the population living in high intensity urban areas Derived: 21,28,79 D,Q 
79 Homeownership 21,22 B,F,G,P,Q,R,U,£ 
80 Number of disabled/handicap people 21,22 B,F,I,Q,U,Z 
81 Recent immigrants, asylum seekers, non-English speakers/language competency 21,22 A,B,F,I,Q,U 
82 Visitors in an area; ability to respond –hotel numbers, proximity to hazards Derived: 21,41 K,Q 
83 % population located within hazard zones Derived: 21,10 B,I,K,M,W 
84 Immigration/emigration rates 21,22 Q,R 
85 Criminality 21,50 S 
86 Social cohesion/social capital 21,42 P,S,U,Y,£ 
87 Recreational use of the coast 1,26,29 C,Å,H  

Property  
# Metric Available from Paper Ref. 

88 Housing density 1,67 A,B,S 
89 Assets in flood/erosion zones (including the EA: National Receptor Database) Derived: 1,10, 28,55,63,64,65 I,K,P,Q,R 
90 Housing types 1,21,67,78 B,F,Q,S,U 
91 Construction quality 67,78 B,F,S,T,U 
92 Building age 21,67,78 A,B,Q,R 
93 Bungalows 21,67 R 
94 Transportation access –households with cars 19,20,21 F,Q,S,£ 
95 Number of multi-storey buildings 21,67,78 X 
96 Vacant housing 1 Q,R 
97 Building architecture –number of floors available to occupants 34,67 M,S,U 
98 Households with basements 78? S  

Infrastructure  
# Metric Available from Paper 

Ref. 

99 Transportation access and alternatives–roads, rail, ports, airports, bus routes –movement potential Derived: 28 D,S,Y 
100 Principle arterial roads in hazard zones (traffic flow data) Derived: 20,28 A,D,Q, 

W,Z 
101 Rail miles in hazard areas Derived: 28 Q 
102 Emergency road network accessibility Derived: 1,20,28 O 
103 Determination of key infrastructure at risk: roads, rail, ports, water, energy, telecoms, undersea structures 

(Identification drawing on automated processes or manual analysis) 
1,10,12,20,24,28,32 Q,S 

104 Infrastructure dependencies (electricity, water, drainage, food, hospitals, daily emergency management) Derived: 
12,19,28,32,63 

K,S 

105 Spatial configuration of buildings and infrastructure in urban areas – which can constrict drainage Derived through spatial analysis: 
10,28,38,68,69,70,73,74 

S 

106 Existence and location of critical infrastructure (communication and transport) (from traffic data and human 
movements, and supply chain data) 

1,19,20 S,Y 

107 Water sources, fresh (potable) water 6,11,30 M,P,Y,Å 
108 Water treatment works 11 S 
109 Percent of building infrastructure not in flood inundation zones Derived: 10,55,63,64,65 B,Q 
110 High speed internet infrastructure 19,44 F,Q 
111 Renewable energy sources 12,45,46 P 
112 Energy efficiency (megawatt hours/consumer) 19 F,W 
113 Efficient water use (water supply stress index) 10,30 F 
114 Transformer stations 28 K 
115 Operation of bridges and tunnels 28 S 
116 Infrastructure condition 1,19 L 
117 Strategic Water infrastructure 11 L,Å 
118 Water supply, gas supply, and drains run under/along road corridors, dependency links Derived through spatial analysis: 

10,28,32,47,48,72 
S 

119 Sanitation facilities 1,28,11 P,Y 
120 Water, gas, petroleum, storage facilities 28,47 S 
121 Future trends in infrastructure development - based on published plans, energy needs, and projected population 1,19,28,48,49 R,V  

Stage 4 Risk reducing measures 

Stage 4.1 Adaptation 
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# Metric Available from Paper Ref. 

Human Structural 
122 Flood proofing constructions of strategic infrastructures Sourced from infrastructure suppliers/owners O,T 
123 Presence of appropriate/functioning flood defences/adaptations 1,10,82 I 
124 Dredged canals –availability of diversion channels 52,82 E,I 
125 Tidal wall (with storm water inlets) 10,82 E 
126 Engineered sea defences –reef, breakwaters, groins, sea walls 10,82 O,P,R 
127 Hydraulic structure limiting river discharge –installation, maintenance 1,10,82 O 
Human Soft 
128 Soft adaptations –beach nourishment, sandscaping, Managed Realignment, dune rehabilitation 1 M,R 
129 Green Infrastructure 1,19 C 
130 Health insurance 23,75,75,77 F 
131 Flood insurance coverage (% people and businesses who are covered by insurance) 23,75,76,77 F,I,U,Y 
132 Crop insurance coverage 23,75,76,77 F 
133 Regulations enhancing adaptation/mitigation 1,10,11 O,Y 
Mitigation 
134 Low impact developments (inclusion of drainage pathways to reduce surface runoff) 63 E,G 
135 Mitigation project spending/budgets 1,10,82 F,Y 
136 Household mitigation measures Undefined G,S,U,V,Y 
137 Tax Incentives for implementation of measures 1 M,R 
138 Citizens adapting as a result of awareness or previous events Derived: ABM F,G,O,U,Y 
139 Citizens involvement in flood related activities Sourced from local organisations F,G,O,P,Q 
140 Appropriate storage of hazardous materials (above flood water levels) Undefined U 
141 Raised accommodation Undetermined R,U 
142 Retrofitted buildings Undetermined R,U 
143 Electrical installation heights raised above flood level Undetermined U 
Ecosystem Services 
144 Protection afforded by natural habitats 9,13,17,26 Q,Y 
145 Percent land area that is wetland, swamp, marsh and mangrove (derived) 9,14,15,18,26,37, 67 D,Q 
146 Natural capital/habitats/ecosystem services (quantification, loss/gain) Derived: 17,11,30 H 
147 Presence of forests and range land 28,15,13 D,O,Q 
148 Afforestation and improvement of soil infiltration capacity Derived: 6,54 N,O 
149 Wetland diversity –proportion of flood attenuating wetlands per ward 9,10 D,R 
150 Natural flood buffers (% wetland) 13,17,34 F,R 
151 Vegetation condition (EO data for natural capital monitoring -loss/gain/condition) 13,17,34,38,54, 68,69,70 H,R,Z 
152 Vegetation density 13,17,34,38,54, 68,69,70 N,O,R,Z 
153 Human impacts –ecosystem destruction, mining 13,68,69,70 P 
154 Soils ability to regulate floods and nutrient recycling 6,9,15,39 E,N 
155 Waste assimilation capacity of ecosystems 9,11,30 N 
156 Natural habitats maintained for their flood resilience capacity 9,26 Y 
157 Preservation/conservation of wetlands and green spaces 9,26 D,M,O,Q,R 
Planning 
158 Land use planning: regulated appropriate land use, controls imposed Input from local authorities:1,67 N,O,R 
159 Incentivisation of development outside of risk zones  R 
160 Flood risk accounted for in urban planning  O 
161 Regulation/governance  O,P,S,Y,Z 
162 Embodying flood risk in building codes  O 
163 Level of implementation of building codes  O 
164 Institutional relationships clear and roles and responsibilities are established and not conflicting Undefined P 
165 Resettlement sites for impacted coastal populations (e.g. the Pathfinder Project, UK (DEFRA, 2012)) 1 K 
166 Moveable assets Undetermined: Local authority? Q 
Financial 
167 Availability of insurance 23 O,P,R,U,Y 
168 Funding for resilience measures (public/private) Local authorities: 1,10,11,82 Y  

Stage 4.2 Preparation & contingencies  
# Metric Available from Paper Ref. 
Monitoring/Warning systems 
169 Flood impact monitoring capacity Require Local input I,S,Y 
170 Early Warning Systems O,P,U,Y 
171 Availability of communication systems B,F,I,O,P,Q,W,Y, 

£ 
172 Support of enouncements (email, SMS) to targeted groups Undefined, input from local authorities/EA: 1,10 O 
173 Use of real time monitoring for hydraulic structures and urban drainage O,S 
174 Real time monitoring of river levels and flows and sea levels and conditions 10,19,30,55 O,R 
Infrastructure 
175 Solid waste removal and management Undefined, input from local authorities/EA: 1,10 O,Y,£ 
176 Management plans for roads susceptible to flood risk O,T 
177 Backup emergency power sources K,P,U,Y 
178 Alternative energy sources –i.e. solar panels Undetermined U,Y 
179 Backup infrastructure at risk Sourced from infrastructure suppliers/owners K 
180 Accessibility of roads and transportation network necessary for solid waste management Input from local authorities O 
Drainage 
181 Storm drainage capacity and condition (length of drainage in region) 1,63 C,I,O,R,Å 
182 Storm water retention tanks 1,63 O 
183 Availability of resources for assisted drainage of flooded areas 1,10,82 Y 

(continued on next page) 
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(continued ) 

184 Maintaining storm sewers 1,10,82 R 
Shelter/Housing 
185 Temporary Shelters/housing –availability/capacity Undefined, input from local authorities/EA: 1,10 B,F,O,P,T,Å,£ 
186 Number of shelters per km2 (including, hospitals, schools, municipal buildings, and places of 

worship) 
I,Q,Z 

Emergency Relief 
187 Emergency Services –locations, cover, backup, capacity Undefined, input from local authorities/EA: 1,10 P,Q,T 
188 Crisis management centres sited outside of risk zones O 
189 Additional resources in place supporting emergency and rescue services T 
190 Evacuation routes and plans B,F,M,O,Y 
191 Access to hospitals Derived: 28,20 D,P,T,Y 
192 Relief organisation –red cross etc. Obtained from survey of local organisation G,I,£ 
193 Availability of emergency vehicles and boats Undefined P,U 
194 Availability of emergency aid (food, water, medicine) Undefined, input from local authorities/EA: 1,10 G,O,P,T,U 
195 Flood emergency infrastructure Input from councils and infrastructure owners; 

82 
S,Y 

196 Established evacuation zones Undefined, input from local authorities/EA: 1,10 U 
197 Access to high axel vehicles Undefined U 
Societal 
198 Civil Society grouping Obtained from survey of local organisation G,P,Q,T,U,Y,£ 
199 Resident capacity Undetermined S 
200 Hazard event alert exercise/training for residents in vulnerable areas Undefined, input from local authorities/EA: 1,10 F,O,P,T 
201 Existence and implementation of risk management plans 1,10 I,O,R,Y 
202 Informal coordination of citizens activities within communities Obtained locally O 
203 Volunteer networks Obtained locally F,K,O 
Hazard Awareness 
204 Awareness of local population (recent flood events, media, education) Survey input, or derived through ABM or similar F,G,I,O,P,U,Y,£ 
205 Flood/erosion risk education and information 1,10,17,55 G,O,P,T,U,Y 
206 Existence and availability of flood hazard maps 1,10 O,P 
207 Flood water control and sanitation knowledge Undefined, require local input O,Y  

Stage 5 Impacts/consequence  

# Metric Available from Paper 
Ref. 

Environmental physical impacts 
208 Historic flood extents (taken from aerial imagery, EO data, water level gauges) 10,70 I 
209 Salinization of freshwater bodies and soils 10 J,P,Å 
210 Geomorphological change -records of beach/loss creation (change calculations) (derived from Lidar, EO data analysis, 

terrestrial laser scanning) 
2,6,10,13,14 P,Z 

211 Decadal loss of shoreline, permanent inundation areas (from change detection, EO derived products) 13,17,34,38 P 
212 Erosion/accretion rates (derived from aerial/EO images, transects, point clouds) 2,10,13 B,N,P,R 
213 Natural habitats, specie distribution and stocks 7,9,14,15,18,26,29,30 Y 
214 Soil fertility (change) 39 N,P 
215 Groundwater levels 55,63 J,L,V,Å 
General 
216 Extents of flooding and impacts (physical and human), as derived from flood specific geotagged social media data (text, 

images, videos), crowd sourced 
Derived, 61, 68,69,70,71,81 P 

217 Per capita damage Derived: 1,67,77 B,W 
218 Spatial distribution of hazard events and losses Derived, 61, 68,69,70,71 K 
219 Flood-related insurance claims 23,60,75,76,77 Q 
220 Financial impacts of flood/erosion damage on people, property, business, government from reports and statistics 10,61 I,R,Y 
Business 
221 Impact of events on tourism and production Derived: 21 T 
222 Impacts on arable and livestock farming 9,11,15,33 F,O,P 
223 Business and services disruption Derived: 3,21 P,Y 
People 
224 Flood and erosion event casualties 1 I,M,Y 
225 Health impacts from flood water contact and contamination –prevalence of post flood illness Derived: 1,10,21,22 Y 
226 Job losses related to past hazard events Derived: 1,3,19,21,30,36 I 
227 Recorded property crime and looting 50 Y 
Property 
228 Property level damage - revealed through EO data imagery an SAR, drones, social media, CCTV Derived: 1,10,61,68,69,70,71 B,M,R,Y 
229 Property claims 61,75,76,77 M 
230 Property repair costs Derived: 51 V,M 
Infrastructure 
231 Critical infrastructure damage 13,68,69,70,71 M 
232 Functioning of drainage systems and waste water removal 63 M,R,Y,Å 
233 Frequency of reported defence overtopping incidents 10 P 
234 Groundwater contamination in coastal aquifers –population affected 6,11,30 P 
235 Drowned technical infrastructure Derived: 

10,28,32,47,48,49,51,72 
K 

236 Flooded roads and rail (image analysis and derived from social media, flood extent maps) Derived: 13, 68,69,70 K,P,T,Å 
237 Non-functioning basic services –water, energy, blocked roads 1 K  

Stage 6 Recovery 
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# Metric Available from Paper 
Ref. 

238 Fraction of residents who were unable to occupy homes after a storm event Undefined, input from local authorities/EA: 
1,10 

M 
239 Evacuations orders issues in response to storm events M 
240 Evacuation order compliance rates M 
241 Early warning system functioning Undefined Y 
242 Past recovery times after events Input from local authorities I,Q,Y 
243 Time to restore housing to habitable T 
244 Utility restoration post event (% residents with potable water, wastewater and electricity services. M,T,Y 
245 Time roads out of action (Derived from EO data analytics, social media data, CCTV footage, crowd sourced 

data) 
Derived: 68,69,70,71,73,81 T 

246 Coastal land rehabilitation 10,67 P 
247 Industrial resupply potential Derived: 28,20,60 F 
248 Ability to financially recover/availability of reserve funds Undefined O 
249 Percent fire, police, emergency relief services and temporary shelters outside of hazard zones Derived: 1,10,28 D,K,Q,S 
250 Government offices outside of flood inundation zones 10,55,63,64,65 D 
251 Availability of temporary flood barriers Undefined, input from local authorities/EA: 

1,10 
G,V 

252 Regulations governing sustainable reconstruction O 
253 Population covered by recent hazard mitigation plans Q 
254 Identification of past response problems and challenges (social media) Derived: Social Media, 71, and local authorities O  

Appendix C 

Data sources 

Table 7 
Data sources relevant to a resilience assessment for the case study area of East Anglia. Data source numbers are cross referenced in the metrics listings in Appendix B. 
Details also provided indicating if sources are Open (O) or Proprietary (P).  

# Data Source URL Open (O)/ 
Priority (P) 

1 District Councils https://www.suffolk.gov.uk/council-and-democracy/open-data-suffolk/ 
https://www.norfolk.gov.uk/what-we-do-and-how-we-work/open-data-fois-and-data-protection 
/open-data/ 
https://data.gov.uk/ 

O 

2 CCO https://www.channelcoast.org/ O 
3 MET Office https://www.metoffice.gov.uk/datapoint O/P 
4 UKHO http://aws2.caris.com/ukho/mapViewer/map.action/ O 
5 BODC https://www.bodc.ac.uk/ O 
6 British Geological Survey https://www.bgs.ac.uk/data/home.html O/P 
7 CEFAS https://www.cefas.co.uk/cefas-data-hub/ O 
8 Historic England https://historicengland.org.uk/listing/the-list/data-downloads/ O 
9 Natural England http://naturalengland-defra.opendata.arcgis.com/ O 
10 Environment Agency http://apps.environment-agency.gov.uk/wiyby/151365.aspx O 
11 DEFRA https://environment.data.gov.uk/ O 
12 The Crown Estate https://www.thecrownestate.co.uk/en-gb/resources/maps-and-gis-data/ O 
13 Copernicus (ESA) https://www.copernicus.eu/en O 
14 MEDIN http://portal.oceannet.org/portal/start.php O 
15 MAGIC https://magic.defra.gov.uk/ O 
16 Intergovernmental Panel on Climate Change 

(IPCC) 
http://www.ipcc-data.org/ O 

17 Academia (e.g. iCOASST, RISC-KIT, FAST) https://www.channelcoast.org/iCOASST/pilotsites/ 
http://www.risckit.eu/np4/toolbox/https://fast.openearth.eu/ 

O 

18 EMODNET http://www.emodnet.eu/ O 
19 Data.Gov.UK (web portal) https://data.gov.uk/ O 
20 Department for Transport (DFT) UK and 

Highways England 
https://roadtraffic.dft.gov.uk/ 
http://tris.highwaysengland.co.uk/ 

O 

21 The Office for National Statistics https://www.ons.gov.uk/; https://www.nomisweb.co.uk/ O 
22 Datashine (University College London) http://datashine.org.uk/ O 
23 ABI https://www.abi.org.uk/data-and-resources/industry-data/ O/P 
24 UK OGA https://www.ogauthority.co.uk/data-centre/ O/P 
25 Land Registry http://landregistry.data.gov.uk/ O 
26 JNCC http://jncc.defra.gov.uk/opendata/ O 
27 NOAA NCEI https://www.ncei.noaa.gov/ O 
28 Ordnance Survey (OS) https://www.ordnancesurvey.co.uk/business-and-government/products/finder.html O/P 
29 MMO https://ckan.publishing.service.gov.uk/publisher/marine-management-organisation/ O 
30 Centre for Ecology and Hydrology https://www.ceh.ac.uk/data/ O 
31 The National Trust https://uk-nationaltrust.opendata.arcgis.com/ O 
32 National Grid https://www.nationalgridet.com/network-and-assets O 
33 European Environment Agency https://www.thecrownestate.co.uk/en-gb/resources/maps-and-gis-data/ O 
34 CEDA Archive http://data.ceda.ac.uk/ O 
35 Surge Watch https://www.surgewatch.org/ O 
36 National Tidal and Sea Level Facility https://www.ntslf.org/ O 
37 UK land cover atlas https://figshare.shef.ac.uk/articles/A_Land_Cover_Atlas_of_the_United_Kingdom_Maps_/5219956 O 

(continued on next page) 
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Table 7 (continued ) 

# Data Source URL Open (O)/ 
Priority (P) 

38 Tcarta (satellite derived products) https://www.tcarta.com/products-and-services/ P 
39 Cranfield University soil archive LandIS http://www.landis.org.uk/npd_insurance/ P 
40 Experian https://old.datahub.io/dataset/poverty-in-england-experian-data/ O 
41 Visit England https://www.visitbritain.org/official-statistics/ O 
42 UK Data service https://www.ukdataservice.ac.uk/ O 
43 Property Data https://propertydata.co.uk/ P 
44 Ofcom https://www.ofcom.org.uk/research-and-data/data/ O 
45 Renewable energy foundation https://www.ref.org.uk/generators/index.php O 
46 UK data explorer https://ukdataexplorer.com/renewables/ O 
47 GIE Gas infra Europe https://www.gie.eu/index.php/gie-publications/maps-data/bio-map/ O 
48 Infrastructure and projects authority https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/fi 

le/520086/2904569_nidp_deliveryplan.pdf 
O 

49 National infrastructure commission https://www.nic.org.uk/ O 
50 Police data UK https://data.police.uk/data/statistical-data/ O 
51 Middlesex Multi-Coloured Manual https://www.mdx.ac.uk/our-research/centres/flood-hazard/flood-hazard-research-centre-publicatio 

ns/ 
P 

52 Canal and River Trust http://data-canalrivertrust.opendata.arcgis.com/ O 
53 Marine Traffic https://www.marinetraffic.com/en/ais/home/centerx:-12.0/centery:25.0/zoom:4 O/P 
54 Bluesky https://www.blueskymapshop.com/products/national-tree-map/ P 
55 Check my flood risk https://www.checkmyfloodrisk.co.uk/ O 
56 GaugeMap https://www.gaugemap.co.uk/#!About O 
57 Weather Analytics https://www.weatheranalytics.com/industries/insurance/ P 
58 Weather Net https://www.weathernet.co.uk/ P 
59 Addresscloud https://www.addresscloud.com/ P 
60 OpenCorporates https://opencorporates.com/ O 
61 Perils https://www.perils.org/ P 
62 Oasis Hub https://oasishub.co/ O/P 
63 GeoSmart Information https://geosmartinfo.co.uk/reports/floodsmart/ P 
64 JBA https://www.jbarisk.com/flood-services/catastrophe-models/flood-models/ P 
65 Ambiental https://www.ambientalrisk.com/ P 
66 Core logic https://www.corelogicsolutions.co.uk/products/ P 
67 Verisk http://www.geoinformationgroup.co.uk/ukbuildings/ P 
68 Planet https://www.planet.com/ P 
69 Earthi https://earthi.space/ P 
70 Digital Globe https://www.digitalglobe.com/ P 
71 Social Media (mining) https://www.globalfloodmonitor.org/ O 
72 Inspire Geoportal http://inspire-geoportal.ec.europa.eu/ O 
73 NASA Worldview https://worldview.earthdata.nasa.gov/ O 
74 USGS Earth Explorer https://earthexplorer.usgs.gov/ O 
75 Crawfords https://www.crawco.com/services/data-and-analytics/ P 
76 Cunningham Lindsey https://www.cunninghamlindsey.com/global/ P 
77 LexisNexis https://risk.lexisnexis.co.uk/ P 
78 Outra https://outra.co.uk/property-data-solutions/ P 
79 City Population http://www.citypopulation.de/UK-EnglandUA.html O 
80 NHS England https://www.england.nhs.uk/statistics/ O 
81 University of Reading 

Flood Crowdsourcing and CCTV sites 
https://research.reading.ac.uk/dare/2017/02/20/crowdsourcing-and-cctv-sites/ O 

82 RFCC Decision Support Tool http://www.rfccobservatory.net/ O  
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