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Abstract: Physiological thermal limits of organisms are linked to their geographic distribution. The
assessment of such limits can provide valuable insights when monitoring for environmental thermal
alterations. Using the dynamic critical thermal method (CTM), we assessed the upper (CTmax) and
lower (CTmin) thermal limits of three freshwater macroinvertebrate taxa with restricted low elevation
distribution (20 m a.s.l.) and three taxa restricted to upper elevations (480 and 700 m a.s.l.) in
the Magellanic sub-Antarctic ecoregion of southern Chile. In general terms, macroinvertebrates
restricted to lower altitudinal ranges possess a broader thermal tolerance than those restricted to
higher elevations. Upper and lower thermal limits are significantly different between taxa throughout
the altitudinal gradient. Data presented here suggest that freshwater macroinvertebrates restricted to
upper altitudinal ranges may be useful indicators of thermal alteration in their habitats, due to their
relatively low tolerance to increasing temperatures and the ease with which behavioral responses can
be detected.

Keywords: critical thermal limits; ecophysiology; elevation; freshwater macroinvertebrates;
restricted distribution

1. Introduction

Understanding the mechanisms by which species distributions change along geographical
gradients has been a key tool in biogeography, ecology, and evolution [1], and in the development
of macroecological theories. Latitudinal and altitudinal gradients generally encompass several
environmentally associated variables and can be considered ecological and evolutionary equivalents
in terms of their influences on species adaptations [2]. The variations in and expression of species
physiological traits are a direct response to the environment [2,3]. The “climate variability hypothesis”
(CVH) predicts that more variable climates may select for organisms with broader thermal tolerances,
whereas less variable (stable) climates select for narrower thermal tolerances [4–8]. High latitude
environments are often characterized by broad thermal variation while low latitude or tropical
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environments have a narrow thermal regime. Organisms inhabiting high latitudes are therefore expected
to express broader physiological thermal tolerances, especially to withstand cold temperatures [9,10].
On the other hand, tropical species will show relatively narrow thermal tolerance ranges that are
appropriate to the local environmental thermal variation [8,10].

Janzen [6] considered the influence of elevation on physiological thermal ranges in an analogous
fashion. In tropical mountains, freshwater ecosystems have a narrow annual temperature range,
leading to species with narrow thermal tolerances. In contrast, in temperate mountains, seasonal
changes in temperature and variation across the elevation gradient should select for species that can
tolerate a wide range of temperatures [8]. This relationship has received attention lately [2,8,11–14].
Elevation gradients are also relevant in terms of changes in environmental conditions, such as air and
water temperature, oxygen availability, snow or ice cover, and the availability of different habitat types,
among other factors [15]. Water temperature has been one of the most studied abiotic factors, being a
relevant ecological driver in aquatic ecosystems [16], and influencing various aspects of the biology
of organisms [17]. Hence, an understanding of the thermal sensitivity of organisms provides a key
indicator to determine early changes in water temperature. Sensitive organisms can provide insight as
“sentinels” of environmental alterations [17].

Critical thermal limits can provide useful information on temperature influences on physiological
and ecological responses that impact organism survival and species distributions [18–20]. Dynamic
non-lethal experimental approaches involve increasing or decreasing the temperature at a constant
rate to a predefined non-lethal point. One of the most commonly used methods is the critical thermal
method (CTM), used to determine the critical thermal endpoint (CTE), expressed as the critical thermal
maximum (CTmax) or minimum (CTmin) [17]. These limits represent the endpoints of a performance
curve, expressed as the physiological response to a change in an environmental variable, in this
case, the temperature [20]. However, there are relevant studies of temperate and tropical freshwater
ectotherms [8,21–24] while sub-Antarctic regions have received very little attention [25].

The Magellanic sub-Antarctic ecoregion is located in southern South America between latitudes
40 and 60◦ S. It is considered an ideal natural laboratory to assess biotic responses to environmental
changes because its geographical setting allows for unpolluted water courses and bodies with
minimum confounding influences [26,27]. Additionally, the global land:ocean ratio at these latitudes
(2:98) generates a strongly oceanic-buffered climate at lower altitudes, but this effect rapidly decreases
with elevation, resulting in a steep thermal gradient with associated changes in landscape structure
and biotic turnover [27,28]. In the south of this ecoregion lies Navarino Island (55◦ S), whose coastal
mountain ranges demonstrate these steep gradients over short geographic ranges (~1000 m in altitude),
with clear changes in air and water temperatures and vegetation [27].

With this background, the main objectives of the current study were to (i) assess the CTmax
and CTmin of selected representative Magellanic sub-Antarctic freshwater macroinvertebrates whose
altitudinal distributions are restricted to specific elevation ranges, (ii) compare their thermal tolerance
ranges and habitat thermal breadths, and (iii) assess their behavioral responses to warming in
order to identify their sensitivity and suitability as sentinel organisms for monitoring environmental
thermal changes.

2. Materials and Methods

2.1. Area of Study

The Magellanic sub-Antarctic ecoregion, located in southern Chile, is characterized by watersheds
with acute environmental clines, diverse vegetation profiles, and a wide variety of habitats and
microhabitats over a short elevation [27,28]. This ecoregion is part of the South American forest biome,
harboring the largest forest and wetland areas of the Southern Hemisphere [26]. Embedded within
the ecoregion is the Cape Horn Biosphere Reserve (CHBR; Figure 1), an area designated to protect
the ecoregion from the pressures of global change [29]. Furthermore, this region contains some of the
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world’s cleanest rainwater, as it is located to the south of the typical tracks of industrial-polluted wind
currents [30–32]. Navarino Island lies in the southern part of this ecoregion. Freshwater invertebrates
(amphipods, diving beetles, midges, stoneflies, water boatmen, planarians) were collected from lagoons
located within the Róbalo River watershed, which provides domestic water supply to Puerto Williams,
the southernmost town in the world (Figure 1).
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Figure 1. Cape Horn Biosphere Reserve and collection sites on Navarino Island. Collection sites within
the Róbalo river watershed are expanded in the inset. CL, Castor Lagoon; ESL, el Salto Lagoon; BL,
Bandera Lagoon.

2.2. Site Description

At the coastline, the average air annual temperature is 5.7 ◦C, while above the tree line (~500–600
m a.s.l.) it is 0 ◦C [33]. The average annual temperature of one of the rivers within Navarino Island is
5.7 ◦C at 120 m a.s.l. and only 1 ◦C at 586 m a.s.l. [34]. The temperature decreases by approximately 1
◦C per 100 m of elevation increase, compared to the global average decrease of 0.6 ◦C per 100 m of
elevation [35].

2.3. Water Temperature

Temperature loggers (HOBO® model U22 Water Temp Pro Version 2) were installed at a 20 to 30
cm depth in the littoral areas of each lagoon (Castor, el Salto and Bandera, 20, 480 and 700 m. a.s.l.,
respectively, Figure 1) from which macroinvertebrates were collected over the entire study period
(from February 2015 to March 2016). These recorded the water temperature every 4 h. The monthly
and annual maximum, minimum, and mean temperatures were calculated from these data.

2.4. Collection of Study Organisms

Sampling was carried out in autumn 2015 and 2016 (March and April) to avoid immature stages
and allow the collection of identifiable adults, advanced larval stages, or both. Organisms inhabiting
medium and high elevation were collected in March because of accessibility to sampling sites while
a lower elevation site was surveyed in April, this difference being driven by. The main reason of
this sampling lapse is the accessibility to sites and prevalent harsh weather conditions. We followed
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key considerations for the selection of taxa: organisms collected from the same location (to avoid
variability due to the collection site), available in sufficient numbers (relatively abundant and ease
of collection), practicability of identification, and suitability for accurately measuring the point of
thermal reactivity (PTR) and thermal critical end point (CTE). The PTR is defined as the point at which
an organism exhibits signs of thermal stress (i.e., obvious change in body movement, swimming, or
crawling capability) while, at the CTE, locomotor functions and activity becomes disorganized to
the extent that the organism loses the ability to escape from the conditions, leading to death [17,36].
This last step was achieved through an initial test to observe and identify the PTR and the CTE. We
selected six macroinvertebrate taxa inhabiting lagoons from the watershed, three restricted to low
elevation (20 m a.s.l.), one to a medium elevation lagoon (480 m a.s.l.), and two to high elevation
(700 m a.s.l.) (Table 1). The invertebrates were collected with a D-frame net (150 µm mesh), in
addition to hand collection with soft forceps to avoid injury to the organisms. Collected specimens
were transferred to a cool box containing site water and transported to the laboratory where they
were held in aquaria with an air pump. Before experiments, invertebrates were kept at 5 ± 1 ◦C
(approximate water temperature at collection site) for 24 h. No mortality was recorded during this
24 h period undercontrol conditions, suggesting all collected invertebrates were ‘healthy’ and would
have continued to survive this control phase for the duration of the CTmin and CTmax experiments,
which lasted a maximum of 6 h. Temperature was also recorded in situ with a multimeter sensor
(Conductivity pH TDS Hanna Tester HI98130). After completion of the experiments, the invertebrates
were returned to their collection locations.

Table 1. Number of individuals per tested taxon and their collection sites within the Róbalo river
watershed on Navarino Island, southern Chile. CL = Castor Lagoon, ESL = el Salto Lagoon, BL =

Bandera Lagoon.

Macroinvertebrate Taxa Taxon Elevation Range n CTmax n
CTmin Site Lat/Long Elevation

(m a.s.l.)

Lancetes angusticollis
(Dytiscidae)

Broad (from 20 m to 380
m a.s.l.) 24 18 CL 54◦56′19′′

S/67◦38′15′′ W 20

Sigara sp. (Corixidae) Narrow (only near sea
level) 24 18 CL 54◦56′19′′

S/67◦38′15′′ W 20

Hyalella sp. (Hyalellidae)
Family with broad range,
morpho-species narrow

range.
24 18 CL 54◦56′19′′

S/67◦38′15′′ W 20

Dugesiidae (Tricladida) Narrow (only found at
medium elevation) 18 14 ESL 54◦59′26′′

S/67◦40′56′′ W 480

Aubertoperla kuscheli
(Gripopterygidae)

Narrow (only found at
high elevation) 16 16 BL 54◦58′26′′

S/67◦38′41′′ W 700

Tanypodinae
(Chironomidae)

Family with broad range,
morpho-species narrow

range.
16 16 BL 54◦58′26′′

S/67◦38′41′′ W 700

2.5. Critical Thermal Limits

For CTmax assessment, invertebrates were placed in an experimental chamber (15 × 10 × 7 cm)
and submerged in a thermoregulated digital water bath (Lab. Companion RW-0525G, Figure 2). Two
to six individuals of each taxon were assessed per trial (n = 3–4 per taxa), all in the same chamber. An
air pump was placed in each experimental chamber to maintain the oxygen saturation above 65%
during trials, due to its relevance for thermal tolerance [37]. The first 60 min in the chamber was
a control phase, with water at the temperature of the place of collection (5 ◦C). Subsequently, the
temperature was increased at a constant rate (0.14 ◦C min−1) through the experimental phase. The
rate of increase aimed to be rapid enough to avoid acclimatization but slow enough to ensure that
any reaction observed was a response to the rise in temperature. The reaction of the organisms was
evaluated by observing their behavioral responses [36]. Observation of each individual’s reaction
took between 30 s to 1 min (i.e., detection of antennal movement, gill, leg, or body movement). When
an individual exhibited signs of reaching its CTE (e.g., loss of swimming capacity), the temperature
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was recorded and it was removed from the experimental chamber and returned to the aquarium at
the starting temperature. Only individuals that recovered from the experiment were included in
the results (recovery time for CTmax trials was 1 h). When 50% (CT50) of the individuals showed
a response, the trial was terminated [37]. Recovery was assessed by placing each individual in an
oxygenated aquarium.
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Figure 2. Conceptual scheme of the critical thermal limits determination in the present study.

In a similar procedure, the CTmin assessment was carried out in experimental chambers submerged
in the thermoregulated digital water bath, with an air pump (Figure 2). Each trial had a control
phase of 60 min, then a lapse of 15 to 20 min of a temperature decrease (1 ◦C per trial), and 60
min of exposure to the experimental temperature. Organisms exposed to cooling had a 24 h time
frame for recovery. The invertebrates were initially exposed to the collection site temperature, which
was subsequently lowered to 0 ◦C at a constant rate (0.03 ◦C min−1). When 0 ◦C was reached, the
temperature was held for 1 h, and then lowered to −1 ◦C (0.03 ◦C min−1). Once this target temperature
was reached, it was held for 1 h. Ice formation in the chamber was recorded at −1 ◦C, but the chamber
was never frozen completely. After the experiment, individuals were placed in Petri dishes with
water at 5 ◦C (collection site temperature), and allowed to recover for 24 h. The recovered organisms
were then placed in the experimental chamber, where the temperature was reduced by 1 ◦C from
the previous test temperature. Only individuals that recovered and exhibited normal locomotive
functions (antennal, gill, leg, or body movement) were included in the analyses. When 50% (CT50) of
the individuals failed to recover, the experiment was terminated. Both experiments were monitored
using a 4-channel HOBO® data logging thermocouple (UX120-014M) attached to the thermoregulated
bath. Experimental procedures were performed under Bioethics resolution n◦ 80/CEC/2018 from the
University of Magallanes Bioethics committee.

2.6. Assessment of Suitability and Thermal Sensitivity Ranks

Suitability ranks (SRs) and the thermal sensitivity ranks (TSRs) were assigned to each of the taxa
to compare their behavioral responses to increasing temperature. Both ranks are an adaptation of the
method proposed by Dallas and Rivers-Moore (2012). The suitability rank for each taxon was evaluated
using the following scale: 1 = very adequate, 2 = adequate with limitations, and 3 = inadequate.
Suitability is based on the ease with which the behavioral responses of PTR and CTE are identified,
size and age of organisms, and availability in nature. The rank of thermal sensitivity was based on the
average of the maximum critical thermal maximum of each taxon, where 1 = very sensitive (≤25 ◦C), 2
= moderately sensitive (≤30 ◦C), and 3 = not very sensitive (≥30 ◦C).
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2.7. Statistical Analyses

The data were tested for normality (Shapiro–Wilk’s test), and homogeneity of variances
(Hartley´s Fmax ratio). As the data were not normally distributed, a Kruskal–Wallis rank analysis for
unbalanced designs was performed. When statistical significance was obtained, further non-parametric
comparisons were made using the Wilcoxon method adjusted for multiple comparisons with Holm
correction. Regression analyses with linear fit were used to examine the relationship between CTmax,
CTmin, and thermal breath with elevation. The significance level was set at α = 0.05. Analyses were
performed using R version 3.6.1. (R Development Core Team 2019).

3. Results

3.1. Water Temperature Variability

Using the data retrieved from the loggers, monthly temperature profiles were created for each
collection site. At CL (20 m. a.s.l.), the average maximum temperature was recorded in December
2015 (20.6 ◦C) and the minimum in July 2015 (0.1 ◦C) while the lagoon surface remained frozen from
mid-May to mid-August (Figure 3). At ESL (480 m. a.s.l.), the average maximum temperature was
registered in February 2015 (14.2 ◦C) while the minimum temperature was recorded (0.4 ◦C) in July
of the same year (Figure 3). The high Andean lagoon, BL (700 m. a.s.l.), remained frozen for seven
months, and the minimum and maximum temperatures were both recorded in February of 2016 (−1.6
and 14.7 ◦C, respectively).
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Figure 3. Monthly mean temperatures (±SD) retrieved from loggers installed in lagoons at different
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indicate the time of collection at each elevation.

3.2. Critical Thermal Maxima and Minima of Macroinvertebrates Restricted to Low Elevation

All macroinvertebrate taxa generally showed a relatively wide thermal tolerance range (Figure 4),
with CTmax being broader than the lagoon temperature range. All species had some tolerance of
sub-zero temperatures. The resulting thermal range for the dytiscid Lancetes angusticollis was 41.7 ◦C,
between 37.6 (CTmax) and −4.1 ◦C (CTmin), the widest tolerance range of amongst the studied taxa.
The water boatman Sigara thermal range was 38.6 ◦C (34.7 to −3.9 ◦C). Hyalellid amphipods (Hyalella
sp.) had a range of 35.8 ◦C (32.4 to −3.4 ◦C) (Table 2). All organisms (including those that did not
recover from experimental exposure) survived sub-zero temperatures and freezing conditions during
the experiment.
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Table 2. CTmax, CTmin, and thermal breadth values of the studied macroinvertebrate taxa, (±SD).
Values are given in ◦C.

Macroinvertebrate Taxa Mean CTmax Mean CTmin Mean Thermal Breadth

Sigara sp. (Corixidae) 34.7 (±1.05) −3.9 (±0.87) 38.6 (±1.24)
Lancetes angusticollis (Dytiscidae) 37.6 (±1.17) −4.1 (±0.90) 41.7 (±1.52)

Hyalella sp. (Hyalellidae) 32.4 (±1.91) −3.4 (±0.78) 35.9 (±2.59)
Dugesiidae (Tricladida) 24.5 (±0.71) −4.4 (±0.63) 28.9 (±1.07)

Aubertoperla kuscheli (Gripopterygidae) 29.4 (±1.15) −2.6 (±0.81) 32.1 (±1.29)
Tanypodinae (Chironomidae) 22.6 (±1.54) −2.6 (±1.02) 25.3 (±1.69)

3.3. Critical Thermal Maxima and Minima of Macroinvertebrates Restricted to High Elevation

High-elevation-restricted macroinvertebrate taxa showed narrower thermal ranges compared to
those from low elevation. The thermal tolerance range was 28.9 ◦C for dugesiid planarians, 32.0 ◦C
for the stonefly Aubertoperla kuscheli, and 25.2 ◦C for tanypodinae midge larvae. The latter had the
narrowest thermal range of the studied taxa (Figure 4, Table 2).

The results of the Kruskal–Wallis analyses and linear regression fit showed significant differences
in the CTmax of the studied taxa (H = 114.09, p < 0.00001, R2 = 0.6917), indicating a marked decrease
associated with an elevation increase. Differences were also found in taxa CTmin (H = 56.272, p <

0.0043, R2 = 0.3257, Table 3), particularly between higher elevation taxa (at 700 m. a.s.l. the stonefly A.
kuscheli and the tanypodine midge) with the other four taxa (at 20 and 480 m. a.s.l.) (Figure 5a), yet not
detected by the Wilcoxon test adjusted with Holm correction (Supplementary Materials). Thermal
range differences were also detected between taxa restricted to low and high elevation (H = 92.736, p <

0.0001, R2 = 0.7337, Figure 5b, Table 3). In some cases, the thermal range was twice the temperature
range experienced in the environment (Figure 6).

3.4. Behavioral Responses, Suitability, and Thermal Sensitivity Ranks

Behavioral responses to the increased temperature varied slightly among the studied taxa. In
general, responses included “normal” mobility in the early stages (i.e., swimming, crawling), followed
by an abrupt increase in mobility (PTR) and then increasing immobility influencing swimming ability
when approaching the final stages of the experiment (CTE). Detailed information on behavioral
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responses (PTR, CTE, SR, and TSR) is given in Table 4. Macroinvertebrates restricted to high elevation
had a narrower thermal tolerance range, so they were assigned to the suitable and thermally sensitive
category (Table 4).

Table 3. Details of Kruskal–Wallis analyses (α = 0.05) for CTmax, CTmin, and thermal ranges of the six
studied macroinvertebrate taxa from the Róbalo watershed lagoons, Navarino Island, southern Chile.
The Wilcoxon non-parametric post hoc comparison adjusted with Holm correction is presented in the
Supplementary Materials.

Total Treatments H p

CTmax 20 114.09 <0.00001
CTmin 17 56.272 0.0043

Thermal Breadth 5 92.736 <0.00001
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Table 4. Behavioral responses to water temperature increase (point of thermal reactivity, PTR, and critical thermal endpoint, CTE) of sub-Antarctic macroinvertebrate
taxa. Suitability ranks SR: 1 = very suitable, 2 = suitable with limitations, and 3 = not suitable, and thermal sensitivity rank TSR: 1 = very sensitive (≤25 ◦C), 2 =

moderately sensitive (≤30 ◦C), and 3 = less sensitive (≥30 ◦C) (adapted from Dallas and Rivers-Moore 2012).

Macroinvertebrate Taxa Behavioral Response SR TSR

Amphipoda: Hyalellidae Hyalella sp.

Before temperature increase, individuals swam intermittently in the experimental chambers, moving from bottom
to top, and vice-versa. The PTR was apparent as a substantial decrease in swimming speed. The CTE was identified
when individuals remained at the bottom of the chamber and stopped swimming. The only detectable movement

was then from the antennae and hind legs.

2 3

Coleptera: Dytiscidae Lancetes
angusticollis

Before temperature increase, individuals swam intermittently in the experimental chambers, moving from bottom
to top, and vice-versa. The PTR was apparent as a substantial increase in movement, constantly grabbing air

bubbles with difficulty in maintaining them. The CTE was identified as inactivity at the bottom of the chamber, or
floating near the surface.

3 3

Hemiptera: Corixidae Sigara sp.

Before temperature increase, individuals swam intermittently in the experimental chambers, moving from bottom
to top, and vice-versa. The PTR was apparent when individuals started to accelerate their movement. The CTE was
reached when individuals sank to the bottom of the chamber, or floated at the top with no detectable movement

other than the palas (anterior legs).

3 3

Rhabditophora: Tricladida Dugesiidae
Before temperature increase, individuals crawled on the bottom of the chamber. The PTR was apparent when

individuals start to agitate their bodies sideways. When the CTE was reached, individuals started to expose their
digestive structures outside their bodies and remained almost immobile at the bottom of the chamber.

2 1

Plecoptera: Gripopterygidae Aubertoperla
kuscheli

Before temperature increase, individuals crawled on the bottom of the chamber, started moving their legs and cerci.
As the PTR was reached individuals lost their grip and start swimming slowly. The CTE was identified when

individuals lost grip and swimming capacity, floating at the top of the chamber and remaining immobile with the
exception of antennal movement.

2 2

Diptera: Chironomidae Tanypodinae
Before temperature increase, individuals crawled on the bottom of the experimental chamber. The PTR was

apparent when individuals started to move and shake at the bottom of the chamber. When they reached the CTE,
individuals lost the ability to remain attached to the bottom and floated virtually motionless.

1 1
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4. Discussion

The critical thermal method is an effective tool to assess the relative thermal tolerance of freshwater
macroinvertebrates. This method also offers the possibility of monitoring behavioral responses,
which, in turn, are useful to identify potential bioindicators of thermal alterations [17]. The results
obtained here showed significant differences between the critical thermal limits (CTmax and CTmin) of
different macroinvertebrate taxa inhabiting the same watershed at different elevations. In particular,
the CTmax decreased for upper elevation macroinvertebrate taxa when compared to those from lower
elevations. While CTmin did not show large variation, it was significantly lower for higher elevation
macroinvertebrates (Figures 4 and 5, Tables 2 and 3). Despite the current study lacking closely related
invertebrate taxa to compare across the gradient, we identified a consistent underlying pattern of
broader thermal tolerance limits in taxa from more variable environments. These results are consistent
with other studies [8], and also with Janzen´s climate variability hypotheses predictions [6], more
variable climates may select for organisms with broader thermal tolerances, whereas less variable
climates select for narrower thermal tolerances [4]. Nonetheless, comparison among families or genera
with phylogenetic or physiological affinities, acclimation effects, intensity, and duration of thermal
stress, and robust analyses are necessary to improve our understanding on thermal ecology [21].

Midges (Chironomidae: Tanypodinae) had the lowest thermal tolerance range and also the lowest
thermal limits while the diving beetle Lancetes angusticollis had the broadest thermal tolerance (Figures 4
and 5, Tables 2 and 3). This species, along with the other two taxa inhabiting low elevation lagoons,
can be observed throughout the year, even when ice is present. Additionally, the broader thermal
breadth of the studied taxa when compared to the environmental temperature range suggests that, in
some cases, these organisms are able to tolerate temperatures well above the maxima recorded for
their habitats. These relatively high tolerances might be an adaptation to the annual environmental
conditions (long periods of ice cover and sunlight in winter, and warm exposure with an increased
photoperiod in summer). In particular, we found that the stonefly Aubertoperla kuscheli had a thermal
range of 32.1 ◦C, which is double the thermal range of Bandera Lagoon (700 m a.s.l.). It is also notable
that this is the only stonefly present in lagoons in the Róbalo watershed [28].

During the experimental observations, we recorded that stoneflies and planarians respond with
stirred movements to ice formation into the chamber, probably because of ice-relationinjuries. These
behavioral responses to cold in organisms restricted to high elevations, in addition to their common
habitat structure (mosses and submerged vegetation), suggests that they attempt to avoid contact with
ice rather than tolerating it. Suren [38] and Suren and Winterbourn [39] noted the role of bryophytes as
a refuge and nursery for freshwater macroinvertebrates in habitats subject to harsh environmental
conditions. Aquatic and/or semi-submerged bryophytes can provide shelter for the development of
immature stages, protection against predators, and may themselves be a food source [39].

The critical limits identified, in addition to the behavioral responses, suggest that temperature may
act as a distribution barrier. However, other factors that can be of biotic (e.g., predation, exclusion by
competition, etc.) or abiotic origin (e.g., dissolved oxygen, resource availability, etc.), might confound
these observations. Studies focused on assessing the long-term thermal regimes in addition to other
abiotic variables are necessary to understand how variation in these factors, and their combined effects,
influences the biology of freshwater fauna [19]. Shah et al. [8] compared the thermal ranges and
tolerances of tropical and temperate aquatic insects, both at latitudinal and altitudinal scales. The
CTmax of aquatic insects from temperate regions (Rocky Mountains) were similar to those measured
in the sub-Antarctic invertebrates assessed in the present work.

There is a considerable literature on methodological protocols and sources of variation in the
determination of critical thermal limits [19,40]. The main sources of variation are acclimation and the
rate of temperature change. Recording collection site water temperature is helpful to avoid distortion
in thermal limit assessments [17]. The effect of different acclimation temperatures on thermal limits has
been addressed in South African amphipods [17,41], different families of Coleoptera [19], and also in
sub-Antarctic spiders [25]. Different rates of temperature change can increase or decrease the measured



Insects 2020, 11, 102 11 of 13

upper and lower thermal limits during experiments, as shown for Tenebrio molitor (Tenebrionidae) and
Cyrtobagous salviniae (Curculionidae) [19]. A further source of variation is the size/age of the organisms
examined, but with more complex outcomes, with positive [42], negative [43], or no effects [36] being
reported. In the current study, the potential for this source of error was minimized by collecting only
adult or late juvenile stage individuals for each test.

5. Conclusions

Several considerations should be taken into account when addressing physiological tolerances,
including the use of control and acclimation trials, exposure intensity and duration, etc. in an attempt
to provide stronger evidence that the observed effects are due to treatments. The predictions of the
CVH [6] are consistent with our data, but a robust test of this hypothesis will require further study
and analyses. Comparisons between families or genera, further trials, and different treatments are
needed in order to improve support for the CVH predictions. Additionally, the potential sources of
variation in the thermal ecology studies must be considered, including a temporal dimension and the
methodological context on which limits are estimated and then extrapolated into natural settings [21].
New questions arise regarding the determination of thermal limits: Do tolerance ranges of a species
inhabiting different watersheds differ? How influential are the thermal regimes of other aquatic
systems (including streams)? How sensitive are high elevation organisms to longer periods of exposure
to thermal alteration? Addressing such questions will be required to give insight into how this remote
southern biota will respond under future global environmental change scenarios.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4450/11/2/102/s1.
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