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Groundwater residence time is a fundamental property of groundwater to understand important
hydrogeological issues, such as deriving sustainable abstraction volumes, or, the evolution of ground-
water quality. The anthropogenic trace gases chlorofluorocarbons (CFC-11, CFC-12 and CFC-113) and
sulphur hexafluoride (SF6) are ideal in this regard because they have been released globally at known
rates and become dissolved in groundwater following Henry’s Law, integrating over large spatial (global)
and temporal (decades) scales. The CFCs and SF6 are able to date groundwater up to w100 years old with
the caveat of certain simplifying assumptions. However, the inversion of environmental tracer concen-
trations (CFCs and SF6) to derive groundwater age rests on the accurate determination of groundwater
recharge parameters, namely temperature, elevation, salinity and excess air, in addition to resolving the
potential for contamination, degradation and unsaturated zone effects. This review explores the fun-
damentals of CFC-11, CFC-12, CFC-113 and SF6 as environmental tracers of groundwater age and rec-
ommends complementary techniques throughout. Once this relatively simple and inexpensive technique
has been used to determine initial concentrations at the recharge zone, setting the groundwater dating
‘clock’ to zero, this review then explores the meaning of groundwater ‘age’ in relation to measured
environmental tracer concentrations. It is shown that the CFCs and SF6 may be applied to a wide-range of
hydrogeological problems and suggests that environmental tracers are particularly powerful tools when
integrated with numerical flow and transport models.

� 2019, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Water, unlike other commodities, has no substitute, is essential
to virtually every aspect of the human endeavour and is recognised
as a universal basic human right (United Nations Committee on
Economic, Social and Cultural Rights, 2003). Groundwater, vastly
exceeds all other freshwater resources on the planet (Shilomanov
and Rodda, 2003), supplying billions of people with their primary
source of drinking water (Morris et al., 2003) and potentially over
half of the world’s irrigation water (Siebert et al., 2010). In times of
drought, this ‘invisible asset’ forms a strategic reserve in rural,
semi-arid and arid regions where groundwater is often the only
source of freshwater (Famiglietti, 2014). The availability of ‘good
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quality’ groundwater, both directly and indirectly, ensures global
energy, water and food security (Dalin et al., 2017), in addition to
the health of many ecosystems (Alley et al., 2002).

Recent hydrological modelling (Wada et al., 2014) and satellite-
based estimates (Rodell et al., 2009; Famiglietti, 2014) have
revealed alarming rates of groundwater depletion worldwide.
Increasing groundwater pumping rates for irrigation is causing
water tables to fall dramatically across large areas of northern
China, India, Pakistan, Iran, the Middle East, Mexico and the
western United States (Rodell et al., 2009; Wada et al., 2014), pri-
marily due to increasing global population and embedded food
consumption (Dalin et al., 2017). As much as 11 percent of the
world’s food is now produced by pumping non-renewable
groundwater, meeting today’s food needs with tomorrow’s water
(Postel, 2010). Groundwater pumping in excess of the natural
recharge rate raises serious questions about the long-term sus-
tainability of global food production (Wada et al., 2012), whilst
ction and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-
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leading to environmental issues such as land subsidence and
seawater intrusion. Indeed, human-induced aquifer depletion and
contamination is now widespread in both the developing and
developed world (Konikow and Kendy, 2005; Rodell et al., 2009;
Famiglietti, 2014; Wada et al., 2014).

The sustainable supply of ‘good quality’ groundwater is a crucial
socioeconomic challenge of our time, particularly as global popu-
lation, industrialisation and agricultural intensification are pro-
jected to increase (Gleeson et al., 2012). Yet, the sustainable supply
of groundwater is difficult to quantify due to the wide range of
mean groundwater ages (residence times), which for an individual
aquifer may range from <10 years to > 1,000,000 years (McMahon
et al., 2011; Holland et al., 2013). Groundwater age, whichwe define
more formally in section 3, is a measure of the ‘recharge year’ or
recharge rate of a groundwater resource (Cook and Solomon, 1997).
This property of groundwater may be used to assess the volume of
water that can be sustainably abstracted, to constrain timescales of
water-rock interaction processes, or, to assess the vulnerability and
response of a groundwater resource to contaminant release or
climate change.

There is clearly the need for a straightforward and simple to use
technique which can quantify timescales of groundwater recharge,
flow and transport processes. In doing so, it will also be possible to
better manage (use, value and protect) this vital resource and un-
derstand the processes controlling the distribution of contaminants
in space and time. This paper reviews the use and value of specific
environmental tracers for obtaining such measures of groundwater
residence time.
Figure 1. The variation in concentrations of the CFCs and SF6 over time in groundwater
at equilibrium with the Northern Hemispheric atmosphere assuming a temperature of
10 �C (typical of the UK). Note the difference in axial scale between the CFCs (pmol/L)
and SF6 (fmol/L). Based on data from the U.S. Geological Survey (http://water.usgs.gov/
lab/software/air_curve/). The solid red line indicates a non-unique groundwater age
obtained from a single measurement of CFC-11. This issue may be overcome by
measuring several tracers simultaneously (illustrated by the dashed red line for an
example recharge year of 2005).
1.1. Why environmental tracers?

Hydrogeological investigations typically proceed from a hy-
draulic perspective. In hydraulic-based numerical models of non-
fractured systems, hydraulic conductivities and hydraulic gradi-
ents are generally combinedwith Darcy’s Law to estimate advective
flow velocities and transport rates. Because the hydraulic conduc-
tivity of the subsurface is highly variable (Schwartz and Zhang,
2003) and the recharge rate is often estimated as a fitting param-
eter to hydraulic-based models (Cook and Solomon, 1997), model
predictions (flow velocities and transport rates) may be subject to a
high-degree of uncertainty (Zuber et al., 2011). A far more direct
approach is the observation of mass transport through measuring
tracers (Cook and Solomon, 1997).

A tracer in hydrogeology is any substance in groundwater, or,
property of the water molecule that can be measured and used to
infer environmental processes (Cook and Herczeg, 2012). The at-
mospheric trace gases CCl3F (CFC-11), CCl2F2 (CFC-12), C2Cl3F3
(CFC-113) and SF6 (sulphur hexafluoride) are ideal in this regard
because they are widespread across the surface of the earth, have
been released at known rates overmany decades, become dissolved
in groundwater according to Henry’s Law and typically behave
conservatively. Hence, they provide information on processes that
occur over large spatial and temporal scales (on the order of de-
cades). The CFCs and SF6 have been applied as tracers of ground-
water age (Cook and Solomon, 1997; Darling et al., 2012), to trace
water or contaminant sources (Darling et al., 2010), to trace
chemical reactions such as sulphate reduction or denitrification
(Visser et al., 2009), to develop conceptual models of groundwater
flow and resolve mixing processes (Gooddy et al., 2006), and to
calibrate numerical flow and transport models (Reilly et al., 1994;
Szabo et al., 1996; Portniaguine and Solomon, 1998; Zuber et al.,
2005; Ginn et al., 2009; Leray et al., 2012; Massoudieh et al.,
2014). The efficacy and wide range of applications of the CFCs
and SF6 as environmental tracers is indisputable.
1.2. Review outline

This review focuses on the tracing and age dating of ‘modern’
groundwater (<100 years old) components using CFC-11, CFC-12,
CFC-113 and SF6. Such techniques are vital because modern
groundwater is the most abundant and easily-accessible part of the
active hydrologic cycle, being approximately three times larger
than fresh surface water (Gleeson et al., 2016). Yet, modern
groundwater is the most vulnerable to industrial/agricultural
contamination, land-use changes (Alley et al., 2002) and the
adverse effect of climate change (Taylor et al., 2013).

In section 2, we discuss the sampling method and the various
factors for consideration to determine atmospheric equilibrium
concentrations of the CFCs and SF6. This is to set the groundwater
dating ‘clock’ at the recharge zone to determine age. In section 3,
we define groundwater age and discuss the underlying assump-
tions and limitations of groundwater age dating based on the CFCs
and SF6 tracer techniques. In section 4, we discuss the combination
of independent hydraulic and tracer based techniques in numerical
modelling studies to improve the quantification of flow and
transport systems. In section 5, we discuss the potential for linking
groundwater age to hydrochemistry. Finally, in section 6, the au-
thors own conclusions are discussed with regards to the CFCs and
SF6 as tracers of groundwater age. Recommendations for comple-
mentary techniques are made throughout.
2. Theory

The production of CFC-12 and CFC-113 began in the early 1940s
and was quickly followed by CFC-11 in the 1950s and SF6 in the
1950s. CFC-11 and CFC-12 were mainly used for refrigeration and
air-conditioning, whereas CFC-113 was mainly used by the elec-
tronics industry in the manufacture of semiconductor chips
(Jackson et al., 1992) and SF6 was mainly used for its electrical and
thermal insulation properties. Inevitably, these gases leaked into
the wider environment and became well-mixed in the atmosphere
(Plummer et al., 2006). The concentrations of the CFCs rose until
the 1990s when restrictions were imposed on the CFCs to protect
the ozone layer as a result of the Montreal Protocol. The concen-
tration of SF6 (a potent greenhouse gas) has risen monotonically
since the early 1960s and is still rising (Fig. 1).

http://water.usgs.gov/lab/software/air_curve/
http://water.usgs.gov/lab/software/air_curve/
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2.1. Sampling and analysis

An advantage of the CFCs and SF6 tracer techniques is the speed,
relatively low cost and ease of sampling and analysis, especially
when compared to radio-isotope techniques, such as 3H/3He which
requires weeks to months for counting or ingrowth (Clarke et al.,
1976). The sample collection is done by the USGS single bottle
method (Plummer et al., 2006). The sampling requires no specialist
equipment or expertise where a ‘diffusion barrier’ is created during
sampling to avoid re-equilibration with the atmosphere (Plummer
et al., 2006; Darling et al., 2012). The equipment should also be
checked to avoid contamination from pumps and tubing (Dunkle
et al., 1993; Cook and Solomon, 1995). This is best done by
obtaining an ‘old’ (>100 years old) groundwater sample in which
the anthropogenic trace gases are below detection limit (Darling
et al., 2012). The CFCs and SF6 are measured by gas chromatog-
raphywith an electron-capture-detector (GC-ECD) following ‘purge
and trap’ cryogenic pre-concentration (Warner and Weiss, 1985;
Busenberg and Plummer, 2000). The detection limit for CFCs in
water is 0.01 pmol/L and for SF6 is 0.1 fmol/L (Gooddy et al., 2006).
The CFCs and SF6 are calibrated to bulk air standards collected from
an atmospheric monitoring station, preferably from the AGAGE
network (http://agage.mit.edu/).
2.2. Setting the ‘clock’

The input function for the CFCs and SF6 is determined by their
atmospheric concentration as a function of time. The atmospheric
trace gases CFC-11, CFC-12, CFC-113 and SF6 are well-mixed and
become dissolved in groundwater following their Henry’s Law
solubilities (Warner and Weiss, 1985; Bu and Warner, 1995;
Busenberg and Plummer, 2000). The concentrations of CFC-11,
CFC-12, CFC-113 and SF6 in groundwater at equilibrium with the
Northern Hemispheric atmosphere are shown in Fig. 1, assuming a
temperature of 10 �C and one atmosphere (sea level). It should also
be noted that there is a slight time lag in Southern Hemispheric
concentrations relative to the Northern Hemisphere by 1e2 years
(Plummer et al., 2006).

In theory, it is possible to simply match the measured concen-
trations of the CFCs and SF6 in a sample to a particular recharge year
in Fig.1 to determine groundwater age. This assumes nomixing and
equilibrium with the atmosphere. Hence, groundwater age simply
refers to the time elapsed since last contact with the atmosphere, or
since rainfall. However, a groundwater sample is rarely a single
recharge year due to in-aquifer mixing (diffusion and dispersion),
Figure 2. The concentration of CFC-12 and SF6 in equilibrium with Northern Hemispheric a
CFC-12 and SF6.
large well-screen length leading to the sampling of different flow
paths (Weissmann et al., 2002), and mixing within the well-bore
during sampling. The issue of mixing for environmental tracer
and groundwater ‘age’ interpretation is discussed in Section 3.
2.3. Additional considerations for setting the ‘clock’

2.3.1. The unsaturated zone
The unsaturated zone may present certain issues for the inter-

pretation of dissolved CFCs and SF6 because dissolved gases may be
transported by both the aqueous and gaseous phases. If recharge
occurs from surface waters, or, the unsaturated zone is relatively
thin, the composition of the unsaturated zone atmosphere maps
back to the atmosphere (Cook and Solomon, 1995). However, issues
may arise due to diffusive transport of the CFCs and SF6 through
thick unsaturated zones. This ‘time lag’ will be a function of the
individual tracer diffusion coefficient and solubility in water, in
addition to the moisture content of the unsaturated zone (Weeks
et al., 1982; Cook and Solomon, 1995). However, diffusion co-
efficients in the gaseous phase are typically several orders of
magnitude higher than the aqueous phase (Cook and Solomon,
1995). Therefore, in most practical situations, the effect of the un-
saturated zone on equilibrium concentrations is negligible
(Plummer et al., 2006).

2.3.2. Recharge temperature
The solubilities of gases are a function of temperature, pressure

and salinity (Henry’s Law). As temperature increases the solubility
decreases, leading to lower concentrations, or vice versa. Typically,
pressure and salinity are well constrained (Kipfer et al., 2002) and
recharge temperature must be accurately resolved (Fig. 2). In some
instances the recharge temperature may simply be estimated from
the shallow groundwater temperature (Plummer et al., 2006).
However, the recharge temperature is most precisely determined
from measurements of other dissolved gases, such as nitrogen and
argon (Heaton and Vogel, 1981), or the noble gases (Mazor, 1972;
Andrews and Lee, 1979; Aeschbach-Hertig et al., 2000; Peeters
et al., 2003). The accurate reconstruction of the recharge temper-
ature is extremely important for palaeo-climate studies (Stute et al.,
1995; Aeschbach-Hertig et al., 2000) and there are least-squares
fitting computer routines which facilitate the automated calcula-
tion of this parameter (Peeters et al., 2003). However, in modern
(<55 years) groundwater dating studies, the determination of the
recharge temperature is usually a trivial issue. An uncertainty in the
recharge temperature of �2 �C typically leads to a an age
tmosphere at sea level as a function of temperature. Note difference in axial scales for

http://agage.mit.edu/
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uncertainty of <3 years for groundwater samples obtained prior to
1990 (Plummer et al., 2006). Non-unique groundwater ages may
arise in post-1990 groundwater dating studies. This is due to the
post-1990 reduction in atmospheric CFC concentrations as a result
of the Montreal Protocol. This problem may be overcome by
measuring several tracers simultaneously (e.g., CFC-11, CFC-12 and
SF6) to obtain a unique age (a simple case is illustrated in Fig. 1).
This of course assumes no groundwater mixing occurs (see section
3).

2.3.3. Excess air and degassing
The forced dissolution of microscopic air bubbles during

recharge results in a temperature-independent excess of dissolved
gases. The formation of ‘excess air’ (Heaton and Vogel, 1981) re-
mains incompletely understood (Aeschbach-Hertig and Solomon,
2013), but is mainly due to seasonal water table fluctuations
(Ingram et al., 2007; Aeschbach-Hertig et al., 2008), in addition to
the nature of matrix porosity and fracturing (Darling et al., 2012).
There is typically a few cm3/L of excess air in groundwater sampled
from sedimentary aquifers (Beyerle et al., 1999; Gooddy et al., 2006).
However, excess air may vary considerably and must be carefully
considered, particularly for the sparingly soluble gases used in
groundwater dating (e.g., SF6 or 3He). The excess air parameter is
best estimated from the measurements other dissolved gases (e.g.,
the noble gases) as discussed above. The correction factors for CFC-
12 and SF6 are shown in Fig. 3. The relative insolubility of SF6
compared to the CFCs means that excess air must be accurately
resolved to establish equilibrium concentrations.

However, concentrations of gases below that predicted by the
solubility equilibrium relationship (Henry’s Law) are becoming
increasingly common (Brennwald et al., 2005; Fortuin and
Willemsen, 2005; Jones et al., 2014), particularly in groundwater
Figure 3. Graph showing correction factors for Exce
dating studies (Klump et al., 2006; Visser et al., 2007; Van Geen
et al., 2013). This is primarily due to organic matter metabolism
resulting in subsurface biogenic gas production post-recharge, e.g.
the formation of CH4 in anoxic groundwater (Fortuin and
Willemsen, 2005), or the denitrification of N2 gas beneath agri-
cultural areas (Visser et al., 2007, 2009). This ‘degassing’ produces a
gas phase below the groundwater table which causes dissolved
gases to repartition between a mobile aqueous phase and a gas
phase (Fry et al., 1995; Visser et al., 2007). This is particularly
problematic for the sparingly soluble anthropogenic gases (i.e., SF6)
which may be completely stripped from solution (below detection)
following recharge. Again, complementary techniques are required,
because the degassing phenomenon is easily resolvable when
measurements of the noble gases are available (Kipfer et al., 2002;
Visser et al., 2007).

2.3.4. Atmospheric pressure and salinity
Atmospheric pressure decreases exponentially with

increasing altitude, decreasing the partial pressures of atmo-
spheric gases, reducing equilibrium concentrations in water
(including the CFCs and SF6). In most practical situations some
knowledge of the recharge elevation is known. Conversely,
temperature typically decreases with increasing altitude with an
average ‘lapse rate’ of 6.5 �C (ICAO, 1964), increasing the solu-
bility of atmospheric gases in water (although local factors must
be taken into consideration). Therefore, the altitude and tem-
perature corrections tend to cancel out, rather than reinforce one
another (see Darling et al., 2012).

A high electrical conductivity of 1000 mS/cmmay be expected in
arid/semi-arid regions, or, in chemically evolved groundwater. This
equates to a salinity value of <1 parts per thousand by weight, &
(Wüest et al., 1996), which results in a correction of <1% for
ss Air (EA) as a function recharge temperature.
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dissolved CFCs and SF6 concentrations (Warner and Weiss, 1985;
Busenberg and Plummer, 2000). Crucially, of interest is the
salinity at the time of infiltration, which is typically close to zero.
Hence, corrections for salinity are not typically required in
groundwater dating studies (Kipfer et al., 2002; Plummer et al.,
2006).

2.3.5. Additional contamination from anthropogenic and terrigenic
sources

The CFCs are susceptible to contamination in urban/peri-urban
environments, particularly in aquifers where rapid flow may
occur through fractured horizons (Morris et al., 2006a, b). The CFCs
may reach concentrations in excess of atmospheric equilibrium
concentrations due to inputs from industrial activities and leaking
landfills (Darling et al., 2012). Contamination may arise from at-
mospheric (Oster et al., 1996), or from subsurface (Darling et al.,
2010) sources. Because atmospheric equilibrium concentrations of
the CFCs are so low (pmol/L), only minor contamination is required
to render the CFCs somewhat meaningless in terms of tracers of
groundwater age. Taking a simple case, one-tenth of the CFC-12
present in a refrigerator of older design could theoretically
contaminate a moderately sized aquifer to more than 10 times
current atmospheric equilibrium concentrations (Morris et al.,
2006a). At a simplistic level, such contamination may be used as
a tracer of modern groundwater inputs.

Sulphur hexafluoride is far less susceptible to contamination,
although concentrations in excess of atmospheric equilibrium have
been found in areas of high-voltage electricity supply equipment,
Mg and Al smelting and landfills (Fulda and Kinzelbach, 2000;
Santella et al., 2008). However, anomalously high concentrations
due to terrigenic production are a far greater concern for SF6.
Elevated concentrations have been found in sedimentary aquifers
(von Rohden et al., 2010) and in aquifers containing fluorite or
metallic sulphide mineralisation (Harnisch and Eisenhauer, 1998;
Koh et al., 2007).

2.3.6. Microbial breakdown
The CFCs may be subject to microbial degradation under anoxic

conditions where CFC-11 is typically degraded more rapidly than
CFC-12, as has been reported in a number of studies (Khalil and
Rasmussen, 1989; Oster et al., 1996; Hinsby et al., 2007;
Horneman et al., 2008). Reduction effects may be revealed by
measuring the field parameters dissolved oxygen (DO) and oxida-
tion/reduction potential (ORP) during sampling, or, by differences
in tracer ages established from concentrations of CFC-11, CFC-12,
CFC-113 and SF6 (section 3). Under highly reducing conditions the
CFCs may be degraded to concentrations that are below detection.
Therefore, it is extremely important to be aware of redox conditions
during sampling for the CFCs. However, a detectable concentration
of dissolved oxygen during sampling does not preclude reduction
effects. This is because of the potential for changes in redox con-
ditions along the groundwater flow path, or, the mixing of different
flow paths containing different dissolved O2 concentrations during
sampling.

2.3.7. Other factors for consideration
The potential for sorption of the CFCs is minimal and generally

only tends to affect aquifers with a matrix that is high in organic
carbon content (Plummer et al., 2006). Sorption tends to effect CFC-
12 to CFC-11 to CFC-113 in increasing order of magnitude when
sorption does occur (Ciccioli et al., 1980). There is also limited ev-
idence for thermal effects where CFC-12 has been preferentially
removed from solution. This limited evidence was established from
groundwater issuing from two small springs in Belgium and the UK
(Darling et al., 2012).
2.4. Theory summary

The CFCs and SF6, like all hydrological tracers, have advantages
and disadvantages. Sampling and analysis, in addition to the cor-
rections for temperature, pressure and salinity are relatively simple
and straightforward. These corrections are made to determine at-
mospheric equilibrium concentrations at the time of groundwater
recharge to set the dating ‘clock’ to zero. There are several non-
correctable factors which require careful consideration, such as
contamination of the CFCs (typically anthropogenic in origin) and
SF6 (typically terrigenic in origin), in addition to the degradation of
the CFCs under reducing conditions (typically revealed by field
parameters DO and ORP). However, contamination may be useful
for ‘fingerprinting’ water sources. Ultimately, the quality of the
atmospheric equilibrium ‘signal’ for the purpose of groundwater
age datingwill depend on the accuracy of the above corrections and
the extent to which contamination, degradation, thermal and
sorption effects change concentrations during transport. In the
authors experience, it is possible to quantify the above parameters
with a high degree of certainty. In doing so, it is possible to deter-
mine the efficacy and application of the CFCs and SF6 as tracers of
groundwater age.

3. Groundwater age

The definition of groundwater age is complicated and covered
by many authors (Ma1oszewski and Zuber, 1982; Clark and Fritz,
1997; Kazemi et al., 2006; Bethke and Johnson, 2008; Suckow,
2014). There are many terms in the literature which in some way
attempt to describe groundwater ‘age’ and this review does not
attempt a complete review of all the definitions, and the sometimes
minor differences in the meaning of age. Instead, a disambiguation
of the terms is presented by discussing three basic concepts of
groundwater age as follows (Suckow, 2014): (i) a simple definition
that assumes no mixing, (ii) a more complicated definition that
treats groundwater as a population of individual ages and assumes
knowledge of aquifer geometry and mixing of different ages, and
(iii) a definition with unit time that assumes no knowledge of the
geometry or mixing of different ages.

3.1. Definitions

3.1.1. Tracer age
Groundwater age cannot be measured directly and is inferred

from environmental tracers, or, from simulations in hydro-
geological models (Suckow, 2014; Turnadge and Smerdon, 2014). In
this instance groundwater age is estimated from measured con-
centrations of anthropogenic trace gases. Hence, the measured
groundwater age is actually a tracer age and only if the tracer
exactly follows the process in question (e.g., advective transport,
mixing or a chemical reaction) can the tracer considered an ideal
tracer (Suckow, 2014). The CFCs and SF6 could be described as ideal
tracers of mass transport if they behave exactly as the water
molecule. However, the applied tracers may be transported slightly
differently to the water molecule (e.g., due to concentration gra-
dients or diffusion), or subject to degradation. Therefore, it is
important to explicitly state here that groundwater ages deter-
mined from tracer concentrations are in fact tracer ages.

3.1.2. Idealised age (assume no mixing)
Here we define: “the (highly) idealised groundwater age is the

time difference that a water parcel needs to travel from the
groundwater surface to the position where the sample is taken”
(Torgersen et al., 2013). This definition is advantageous for
groundwater dating methods based on dissolved gases (e.g.,
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3H/3He, CFCs and SF6) because this is a measure of time since water
was last in contact with the atmosphere. Hence, the groundwater
dating ‘clock’ starts when groundwater is no longer in contact with
the atmosphere. The age (residence time) of groundwater is then
determined by simply matching a particular recharge year in Fig. 1
to the measured concentration in a sample. This assumes an
infinitesimal small particle (or parcel) of groundwater and flow as if
along a tubular flow line, with no mixing between the moment of
recharge and the moment of sampling. This is also known as the
‘piston flow’ model of groundwater flow (Ma1oszewski and Zuber,
1982).

3.1.3. Groundwater age distributions
Groundwater mixing occurs in-aquifer (diffusion and disper-

sion), due to large well-screens sampling different flow lines, and
within thewell-bore during sampling. In most practical situations a
sample is obtained from a discharge point where flow lines
converge (e.g., springs or pumped wells). Therefore, the idealised
definition of groundwater age (section 3.1.2) exposes a simple
problem, because it is now generally accepted that a sample
equivalent to a point in space in a flow field will comprise a pop-
ulation of individual ages (Suckow, 2014; Turnadge and Smerdon,
2014), even if samples are obtained from discrete sampling
depths, < 1 m (Weissmann et al., 2002).

3.1.4. Lumped parameter models
In the early years of isotope hydrology techniques were devel-

oped to bridge the gap between age as a scalar value (infinitesimal
small particle) and the concept of real-world samples as a mixture
of different ages. These simple lumped parameter models (LPMs)
treat the aquifer as a ‘black box’ and do not require any physical
Figure 4. The application of lumped parameter models to link the concept of groundwater a
Fig. 4a shows the variation in concentration of SF6 over time in groundwater at equilibrium
relative contribution of each groundwater age (as shown in Fig. 4c) as function of the SF6 con
described by a weighting function gðt� t’Þ, which is in effect an age distribution. All the inpu
the convolution integral. Adapted from Suckow (2014).
knowledge of the system prior to interpretation (Ma1oszewski and
Zuber, 1982). These models combine the concept of residence time
as a distribution with a measurable tracer concentration according
to a convolution integral (Fig. 4). The measured concentration as a
function of time, CoutðtÞ is given as:

CoutðtÞ ¼
Zt

�N

Cin
�
t’
�
$g
�
t � t’

�
$e�lðt�t’Þdt’ ðpmol=L or fmol=LÞ

(1)

where, Cinðt’Þ is the input concentration of the applied tracer as
function of time and ðt � t’Þ is the time difference between the
input time t’ and the time of sampling t’. As shown in Fig. 4, the
convolution integral attributes a weight function gðt � t’Þ
describing what percentage each individual age contributes to the
whole mean. Hence, age is incorporated using convolution, sum-
ming up all concentrations as a function of time in an aquifer vol-
ume (Fig. 4). The e�lðt�t’Þ term accounts for radioactive decay if
required (Ma1oszewski and Zuber, 1982). The above mathematical
formalism is equivalent to the concept of idealised age defined
above, but instead assumes a population of idealised ages. This
approach attempts to describe all the properties of the system us-
ing only a few parameters, hence the term ‘lumped parameter
models’. The LPMs may be adapted to measured concentrations by
varying the weighting function to minimise the difference between
model output and measured tracer concentrations (e.g., least
squares fitting).

This modelling approach is dominated by the specification of
theweight function gðt � t’Þ as shown in Fig. 4, defining the relative
contribution for each age in the convolution integral. There are
ge as a distribution (blue line is the mean residence time) to a measured concentration.
with the Northern Hemispheric atmosphere (as shown in Fig. 1). Fig. 4b shows the

centration over time. The lumped parameter models assume that the age distribution is
t concentrations of the applied tracer are summed up as a function of time according to
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various LPMs with different weighting functions. For example, the
piston flow model uses a Dirac delta distribution whereas the
exponential model uses an exponential distribution (Ma1oszewski
and Zuber, 1982). The LPM approach highlights the importance of
the shape of the age distribution. A simple case is considered in
Fig. 4, illustrating a groundwater sample obtained in 2017 with a
SF6 concentration of 0.93 fmol/L (Fig. 4b). This fictitious sample has
a log-normal distribution with a mean residence time and piston
flow age of 20 years (recharge year 1990). If constant nitrate input
entered a watershed during the last 15 years and behaved conser-
vatively, the outflow of the piston flow model will not contain any
nitrate. Whereas the outflow of the log-normal distribution will
contain >30% of groundwater that is < 15 years old (Fig. 4b).
Therefore, it is also important to state the assumptions of the
applied dating method, since it is the shape of the age distribution
that will determine the ‘breakthrough’ of a contaminant (Fogg et al.,
1999; Weissmann et al., 2002; Suckow, 2014; Turnadge and
Smerdon, 2014).

The CFCs and SF6 have significantly different input functions as
function of time (Fig. 1). Therefore, a basic way of resolving mixing
processes is to plot CFC-12 versus SF6 (Fig. 5). The piston flowmodel
of age results in a ‘bow shape’ plot owing to the different input
functions for the tracers. The other extreme of groundwater flow is
the binary mixing models which assumes the mixing of old (>100
years) tracer free groundwater with modern groundwater
recharged in 2017 (Fig. 5). The binarymixingmodel may be adapted
to any particular recharge year. The exponential mixing and
exponential piston flow models proposed by Ma1oszewski and
Zuber (1982) assume an exponential distribution for the weight-
ing function as discussed above. Hence, due to the exponential
nature of groundwater mixing it may be possible to date ground-
water up to 100 years old using CFC-12 and SF6, provided certain
simplifying assumptions are fulfilled (e.g., steady state conditions
and simple aquifer geometry). Therefore, through measuring two
tracers simultaneously it may be possible to reveal distributions of
groundwater age and resolve mixing processes without any prior
knowledge of the physical properties of the aquifer system (Gooddy
et al., 2006). An exponential distribution of age and a mean resi-
dence time of 20 years is shown in Fig. 5 (red markers, sampled in
Figure 5. Example plot of CFC-12 versus SF6 showing the piston flow model, the
exponential piston flow model and the exponential mixing model with ages shown.
The binary mixing model shows the mixing of tracer free water with recharge in 2017
expressed as a percentage. Plotted using USGS Tracer Model (https://water.usgs.gov/
lab/software/tracer_model/).
2017). However, these LPMs assume steady-state conditions and
relatively simple aquifer geometry (Ma1oszewski and Zuber, 1982;
Cook and Herczeg, 2012).

3.1.5. Apparent age
Although not the focus of this review, the 3H/3He and 14C

groundwater dating techniques require a mathematical formula.
Age in this instance is referred to as the ‘3H/3He apparent age’ or the
‘conventional radiocarbon age’ respectively (Suckow, 2014). As
discussed, in practical situations samples are obtained from a
pumped well (large well-screen) or a spring where flow lines
converge. The mixing of groundwater ages contributes to the
calculated 3H/3He and 14C age in an unknown way and mean resi-
dence time is meaningless because the age distribution is a priori
unknown. Therefore, a new term is required and apparent tracer age
is the most useful description found in the literature (Suckow,
2014). The term ‘apparent’ is applied because the age represents
an unknown average of idealised ages (infinitesimal small
particles).

The 3H/3He and 14C have different formulas. The 3H/3He age
involves radioactive decay and simultaneous measurement of the
parent (3H) and daughter (3He) isotopes:

s ¼ 1
l
$ln

�
1þ

3Hetrit
3H

�
ðyearsÞ (2)

whereas, the 14C age involves an initial concentration (C0) and
radioactive decay:

s ¼ 1
l
ln
�

C0
CðtÞ

�
ðyearsÞ (3)

The decay constant (l) is 12.32 years for 3H (Lucas and
Unterweger, 2000) and 5730 years for 14C (Kalin, 2000). Hence,
these techniques integrate over vastly different age ranges andmay
lead to different apparent ages, even when applied on the same
sample (Bethke and Johnson, 2008; McCallum et al., 2014, 2015).
This is due to the nature of hydraulic conductivity variance (het-
erogeneity) which may lead to wide distributions of groundwater
age and conflicting age estimates (McCallum et al., 2015). Again, the
shape of the age distribution requires careful consideration when
interpreting tracer data.

3.1.6. Groundwater age summary
As has been demonstrated, the inversion of tracer concentra-

tions to derive groundwater ‘age’ or mean residence time has to be
transformed to ‘apparent age’ or ‘modelled age’ due to the fact that
‘age’ is always linked to a mathematical model. The highly idealised
age assumes no mixing and an infinitesimal small particle, which
does not exist. Thus, simple lumped parameter models were
developed to present amore accurate description of reality, treating
groundwater as a population of idealised ages, comprising various
distributions of age (e.g., Dirac delta and exponential distributions).
However, the LPM approach is unsuitable in transient flow fields
(e.g., large scale anthropogenic stresses) and in practical situations
the age distribution is a priori unknown. Further, the inversion of
tracer concentrations to derive age distributions is a non-unique
process, even when several tracers are measured simultaneously
(McCallum et al., 2014, 2015). Yet, it is this parameter that is of most
value when guiding water resource management (Fogg et al., 1999;
Weissmann et al., 2002; Turnadge and Smerdon, 2014). A potential
complementary technique is the use of hydrological models to
simulate age distributions and tracer concentrations directly.

https://water.usgs.gov/lab/software/tracer_model/
https://water.usgs.gov/lab/software/tracer_model/
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4. Hydrological models

Hydrological models are traditionally developed based on li-
thology and hydrologic data (e.g., water levels, recharge area and
precipitation rates) to estimate groundwater recharge, flow,
contaminant transport, and more recently, groundwater age. In
practice, the recharge rate is often estimated from meteorological
data and knowledge of the geology is incomplete. Accordingly,
assumptions must be made about the subsurface, such as relative
homogeneity. Model properties such as hydraulic heads, hydraulic
conductivities, storage and porosity are measured, or, estimated
from literature values. Groundwater models, of non-fractured
aquifers, then typically solve Darcy’s Law in three-dimensions to
simulate flow velocities. The advection-dispersion equation is
generally combined with simulated flow velocities to estimate so-
lute transport rates, and more recently, statistical descriptions of
groundwater age (Turnadge and Smerdon, 2014). However, the
hydraulic conductivity of earth materials is highly variable, there-
fore model predictions (flow velocities and transport rates) may be
subject to a high-degree of uncertainty (Zuber et al., 2011).

Age information, such as tracers of age (e.g., CFCs and SF6),
provide one means by which hydrological modellers can reduce
uncertainty and refine understanding of subsurface flow systems.
Hydraulic heads traditionally form the primary calibration targets
in hydrological models. The inclusion of tracer concentrations as
secondary calibration targets then facilitates the exploration of
alternative calibration methods, towards more refined and realistic
models with reduced uncertainty (Reilly et al., 1994; Szabo et al.,
1996; Portniaguine and Solomon, 1998; Castro and Goblet, 2005;
Zuber et al., 2005; Ginn et al., 2009; Leray et al., 2012;
Massoudieh et al., 2014). The combination of hydraulic and tracer
methods in the calibration process creates a linkage between in-
dependent measurements, providing a feedback that improves
quantification of the flow and transport system. A numerical
approach also circumvents the need for groundwater ‘age’ alto-
gether through focussing on measured concentrations as calibra-
tion targets directly, rather than age (Suckow, 2014; Turnadge and
Smerdon, 2014). Numerical approaches can also evaluate scenarios
of changing hydraulic stresses (transient flow conditions).

5. Hydrochemistry

The hydrochemistry of groundwater is influenced by climate,
the source of recharge, lithology, aquifer confinement, and the
residence time of groundwater in the subsurface (Freeze and
Cherry, 1979; Hiscock, 2009). As residence time increases the
dissolution of the aquifer matrix occurs, leading to an increase of
certain compounds (depending on lithology), particularly the six
major ions (Naþ, Ca2þ, Mg2þ, Cle, HCO3

� and SO4
2�). In addition,

biological oxidation occurs, leading to an increase in oxygen-rich
compounds such as nitrate and iron oxide (Hiscock, 2009). With
a combination of appropriate age tracers, it may be possible to
constrain reaction times in the subsurface and obtain hydro-
chemical information (Böhlke and Denver, 1995).

However, in the literature to date, no definitive relationship
between groundwater age and hydrochemistry has been estab-
lished. Indeed, the use of age tracer data to infer hydrochemical
processes remains highly controversial in certain research areas,
such as the release of arsenic to porewater (Charlet and Polya,
2006). This is because in reality natural processes are highly com-
plex, for example due to themixing flow lines and transient kinetics
induced by heterogeneity or seasonal climate (e.g., monsoon cycle).
Further, the relationship between groundwater age/mean resi-
dence time and hydrochemistry may not be related to a single
process, such as dry/wet deposition, biogeochemical cycling and
cation exchange (Plummer et al., 1990), and may vary from system
to system due to individual aquifer idiosyncrasies. The age-
hydrochemistry relationship may also be influenced by human
activities, such as land-use changes, fertilisation and increased
groundwater pumping rates for irrigation (Harvey et al., 2006;
Klump et al., 2006; McArthur et al., 2010). Despite these compli-
cations, groundwater age clearly plays an essential role in deter-
mining contamination risk from the surface and age tracer
techniques can help delineate wellhead protection areas (Molson
and Frind, 2012). At a fundamental level, the development of a
robust conceptual model is needed prior to investigation before age
tracer data can be reliably used tomake estimates of hydrochemical
reactions and contamination risk.

The application of tracers under all hydrochemical conditions
remains challenging due to the requirement for tracer specific
expertise (Cook and Herczeg, 2012). When we consider the very
low solubility tracers (e.g., 3He and SF6) and the correctionmethods
required to obtain age information (e.g., noble gases), it becomes
clear that a high level of expertise is required for each tracer. The
tracers themselves may also be subject to chemical reactions (e.g.,
microbial degradation) and may not be able to provide quantitative
information on groundwater age. In addition, the applied tracers
can only typically provide information on part of the potential age
distribution, for example the CFCs and SF6 cover the age range<100
years, whereas the age range from 50 to 1000 years remains chal-
lenging to date (Cook and Herczeg, 2012). Consequently, con-
straining reaction times and contamination risk on timescales of 50
to 1000 years also remains challenging.

As a side note, age tracer data may be used to assess steady-state
flow conditions, which can indirectly aid in the interpretation of
hydrochemical data. For example, if groundwater age changes as a
function of time at an observation location due to changing flow
conditions, then clearly the hydrochemistry will also be in
transient-state. Further, decreasing groundwater age could be an
indicator of land-use intensification, for example increased
groundwater pumping rates leading to a decrease in groundwater
age at depth (Klump et al., 2006; Stute et al., 2007; McArthur et al.,
2010).

6. Conclusion

This review has explored the application of the CFCs and SF6 as
quantitative tracers of groundwater ‘age’. Due to differing input
functions, applicability and limitations related to current ‘modern’
groundwater dating techniques (<55 years), a combination of
dating tools is recommended for more robust age interpretation. In
this regard, the highly complementary CFCs and SF6 dating tech-
niques are recommended. In principle, resolving recharge tem-
perature, pressure, salinity, excess air and degassing is relatively
simple and straightforward, particularly when using the highly
complementary noble gases. In doing so, the groundwater dating
‘clock’ is set to zero at the recharge zone. The simultaneous mea-
surement of CFC-11, CFC-12 and SF6 can also identify the various
non-correctable factors (e.g., degradation, contamination and
sorption) to determine the efficacy of the CFCs and SF6 as tracers of
groundwater age.

The term ‘age’ in relation to groundwater is complicated,
therefore three basic concepts of groundwater agewere defined; (i)
idealised age, (ii) age as a distribution and (iii) apparent age
(Suckow, 2014). Simple ‘lumped parameter models’ (LPMs) incor-
porate the concept of idealised age (infinitesimal small particle)
and age as a distribution (mean residence time). The LPM approach
is extremely useful in data poor environments because the envi-
ronmental tracers (CFCs and SF6) integrate over large temporal
(decades) and spatial (global) scales. As a simple first-pass analysis,
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LPMs can resolve mixing processes whilst encouraging the inves-
tigator to interpret groundwater ‘age’ not as a scalar value, but
rather as a distribution of ages. This is extremely important for
water resource management and understanding the spatial and
temporal trends of contaminants (Weissmann et al., 2002).
Accordingly, it is also encouraged that the underlying assumptions
of age calculations are explicitly stated when discussing ground-
water age. These concepts are of particular value when communi-
cating and collaborating with adjacent sciences.

The rapid advancement of numerical modelling techniques over
recent decades now means that flow models can be calibrated to
independent hydraulic and tracer measurements. This is typically
achieved by simulating theoretical distributions of groundwater
age (solution of the advection-dispersion equation). This parameter
is a priori unknown in hydrogeological investigations, yet of most
value from a resource management perspective. It is also possible
to investigate the potential biases of fluid dating techniques
through simulating age distributions, such as those discussed in
this review. Hence, simulating distributions of age can offer sig-
nificant improvement in conceptual understanding, particularly
when communicating to a non-technical audience (Turnadge and
Smerdon, 2014). It is suggested that this approach should be
adopted where possible. However, such an approach is typically
prohibitively expensive and limited to a few real-world cases due to
the complexities of linking simulated age distributions tomeasured
tracer concentrations.

A key scientific challenge faced by hydrogeologists is the
quantification of recharge rates, flow rates and velocities like dis-
tance velocity or Darcy velocity, in addition to dispersivity and
storativity in complex three-dimensional geologic and potentially
transient conditions. This is in order to manage groundwater re-
sources at the scale of interest (Larocque et al., 2009). The direct
observation of mass transport through measuring the tracers dis-
cussed in this review can directly contribute quantification of these
parameters and is the topic of a future publication.
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