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 16 

ABSTRACT  17 

Pressurised meltwater enhances the ability of glacier to detach and transport large blocks of 18 

sediment /bedrock by minimising friction occurring along structural surfaces. However, a 19 

detailed understanding of these processes has yet to be established. This study focuses on 20 

micro-scale structures developed within décollements in two thrust-block moraines of Late 21 

Weichselian age in Melasveit, western Iceland. The aim is to investigate how detachments 22 

form in glaciotectonised sequences and how large sediment blocks/rafts can be dislocated 23 

and transported by glaciers. A model is proposed which argues that the introduction of 24 

pressurised water into weak beds (silt/sand) played a key role in the detachment and 25 

movement of the thrust-blocks. The deformation associated with their transport was 26 

focused within thin, water-lubricated zones allowing the unlithified and unfrozen sediment 27 

blocks to move without undergoing extensive internal disruption. The style of deformation 28 

changed temporally and spatially during the transport reflecting fluctuating water pressures 29 

within the detachments. Repeated events of hydrofracturing and water-escape caused the 30 

thrust-stack to drain, resulting in the progressive locking up of the detachments and 31 

eventual accretion of the thrust blocks. The model may be applicable to other similar thrust-32 

block complexes as well as for processes occurring during glaciotectonic sediment rafting. 33 

 34 

INTRODUCTION 35 

Pressurised meltwater beneath glaciers and ice sheets is believed to have major effect on 36 

ice sheet dynamics as well as deformation and sedimentary processes (e.g. Boulton et al., 37 
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1974; Boulton and Caban, 1995; Hiemstra and van der Meer, 1997; Rijsdijk et al., 1999; van 38 

der Meer et al., 2009; Phillips and Auton, 2000; Boulton et al., 2001; Khatwa and Tulaczyk, 39 

2001; Baroni and Fasano, 2006; Phillips et al., 2007; Sole et al., 2011; Moon et al., 2014). 40 

Increased porewater pressures can cause accelerated flow (basal sliding) due to decoupling 41 

between the ice and its bed, as well as enhanced sediment remobilisation and deformation 42 

due to reduced sediment shear strength (e.g. Piotrowski and Tulaczyk, 1999; Boulton et al., 43 

2001; Fischer and Clarke, 2001; Phillips et al., 2013a; Phillips et al., 2018; Evans, 2018). 44 

Deformation influenced by elevated water pressures can either result in the pervasive 45 

weakening of the sediment pile, or be focused along discreet, water-lubricated detachments 46 

(Alley, 1989; Fischer and Clarke, 2001; Kjær et al., 2006; Phillips and Merritt, 2008). The 47 

development of such low-friction detachments/décollements is thought to have a 48 

considerable effect on the style and magnitude of glaciotectonics facilitating the transport 49 

of large thrust-blocks of sediment and/or bedrock (Phillips and Merritt, 2008; Burke et al., 50 

2009; Vaughan-Hirsch et al., 2013; Aber and Ber, 2007; Andreassen et al., 2007; Rüther et 51 

al., 2013) leading to the construction of large thrust-block or composite moraines (Croot, 52 

1987; Bennett, 2001; Pedersen, 2005; Aber and Ber 2007; Benediktsson et al., 2008; 53 

Vaughan-Hirsch and Phillips, 2017; Phillips et al., 2017; Sigfúsdóttir et al., 2018).  54 

It has been argued that the presence of a well-developed permafrost layer in front of the 55 

advancing glacier above the detachments can aid in the construction of large thrust-block 56 

moraines as it allows stress to be transmitted far into the forefield of the advancing glacier 57 

margin (Aber et al., 1989; Evans and England, 1991; Boulton and Caban, 1995; Boulton et al., 58 

1999; Bennett, 2001; Burke et al., 2008) or the base of the frozen layer acts as a focus for 59 

detachment above which deformation occurs (Burke et al., 2008; Benediktsson et al., 2015). 60 
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Furthermore, it has been argued that the freezing of sediments and/or bedrock to the base 61 

of the glacier is important for transportation of detached, largely intact thrust-blocks (or 62 

rafts/megablocks) (Banham, 1975; Aber, 1988; Clayton and Moran, 1974; Bluemle and 63 

Clayton, 1984; Ruszczynska-Szenajch, 1987). However, it has increasingly been shown that 64 

overpressurised water within the substratum can cause the detachment and emplacement 65 

of large, unconsolidated thrust-blocks without the ground being frozen (Moran et al., 1980; 66 

van der Wateren, 1985; Broster and Seaman, 1991; Aber and Ber, 2007; Benn and Evans, 67 

2010; Benediktsson et al., 2008; Phillips and Merritt, 2008; Vaugh-Hirsch and Phillips, 2017; 68 

Phillips et al., 2017). Such sediment blocks can be transported over long distances; for 69 

example, thrust-bound rafts of glaciomarine sediments in Clava, Scotland, were shown to 70 

have been transported subglacially at least 50 km from their origin aided by the fluid flow 71 

along the décollement surfaces (Phillips and Merritt, 2008). 72 

However, a detailed understanding of the processes occurring along the major detachments 73 

formed during glaciotectonism has yet to be established. This paper addresses this lack of 74 

understanding and presents the results of a detailed micro-and macroscale investigation of 75 

the detachments developed within two glaciotectonic complexes in Melasveit, western 76 

Iceland. These complexes are composed of subhorizontal thrust-blocks (nappes) of 77 

unlithified marine sediments and were formed during an active retreat of a marine-78 

terminating glacier emanating from Borgarfjörður in the Late Weichselian (Fig.1; Ingólfsson 79 

1987, 1988; Sigfúsdóttir et al., 2018). As these thrust-block moraines were formed in a 80 

submarine environment, it can be assumed that the sediments were unfrozen at the time of 81 

deformation. This study uses micromorphology to investigate the factors controlling the 82 

changing style of deformation which occurred during the detachment, transport and 83 
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emplacement of the thrust-blocks; in particular, the effect of the introduction of pressurised 84 

water along the bounding thrusts during this process. The results of this microstructural 85 

study are discussed in the wider context of the interrelationships between the glacier 86 

dynamics, submarginal hydrology and glaciotectonics. 87 

 88 

Location of the study area and its geological context 89 

The Melasveit district of western Iceland is a coastal lowland area situated between the 90 

fjords of Borgarfjörður and Hvalfjörður (Fig. 1a). The geology of the area is dominated by a 91 

>30 m thick sequence of Late Weichselian to Holocene glaciomarine to deltaic sediments 92 

overlying striated bedrock surface (Ingólfsson, 1987, 1988; Sigfúsdóttir et al., 2018). The 93 

bedrock in the Melasveit area is mainly composed of Neogene basaltic lava flows which are 94 

thought to have largely originated from the extinct Hafnarfjall-Skarðsheiði central volcano 95 

located to the north-east (Franzson, 1978). 96 

Like most coastal areas in Iceland, the Melasveit district was covered by ice during the Last 97 

Glacial Maximum (LGM). The area subsequently deglaciated rapidly between c. 15-14.7 cal. 98 

ka BP, following the collapse of the marine-based western sector of the Icelandic Ice Sheet 99 

(IIS) (Ingólfsson, 1987, 1988; Syvitski et al., 1999; Jennings et al., 2000; Norðdahl et al., 2008¸ 100 

Ingólfsson et al., 2010; Norðdahl and Ingólfsson, 2015; Patton et al., 2017). Immediately 101 

following the deglaciation of Melasveit, the relative sea level in surrounding regions was 102 

125-150 m higher than present (Ingólfsson and Norðdahl, 2001; Norðdahl and Ingólfsson, 103 

2015). Consequently, this low-lying area remained below sea level throughout most of the 104 

Late Weichselian leading to the deposition of a thick sequence of glaciomarine sediments. 105 



6 
 

The relative sea level fluctuated considerably during this time, reaching a maximum during a 106 

phase of renewed glacier expansion in both the Younger Dryas (c. 12.7-11.7 cal. ka BP) and 107 

Early Preboreal (c. 11.7-10.1 cal. ka BP) when the sea levels were 60-70 m higher than 108 

present (Ingólfsson, 1988; Norðdahl et al., 2008; Ingólfsson et al., 2010).  109 

After the initial deglaciation of Melasveit during the Bølling chronozone, the IIS re-advanced 110 

from the north while the area was still isostatically depressed and culminated with the 111 

construction of the Skorholtsmelar end-moraine (Fig. 1b) (Ingólfsson 1987, 1988; Ingólfsson 112 

et al., 2010; Sigfúsdóttir et al., 2018). The active retreat of the marine-terminating glacier 113 

from its maximum extent marked by this moraine system resulted in large-scale 114 

glaciotectonic deformation of the glaciomarine sediments and the construction of a series of 115 

moraines, which are now largely buried by younger sediments but exposed in the coastal 116 

cliffs of Belgsholt and Melabakkar-Ásbakkar (see Fig. 1b) due to isostatic uplift following the 117 

final deglaciation (Sigfúsdóttir et al., 2018). The moraines record the periodic grounding of 118 

the retreating ice-margin and are composed of folded and thrusted glaciomarine sediments 119 

interleaved with penecontemporaneous ice-marginal sands and gravels (Sigfúsdóttir et al., 120 

2018). The age of the deformed sediments range between c. 13.4 – 14.6 cal. ka BP 121 

(Ingólfsson, 1987, 1988; Norðdahl and Ingólfsson, 2015) indicating that the readvance 122 

probably occurred during the Younger Dryas or possibly later (Sigfúsdóttir et al., 2018). The 123 

age of the moraines become progressively younger northwards consistent with their 124 

formation at an oscillating ice margin during a phase of overall northward retreat 125 

(Sigfúsdóttir et al., 2018). The sedimentary basins formed between the moraines are infilled 126 

by well-bedded glaciomarine sediments, with the entire glacigenic sequence being 127 
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unconformably overlain by littoral sands and gravels of early Holocene age (Ingólfsson, 128 

1987, 1988).  129 

 130 

METHODS 131 

The large-scale glaciotectonics and stratigraphy of the Melabakkar-Ásbakkar cliff section 132 

have previously been described by Sigfúsdóttir et al., (2018) who divided this variably 133 

deformed glaciomarine sequence into eight informal sedimentary units (A-H); the same 134 

tectonostratigraphic framework has been adopted here. The detailed analysis of the macro- 135 

and microscale deformation structures associated with the emplacement of the thrust-136 

bound blocks of glaciomarine sediments into the moraines is focused on the Melaleiti and 137 

Ásgil sections (Fig. 1b-d). Particular emphasis is placed upon understanding the nature of 138 

the deformation associated with the prominent thrust planes, which form the basal 139 

detachments to the allocthonous blocks.  140 

A total of 16 orientated samples (Ásgil 1 to 10 from Ásgil and Mel 11 to 16 from Melaleiti) 141 

were collected from within these basal detachments for detailed micromorphological and 142 

microstructural analysis. Each sample was collected using a 10 x 10 x 5 cm aluminium 143 

Kubiena tin, which was carefully pushed or cut into the cliff face in order to limit sample 144 

disturbance. The position of the sample within the thrust zone, its orientation relative to 145 

magnetic north, depth and way-up were marked on the outside of the tin during collection. 146 

The samples were taken from different parts of the basal detachment in order to provide 147 

detailed information on the style and intensity of deformation within these glaciotectonic 148 

contacts, as well as examine the role played by pressurised water during the transport and 149 
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emplacement of the thrust-blocks. Each sample was then removed from the face, sealed in 150 

two plastic bags to prevent drying out during transportation and cold storage prior to 151 

sample preparation at the British Geological Survey’s thin section laboratory (Keyworth, 152 

Nottingham, UK). Sample preparation involves the replacement of pore-water by acetone, 153 

which is then progressively replaced by a resin and allowed to cure. Large format orientated 154 

thin sections were taken from the centre of each of the prepared samples, thus avoiding 155 

artefacts associated with sample collection. Each large format thin section was cut 156 

orthogonal to the stratification/bedding within the sediment and parallel to the main ice 157 

movement direction in the study area. The thin sections were examined using a standard 158 

petrological microscope and stereomicroscope allowing the detailed study of the 159 

microstructures at a range of magnifications. The terminology used to describe the various 160 

microtextures developed within these sediments in general follows that proposed by van 161 

der Meer (1987, 1993) and Menzies (2000) with modifications. Detailed maps of the range 162 

of sediments and microstructures present within the thin sections were obtained using the 163 

methodology of Phillips et al., (2010) (also see Neudorf et al., 2013; Vaughan-Hirsch et al., 164 

2013; Phillips et al., 2013a). Due to the large number of thin sections analysed, 165 

microstructural analysis of the 12 most representative thin sections, which illustrate the 166 

complete range of structural relationships, are included in this paper. However, interpretive 167 

diagrams and high-resolution scans of the remaining four thin sections can be found as 168 

supplementary material.  169 

 170 

RESULTS 171 

 172 
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The Ásgil thrust-block moraine  173 

The ice-marginal thrust-block moraine at Ásgil comprises at least two stacked, gently 174 

northward dipping thrust-bound blocks of compact, weakly stratified to massive 175 

glaciomarine silt and sand (unit D; Fig. 2a; Sigfúsdóttir et al., 2018). The silt is poorly sorted, 176 

locally clay-rich, massive to weakly laminated and relatively thickly bedded (the thickest 177 

beds are over 1 m thick). The interbedded sand is sorted and considerably thinner bedded 178 

(up to  ̴10 cm). The silt and sand largely retain their primary bedding but locally, mainly 179 

within the lower thrust-block, the sediments have undergone ductile shearing (augen 180 

structures and folds) and homogenisation. Each thrust-block is over 150 m long and about 181 

10 m thick, and is dissected by a number of steeply inclined joints and southerly dipping 182 

normal (extensional) faults. Although not common, a small number of normal faults were 183 

observed cross-cutting the detachment separating the thrust-blocks, indicating that this 184 

phase of faulting post-dated the development of the thrust-stack. The base of the thrust-185 

stack rests upon a few metre thick unit of stratified sand and gravel (unit B; Fig. 2a). These 186 

sands and gravels are folded and faulted, and record southward sense of shearing (based on 187 

vergence of folds and displacement along faults). The relative intensity of this deformation 188 

decreases towards the south. The sand and gravel can be traced laterally to the south of the 189 

thrust stack were they are unconformably overlain by a sequence of coarse gravel and 190 

boulders. This coarse-grained clastic sequence forms an over 15 m thick and 200 m wide 191 

multi-crested sediment pile located on the ice-distal side of the thrust stack. Based on its 192 

sedimentology and stratigraphic location, Sigfúsdóttir et al., (2018) interpreted this 193 

sequence as an ice-contact fan deposited during the same readvance which resulted in the 194 

construction of the adjacent thrust stack. Despite some localised folding and faulting this 195 
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fan does not exhibit any macroscale glaciotectonic structures indicative of subglacial 196 

shearing, which suggests that the fan was not overridden after its formation. 197 

The thrust-block moraine and the ice-contact fan rest on a glaciomarine diamicton (unit A of 198 

Sigfúsdóttir et al., 2018), which is exposed in the foreshore at low-tide. This silty-sandy 199 

diamicton probably directly overlies the underlying basalt bedrock as the latter crops 200 

out   ̴150 m further towards the northwest. The thrust-block moraine is overlain by an 201 

undeformed, glaciomarine sequence of interbedded silts, sands and diamictons (unit G; Fig. 202 

2a) which were deposited after the glacier had retreated from this recessional limit. The 203 

glaciomarine sequence is in turn unconformably overlain by early Holocene littoral sand and 204 

gravel (unit H; Fig. 2a) deposited during the isostatic adjustment of the area (Ingólfsson, 205 

1987, 1988). 206 

At Ásgil the present study has focused on the deformation associated with the transport and 207 

emplacement along the basal detachment of the thrust-block moraine (see below).  208 

 209 

Macroscale description of the basal detachment  210 

Southeast of   ̴2550 m (Fig. 2a) the lowermost part (   ̴0.5-1 m) of the thrust-block is 211 

characterised by a distinct zone of massive to laminated silt and sand, forming 212 

subhorizontal, locally cross-cutting sill-like features (Figs. 2b-c). The number of these layers 213 

increases downwards, towards the base of the thrust-block, indicating that their origin is 214 

related to the basal detachment of this thrust-block. Therefore this basal zone is 215 

inconsistent with representing a primary (sedimentary) bedded sequence. Consequently, 216 

the most likely origin of this complex zone is as a series of cross-cutting sediment-filled 217 
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hydrofractures, which formed as pressurised water exploited the basal detachment of the 218 

developing thrust-block moraine (see below) (Rijsdijk et al., 1999; van der Meer et al., 1999; 219 

Phillips and Merritt, 2008; van der Meer et al., 2009; Phillips et al., 2013a;  Ravier et al., 220 

2015). Their cross-cutting relationships show that the grain size of the sediments infilling the 221 

hydrofractures increased with time. The largest sills (hydrofractures) are up to   ̴30 cm thick, 222 

have erosive margins and are infilled with coarse sand and granule-sized gravel. The 223 

sediments filling these hydrofractures also locally contain angular, elongate to tabular-224 

shaped blocks (up to   ̴50 cm long, 10 cm thick) of fine-grained silt and sand which are 225 

lithologically similar to the marine sediments contained within the overlying thrust-block 226 

(Fig. 2c). 227 

Although most of the hydrofractures form subhorizontal sill-like features, a number of high-228 

angle to steeply inclined dykes dipping towards the southwest were also observed (Fig. 2c). 229 

These steeply inclined sediment-filled fractures are up to   ̴20 cm wide and   ̴8 m in length, 230 

and are filled by either a sandy-breccia or well-sorted, stratified sand and gravel; the latter 231 

often exhibit layering at an angle to the hydrofracture margins. These dyke-like features are 232 

rooted in the deformed basal zone and locally transect the entire thrust-block. They are 233 

often (but not always) wedge-shaped in form with the broadest part at the base of the 234 

thrust-block, tapering towards the top located higher in the cliff, possibly suggesting that 235 

these sediment-filled features propagated upwards from the base of the developing thrust-236 

stack.  237 

The relative intensity of deformation within the basal detachment of this imbricate thrust-238 

stack gradually increases towards the north. Below this relatively thin deformed zone, in the 239 

southern part of the section, there is little evidence of glaciotectonic disturbance within the 240 
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unit B sand and gravel indicating that negligible shear propagated downwards into these 241 

underlying deposits (Fig. 2b-c). In the northern part of the Ásgil section (between   ̴ 2450 and 242 

2550; Fig. 2a) the contact between the thrust-block and the underlying unit B stratified sand 243 

and gravel is poorly defined. In this area, these two tectono-sedimentary units appear to 244 

have been partially intermixed, possibly due to liquefaction and injection of sand and gravel 245 

upwards into the base of the thrust-block resulting in large-scale brecciation and disruption 246 

within the overlying thrust-block (cf. Rijsdijk et al., 1999) (Fig. 2d). In the northern part of 247 

the section, the hydrofractures and their host deposits of unit D, as well as the underlying 248 

unit B sand and gravel are folded and thrust repeated, with the vergence of the folds 249 

recording a sense of shearing towards the south. Both sediment units and the boundary 250 

between them are cross-cut by minor faults, which cut the sediments at different angles.  251 

 252 

Microscale deformation structures 253 

Ten thin sections that were collected within the lowermost part of the thrust-block at Ásgil 254 

at three locations (Figs. 3, 4 and 5, see relative location on Fig. 2) in order to examine the 255 

deformation structures developed close to the southern leading edge of the thrust-block 256 

(at  ̴2580-2590 m; Fig. 2a samples Ásgil 1-5; Fig. 3) and further north at a deeper structural 257 

level along the basal detachment (at 2520-2535 m; Fig. 2a samples Ásgil 6-10; Figs. 4 and 5). 258 

In thin section, the fine sand, silt and sandy diamicton, which not only form the thrust-block, 259 

but also the host sediments within the deformed, basal zone of the thrust-stack, are 260 

lithologically similar indicating that they were derived from a similar source (provenance).  261 

 262 
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Microstructures developed close to the leading-edge of the basal detachment (samples Ásgil 263 

1-5)  264 

The position of samples Ásgil 1-5 within the deformed zone marking the basal detachment 265 

close to the leading edge of the thrust-block moraine is shown in Fig. 3. These thin sections 266 

reveal that, although on a macroscale this zone appears highly deformed, this deformation 267 

is less apparent on a microscale with the samples being largely composed of finely stratified 268 

silt and silty-clay, with subordinate amounts of fine-sand (Figs. 6a-c). The contacts between 269 

these layers are undulating to irregular in form, and range from sharp to 270 

diffuse/gradational. The clay layers commonly possess a moderate to well-developed, layer-271 

parallel plasmic fabric defined by optically aligned clay minerals. In sample Ásgil 4 (Fig. 6a) 272 

this birefringent clay (crossed polarised light) is locally fragmented with the fractures filled 273 

by homogenised silt and fine-sand. In sample Ásgil 2 (Fig. 6b) and, to a lesser extent, 274 

samples Ásgil 3 (Fig. 6c) and 4 (Fig. 6b), the stratification is offset by at least one set of 275 

gently to moderately northwest-dipping (apparent dip in plane of section provided by the 276 

thin sections) normal microfaults and a set of moderately southeast-dipping structures. 277 

These small-scale faults (displacements in the order of a few millimetres) appear to show a 278 

close spatial relationship to the lenses and layers of coarser grained sand. 279 

The stratification within the fine silts and silty/sandy-clays is locally cross-cut and disrupted 280 

by irregular (erosive) lenses/layers of fine- to coarse-grained sand. These cross-cutting 281 

relationships indicate that the introduction of these coarser grained sediments post-dated 282 

the formation of the stratification within the finer grained sediments. The coarse-sand is 283 

matrix-poor (low clay content) and varies from massive (homogeneous) to weakly normal-284 

graded (fining upwards). The coarse-sand grains are typically sub-rounded to rounded in 285 
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shape, with the finer sand grains being more angular in appearance; possibly reflecting 286 

differences in the length of transport. Sand and gravel sized particles within these sediments 287 

are mainly composed of basaltic rock (lithic) fragments consistent with the predominantly 288 

basaltic bedrock in the region. Fresh, angular fragments of basaltic and silicic volcanic glass 289 

are also common detrital components. Detrital minerals present include plagioclase, 290 

pyroxene, olivine and opaque minerals, as well as minor zeolites and chlorite. In sample 291 

Ásgil 3, the introduction of the coarse-sand (see lower part of the thin section; Fig. 6c) 292 

resulted in the disruption/fragmentation of the adjacent stratified silt and fine-sand. This 293 

coarse-sand contains angular to irregular fragments of laminated silt and clay which are 294 

lithologically similar to, and therefore thought to have been derived from, the adjacent 295 

stratified sediments. Some of these clasts are composed of highly birefringent (under 296 

crossed polarised light) clay in which the optically aligned clay minerals define a moderate- 297 

to well-developed plasmic fabric. In samples Ásgil 2 (Fig. 6b) and 4 (Fig. 6a) the clay-clasts 298 

within the medium-sand layers are much smaller in size and are more rounded in shape, 299 

indicative of a greater degree of rounding (abrasion) during transport. In sample Ásgil 4 (Fig. 300 

6a) the medium-sand layer near the bottom of the thin section is linked to a fine-scale 301 

network of fractures (veins) filled by the same sediment. This network is injected into the 302 

adjacent clay and comprises two subvertical sand-filled veins connected to a number of 303 

subhorizontal veins which occur parallel to the fine-scale lamination/stratification within the 304 

clay. The fine- to medium-sand layer in the upper part of this sample (Fig. 6a) contains a thin 305 

clay layer which is broken into a series of tabular segments with the intervening fractures 306 

filled by sand. Both the sand and clay layers are cross-cut by an irregular vein of pale 307 

coloured, medium-grained, matrix-poor sand. In the lower part of sample Ásgil 2 (Fig. 6b) 308 

the boundary between the medium- and fine-grained sand layers is complex and folded by a 309 
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number of flame-like, asymmetrical disharmonic folds. The shape of these folds is consistent 310 

with an apparent sense of shear towards the southeast. 311 

The microtextural relationships described above suggest that the sand layers were injected 312 

into the pre-existing stratified silts and clays. This process would have accompanied the 313 

brecciation and disruption of these fine-grained host sediments with the fragments 314 

dislodged from the walls of the developing sediment-filled hydrofracture being incorporated 315 

into the coarse-sand during the injection process. The cross-cutting relationships observed 316 

between the sand layers suggest that there were several phases of injection. The locally 317 

complex, irregular to folded boundaries to the sand layers observed in sample Ásgil 2 (Fig. 318 

6b) suggests that the time interval between each phase of injection may have been 319 

relatively short. Injection of the later coarser grained sands, prior to the dewatering of the 320 

earlier formed sand, may have resulted in the observed soft-sediment deformation 321 

(disharmonic folding) in response to shear along the boundary between the two layers. In 322 

contrast, the more coherent silts and clays underwent brittle deformation with the normal 323 

(extensional) faulting as these stratified host sediments accommodated the expansion 324 

(increase in volume) of the sequence occurring in response to the injection of the liquefied 325 

coarse-sand. In samples Ásgil 2 (Fig. 6b), Ásgil 3 (Fig. 6c) and Ásgil 4 (Fig. 6a) the coarser sand 326 

layers occur parallel/sub-parallel to the stratification within the host silt and silty clay 327 

indicating that injection of these sediments exploited this pre-existing layering.  328 

Samples Ásgil 1 (Fig. 6d ) and Ásgil 5 (Fig. 6e) were taken from larger hydrofractures filled by 329 

a mud clast-rich breccia which is composed of elongated to irregular clasts of weakly 330 

stratified fine-sand, silt and clay set within a matrix of medium- to coarse-grained sand. The 331 

sandy matrix to the breccia varies from massive (sample Ásgil 1; Fig. 6d) to 332 
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“patchy”/“mottled” in appearance due to the variation in its grain-size from fine- to coarse-333 

sand (sample Ásgil 5; Fig. 6e). Sample Ásgil 1 was taken from the margin of a prominent (up 334 

to 20 cm wide, 8 m long), steeply southeast dipping sediment-filled fracture system that 335 

cross-cuts fine-grained weakly layered clayey-silt, silt and fine sand at the base of the thrust-336 

block (Figs. 3a, c). Whereas, sample Ásgil 5 (Fig. 6e) was collected from a c. 50 cm wide, 337 

subhorizontal breccia-filled hydrofracture that cuts through the finely layered sediments at 338 

the base of the thrust-block (Figs. 3a, b). The laminated silt and clay clasts within the breccia 339 

range from angular to rounded in shape; possibly reflecting a variation in the degree of 340 

rounding (abrasion) of the clasts during transport and injection of this coarse-grained 341 

sediment into the developing hydrofracture. However, the degree of rounding of these 342 

clasts appears to be dependent upon lithology, with the sandy intraclasts tending to be 343 

more rounded in shape with more diffused clast margins. The orientation of bedding 344 

preserved within the large clasts indicate that during transport (injection) they have been 345 

rotated (tilted) and possibly overturned. The clay layers within the clasts are locally broken 346 

and the fractures infilled by silt and fine-sand, indicating that these sediments have 347 

potentially recorded several phases of liquefaction, remobilisation and injection prior to 348 

brecciation associated with the formation of the large-scale hydrofracture system. In sample 349 

Ásgil 1 (Fig. 6d) the margins of the hydrofracture are irregular and it appears that some of 350 

the clasts contained within the breccia have been ripped (eroded) from the stratified 351 

sediments forming the “wall-rock” to this fracture system. Elongate clasts immediately 352 

adjacent to the wall of the hydrofracture show a preferred shape-alignment parallel or, at a 353 

low-angle to the margin of the fracture (Fig. 6d). In contrast, towards the interior of the vein 354 

the clasts are apparently more randomly orientated or may possibly define a subhorizontal 355 

preferred shape-alignment (see Fig. 6d). In the lower, southeast corner of the thin section 356 
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the breccia is cut by a complex network of clay veins. These veins are filled by finely 357 

laminated, highly birefringent clay (cutan). The sediments forming the host to this breccia-358 

filled hydrofracture occur on the left-hand (northern) side of the thin section (Fig. 6d). The 359 

weakly developed to diffuse stratification developed within these silts and fine-sands has an 360 

apparent dip towards the southeast. In the lower right-hand corner of the thin section this 361 

stratification is cross-cut by two thin (< 10 mm) sediment-filled veins composed of clay and 362 

sandy-clay (Fig. 6d). The larger of these two veins is layered with an outer layer of clay lining 363 

the fracture walls and a central infilling of massive clayey-sand. A similar clay-filled, 364 

southwest-dipping vein was also observed cutting through the breccia within sample Ásgil 5 365 

(Fig. 6e) were it is filled by weakly layered clayey-silt and silt with this layering occurring 366 

parallel to the fracture walls. 367 

 368 

Microstructures developed at a deeper structural level of the basal detachment (samples 6-369 

10)  370 

Thin sections Ásgil 6-10 (Figs. 7-8, S1) were collected within the deformed zone associated 371 

with the basal detachment at a deeper structural level at the thrust-block moraine (Figs. 4 372 

and 5). Sample Ásgil 9 (Supplementary Figure 1) was collected from the thrust-block and 373 

comprises homogenised silts and sands (a diamicton). Samples Ásgil 8 and 10 (Fig. 7) were 374 

taken from fine-grained sediments comprising the base of the thrust-block and samples. 375 

Ásgil 6 and 7 (Fig. 8) were taken from subhorizontal hydrofractures that cross-cut these fine-376 

grained deposits (Fig. 4 and 5).  377 
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Thin sections Ásgil 8 and Ásgil 10 (Fig. 7) are dominated by finely stratified silty-clay, silt and 378 

very fine-sand which are lithologically similar (grain size, sorting and stratification) to the 379 

finely stratified clay, silt and sand forming the host to the hydrofracture system in samples 380 

Ásgil 1-5 (Fig. 6). However, much more disruption is observed in samples Ásgil 8 and 10 (Fig. 381 

7). The sediments have a mottled appearance as the stratification is diffused/gradational 382 

and the beds/laminae are undulating and discontinuous. This may possibly be due to an 383 

increase in the amount of layer-parallel shear accommodated by the laminated sediments 384 

within this structurally deeper and more complex part of the basal detachment. In sample 385 

Ásgil 8 (Fig. 7a) the stratification is mostly subhorizontal/weakly folded with the disruption 386 

of the layers increases upwards. The stratification is offset by a poorly defined, conjugate 387 

set of normal microfaults with apparent dips both towards the NW and SE. In the lower part 388 

of this finely stratified subunit the faults have a moderate to steep dip, but in the upper part 389 

the faults tend to have lower dips. In the upper part of sample Ásgil 8 (Fig. 7a) the layers are 390 

tilted between two of these low-angle faults resulting in an asymmetrical S-shaped layering 391 

between these two faults. The faulted and folded stratified sediments are truncated by an 392 

apparently SE dipping sand-vein (see Fig. 7a). The vein is about 0.5 cm thick with sharp 393 

boundary and a step-like form, and is infilled with massive fine-grained sand with high 394 

intergranular porosity. The geometry and the erosive nature of the infilling is consistent 395 

with this sand-vein being a hydrofracture. A larger sand-vein/hydrofracture dominates the 396 

lowermost part of thin section Ásgil 8 (Fig. 7a). This hydrofracture is seen in the lower  ̴4 cm 397 

of the thin section where it has an apparent dip towards the northwest. The sediments 398 

within it comprise medium-grained sand that is lithologically similar to the sands seen in 399 

samples Ásgil 6 and Ásgil 7 (see below). The sand typically possesses a high intergranular 400 

porosity and low matrix content. The individual sand grains are subrounded to angular in 401 
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shape. Within the sand are fragmented silt and clay laminae, as well as variably aligned 402 

fragments (intraclasts) of silty-clay which define a weakly developed/preserved layering 403 

which dips towards the northwest. The intraclasts have smooth edges indicative of rounding 404 

during transport. The upper boundary of the hydrofracture is defined by  ̴1 cm thick 405 

deformed layer of unsorted silt, sand and clay that is offset by a set of northwest-dipping 406 

faults associated with small-scale folds. The faults are cross-cut by the sand-vein so the 407 

injection of the sand post-dated the small-scale faulting of the host sediments. In sample 408 

Ásgil 10 (Fig. 7b), the stratification within the clayey-silt/silty-clay is highly disrupted and the 409 

laminae are tilted, folded and possibly overturned. In between the clay-rich layers which 410 

dominate the thin section are layers of sorted silt and very fine sand with sharp boundaries. 411 

In the middle-upper part of the thin section is a lens of coarse-grained sand with diffused 412 

edges. All these sediments are dissected by a number of faults. The faults are poorly defined 413 

and some have sand-lining possibly deposited by water flowing along the fault walls. The 414 

faults have a very gentle to moderate dip towards the southeast (apparent dip) but due to 415 

complex deformation of the sample it was difficult to estimate the direction of offset along 416 

the fault planes although most of them appear to record apparent displacement towards 417 

the southeast. 418 

 Samples Ásgil 6 and 7 (Fig. 8) were taken from subhorizontal layers of sand with erosional 419 

margins, consistent with being hydrofractures (Fig. 4). The thin sections show that the sand 420 

within the hydrofractures is weakly stratified- to heterogeneous, and is interbedded with 421 

layers of silt and clayey-silt possibly reflecting fluctuations of the velocity of the water 422 

flowing through the fractures. The sand is fine- to medium-grained and possesses an 423 

intergranular porosity and variable amounts of a fine-grained matrix. Most of the sand 424 
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grains are subrounded to angular in shape and composed of a similar range of components 425 

to the sand layers in samples Ásgil 1-5 (Fig. 6). The contacts between the layers are irregular 426 

and the silty-clay layers tend to be very fragmented, possibly due to brecciation of the rigid 427 

clay layers in response to the liquefaction and ductile deformation of the open-packed silt 428 

and sand. Although the alignment of elongate clasts appears to preserve the original 429 

stratification within the hydrofractures some of the clay fragments are randomly dispersed 430 

within the sand indicating longer transport path of these clasts. These “dispersed” 431 

fragments tend to have rounded and rather diffuse edges. The weakly preserved 432 

stratification is deformed by a number of upright to steeply inclined, asymmetrical, 433 

southeast-verging folds (Fig. 8). This indicates that after the hydrofractures formed, the 434 

sediments underwent a minor ductile shearing, possibly as a result of transmission of shear 435 

into the deposits during the thrust-block transport. 436 

Overall samples Ásgil 6 to 8 and 10 (Figs. 7-8) show higher intensity of faulting and folding 437 

compared to thin sections Ásgil 1-5 (Fig. 6). This is consistent with the observed, larger-scale 438 

increase in complexity and magnitude of deformation towards the northern, structurally 439 

deeper part of the detachment. The lithological similarities and the tectonostratigraphic 440 

location of the finely layered silty-clay, silt and sand (see Ásgil 8 and 10, Fig. 7) to those seen 441 

at the front of the thrust (Ásgil 1 to 5. Fig. 6) may suggest that these are part of the same 442 

deformation zone. However, they have lost some of their identity due to folding and faulting 443 

resulting from increased shearing transmitted into the deposits, probably during the thrust 444 

stacking. This phase of shearing was followed by a renewed phase of sediment liquefaction 445 

and injection resulting in sediment brecciation and hydrofracturing. The hydrofractures 446 

developed both parallel to bedding and to earlier formed thrusts and faults. The final 447 
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deformation phase involved folding and faulting of both the hydrofractures and their host 448 

deposits (Ásgil 6 to 8 and 10, Figs. 7-8) indicating increased draining of the deforming 449 

sequence. 450 

 451 

Melaleiti thrust-block moraine 452 

The thrust-block moraine at Melaleiti is over 300 m across and 10 m high, and comprises 453 

several, subhorizontal or gently north-dipping, stacked thrust-bound allochthonous blocks 454 

(Fig. 9). Each block is composed of two main sedimentary units; a massive, silty-sandy, very 455 

compact and deformed glaciomarine diamicton of unit A, and unit E consisting of 456 

interbedded silt and sand of with occasional, thin layers of gravel and diamicton 457 

(Sigfúsdóttir et al., 2018). The thrust-blocks are dissected by a large number of normal 458 

(extensional) faults with a dominant dip towards the southeast (Fig. 9), although some dip 459 

towards the northwest. The relative complexity of deformation decreases to the southwest 460 

(ice-distal part) as can be seen in a decrease in the intensity of faulting/thrusting and better 461 

preservation of primary sedimentary in sediment units E. This probably reflects a decrease 462 

in strain away from the ice-front during the thrust-stacking (Sigfúsdóttir et al., 2018).  463 

The moraine is overlain by an up to 2 m thick unit of coarse gravel (unit F on Fig. 9a). This 464 

unit is interpreted as having been deposited under high pressure in subglacial setting, which 465 

indicates that the moraine was overridden by the glacier.However it is unclear if it was 466 

overridden by the same or a younger advance (Sigfúsdóttir et al., 2018). The original 467 

structure of the moraine is preserved indicating that it did not undergo extensive subglacial 468 

deformation during the overriding. However, some of the normal faults that cross-cut (post-469 
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date) the thrusts-bound blocks were possibly developed in response to extensional 470 

deformation as the glacier overrode the moraine (Sigfúsdóttir et al., 2018).  471 

 472 

Macroscale description of the basal detachment  473 

This study focuses on an over 150 m long detachment in the southernmost part of the 474 

thrust stack (  ̴100-250 m; Fig. 9a). The base of the thrust-block is very sharp and the 475 

deposits in the footwall (both unit E and A) are variably deformed. The relative intensity of 476 

this deformation decreases southwards towards the leading edge of the thrust-block 477 

moraine. In the northern part, between   ̴100 and 180 m, the sediments are deformed by 478 

numerous folds and boudins which are cross-cut by normal and reverse faults as well as 479 

subhorizontal shears (Fig. 9b). The geometry of these structures suggests that they 480 

developed as Reidel shears within the footwall of the detachment at the base of the thrust-481 

block (Phillips and Lee, 2011). The majority of the normal and reverse faults do not cross-cut 482 

the main detachment, indicating that they predated or were developed at the same time as 483 

this larger scale structure. Closer to the leading edge of the thrust-block moraine 484 

(between  ̴180 and 300 m; Fig. 9a) the bedded silts and sands have undergone less 485 

penetrative deformation. For example, the bedded unit E sediments are relatively intact 486 

although cross-cut by a large number of well-defined, southeast and northwest-dipping 487 

normal faults (Fig. 9c). Based upon the observed cross-cutting relationships these faults are 488 

interpreted as both pre-dating and post-dating the thrust-detachment. A small number of 489 

the faults are infilled/lined by massive and stratified sand indicating that these fractures 490 

acted as fluid pathways. These hydrofractures are relatively thin (up to ~3 cm) and usually 491 
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they cross-cut other structures indicating that they were formed during late-stage of the 492 

deformation (Fig. 9d).  493 

 494 

Microscale deformation structures 495 

Six thin sections were taken from samples collected at ~110 m (Fig. 9a), from the 496 

glaciomarine interbedded silt, sand and diamictons of unit E located immediately below the 497 

southernmost thrust-detachment (Fig. 10). Three of them are described below (Mel 11, 14 498 

and 16; Fig. 11), the remaining three (Mel 12, 13, 15) are available as supplementary 499 

material (Supplementary Figure 2). The Mel 11 to 16 thin sections are composed of 500 

moderately to well sorted, open packed, fine to medium grained sand (Figs. 11, 501 

Supplementary Figure 2). The sand grains are usually subrounded to angular in shape and 502 

mainly consist of basaltic rock (lithic) fragments. Fresh, angular fragments of volcanic glass 503 

are also common, the content of the lighter coloured, silicic tephra being higher compared 504 

to the sand within the detachment at Ásgil. Other minerals include plagioclase, pyroxene, 505 

olivine and opaque minerals, as well as minor zeolites and chlorite. The sand layers are 506 

interbedded with thinner layers of silt and silty-clay. The contacts between well-sorted silt 507 

and sand layers are commonly diffusive and locally they appear interdigitate, which could 508 

indicate local liquefaction and subsequent mixing of these sediments. The more rigid, clay-509 

rich layers have undergone brecciation and extension (boudinage), most likely in response 510 

to/accompanying the liquefaction of the adjacent sand (Fig. 11). Locally the clayey 511 

intraclasts are dispersed within the fluidised silt and sand (see upper part in sample Mel 16; 512 

Fig. 11a); although they usually have sharp edges and are often aligned and partly preserve 513 

the primary layering indicating short transport path. The bedded/laminated clays, silts and 514 
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sands are locally folded with the vergence of folds recording an apparent sense of shear 515 

towards the southwest (see Mel 14; Fig. 11b). In the lower half of thin section Mel 11 (Fig. 516 

11c) the folded, bedded/laminated clay, silt and sand are cross-cut by vein infilled by open-517 

packed fine sand. Within this sand layer, there are intraclasts of laminated sand, silt and clay 518 

with smooth edges. This relationship suggests that the sand layer was injected into the pre-519 

existing interlaminated sediment resulting in hydrofracturing and brecciation of the host 520 

sediments. Intraclasts from the host-sediments would then be incorporated into the 521 

sediments being injected into the developing hydrofracture. As described above, the 522 

deformed unit E sediments are cross-cut by number of shears and faults, some of which are 523 

clearly visible in thin section (e.g. Mel 16;  Fig. 11a).  524 

 525 

DEVELOPMENT OF THE ÁSGIL AND MELALEITI THRUST-BLOCK MORAINES: A SEQUENTIAL 526 

MODEL AND DISCUSSION  527 

The detailed macro- and microscale study of the detachments within the Ásgil and Melaleiti 528 

thrust-moraines show that their development was accompanied by repeated phases of 529 

sediment liquefaction, injection and hydrofracturing. The observed microstructural 530 

relationships indicate that these processes occurred during the transport and emplacement 531 

of the autochthonous sediment blocks. This sequence of events associated with the 532 

detachment, transport and emplacement of thrust blocks in the moraines can be explained 533 

in terms of the detailed five-stage model (Fig. 12).  534 

 535 

Stage 1: Detachment  536 
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The structural architecture of the moraines exposed in Melabakkar-Ásbakkar indicates that 537 

they formed in response to south/south-eastward directed ice-push by a glacier advancing 538 

from Borgarfjörður (Fig. 1b) (Ingólfsson, 1987, 1988; Sigfúsdóttir et al., 2018). Thus, the 539 

thrust-blocks comprising the moraines at Ásgil and Melaleiti can be assumed to be derived 540 

offshore, north/north-west of the study site (Fig. 1). As the moraines were formed in a 541 

submarine setting (Ingólfsson 1987, 1988; Sigfúsdóttir, 2018), the sediment blocks that were 542 

detached, displaced and stacked to form the thrust-block moraines were presumably 543 

unfrozen and water-saturated during glaciotectonism.  544 

The earliest phase of deformation recorded by the thrust-block sediments at Ásgil is the 545 

liquefaction of the silt and fine-grained sand layers towards the base of the thrust-block, 546 

indicative of increasing porewater pressures within the sediments as they are being 547 

deformed. The liquefaction of the sediment would have dramatically lowered its shear 548 

strength facilitating deformation and enabling low-frictional detachments to form within the 549 

substratum (Moran et al., 1980; Bluemle and Clayton, 1984; Phillips et al., 2007; Phillips and 550 

Merritt, 2008; Burke et al., 2009; Vaughan-Hirsch et al., 2013) (Fig. 12, stage 1). The 551 

detachments typically develop within weak, sand and silt layers contained (sealed) between 552 

more impermeable layers (clay, bedrock) enabling porewater pressures to build up within 553 

these coarser grained sediments (Bluemle and Clayton, 1984; van der Wateren, 1985; Croot, 554 

1987; Boulton and Caban, 1995; Phillips and Merritt, 2008; Vaughan-Hirsch and Phillips, 555 

2017) (Fig. 12, stage 1). Consequently laterally extensive, subhorizontal beds of sand within 556 

the glaciomarine deposits at Melasveit are considered to have provided a focus for initial 557 

deformation, leading to thrust propagation and the detachment of the slab-like sediment-558 

blocks. 559 
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Elevated porewater-pressures within ice-marginal/proglacial sediments are likely to occur 560 

due to ice load, tectonic thickening as well as basal shear stress applied by the advancing 561 

glacier (van der Wateren, 1985; Boulton and Caban, 1995). Also, it is likely that preferential 562 

flow of subglacial meltwater towards the ice margin from compressed subglacial deposits 563 

further up-glacier and/or external sources (i.e surface melting) might have contributed to 564 

further elevate the water content/pressures within the deforming sequence (Boulton et al., 565 

2001, Vaughan-Hirsch and Phillips, 2017). Syntectonic subaquatic outwash sediments 566 

forming lenticular aprons/fans along the leading edge of some of the moraines in Melasveit 567 

(i.e. Ásgil) indicate that the large-scale glaciotectonism at Melasveit was associated with 568 

high meltwater fluxes (Sigfúsdóttir et al., 2018). This relationship may be used to suggest 569 

that the advances that resulted in formation of the moraines were a result of accelerated 570 

ice-flow or possibly surging (e.g. Kamb et al., 1985; Piotrowski and Tulaczyk, 1999; Fischer 571 

and Clarke, 2001; Kjær et al., 2006; Phillips et al., 2013; Phillips et al., 2018).  572 

 573 

Stage 2: Pro-glacial/ice-marginal thrusting and movement along the décollements 574 

 Due to gravity spreading caused by the weight gradient at the ice margins and compression 575 

from the rear caused by ice flow (Fig. 12, stage 2) (Rotnicki, 1976; van der Wateren, 1995; 576 

Pedersen, 1987; Aber et al., 1989; van der Wateren, 1995; Bennett, 2001; Pedersen, 2005; 577 

Aber and Ber, 2007; Sigfúsdóttir et al., 2018), the detached sediment blocks would have 578 

been “pushed”/”displaced” forward by the advancing glacier (Fig. 12, stage 2). The transport 579 

of the allochthonous sediment blocks was most likely aided by continued elevated 580 

porewater pressures and fluid flow being maintained along the earlier formed detachments. 581 

Evidence for this is provided by the repeated phases of liquefaction and injection along 582 
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these décollement surfaces; thereby minimising the amount of shear being transmitted into 583 

the adjacent sediments and facilitating the displacement of the large slabs of 584 

unconsolidated sediments by the advancing ice. The detachments would have acted as fluid 585 

pathways, focusing water escape within the relatively clay-rich glaciomarine sequence and 586 

facilitating the southward migration of water through the deforming sediment pile.  587 

At Ásgil, the complex, cross-cutting sets of hydrofractures and associated brecciation of the 588 

sediments within the base of the thrust-block clearly indicate that water pressures within 589 

the deforming sediment pile repeatedly exceeded the cohesive strength of these deposits. 590 

Field and thin section evidence clearly indicates that the grain size of the sediments infilling 591 

this evolving hydrofracture system increased over time, accompanied by an increase in the 592 

size (width/length) of the individual sediment-filled fractures (Fig. 12, stage 2). Well-defined, 593 

sharp, erosive contacts between the hydrofractures show that they were probably formed 594 

in response to several phases of injection and fragmentation of the sediments between 595 

periods of partial solidification of the deposits rather than gradual changes in flow regime 596 

during a single event (Fig. 12, stage 2). These variations could either be due to fluctuations 597 

in the submarginal hydrology (water input) or release of hydrostatic pressure due to 598 

periodic water escape towards the front of the evolving imbricate thrust stack potentially 599 

resulting in a stick-slip type of movement along the thrusts (Boulton et al., 2001; Phillips and 600 

Merritt, 2008).  601 

 602 

Stage 3: Development of the thrust-block moraines 603 
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The dislocated thrust-blocks were accreted at the ice-margin leading to the formation of the 604 

glaciotectonic thrust-block moraines (Fig. 12, stage 3). At Melaleiti the thrust-blocks were 605 

emplaced upon less compact and permeable sequence of interbedded silt, sand and gravel 606 

of the underlying thrust blocks. Similarly, at Ásgil, the detached thrust-blocks were 607 

emplaced upon a sequence of ice-marginal sands and gravels, which were deposited at an 608 

earlier stage during the readvance. Despite the high-permeability of these underlying 609 

deposits, which would have facilitated draining of the proposed water-lubricated basal 610 

detachments to the thrust-blocks, the lowermost block is thought to have been transported 611 

across the coarser grained sediments in the footwall resulting in little disturbance of these 612 

deposits below the leading edges of the thrusts (Fig. 12, stage 2). This is thought to indicate 613 

that initially, the thrust-blocks where in effectively “decoupled” from the underlying 614 

sediments, possibly indicating that the rate of subglacial meltwater being transmitted 615 

through the basal detachment temporarily exceeded the rate at which water was dissipated 616 

through the footwall sediments. The subaquatic setting might have aided this process as the 617 

footwall sediments will have been water saturated. 618 

Eventually, however, the presence/introduction of highly permeable sand and gravel within 619 

the footwall of the thrust is thought to have resulted in the dewatering of this basal 620 

detachment. The reduction of the porewater content/pressure within this detachment will 621 

have led to an increase in the cohesive strength of the sediments within this zone leading to 622 

an increase in friction drag between the allochthonous thrust-block (hanging-wall) and the 623 

underlying footwall sediments. This process would have resulted in the locking-up of the 624 

basal décollement and accretion of the thrust-block onto the up-ice side of the evolving 625 

glaciotectonic landform (Fig. 12, stage 3).  626 
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The northwards increase in the relative intensity of deformation (folding, faulting) within 627 

the up-ice sections of both the Ásgil and Melaleiti moraines is consistent with an increase in 628 

the amount of shearing within the structurally deeper parts of the evolving glaciotectonic 629 

landforms (Fig. 12, stage 3). Detailed analysis of the thin sections taken from both from the 630 

base of the thrust-blocks and the footwall sediments within the structurally deeper parts of 631 

the moraines reveal that this deformation involved a complex interplay between ductile 632 

shearing (folding and faulting) and sediment liquefaction, injection, hydrofracturing and 633 

brecciation (Fig. 12, stage 3).  634 

Large hydrofractures formed within the Ásgil moraine during this phase, especially within 635 

the inner part of the moraine, extend from the sands and gravels in the footwall, cutting 636 

upwards into the overlying thrust-block. This field evidence suggests that this phase of 637 

hydrofracturing and water escape post-dated the emplacement of the structurally lower 638 

thrust-block within the moraine. This may be used to suggest that the pressures within the 639 

subglacial hydrogeological system were increasing during glacitectonism, possibly due to 640 

increasing overburden pressures during the displacement and accretion of the thrust-blocks 641 

onto the up-ice side of the evolving glaciotectonic moriane. Alternatively, the impermeable 642 

sediment within the large thrust-blocks, coupled with the deposition of an ice-marginal 643 

fan/apron, may have also impeded the escape of meltwater water from beneath the ice 644 

margin, resulting in an increased hydrostatic pressure within the subglacial hydrogeological 645 

system.  646 

 647 

Stage 4: Emplacement  648 
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The combination of a fall in water pressures within the deforming sediments coupled with 649 

fluid escape towards the leading edge of the evolving thrust stack would have resulted in 650 

dewatering of deforming sediment pile (Fig. 12, stage 4). This would have led to continued 651 

increased friction between the base of the thrust-blocks and underlying deposits (Phillips et 652 

al., 2007; Benediktsson et al., 2008, 2010) leading to the progressive cessation of 653 

displacement of the allochthonous blocks and their accretion onto the up-ice side of the 654 

evolving thrust-block moraine. At both Ásgil and Melaleiti the earlier formed ductile 655 

deformation structures (folds and shears) are post-dated by later faulting and thrusting, 656 

recording a switch from ductile to brittle deformation associated with the dewatering of the 657 

deforming sequence. The cross-cutting relationship between the faults and the 658 

detachments at the base of the thrust-blocks clearly indicate that these moderate to high-659 

angle brittle structures developed both prior to, and after the final emplacement of the 660 

thrust-blocks. At Ásgil, most of the faults are small and only record minor displacement (up 661 

to few dm). However at Melaleiti, larger scale faults and subhorizontal shears were 662 

observed cross-cutting the earlier developed ductile structures developed within the high-663 

strain zone marking the base of the thrust-blocks. Most of the faults dip towards the 664 

southeast (down-ice) consistent with these faults having formed as down-ice dipping Reidel 665 

shears in response to simple shear (c.f. Phillips and Lee, 2011), possibly imposed by the 666 

overriding, structurally higher thrust-block as it “slid over” the underlying thrust-block which 667 

was already emplaced into the moraine.  668 

 669 

Stage 5: Overriding  670 
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Field evidence suggests that the glacier overrode the Melaleiti moraine, accompanied by the 671 

deposition of the coarse-grained meltwater deposits at the base of the overlying ice mass 672 

(Fig. 12; stage 5) (Sigfúsdóttir et al., 2018). The water eroded the uppermost part of the 673 

moraine. However, sedimentary features and structures formed by thrusting are well-674 

preserved indicating that the moraine did not experience extensive subglacial deformation 675 

during the overriding. Possibly high water pressures at the base of the glacier minimised 676 

transmission of shear into the underlying deposits allowing the preservation of the 677 

underlying landforms.  678 

 679 

Wider implications 680 

Blocks of sediments that have been detached and transported by glaciers are widespread in 681 

past glaciated regions, both in the terrestrial and marine environment (Bluemle and Clayton, 682 

1984; Ruszczynska-Szenajch, 1987; Aber and Ber, 2007; Phillips and Merritt, 2008; Benn and 683 

Evans, 2010; Vaughan-Hirch et al., 2013; Rüther et al., 2013; Vaughan-Hirsch and Phillips, 684 

2017). For example, they can occur as isolated sediment or bedrock megablocks or rafts 685 

scattered over large areas (Aber and Ber, 2007; Rüther et al., 2013; Vaughan-Hirsch et al., 686 

2013; Benn and Evans, 2010) or, stacked with deformed sediments to form a range of 687 

glaciotectonic landforms comparable to the moraines observed at Melasveit (Croot, 1987; 688 

Huddart and Hambrey, 1996; Pedersen, 2005; Bennett, 2001; Benediktsson et al., 2008, 689 

2010; Burke et al., 2009; Vaughan-Hirsch and Phillips, 2017; Phillips et al., 2017). The 690 

Melaleiti and Ásgil moraines can be both classified as thrust-block moraines (see Benn and 691 

Evans and references therein) and are characterised by are number of stacked, low-692 

angle/subhorizontal thrust-blocks which show very little evidence of large-scale folding. The 693 
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geometry of the moraines is typical for moraines formed by low-frictional sliding, supported 694 

by the relatively rigid nature of the thrust-block deposits (van der Wateren, 1995; Huddart 695 

and Hambrey, 1996; Boulton et al., 1999; Bennett, 2001). Although it has been shown that 696 

presence of pressurised water along décollements/thrust-planes is important for forward 697 

movement of sediment blocks/thrust-blocks both in subglacial and ice-marginal setting 698 

(Moran et al., 1980; van der Wateren, 1985; Broster and Seaman, 1991; Boulton and Caban 699 

1995; Pedersen, 2005; Kjær et al., 2006; Benediktsson et al., 2008, 2015; Phillips and 700 

Merritt, 2008; Vaughan-Hirsch and Phillips, 2017; Phillips et al., 2017) Only few studies have 701 

dealt with the detailed, microscale events taking place along major detachments (Phillips 702 

and Merritt, 2008; Vaughan-Hirsch et al., 2013) hampering our understanding on the 703 

conditions governing the detachments and dislocation of such sediment blocks. The 704 

microscale structures investigated in this study record processes that occurred during 705 

detachment, transport and accretion of large sediment blocks found within thrust-block 706 

moraines. In summary it shows that the presence of over-pressurised porewater within 707 

detachments play key role in the transport. Furthermore, this study provides clear evidence 708 

for preservation of the unfrozen and unlithified sediment blocks during glaciotectonic 709 

thrusting. 710 

 711 

CONCLUSIONS 712 

In this paper we proposed a detailed structural model for processes occurring during 713 

glaciotectonic thrusting based on micro-scale study of detachments within two ice-marginal 714 

thrust-block moraines.  715 
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 The initial detachment of the sediment blocks most-likely took place in response of 716 

ice-push and gravity-spreading at the margins of the advancing glacier. Over-717 

pressurizing of groundwater relating to the advance lead to fluidisation of sorted silts 718 

and sand layers within the bedded/laminated glaciomarine sediments and formation 719 

of detachments along these water lubricated layers. 720 

 The transport of the sediment blocks was aided by continued elevated porewater 721 

pressures being maintained along the detachments resulting in repeated phases of 722 

sediment liquefaction. This minimised the amount of shear transmitted into the 723 

surroundings allowing the large unconsolidated and unfrozen sediment-blocks 724 

sediment blocks to be transported by the glacier.  725 

 Water pressures within the deforming sediment pile repeatedly exceeded the 726 

cohesive strength of these sediments during emplacement and the accretion of the 727 

thrust block resulting in hydrofracturing and fluid escape. That was followed by 728 

periodic partial draining and transmission of shear most notably in the structurally 729 

deeper parts of the evolving moraines where overburden pressures where higher 730 

and drainage more restricted. 731 

 The combination of a fall in water pressures within the deforming sediments coupled 732 

with fluid escape resulted in dewatering of the sediments. This leading to increased 733 

friction between the base of the thrust-blocks and underlying deposits causing 734 

increased brittle deformation (faulting) and lock-up of the thrust-blocks. 735 

 The hydrogeology along with the lithological characteristics of the deforming 736 

sediments played key in controlling the changing style of deformation during the 737 

detachment, transport of the sediment-blocks and in the accretion of the moraines. 738 

 739 
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 929 

FIGURES 930 

Figure 1. (a) The location of the Melasveit study area (black box) in western Iceland. The 931 

arrow indicates the ice flow into the area during the Late Weichselian. (b) A digital elevation 932 

model (Arctic DEM) of Melasveit. Thin black line represents the present coastline and the 933 

thick black lines denote the Melabakkar-Ásbakkar coastal cliffs. The red lines indicate the 934 

Melaleiti and Ásgil thrust-block moraines that are exposed in the cliffs. The curved, black 935 

solid line indicates the maximum extent of the Late Weichselian glacier advance from the 936 

north based on the configuration of the Skorholtsmelar end moraine. The dashed lines are 937 

an interpretation of the ice margin during different stages of a stepwise retreat, based on 938 

the location of buried moraines exposed in the coastal sections. (c) A photograph of the 939 

coastal section at Melaleiti. (d) A photograph of the coastal section at Ásgil. The moraine is 940 

exposed to the north (left side) of the ravine while associated submarine fan and overlying 941 

glaciomarine sediments are exposed on the southern side (right side) of the ravine. 942 

Figure 2. (a) A scale diagram and a LiDAR scan of the Ásgil thrust-block moraine and 943 

overlying deposits (modified from Sigfúsdóttir et al., 2018). The red boxes indicate the 944 

sample locations and the area covered by Figs. 3-5. The black boxes mark the locations of 945 

photographs b-d. The photographs show the detachment separating the thrust-block from 946 

the footwall sand and gravel below. (b) A photo of the basal detachment at southern part of 947 
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the Ásgil moraine. The deformation is focused within a ~50 cm thick zone at the base of the 948 

thrust-block while the underlying deposits are largely undeformed (unit B). (c) A photo 949 

taken at ~2570 showing elongated intraclasts (dashed outlines) within fluidised sand at the 950 

base of the thrust-block. Hydrofractures infilled by coarse sands extend upwards and dissect 951 

the overlying thrust-block. (d) A photo taken at ~2520 m. The lower boundaries of the 952 

thrust-block are diffused and deformed by folds and faults. A ~10 m high and 2 m thick 953 

clastic breccia extends upwards into the thrust-blocks, an evidence of high water pressures. 954 

Figure 3. (a) A section drawing showing the part of the detachment where samples Ásgil 1-5 955 

were collected. The location is marked on Fig. 2a. (b) A photograph of the part of the 956 

detachment where samples Ásgil 2, 4 and 5 were collected. (c) A photograph of locations of 957 

samples Ásgil 5. Note a trowel for scale. 958 

Figure 4. (a) A diagram showing the details of the basal detachment where samples Ásgil 6-8 959 

were collected. The sample location is marked in Fig. 2a. Note that this is a less detailed 960 

diagram than Fig. 3. (b) A photograph of the sampling location. 961 

Figure 5. (a) A diagram showing the basal detachment where samples Ásgil 9 and 10 were 962 

collected. The sample location is marked on Fig. 2a. Note that this is a less detailed diagram 963 

than Fig. 3. (b) A photograph of the sampling location. 964 

Figure 6. Interpretation diagrams and scans of thin sections Ásgil 1-5. These thin sections 965 

were collected from a deformed zone at the base of the lowermost thrust-block, close to 966 

the leading edge of the Ásgil moraine. Their relative location can be seen on Fig. 3. These 967 

thin sections are dominated by layered, fine-grained sediments that have undergone 968 

repeated phases of sediment liquefaction, injection and hydrofracturing. Samples Ásgil 4 (a), 969 
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Ásgil 2 (b) and Ásgil 3 (c) are characterised by hydrofractures formed sub-parallel to the 970 

stratification of the fine-grained host deposits. Sample Ásgil 1(d) shows the margins of a 971 

steep, breccia filled hydrofracture (d). Sample Ásgil 5 (e) shows the infilling of a 972 

subhorizontal, breccia filled hydrofracture.  973 

Figure 7. Interpretation diagrams and scans of thin sections Ásgil 8 (a) and Ásgil 10 (b). 974 

These thin sections were sampled from the base of the lowermost thrust block at a 975 

structurally deeper part of the moraine. The location of the thin sections can be seen on 976 

Figs. 4 and 5. They reveal fine grain, stratified sediments that have undergone alternating 977 

phases of shearing (folding, faulting) and hydrofracturing. 978 

Figure 8. Interpretation diagram and scans of samples Ásgil 6 (a) and Ásgil 7 (b). These thin 979 

sections were sampled from the base of the lowermost thrust block at a structurally deeper 980 

part of the moraine. The locations of the thin sections can be seen in Fig. 3-4. These thin 981 

section were sampled from large hydrofractures dissecting the fine-grained sediment 982 

forming the thrust-block  983 

Figure 9. (a) A scale diagram and a LiDAR scan of the Melaleiti thrust-block moraine 984 

(modified from Sigfúsdóttir et al., 2018). The red box indicates the sample locations and the 985 

area covered by Fig. 10. The black boxes on the LiDAR scan indicate the locations of photos 986 

b-d. The numbers on the section diagram indicate different thrust-blocks. (b) A photograph 987 

taken at ~140 m showing sharp lower contact (white dashed line) between a thrust-block 988 

above and the deformed silt and sand below. (c) A photograph taken at ~220 m showing 989 

faults dissecting the intrabedded silt and sand and the thrust-block above. The large normal 990 

fault seen in the middle part of the photo is infilled by massive sand (d) A close-up 991 
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photograph of the sediment-filled normal fault (hydrofracture) on Fig. c. The yellow scale is 992 

about 30 cm. 993 

Figure 10. (a) A diagram showing the part of the basal detachment where samples Mel 11 - 994 

16 were collected. The location is marked on Fig. 9a. (b) A photograph of the sampling 995 

location. 996 

Figure 11. Interpretation diagram of samples Mel 16 (a), Mel 14 (b) and Mel 11 (c) The 997 

samples were collected from bedded/laminated glaciomarine sand and silt/clay located 998 

below the thrust-block detachment. The sampling locations are marked on Figure 10. These 999 

thin sections reveal that the folded interlaminated sediments are cross-cut by 1000 

hydrofractures and faults/shears. 1001 

 Figure 12. A sequential model explaining the formation of the moraines. See text for 1002 

detailed description. Stage 1: As the glacier advanced across the sea-floor water pressures 1003 

rose within the marine sediments. Porewater pressures build up within silt sand layers 1004 

sealed between less permeable deposits. This caused liquifaction of the silt and sand 1005 

enabling large sediment blocks to decouple from the underling sediments/or bedrock. Stage 1006 

2. The sediment blocks were transported forward do to gravity spreading and ice-push. 1007 

Repeated phases of sediment liquifaction and injection occured along the earlier developed 1008 

detahcment resulting in formation of complex hydrofracture system along the base of the 1009 

sediment-blocks. The deformation associated with the tranport was focused within this 1010 

realtive thin, water lubricated zone. Stage 3. The dislocated thrust-blocks were stacked at 1011 

the ice-margins to form thrust-block moraines. The thrust-blocks were accreated on top of 1012 

highly-permeable deposits of sands and gravels. Initially the thrust-blocks slid over the 1013 

water-saturated sands and gravels without much internal deformation but with increased 1014 
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sediment draining and elevated overburden pressures the friction increased. This resulted in 1015 

folding and faulting separated by events of hydrofracturing and water escape. Stage 4. 1016 

Further draining of the sediments lead to brittle deformation (faulting) and lock-up of the 1017 

thrust blocks. Stage 5. The thrust-block moraine at Melaleiti was overriden. Water flowing 1018 

under the base of the glacier resulted in deposition of coarse gravel and eroded the 1019 

uppermost part of the moraine (Sigfúsdóttir et al., 2018). The Ásgil moraine shows no signs 1020 

of having been overridden.  1021 

Supplementary Figure 1. Interpretation diagram and scan of sample Ásgil 9. This thin section 1022 

was sampled from the lowermost thrust block at a structurally deeper part of the moraine. 1023 

The location of the thin sections can be seen in Fig. 4. 1024 

Supplementary Figure 2. Interpretation diagrams and scans of samples Mel 12 (a), Mel 13 1025 

(b) and Mel 15 (c). The samples were collected from bedded/laminated glaciomarine sand 1026 

and silt/clay located below the thrust-block detachment. The sampling locations are marked 1027 

on Figure 10. These thin sections reveal that the sand underwent fluidisation causing 1028 

brecciation of the clay-rich laminae. The sand is folded and the vergence of folds record 1029 

apparent sense of shearing towards the southeast. 1030 
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