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• Average global PIC turnover rate is estimated to be on the order of 7 days. 20 

• The Great Calcite Belt region strongly influences the seasonal and interannual variability 21 

of the global PIC standing stock. 22 

Index Terms: 0419 Biomineralization; 0428 Carbon cycling (4806); 0480 Remote sensing; 23 

4805 Biogeochemical cycles, processes and modeling; 4855 Phytoplankton  24 
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Abstract 25 

Coccolithophores are a biogeochemically important calcifying group of phytoplankton that exert 26 

significant influence on the global carbon cycle. They can modulate the air-sea flux of CO2 27 

through the processes of photosynthesis and calcification, and as one of the primary contributors 28 

to the oceanic particulate inorganic carbon (PIC) pool, promote the export of organic carbon to 29 

depth. Here we present the first inter-annually resolved, global analysis of PIC standing stock. 30 

Average, global PIC standing stock in the top 100m is estimated to be 27.04 ± 4.33 Tg PIC, with 31 

turnover times of ~7 days, which suggests PIC is likely removed by active processes such as 32 

grazing or rapid sinking, mediated through biogenic packaging (i.e., fecal pellets). We find that 33 

the southern hemisphere plays a significant role in the variability in PIC inventories and that 34 

inter-annual variability in PIC standing stock is driven primarily by variability in the mid-latitude 35 

oceanic gyres and regions within the Great Calcite Belt of the Southern Ocean. Our results 36 

provide a framework against which future changes in global PIC standing stocks may be 37 

assessed. 38 

1 Introduction 39 

1.1 Coccolithophores and the carbon cycle 40 

Coccolithophores are calcifying phytoplankton that influence the global carbon cycle 41 

through the production of particulate inorganic carbon (PIC), which can modify both the air-sea 42 

flux of CO2 and the export of carbon to depth (Rost & Riebesell, 2004). These single celled 43 

haptophyte algae produce an external covering (coccosphere) of interlocking calcium carbonate 44 

scales (coccoliths) and have been significant contributors to the carbonate cycle since the 45 

Jurassic period (Hay, 2004). As autotrophs, coccolithophores contribute to the biological carbon 46 

pump and the uptake of CO2 through the photosynthetic production of organic carbon. The 47 
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calcification process, however, results in the production of CO2, which can act in opposition to 48 

carbon sequestration by the biological carbon pump (Rost & Riebesell, 2004). Previous work 49 

(Harlay et al., 2010; Robertson et al., 1994; Shutler et al., 2013) has suggested that calcification 50 

during blooms of the coccolithophore Emiliania huxleyi might alter the air-sea flux of CO2, 51 

although to date, the impact of this has only been explored on a limited regional basis (Balch et 52 

al., 2016; Bates, 2017). 53 

Any change in CO2 uptake caused by calcification may be offset to some extent by enhanced 54 

transport of particulate organic carbon (POC) to depth. The transfer of detached coccoliths alone 55 

to the deep sea environment is an inefficient process given that their micron-diameter size is 56 

likely to result in a relatively slow settling velocity (~11–14 cm per day; (Balch, Kilpatrick, & 57 

Trees, 1996; Honjo, 1976)). In the deeper ocean, where the water column may be undersaturated 58 

with respect to calcium carbonate (Holligan & Robertson, 1996), such a slow rate of descent 59 

through the water column would increase exposure time, the efficiency of dissolution and 60 

effectively shorten the remineralization length scale. In addition, evidence from sediment traps 61 

suggests that coccoliths and coccospheres are more likely to be transported to depth when 62 

incorporated within faecal pellets or marine snow (Steinmetz, 1994). The relationship between 63 

the flux of sinking organic matter and mineral fluxes, in particular fluxes of calcium carbonate 64 

(Klaas & Archer, 2002), suggests that the aggregation of PIC with organic particles may be 65 

beneficial for the efficient export of carbon (Armstrong et al., 2002). Such ballasting could 66 

increase sinking speeds and hence the export efficiency of both the inorganic and organic carbon 67 

(Bach et al., 2016). If mineral ballasting does indeed enhance the flux of organic carbon (Bach et 68 

al., 2016; Klaas & Archer, 2002; Sanders et al., 2010), areas of high PIC standing stock may 69 

represent regions of increased carbon sequestration to the deep sea or possibly to the sediments. 70 
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 Calcifying organisms, such as coccolithophores, are thought to be at risk from decreasing 71 

oceanic pH, known as ocean acidification (Bach et al., 2015; Doney et al., 2009). The impact of 72 

climate change on these key biogeochemically-relevant organisms, however, is not straight 73 

forward, with apparently contradictory laboratory responses to decreasing pH (Iglesias-74 

Rodriguez et al., 2008; Riebesell et al., 2000) and time-series observations that suggest both 75 

decreased calcification (Freeman & Lovenduski, 2015) and increased coccolithophore abundance 76 

(Rivero-Calle et al., 2015) over recent decades, despite decreasing ocean pH.  77 

Given the biogeochemical significance of coccolithophores and the potential for them to act 78 

as sentinels for the effects of climate change, accurate estimates of PIC standing stocks and 79 

assessments of associated inter-annual variability are needed to provide a benchmark for longer-80 

term studies. In addition, a contemporary estimate of PIC inventory is fundamental for our 81 

understanding of PIC turnover in the global ocean and its implications for the carbon cycle. 82 

1.2 Satellite detection of coccolithophores 83 

Satellite observations of coccolithophore blooms date back to the advent of ocean colour 84 

remote sensing (Le Fevre et al., 1983; Holligan et al., 1983). In Case I waters, where the optical 85 

properties are driven primarily by those of water and phytoplankton rather than non-86 

phytoplanktonic sources (Mobley, 1994), blooms of coccolithophores (e.g. E. huxleyi) can result 87 

in patches of high reflectivity and associated unique optical characteristics (Balch, Kilpatrick, 88 

Holligan, et al., 1996) that can be used to estimate PIC concentration. Ocean colour satellite- 89 

acquired PIC concentration is currently derived from a merged two-band (Balch et al., 2005) or 90 

three-band (Gordon et al., 2001) algorithm. A previous estimate of  global PIC standing stock 91 

used radiometric data for 2002 from the Moderate Resolution Imaging Spectroradiometer 92 

(MODIS) sensor on-board NASA’s TERRA satellite (Balch et al., 2005). Seasonally averaged 93 
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PIC concentration data were integrated uniformly over euphotic zone depth and 10˚ latitudinal 94 

bands to establish a global PIC standing stock estimate of 18.8 ± 2.56 Tg PIC (Balch et al., 95 

2005).  These data showed that the majority of the PIC standing stock was associated with the 96 

Westerlies and Trades biomes (Longhurst, 1998), and that coastal provinces made comparatively 97 

lower contributions to the global PIC inventory compared to open ocean regions (Balch et al., 98 

2005). The study also identified an area in the Southern Ocean that made a relatively large 99 

contribution to the global PIC inventory between October and March, geographically located 100 

north of the Polar Front and south of the Subtropical Front, with highest PIC concentrations over 101 

the Patagonian Shelf, decreasing to the east from the Atlantic, Indian, Australian and Pacific 102 

sectors of the Southern Ocean. This region, now referred to as the Great Calcite Belt (GCB), was 103 

later shown to be associated with elevated concentrations of coccolithophores and detached 104 

coccoliths (Balch et al., 2011, 2014).  105 

Here, we revisit the first global PIC estimates of Balch et al. (2005) and take advantage of 106 

a multi-year (2003-2014) AQUA MODIS dataset of satellite derived PIC concentration and an 107 

empirically-derived relationship between surface and depth-integrated water column PIC 108 

concentration (Balch et al., 2018). We use this to generate a contemporary estimate for depth-109 

integrated global PIC standing stock and, for the first time, multiyear estimates of the spatial and 110 

temporal variability in the global oceanic PIC inventory.   111 

2 Materials and Methods 112 

2.1 Satellite detection of PIC 113 

Global, level 3, mapped, monthly AQUA MODIS 9 km PIC data (R2014.0 reprocessing) 114 

for the years 2003 to 2014 were downloaded from the NASA Ocean Color data repository 115 

(http://oceandata.sci.gsfc.nasa.gov/). In order to maximize computational efficiency, these 116 
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datasets were resized to one degree by one degree spatial resolution using nearest neighbour 117 

interpolation. The method currently used to estimate PIC concentration from remotely sensed 118 

measurements uses a combined two-band or three-band algorithm (Balch et al., 2005; Gordon et 119 

al., 2001). The PIC algorithm is generally considered to be a Case I algorithm (Balch et al., 2005; 120 

Morel & Prieur, 1977). The optical properties of Case I waters are correlated with phytoplankton 121 

and their associated by-products, whereas in Case II waters, retrievals can be influenced by other 122 

constituents, such as suspended sediments. We have therefore chosen to exclude satellite derived 123 

data obtained from water column depths of less than 200 m and focus our interpretation of the 124 

output from our model to the open ocean (i.e. Case I waters only). The error of the monthly-125 

binned, 1°-spatially binned, surface PIC estimates was ±0.024 ug PIC per liter (i.e. ±0.002mmol 126 

m-3; see table 2 in Balch et al. (2005)).   127 

2.2 Vertical structure in coccolithophore PIC standing stock 128 

In order to derive an estimate of PIC standing stock, the masked 1˚ by 1˚ pixel average 129 

PIC concentration (moles C m-3) was integrated over depth. When contemplating the appropriate 130 

depth parameter to integrate over, consideration must be given to whether light availability (i.e. 131 

euphotic depth) or mixing (i.e. mixed layer depth) has the biggest influence on the distribution of 132 

coccolithophores and the production and distribution of coccoliths through the water column. 133 

Previous work (Balch et al., 2005) integrated PIC concentration uniformly over the euphotic 134 

zone depth (in the absence of vertical information on the PIC distributions). Here, however, we 135 

made use of a new empirical relationship (Eq. 1) derived from a global data set of field 136 

observations, collected over 17 cruises and every major ocean basin, of in situ water column and 137 

surface PIC concentrations (Balch et al., 2018). This global relationship integrates surface 138 

satellite PIC concentration to 100 m depth and reflects the influence of both biological and 139 
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physical processes (e.g. reduced photosynthesis and light reduction with depth) and as such, is 140 

likely to be more accurate than simple integration assuming uniform profiles: 141 

 142 

 𝑃𝑃𝑃𝑃𝑃𝑃100𝑚𝑚[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃 𝑚𝑚−2] = 40.555 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃 𝑚𝑚−3]0.560    (Eq.1) 143 

The RMS error of this equation is ±0.233 log units (Balch et al., 2018; see their table 2). 144 

Depth integrated PIC concentration was then converted from molar units to a mass standing 145 

stock (g C m-2). Total global standing stock (in units of Tg C) was determined by multiplying 146 

standing stock by the latitudinally varying area of each 1˚ by 1˚ pixel. 147 

2.3 Longhurst biogeochemical provinces 148 

In order to assess regional variability in global PIC inventory, standing stock data were 149 

sub-divided into Longhurst provinces using a shape file 150 

(www.marineregions.org/downloads.php). Longhurst (1998) provinces divide the global ocean 151 

initially into four biomes (Polar, Westerlies, Trades and Coastal) that differ in terms of water 152 

column stability, nutrient availability and light levels. These biomes are further separated into 54 153 

provinces based on biological and oceanographic parameters such as chlorophyll distribution, 154 

mixed layer depth and euphotic zone depth (Longhurst, 1998). Given our decision to exclude 155 

data from water depths <200m, averaged data for provinces that occur close to the coast will 156 

contain only data from depths in excess of the bathymetric mask.  157 

2.4 Assessing seasonal variability and ranking of provincial influences 158 

Seasonal variability was assessed using the coefficient of variation (standard deviation 159 

divided by the mean of the 12 years of monthly data) in PIC standing stock for each province. In 160 

addition, monthly climatologies of PIC standing stock were determined from the arithmetic mean 161 

of 12 years (2003-2014) of monthly standing stock data.  Global inter-annual variability in PIC 162 
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standing stock was determined by subtracting the global climatological mean seasonal cycle 163 

from the corresponding time series of monthly mean global PIC standing stock data for 2003 to 164 

2014. Inter-annual variability for each province was similarly calculated and compared to this 165 

global estimate of inter-annual variability using the Pearson product-moment correlation 166 

coefficient. This enabled an objective ranking of the degree to which each province influences 167 

global PIC standing stock inter-annual variability, with provinces that have a higher correlation 168 

coefficient being deemed more influential to overall global inter-annual variability than 169 

provinces with lower coefficients.  170 

3 Results 171 

3.1 Spatial- temporal variability of integrated PIC  172 

 Spatial and temporal variability in monthly climatologies of integrated PIC standing 173 

stock are shown in Figure 1. Standing stocks of PIC in the southern hemisphere begin to increase 174 

in October with evidence of relatively high (>0.2 g C m-2) inventories developing predominantly 175 

off the coasts of Chile and Namibia. The spatial extent of these areas evolves through November, 176 

with relatively high PIC standing stocks extending out across the southern sub-tropical Pacific 177 

and Atlantic. The beginnings of a band of relatively high PIC inventory can be observed 178 

straddling the region where the South Atlantic, Indian and South Pacific Oceans meets the 179 

Southern Ocean. The magnitude and extent of this band develops further in December and 180 

advances poleward into the Southern Ocean.  181 

 The relatively high PIC standing stocks observed initially off the coasts of Chile and 182 

Namibia begin to decline in January, however the band that encircles the globe below ~40°S (the 183 

GCB) persists into February and to a lesser extent in March. There is evidence of relatively high 184 

PIC standing stocks (> ~0.2 g m-2) beginning to develop in the high latitude North Atlantic in 185 
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May, which reach their greatest extent and magnitude (> ~0.4 g C m-2) by June. It is also at this 186 

time that PIC standing stocks begin to develop in the North Pacific. Whilst PIC inventories start 187 

to decline in the North Atlantic in July and August, they continue to develop in the North Pacific 188 

through August and persist until September. 189 

The average monthly global PIC standing stock for years 2003 to 2014 is estimated to be 27.04 ± 190 

4.33 Tg C (± 1 standard deviation; Table 1). Highest average, monthly global PIC inventory is 191 

observed in January (34.05 Tg C) with the lowest recorded in June (22.01 Tg C), both extremes 192 

are within two standard deviations of the mean (hence, the monthly variability is not 193 

significantly different from the mean at a 95% confidence level). A time series of 100m-194 

integrated global PIC shows annual cycles of PIC, with highest values observed near the 195 

beginning of the austral summer and minima near the beginning of the austral winter (Fig. 2).  196 

We explore the influence that each Longhurst province has on seasonal variability by correlating 197 

the time series data from each province with the global, mean time series of data (Figure 3).  This 198 

highlights a hemispherical imbalance in PIC standing stock which is evident when the global 199 

total PIC inventory is viewed over time (Figure 2). The lesser influence of standing stocks in the 200 

northern hemisphere during the boreal summer (June to August) compared to those observed 201 

during the austral summer (December to February), relative to the total global PIC standing 202 

stock, is clear.  203 

3.2 Regional contributions to the global PIC signal and temporal anomalies 204 

 The difference in contributions to global PIC standing stock are further emphasized in 205 

Figure 3. Here we compare PIC standing stock time series data from each province to the global 206 

total PIC standing stock time series using correlation coefficients. The southern hemisphere 207 

regions are generally positively correlated with the total global PIC standing stock whilst those in 208 
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the northern hemisphere tend to be negatively correlated. These high correlation coefficients are 209 

likely driven by the strong seasonal cycle in global and regional PIC concentrations. In terms of 210 

temporal variability in the PIC inventory time series data between 2003 to 2014, our results show 211 

that the highest coefficient of variation (standard deviation/mean) is observed predominantly in 212 

provinces in the high latitudes with those in the mid- and lower latitudes appearing to have 213 

relatively weak seasonal variability (Figure 4).  Some of the lowest coefficients of variation are 214 

observed in the oceanic gyre provinces (e.g. provinces 7, 22, 23, 35, 37 and 38). Our results 215 

suggest that there is little seasonal variability in PIC standing stocks here. 216 

  We use 12 years of monthly PIC standing stock anomalies to assess the influence that 217 

each province has on inter-annual variability in global PIC standing stock (Figure 5). These 218 

anomaly data suggest that global PIC standing stocks were generally lower than the mean global 219 

climatology prior to 2008, increased relative to the climatology between 2008 and 2014 and 220 

show evidence of a decline again after 2014. We further assess the contribution that inter-annual 221 

variability in PIC standing stock from each province makes relative to the global time series of 222 

100m-integrated PIC standing stock (Fig. 6).  Globally, the Southern Ocean appears to be highly 223 

influential in regard to global PIC standing stock inter-annual variability. In terms of key regions, 224 

PIC standing stock anomalies from the Indian Southern Subtropical Gyre (23), North Pacific 225 

Equatorial Countercurrent (39), West Pacific Warm Pool, South Pacific Subtropical Gyre (37), 226 

Sub-Antarctic (52) and Antarctic (53) provinces have the highest correlations with global PIC 227 

standing stock anomalies. Provinces from the northern hemisphere are less correlated with global 228 

PIC standing stock anomalies than provinces from the southern hemisphere suggesting that the 229 

northern hemisphere has a lesser influence on global inter-annual variability in PIC inventory 230 

than the southern hemisphere.  231 
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4 Discussion 232 

4.1 Extending surface PIC concentrations to depth and the global inventory 233 

Early work developing phytoplankton biomass estimates from satellite-derived data 234 

integrated surface estimates of chlorophyll to 1 m depth, as no reliable method existed at that 235 

time to extend those data further down the water column (Yoder et al., 1993). Our global 236 

analysis of PIC standing stock variability utilizes a unique relationship, developed from an 237 

extensive database of in situ measurements, to extend surface satellite PIC concentration data to 238 

100 m depth. Techniques such as integrating satellite chlorophyll data over the mixed layer depth 239 

(e.g. Brown et al., 1997) or PIC data over the euphotic zone depth (e.g. Balch et al., 2005) was 240 

previously employed to extend surface estimates to depth. However, in the absence of 241 

information on the vertical distribution pattern of PIC, previous work involved the assumption 242 

that surface concentration was uniformly distributed over depth. The empirical relationship used 243 

here provides a more robust representation of the global surface to depth relationship of PIC 244 

concentration and follows similar work that used relationships developed from depth profiles of 245 

chlorophyll concentration to integrate surface values to depth (Balch et al., 1992; Behrenfeld et 246 

al., 2006; Morel, 1988; Platt et al., 1988; Platt & Herman, 1983).  The decision to use the 247 

surface-depth relationship developed by Balch et al. (2018) over other depth integrals (e.g. mixed 248 

layer depth or euphotic depth) represents an advance on previous work that assumed 249 

homogenous PIC distribution with depth. The choice of 100 m integration depth is justified in 250 

Balch et al., (2018) as being the depth that produces the coefficients that closest match those of 251 

the euphotic zone integrations of in situ data for global data sets. 252 

Our estimate of global, monthly average PIC standing stock of 27.04 ± 4.33 Tg C is 253 

~40% higher than the previous estimate of global PIC standing stock derived from satellite data 254 
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(Balch et al., 2005), which may be due to methodological differences. The previous assessment 255 

used radiance data derived from TERRA MODIS with the 2-band PIC algorithm used to 256 

determine PIC concentration. In addition, the data were binned seasonally over 10º bands and 257 

integrated uniformly over the depth of the euphotic zone. Our estimate used monthly AQUA 258 

MODIS PIC concentration data derived from the merged PIC algorithm (R2014.0 reprocessing), 259 

integrated over 1º spatial bins and to 100 m depth using the above-noted empirical surface to 260 

depth relationship. We believe our estimate to be more representative as it is based on four 261 

factors: (a) a longer time-series of data; (b) higher spatial resolution averaging; (c) the merged 2- 262 

and 3- band algorithm, the coefficients of which have been refined over the years through 263 

increased shipboard validation; and (d) the above empirically-derived relationship for integrating 264 

surface PIC concentrations to depth. However, it should be noted that monthly composite 265 

satellite data are derived from the average of a variable number of observations per month, 266 

dependent upon the number of overpasses, amount of cloud cover, and sun angle. Therefore, in 267 

some areas, these monthly averages will have been derived from variable numbers of 268 

observations (e.g. some regions will have lower numbers of binned observations in the monthly 269 

mean than others).  270 

4.2 Turnover of PIC in the upper 100m of the sea 271 

Recently, Hopkins and Balch (2018) produced new integrated global calcification rate 272 

estimates using an algorithm based on coccolithophore ecophysiology principals, rather than 273 

empirically-derived relationships based on shipboard measurements (e.g. Balch et al., 2007).  274 

Our recently-published global calcification rate estimate was 1.43 Pg PIC yr-1 (Hopkins & Balch, 275 

2018).  Dividing the above-discussed average global PIC standing stock (27.04Tg) by the 276 

average global calcification rate, and assuming quasi-steady state, gives an average turnover time 277 
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of 6.95d , which is almost identical to an earlier estimate of 6.86 days (Balch et al., 2005).  278 

Turnover times for PIC calculated from in situ data range from 3-7 days (Poulton et al., 2006, 279 

2013).  Estimates from seven major field campaigns ranged from ~7-50d (Balch et al., 2007). 280 

Long turn-over times of PIC, on the order of tens of days, would be suggestive of low ballasted, 281 

slow-sinking particles. On the other hand, rapid turnover rates of PIC, at time scales of days (as 282 

indicated here by these remotely-sensed data) would suggest active, rather than passive, removal 283 

processes (Poulton et al., 2007) for example, grazing by zooplankton (Mayers et al., 2018) or 284 

aggregation into large, well-ballasted, fast sinking particles. This observation also agrees with 285 

other work (Honjo et al., 2008) that suggests that the dominant removal process for PIC in the 286 

global ocean may not simply be independent sinking or in situ dissolution of coccoliths.  287 

We can also generate a visual representation of the spatial variability of PIC turnover 288 

times in each Longhurst province (Fig. 7). Our analysis shows that across the majority of the 289 

global ocean, turnover times are relatively rapid (~5 days), however across the Indian Ocean and 290 

extending out from the central West Pacific, turnover times can slow to longer than 15 days 291 

(similar to the longer turnover times observed by Balch et al. (2007)).  Long turnover rates 292 

observed in the high latitudes may also be due to poorer statistics for calcification rate 293 

determinations (and indeed, standing stock determinations) due to fewer reliable satellite 294 

retrievals in regions with persistent cloud cover and low sun angles.  295 

Just how well, though, do these turnover times, derived from space-based measurements, 296 

compare with measured PIC residence times? Using 14C-derived calcification rate measurements 297 

and PIC standing stock measurements taken along an equatorial transect at 140˚W, Balch and 298 

Kilpatrick (1996) estimated PIC residence times to be 3-15 days. Our average estimates of 299 

turnover times from the Longhurst provinces closest to the area sampled (39 – N. Pacific 300 
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Equatorial Countercurrent; 40 – Pacific Equatorial Divergence) are 9.3 and 7.1 days respectively. 301 

In the Atlantic Ocean, PIC residence times are estimated to be on the order of 3 days (range <1 to 302 

6.8 days) from 40˚S to ~50˚N (Poulton et al., 2006). Our turnover estimates from the provinces 303 

that cover the cruise track for these data (18 – N. Atlantic Subtropical Gyre (East); 7 – N. 304 

Atlantic Subtropical Gyre; 8 – Western Tropical Atlantic; 10 – South Atlantic Gyre) are 4-8 305 

days. It should be noted that our estimates are derived from annual averages and thus may miss 306 

the short temporal scale and small spatial scale variability expected in the natural environment. 307 

However, our estimates are within the ranges measured in situ. The median turnover time from 308 

the data in Fig.7 is 6.6 days in line with the estimates of Balch et al., (2005) and that estimated 309 

using alternative calcification rate data (Balch et al., 2005). 310 

4.3 PIC disparities between hemispheres 311 

Our monthly estimates of global spatial (Fig. 1) and temporal (Fig. 2) variability in PIC 312 

standing stocks highlight a disparity between hemispheres. There is evidence of higher PIC 313 

standing stocks associated with regions mainly within the southern hemisphere (Fig. 2), which 314 

are likely the result of there being a larger open ocean area there. The band of relatively high PIC 315 

standing stock that encircles the Southern Ocean, north of the Polar Front and south of the 316 

Subtropical Front, from November to March (Fig. 1) corresponds with the location of the GCB 317 

(Balch et al., 2011, 2014). The influence of this region on global PIC standing stock estimates is 318 

emphasized when PIC standing stocks are considered in terms of Longhurst provinces. Within 319 

the GCB, regions such as the Southern Subtropical Convergence (51) and Sub-Antarctic (52) are 320 

associated with relatively high average PIC standing stocks during the austral spring and summer 321 

(Fig. 1) that are comparable in magnitude to regions from the high latitude northern hemisphere 322 

such as the Atlantic Arctic (2), the Atlantic Subarctic (3) and North Atlantic Drift (4) provinces, 323 
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regions that are often synonymous with large-scale blooms of coccolithophores (Brown & 324 

Yoder, 1994; Holligan et al., 1993; Shutler et al., 2013). In addition, time series of PIC standing 325 

stock data from provinces within the GCB are strongly correlated with the total, global PIC 326 

standing stock time series (Fig. 3), suggesting that this region is highly influential on the global 327 

ocean seasonal standing stock variability. 328 

4.4 Potential influence of Case II coastal waters on PIC concentrations 329 

We have chosen to exclude immediate coastal waters from this analysis using a 200 m 330 

bathymetric mask, which means that the global estimates presented here are likely to be 331 

conservative. In addition, there is evidence of relatively high PIC concentrations in the area 332 

immediately adjacent to Antarctica, especially over the Antarctic shelf, which should also be 333 

treated with caution. These waters would include the Austral Polar province (54) and to some 334 

extent, the Antarctic province (53).  It has been reported that E. huxleyi abundance is typically 335 

low in the high latitude Southern Ocean (Charalampopoulou et al., 2016; Holligan et al., 2010) 336 

and  other phenomena such as highly-reflective glacial flour or reflective loose ice could produce 337 

sufficient reflectance to adversely overestimate satellite PIC retrievals in this specific region 338 

(Balch et al., 2011; Balch, 2018; Trull et al., 2018). High latitude Phaeocystis blooms might also  339 

abnormally elevate the reflectance (Alvain et al., 2008). Note, though, that the provenance of the 340 

highly-reflecting material in these waters near the coast of Antarctica is still not known and these 341 

areas should not be considered part of the GCB.  342 

 It is somewhat difficult to assess the impact that excluding Case II waters has on our 343 

estimate. On the one hand coccolithophore blooms have been widely reported in coastal regions 344 

(e.g. Balch et al., 1991; Poulton et al., 2013), however the impact that resuspended material may 345 

have on satellite-derived PIC estimates is difficult to quantify (Mitchell et al., 2016). By 346 
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choosing to exclude Case II waters, we believe our estimate to be a conservative one and 347 

highlights the need for further research into satellite derived observations in coastal regions (e.g. 348 

see Kopelevich et al., (2014) for an example of a coastal coccolithophore algorithm that takes 349 

into account both the abundance of coccolithophores and the influence of local river input of 350 

suspended material). 351 

4.5 Major regional influences on the global PIC  352 

The predominant regions that appear to influence global inter-annual variability in PIC 353 

standing stocks are largely ocean gyre regions such as the South Atlantic Gyre (10), the North 354 

Pacific Tropical Gyre (38) and the North (35) and South (37) Pacific Subtropical Gyre provinces. 355 

These typically low productivity regions tend to have relatively low surface PIC concentrations 356 

but subsurface PIC maxima in the upper 100m (Balch et al., 2018). Thus, subsurface maxima 357 

combined with the sheer size of these provinces could be major factors influencing inter-annual 358 

variability in the global PIC inventory. The actual driver (or drivers) of inter-annual variability, 359 

though, remain unclear as attempts to correlate global and individual province anomaly data with 360 

indices of climate-scale variability, such as the Multivariate ENSO Index, North Atlantic 361 

Oscillation, Southern Ocean Index and Pacific Decadal Oscillation, were inconclusive (data not 362 

shown). 363 

Our results suggest that provinces from the Polar and Westerlies biomes are associated 364 

with some of the highest PIC standing stocks (Fig. 1). We also find that provinces from the 365 

Westerlies and Trade biomes exhibit the highest correlation with global PIC standing stock 366 

anomalies (cf. Balch et al., 2005).  Provinces from the GCB appear to be driving much of the 367 

inter-annual variability observed in global PIC inventories (Fig. 6). In terms of identifying the 368 

source of  such high PIC standing stock estimates, the area associated with the Southwest 369 
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Atlantic Shelves province (20) has previously been shown to be associated with some of the 370 

highest coccolithophore concentrations found in the Southern Ocean (Balch et al., 2014; Smith et 371 

al., 2017). Observations of coccolithophore populations across the Pacific sector of the Southern 372 

Ocean (Saavedra-Pellitero et al., 2014) suggest that coccolithophores are responsible for the 373 

elevated PIC standing stocks and associated inter-annual variability observed across provinces 374 

that make up the GCB.  375 

4.6 Concluding remarks 376 

 This study has used a novel relationship between surface and depth integrated PIC 377 

concentration to extend surface measurements to 100m depth, and as such provides a 378 

contemporary estimate of integrated PIC standing stock in the global ocean. The southern 379 

hemisphere appears to play a significant role in the temporal and spatial variability in PIC 380 

standing stock, with a large number of Southern Ocean provinces exhibiting a strong positive 381 

correlation with global PIC standing stock over inter-annual time scales. Our results suggest that 382 

this relatively large area of ocean may have a greater influence on PIC standing stocks than the 383 

northern hemisphere. In particular we note the influence of the GCB, which appears to have a 384 

significant influence on global PIC standing stock variability. Observations suggest PIC 385 

concentrations may be declining in this area (Freeman & Lovenduski, 2015) and our results 386 

suggest any such changes, particularly within regions of  the southern hemisphere (e.g. GCB), 387 

could have global implications for PIC standing stocks and thus potentially, the carbon cycle. 388 

Whilst our work has not been conducted on the time scales required to identify trends caused by 389 

climate change (e.g. ~40 years; Henson et al., 2010), it serves as a baseline against which future 390 

shifts in PIC standing stock can be assessed. 391 



Confidential manuscript revised for Global Biogeochemical Cycles 

 19 

Acknowledgments, Samples, and Data 392 

The authors wish to thank the NASA Ocean Biology Processing Group at the Goddard Space 393 

Flight Center (Maryland, USA) for the production and access to the ocean color data used in this 394 

analysis (http://oceancolor.gsfc.nasa.gov). We would also like to thank Bruce Bowler, Dave 395 

Drapeau, Laura Lubelczyk, Emily Lyczskowski and Catherine Mitchell for their efforts in the 396 

collection of in situ data that was used to generate the surface to water column PIC relationship.  397 

Satellite data used in this paper are available from https://oceancolor.gsfc.nasa.gov.  In situ 398 

calcification rate data are available from https://seabass.gsfc.nasa.gov.  They can also be found at 399 

PANGEA (https://www.pangaea.de/) under https://doi.org/10.1594/PANGAEA.888182 (Daniels 400 

et al., 2018; Poulton et al., 2018).  J.H. and W.M.B. were supported by NASA grants 401 

NNX14AL92G, NNX14AQ43A, NNX14AQ41G, and 80NSSC19K0043 to W.M.B. 402 

 403 

References 404 

Alvain, S., Moulin, C., Dandonneau, Y., & Loisel, H. (2008). Seasonal distribution and 405 

succession of dominant phytoplankton groups in the global ocean: A satellite view. Global 406 

Biogeochemical Cycles, 22(3), 1–15. https://doi.org/10.1029/2007GB003154 407 

Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S., & Wakeham, S. G. (2002). A new, 408 

mechanistic model for organic carbon fluxes in the ocean based on the quantitative 409 

association of POC with ballast minerals. Deep Sea Research II, 49, 219–236. 410 

Bach, L. T., Boxhammer, T., Larsen, A., Hildebrandt, N., Schulz, K. G., & Riebesell, U. (2016). 411 

Influence of plankton community structure on the sinking velocity of marine aggregates. 412 

Global Biogeochemical Cycles, 30(8), 1145–1165. https://doi.org/10.1002/2016GB005372 413 

Bach, L. T., Riebesell, U., Gutowska, M. A., Federwisch, L., & Schulz, K. G. (2015). A unifying 414 



Confidential manuscript revised for Global Biogeochemical Cycles 

 20 

concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an 415 

ecological framework. Progress in Oceanography, 135, 125–138. 416 

https://doi.org/10.1016/j.pocean.2015.04.012 417 

Balch, W. M. (2018). The Ecology , Biogeochemistry , and Optical Properties of 418 

Coccolithophores. Annual Review of Marine Science. 419 

Balch, W. M., Drapeau, D. T., Bowler, B. C., Lyczskowski, E., Booth, E. S., & Alley, D. (2011). 420 

The contribution of coccolithophores to the optical and inorganic carbon budget during the 421 

Southern Ocean Gas Exchange Experiment: New evidence in support of the “Great Calcite 422 

Belt” hypothesis. Journal of Geophysical Research-Oceans, 116. https://doi.org/C00F06 423 

10.1029/2011JC006941 424 

Balch, W. M., et al. (2016), Factors regulating the Great Calcite Belt in the Southern Ocean and 425 

its biogeochemical significance, Global Biogeochem. Cycles, 10.1002/2016GB005414. 426 

Balch, W. M., Drapeau, D. T., Bowler, B. C., & Booth, E. (2007). Prediction of pelagic 427 

calcification rates using satellite measurements. Deep-Sea Research Part II-Topical Studies 428 

in Oceanography, 54(5–7), 478–495. https://doi.org/10.1016/j.dsr2.2006.12.006 429 

Balch, W. M., Gordon, H. R., Bowler, B. C., Drapeau, D. T., & Booth, E. S. (2005). Calcium 430 

carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging 431 

Spectroradiometer data. Journal of Geophysical Research, 110. https://doi.org/C07001 432 

10.1029/2004JC002560 433 

Balch, W. M., Evans, R., Brown, J., Feldman, G., McClain, C., & Esaias, W. (1992). The 434 

Remote Sensing of Ocean Primary Productivity : Use of a New Data Compilation to Test 435 

Satellite Algorithms and waters. Journal of Geophysical Research: Oceans, 97(91), 2279–436 

2293. https://doi.org/10.1029/1999JC000043 437 



Confidential manuscript revised for Global Biogeochemical Cycles 

 21 

Balch, W. M., Kilpatrick, K. A., Holligan, P. M., Harbour, D. S., & Fernandez, E. (1996). The 438 

1991 coccolithophore bloom in the central North Atlantic. 2. Relating optics to coccolith 439 

concentration. Limnology and Oceanography, 41, 1684–1696. 440 

Balch, W. M., & Kilpatrick, K. (1996). Calcification rates in the equatorial Pacific along 140 441 

degrees W. Deep-Sea Research Part II, 43(4–6), 971–993. https://doi.org/10.1016/0967-442 

0645(96)00032-X 443 

Balch, W. M., Bowler, B. C., Drapeau, D. T., Lubelczyk, L. C., & Lyczkowski, E. (2018). 444 

Vertical Distributions of Coccolithophores, PIC, POC, Biogenic Silica, and Chlorophyll a 445 

Throughout the Global Ocean. Global Biogeochemical Cycles, 32(1), 2–17. 446 

https://doi.org/10.1002/2016GB005614 447 

Balch, W. M., Drapeau, D. T., Bowler, B. C., Lyczkowski, E. R., Lubelczyk, L. C., Painter, S. 448 

C., & Poulton, A. J. (2014). Surface biological, chemical, and optical properties of the 449 

Patagonian Shelf coccolithophore bloom, the brightest waters of the Great Calcite Belt. 450 

Limnology and Oceanography, 59(5), 1715–1732. 451 

https://doi.org/10.4319/lo.2014.59.5.1715 452 

Balch, W. M., Kilpatrick, K. A., & Trees, C. C. (1996). The 1991 coccolithophore bloom in the 453 

central North Atlantic. 1. Optical properties and factors affecting their distribution. 454 

Limnology and Oceanography, 41(8), 1669–1683. 455 

Balch, W. M., Holligan, P. M., Ackleson, S. G., & Voss, K. J. (1991). Biological and optical 456 

properties of mesoscale coccolithophore blooms in the Gulf of Maine. Limnology and 457 

Oceanography, 36(4), 629–643. 458 

Bates, N. R. (2007), Interannual variability of the oceanic CO2 sink in the subtropical gyre of the 459 

North Atlantic Ocean over the last two decades, Journal of Geophysical Research (Oceans), 460 



Confidential manuscript revised for Global Biogeochemical Cycles 

 22 

doi:10.1029/2006JC003759. 461 

Behrenfeld, M. J., O’Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. 462 

C., … Boss, E. S. (2006). Climate-driven trends in contemporary ocean productivity. 463 

Nature, 444(7120), 752–755. https://doi.org/10.1038/nature05317 464 

Brown, C. W., W. E. Esaias, & A. M. Thompson (1995), Predicting phytoplankton composition 465 

from space-Using the ratio of euphotic depth to mixed-layer depth: An evaluation, 466 

Remote Sensing of Environment, 53(3), 172-176. 467 

Brown, C. W., & Yoder, J. A. (1994). Coccolithophorid blooms in the global ocean. Journal of 468 

Geophysical Research-Oceans, 99(C4), 7467–7482. 469 

Charalampopoulou, A., Poulton, A. J., Bakker, D. C. E., Lucas, M. I., Stinchcombe, M. C., & 470 

Tyrrell, T. (2016). Environmental drivers of coccolithophore abundance and calcification 471 

across Drake Passage (Southern Ocean). Biogeosciences, 13(21), 5917–5935. 472 

https://doi.org/10.5194/bg-13-5917-2016 473 

Daniels, C. J., Poulton, A. J., Balch, W. M., Marañón, E., Adey, T., Bowler, B. C., et al. (2018). 474 

A global compilation of coccolithophore calcification rates. Earth System Science Data, 475 

10(4), 1859–1876. https://doi.org/10.5194/essd-10-1859-2018 476 

Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. (2009). Ocean acidification: The other 477 

CO2 Problem. Annual Review of Marine Science, 1, 169–192. 478 

Le Fevre, J., Viollier, M., Le Corre, P., Dupouy, C., & Grall, J.-R. (1983). Remote sensing 479 

observations of biological material by LANDSAT along a tidal thermal front and their 480 

relevancy to the available field data. Estuarine, Coastal and Shelf Science, 16, 37–50. 481 

Freeman, N. M., & Lovenduski, N. S. (2015). Decreased calcification in the Southern Ocean 482 

over the satellite record. Geophysical Research Letters, 42(6), 1834–1840. 483 



Confidential manuscript revised for Global Biogeochemical Cycles 

 23 

https://doi.org/10.1002/2014GL062769 484 

Gordon, H. R., Boynton, G. C., Balch, W. M., Groom, S. B., Harbour, D. S., & Smyth, T. J. 485 

(2001). Retrieval of coccolithophore calcite concentration from SeaWiFS imagery. 486 

Geophysical Research Letters, 28(8), 1587–1590. https://doi.org/10.1029/2000gl012025 487 

Harlay, J., Borges, A. V, Van der Zee, C., Delille, B., Godoi, R. H. M., Schiettecatte, L. S., … 488 

Chou, L. (2010). Biogeochemical study of a coccolithophore bloom in the northern Bay of 489 

Biscay (NE Atlantic Ocean) in June 2004. Progress in Oceanography, 86(3–4), 317–336. 490 

https://doi.org/10.1016/j.pocean.2010.04.029 491 

Hay, W. W. (2004). Carbonate fluxes and calcareous nannoplankton. In H.-R. Thiersten & J. R. 492 

Young (Eds.), Coccolithophores: from molecular processes to global impact. Heidelberg: 493 

Springer-Verlag. 494 

Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., John, J., & 495 

Beaulieu, C. (2010). Detection of anthropogenic climate change in satellite records of ocean 496 

chlorophyll and productivity. Biogeosciences, 7(2), 621–640. https://doi.org/10.5194/bg-7-497 

621-2010 498 

Holligan, P. M., Viollier, M., Harbour, D. S., Camus, P., & Champagne-Phillipe, M. (1983). 499 

Satellite and ship studies of coccolithophore production along a continental shelf edge. 500 

Nature, 304, 339–342. 501 

Holligan, P. M., Charalampopoulou, A., & Hutson, R. (2010). Seasonal distributions of the 502 

coccolithophore, Emiliania huxleyi, and of particulate inorganic carbon in surface waters of 503 

the Scotia Sea. Journal of Marine Systems, 82(4), 195–205. 504 

https://doi.org/10.1016/j.jmarsys.2010.05.007 505 

Holligan, P. M., & Robertson, J. E. (1996). Significance of ocean carbonate budgets for the 506 



Confidential manuscript revised for Global Biogeochemical Cycles 

 24 

global carbon cycle. Global Change Biology, 2, 85–95. 507 

Holligan, P. M., Fernández, E., Aiken, J., Balch, W. M., Boyd, P., Burkill, P. H., … van der Wal, 508 

P. (1993). A biogeochemical study of the coccolithophore, Emiliania huxleyi , in the North 509 

Atlantic. Global Biogeochemical Cycles, 7(4), 879–900. 510 

https://doi.org/10.1029/93GB01731 511 

Honjo, S. (1976). Coccoliths: production, transportation and sedimentation. Marine 512 

Micropaleontology, 1, 65–79. 513 

Honjo, S., Manganini, S. J., Krishfield, R. A., & Francois, R. (2008). Particulate organic carbon 514 

fluxes to the ocean interior and factors controlling the biological pump: A synthesis of 515 

global sediment trap programs since 1983. Progress in Oceanography, 76(3), 217–285. 516 

https://doi.org/10.1016/j.pocean.2007.11.003 517 

Hopkins, J., & Balch, W. M. (2018). A new approach to estimating coccolithophore calcification 518 

rates from space. Journal of Geophysical Research: Biogeosciences. 519 

https://doi.org/10.1002/2017JG004235 520 

Iglesias-Rodriguez, M. D., Halloran, P. R., Rickaby, R. E. M., Hall, I. R., Colmenero-Hidalgo, 521 

E., Gittins, J. R., et al. (2008). Phytoplankton calcification in a high-CO2 world. Science, 522 

320(5874), 336–340. https://doi.org/10.1126/science.1154122 523 

Klaas, C., & Archer, D. E. (2002). Association of sinking organic matter with various types of 524 

mineral ballast in the deep sea: Implications for the rain ratio. Global Biogeochemical 525 

Cycles, 16(4). https://doi.org/111610.1029/2001gb001765 526 

Kopelevich, O., Burenkov, V., Sheberstov, S., Vazyulya, S., Kravchishina, M., Pautova, L., et al.  527 

(2014). Satellite monitoring of coccolithophore blooms in the Black Sea from ocean color 528 

data. Remote Sensing of Environment, 146, 113–123. 529 



Confidential manuscript revised for Global Biogeochemical Cycles 

 25 

https://doi.org/10.1016/j.rse.2013.09.009 530 

Longhurst, A. R. (1998). Ecological geography of the sea. San Diego: Academic Press. 531 

Mayers, K. M. J., Poulton, A. J., Daniels, C. J., Wells, S. R., Woodward, E. M. S., Tarran, G. A., 532 

et al. (2018). Growth and mortality of coccolithophores during spring in a temperate Shelf 533 

Sea (Celtic Sea, April 2015). Progress in Oceanography, (in press). 534 

https://doi.org/10.1016/j.pocean.2018.02.024 535 

Mitchell, C., Cunningham, A., & McKee, D. (2016). Derivation of the specific optical properties 536 

of suspended mineral particles and their contribution to the attenuation of solar irradiance in 537 

offshore waters by ocean color remote sensing. Journal of Geophysical Research: Oceans, 538 

121(1), 104–117. https://doi.org/10.1002/2015JC011056 539 

Mobley, C. D. (1994). Optical properties of water. In Light and Water. radiative transfer in 540 

natural waters (pp. 60–144). 541 

Morel, A. (1988). Optical modelling of the upper ocean in relation to its biogenous matter 542 

content (Case I waters). Journal of Geophysical Research, 93, 749–768. 543 

Morel, A., & Prieur, L. (1977). Analysis of variations in ocean color. Limnology and 544 

Oceanography, 22(4), 709–722. https://doi.org/10.4319/lo.1977.22.4.0709 545 

Platt, T., & Herman, A. W. (1983). Remote sensing of phytoplankton in the sea: surface-layer 546 

chlorophyll as an estimate of water-column chlorophyll and primary production. 547 

International Journal of Remote Sensing, 4, 343–351. 548 

Platt, T., Sathyendranath, S., Caverhill, C. M., & Lewis, M. R. (1988). Ocean primary production 549 

and available light: further algorithms for remote sensing. Deep Sea Research Part A, 550 

Oceanographic Research Papers, 35(6), 855–879. https://doi.org/10.1016/0198-551 

0149(88)90064-7 552 



Confidential manuscript revised for Global Biogeochemical Cycles 

 26 

Poulton, A. J., Painter, S. C., Young, J. R., Bates, N. R., Bowler, B., Drapeau, D., et al. (2013). 553 

The 2008 Emiliania huxleyi bloom along the Patagonian Shelf: Ecology, biogeochemistry, 554 

and cellular calcification. Global Biogeochemical Cycles, 27(4), 1023–1033. 555 

https://doi.org/10.1002/2013GB004641 556 

Poulton, A. J., Sanders, R., Holligan, P. M., Stinchcombe, M. C., Adey, T. R., Brown, L., & 557 

Chamberlain, K. (2006). Phytoplankton mineralization in the tropical and subtropical 558 

Atlantic Ocean. Global Biogeochemical Cycles, 20(4), 1–10. 559 

https://doi.org/10.1029/2006GB002712 560 

Poulton, A. J., Adey, T. R., Balch, W. M., & Holligan, P. M. (2007). Relating coccolithophore 561 

calcification rates to phytoplankton community dynamics: regional differences and 562 

implications for carbon export. Deep-Sea Research II, 54, 538–557. 563 

Poulton, A. J., Daniels, C. J., Balch, W. M., Marañón, E., Adey, T., Bowler, B. C., et al. (2018). 564 

Global compilation of coccolithophore calcification measurements from unperturbed water 565 

samples. PANGAEA. https://doi.org/10.1594/PANGAEA.888182 566 

Riebesell, U., Zondervan, I., Rost, B., Tortell, P. D., Zeebe, R. E., & Morel, F. M. M. (2000). 567 

Reduced calcification of marine plankton in response to increased atmospheric CO2. 568 

Nature, 407(6802), 364–367. https://doi.org/10.1038/35030078 569 

Rivero-Calle, S., Gnanadesikan, A., Del Castillo, C. E., Balch, W., & Guikema, S. D. (2015). 570 

Multidecadal increase in North Atlantic coccolithophores and the potential role of rising 571 

CO2. Science, 1946(November), 1–8. https://doi.org/10.1126/science.aaa8026 572 

Robertson, J. E., Robinson, C., Turner, D. R., Holligan, P., Watson,  a. J., Boyd, P., et al. (1994). 573 

The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic 574 

during summer 1991. Deep Sea Research Part I: Oceanographic Research Papers, 41(2), 575 



Confidential manuscript revised for Global Biogeochemical Cycles 

 27 

297–314. https://doi.org/10.1016/0967-0637(94)90005-1 576 

Rost, B., & Riebesell, U. (2004). Coccolithophores and the biological pump: responses to 577 

environmental change. In H.-R. Thiersten & J. R. Young (Eds.), Coccolithophores: from 578 

molecular processes to global impact (pp. 99–126). Heidelberg: Springer-Verlag. 579 

Saavedra-Pellitero, M., Baumann, K.-H., Flores, J.-A., & Gersonde, R. (2014). Biogeographic 580 

distribution of living coccolithophores in the Pacific sector of the Southern Ocean. Marine 581 

Micropaleontology, 109, 1–20. https://doi.org/10.1016/j.marmicro.2014.03.003 582 

Sanders, R., Morris, P. J., Poulton, A. J., Stinchcombe, M. C., Charalampopoulou, A., Lucas, M. 583 

I., & Thomalla, S. J. (2010). Does a ballast effect occur in the surface ocean? Geophysical 584 

Research Letters, 37(8). https://doi.org/10.1029/2010GL042574 585 

Shutler, J. D., Land, P. E., Brown, C. W., Findlay, H. S., Donlon, C. J., Medland, M., et al.  586 

(2013). Coccolithophore surface distributions in the North Atlantic and their modulation of 587 

the air-sea flux of CO2 from 10 years of satellite Earth observation data. Biogeosciences, 588 

10, 2699–2709. 589 

Smith, H. E. K., Poulton, A. J., Garley, R., Hopkins, J., Lubelczyk, L. C., Drapeau, D. T., et al. 590 

(2017). The influence of environmental variability on the biogeography of coccolithophores 591 

and diatoms in the Great Calcite Belt. Biogeosciences, 14(21), 4905–4925. 592 

https://doi.org/10.5194/bg-14-4905-2017 593 

Steinmetz, J. C. (1994). Sedimentation of coccolithophores. In A. Winter & W. G. Siesser (Eds.), 594 

Coccolithophores (pp. 179–198). Cambridge: Cambridge University Press. 595 

Trull, T. W., Passmore, A., Davies, D. M., Smit, T., Berry, K., & Tilbrook, B. (2018). 596 

Distribution of planktonic biogenic carbonate organisms in the Southern Ocean south of 597 

Australia: A baseline for ocean acidification impact assessment. Biogeosciences, 15(1), 31–598 



Confidential manuscript revised for Global Biogeochemical Cycles 

 28 

49. https://doi.org/10.5194/bg-15-31-2018 599 

Yoder, J. A., McClain, C. R., Feldman, G. C., & Esaias, W. E. (1993). Annual cycles of 600 

phytoplankton chlorophyll concentrations in the global ocean: a satellite view. Global 601 

Biogeochemical Cycles, 7(1), 181–193. 602 

  603 



Confidential manuscript revised for Global Biogeochemical Cycles 

 29 

Tables 604 

Table 1. Average, monthly, total global PIC standing stock in Tg PIC).  The 100m-integrated PIC standing stock 605 

values have an RMS error of  ±0.233 log units (Balch et al., 2018). 606 

 607 

 608 

Figure Legends 609 

Figure 1. Average, monthly global PIC standing stocks derived from AQUA MODIS PIC 610 

concentration data (2003-2014) integrated to 100m (in units of gm-2). Black lines indicate 611 

Longhurst provinces (Longhurst, 1998). White areas represent regions of no data due to low 612 

winter sun angle, water depth < 200 m, persistent cloud or ice cover. 613 

 614 

Figure 2. Globally integrated, monthly PIC standing stock time series (in Tg of PIC). 615 

 616 

Figure 3. Correlation of province PIC standing stock time series with global PIC standing stock 617 

time series (Fig. 2). Green to yellow represents a positive correlation coefficient whilst green to 618 

blue indicates a negative correlation coefficient. Provinces with no color are where correlation is 619 

not significant at the 5% level. 620 

 621 

Figure 4. Temporal variability in Longhurst (1998) province PIC standing stock as measured by 622 

the coefficient of variability (standard deviation/mean). Yellow indicates high variability within 623 

the seasonal time series, whilst blue indicates low variability. Numbers refer to the Longhurst 624 

(1998) provinces. See Figure 3 for key to province numbers. 625 
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 626 

Figure 5. Inter-annual variability in average monthly global PIC standing stock integrated over 627 

the top 100m of the water column (Tg PIC). Data represent anomalies from the annual 628 

climatology of PIC standing stock. 629 

 630 

Figure 6. Correlation of province PIC 100m-integrated standing stock anomalies with global PIC 631 

standing stock anomalies (Fig. 5). Yellow represents relatively high correlation coefficient and 632 

blue a relatively low correlation coefficient. Provinces with no color are where correlation is not 633 

significant at the 5% level. See Figure 3 for key to province numbers. 634 

 635 

Figure 7. Spatial variability in PIC standing stock turnover times, calculated by dividing the 636 

integrated PIC standing stock by the integrated calcite production rate estimated according to  637 

Hopkins and Balch (2018).  See Figure 3 for key to Longhurst (1998) province numbers. White 638 

areas represent regions where turnover times are > 20 days or areas of no data due to low winter 639 

sun angle, water depth < 200 m, persistent cloud or ice cover. 640 
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