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Abstract. Internal solitary and solitary-like waves are a com-
monly observed feature of density stratified natural waters,
including lakes and the coastal ocean. Since such waves in-
duce significant currents throughout the water column they
can be responsible for significant transport of both passive
and swimming biota. We consider simple models of mov-
ing zooplankton based on the Langevin equation. The small
amplitude randomness significantly alters the nature of par-
ticle motion. In particular, passage through the wave leads
to strongly non Gaussian particle distributions. When the
plankton swims to return to its equilibrium photic level, a
steady state that balances randomness, swimming and wave-
induced motions is possible. We discuss possible implica-
tions of this steady state for organisms that feed on plankton.

1 Introduction

Due to the changes in water density caused by the variable
distribution of both temperature and salinity, the interior of
the world’s lakes, seas and oceans serves as a waveguide
for a variety of wave motions for which gravity provides the
restoring force (Gill, 1982). The focus of the present work
will be on those motions which exhibit high enough frequen-
cies so that the effects of the rotation of the Earth may be
neglected. These are commonly known as internal gravity
waves, and the particular internal waves we will focus on
are finite amplitude internal solitary or solitary-like waves.
The waves we consider propagate horizontally, largely with-
out changing form, and their surface manifestations, alternat-
ing bands of light and dark, may often be observed from air-
planes and spacecraft (Helfrich and Melville, 2006). The rea-
son for the ease of observation is the systematic modulation

Correspondence to:M. Stastna
(mmstastn@uwaterloo.ca)

of surface wave activity by the convergence and divergence
of internal solitary wave-induced currents. Regions of high
surface wave activity are visible as dark bands, while regions
of low surface wave activity are visible as light bands in the
visible spectrum. Internal solitary waves are generated by a
variety of mechanisms. In the ocean, the most prominent is
tidally induced flow over topography. As such, internal soli-
tary waves are often visible at locations in which the ocean
depth varies quickly, for example in straits (e.g. the Strait
of Gibraltar) and fjords (e.g. Knight Inlet, Canada) (Helfrich
and Melville, 2006; Farmer and Armi, 1999). In lakes, inter-
nal solitary-like waves can be produced by the breakdown of
wind-induced, lake-scale internal seiches (de la Fuente et al.,
2008).

From a theoretical point of view, internal solitary waves
(henceforth ISWs) are a translating, baroclinic vorticity dis-
tribution of permanent form (though since the streamlines are
not closed, different fluid particles make up the wave at any
given time) and can be described mathematically by a va-
riety of theories. Weakly nonlinear theories explicitly bal-
ance wave steepening due to nonlinearity with dispersion in
a model equation that considers horizontal and temporal vari-
ations. The model equation is derived by positing solutions
that are separable in the vertical and horizontal spatial vari-
ables, then performing an asymptotic expansion in the am-
plitude and aspect ratio parameters. This procedure gener-
ally yields completely integrable equations in the Korteweg
deVries, or KdV, family (Grimshaw, 1997). While these the-
ories are mathematically rich, they often misrepresent the
spatial structure of finite amplitude waves (Lamb, 1999). In-
deed, outside of highly specialized situations this is true even
for moderate amplitudes, though, to be fair, model equations
are commonly used to successfully interpret various features
of field data (e.g. mass transport by ISWs on the Malin shelf,
Inall et al., 2001). An alternative to model equations, is to
give up on the many attractive mathematical properties of
the weakly nonlinear theories, such as an infinite hierarchy of
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conserved quantities and an inverse scattering transform, and
consider fully nonlinear ISWs which are solutions of the full
Euler equations that govern an inviscid fluid. In the oceano-
graphic literature this approach is often carried out using nu-
merical solution of the Euler equations (Vlasenko and Hutter,
2002). Semi-analytical results can be achieved by deriving
a single equation for the displacement of lines of constant
density (or isopycnals) and the unknown wave speed. The
resulting nonlinear, elliptic eigenvalue problem is known as
the Dubreil-Jacotin Long (henceforth DJL) equation. It has
been shown that fully nonlinear ISWs are characterized by
a variational structure in which the available potential en-
ergy is held fixed and the kinetic energy of the disturbance
is minimized (Turkington et al., 1991). This facilitates the
construction of a computational algorithm based on standard
techniques in continuous optimization theory for the com-
putation of ISWs. We have implemented the algorithm us-
ing standard spectral methods (Trefethen, 2000), with details
of an open source, MATLAB code described in Dunphy et
al. (2011). The currents induced by fully nonlinear solitary
waves are often sizeable, and vary over the entire depth of the
water column. They are thus important to the distribution of
various types of passive and semi-passive tracers including
pollutants, sediment and biota (especially plankton). Studies
of deterministic internal solitary wave-induced particle trans-
port (Lamb, 1997) have shown that horizontal, wave-induced
transport is strongly dependent on initial height and wave
amplitude. Indeed, Lamb showed that transport predicted
by model equation-based theories (e.g. those leading to the
KdV equation) can be significantly different than that due to
exact solitary waves. The effect of internal waves on plank-
ton patchiness was studied using currents predicted by linear
and weakly nonlinear theory and an Eulerian formulation of
plankton concentration by Lennert-Cody and Franks (1999).
The authors found that wave-induced concentration changes
were largest at the wave crest and concluded that measure-
ments of patchiness should be conducted along with mea-
surements of lines of constant density (isopycnals). These
conclusions remain valid for exact ISWs, even if the quanti-
tative predictions based on linear and weakly nonlinear the-
ories do not.

Since plankton are microscopic creatures, the extent of
their motion is not large in its spatial extent. Compared to
fluid motions occurring on larger length scales (e.g. internal
waves) this motion is erratic in time, and can be described
by various complex models from the literature (Genin et al.,
2005; Rubjakov, 1970). The large number of such creatures
in a cubic meter of water, along with their irregular indi-
vidual trajectories, suggests that their interaction with wave-
induced currents can be idealized using a stochastic La-
grangian particle description. We will pursue such a descrip-
tion in this manuscript. An illustrative example of a point re-
lease experiment, with the initial position of the 10 000 mem-
ber particle ensemble upstream of a rightward propagating
wave of depression and at the center of the region of rapid

density change (or pycnocline), is shown in the upper panel
of Fig. 1. The wave in the figure induces horizontal currents
that are oriented in (against) the direction of wave propaga-
tion above (below) the pycnocline. While the vertical cur-
rents induced by the wave are not negligible, they are typ-
ically less than a quarter of the horizontal currents. In the
upper panel of Fig. 1 we show the shaded contours of den-
sity and four instances of the particle cloud (shown every
16.4 dimensionless time units) as it passes through the wave.
Length is scaled by the fluid depthH , and time by the advec-
tive time scaleH/c wherec is the wave propagation speed.
The aspect ratio of the upper panel in Fig. 1 is somewhat
misleading since the particles initially diffuse isotropically.
In the lower four panels we account for the “long” wave na-
ture of the solitary wave by showing the particle clouds with
a one to one aspect ratio, following the same labeling for
the particle clouds as in the upper panel. It can be clearly
seen that the dominant wave-induced currents are horizontal
currents, with a shear layer across the pycnocline (note the
change in scale from panel 1 to panel 4).

The remainder of the manuscript is organized as fol-
lows. We begin by discussing the simplest, most symmet-
ric stochastically perturbed motion, that due to a stationary
vortex with circular streamlines. This example allows us to
introduce the theoretical and numerical methods employed.
Using both analytic and geometric arguments we show that
stochastically perturbed motion in the circular vortex must
lead to a net (or deterministic) drift that is radially outward
and that the rate of drift decays with radial distance from the
center of the vortex. We proceed to discuss how stochasti-
cally perturbed motion due to ISWs breaks the symmetry ex-
hibited by the circular vortex and show the unexpected con-
sequences of stochasticity in this case, namely the strongly
non Gaussian particle distribution during and after passage
through the wave. Since purely stochastic motion does not
allow for a nontrivial steady state, we introduce the effects of
combined random and systematic swimming. While swim-
ming behaviour is complex, and many varieties are discussed
in the biology literature (e.g. Genin et al., 2005; Rubjakov,
1970), plankton generally seeks to maintain its position at a
fixed photic (light) level. We thus consider a combination of
stochastic, wave-induced and return to photic level motions.
In this case a non-trivial steady state is possible. We present
simulations of this steady state, and discuss the implications
of the resulting plankton distribution for plankton feeders.

2 Results

In the absence of perturbations (e.g. those due to particle
swimming, treated in Sect. 2.3), pathlines followed by a par-
ticle in the fluid can be found by integration of the fluid ve-
locities (u,w). These may be specified analytically (as for
the irrotational vortex case below) or numerically (as for the
ISW case below). For steady flow, such as a circular vortex
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Fig. 1. The motion of a 10,000 member ensemble of particles initially located upstream of the ISW and at the center of the pycnocline
superimposed on a shaded plot of density contours. Subsequent times evolve from right to left and are separated by 16.4 time units. In the
upper panel the entire horizontal extent of the ISW is shown, however only a portion of the computational domain is shown. Since ISWs are
long waves, panels (1)-(4) show a 1:1 aspect ratio of the particle clouds with the same labels as in the upper panel. Note the increase in scale
as time increases.

Fig. 1. The motion of a 10 000 member ensemble of particles initially located upstream of the ISW and at the center of the pycnocline
superimposed on a shaded plot of density contours. Subsequent times evolve from right to left and are separated by 16.4 time units. In the
upper panel the entire horizontal extent of the ISW is shown, however only a portion of the computational domain is shown. Since ISWs are
long waves, panels (1)–(4) show a 1:1 aspect ratio of the particle clouds with the same labels as in the upper panel. Note the increase in scale
as time increases.

or that induced by the ISW in a frame moving with the wave
speed, the pathlines match the shape of the streamlines. We
compute pathlines for a flow in which the stochastic pertur-
bations are taken to effect the velocity of individual particles,
but not the fluid velocities themselves. The governing equa-
tions in the case of coloured noise are given by

dx

dt
= u(x,z)+ξ1 (1)

dz

dt
= w(x,z)+ξ2 (2)

dξ1 = −γ1dt +σ1dW (3)

dξ2 = −γ2dt +σ2dW (4)

where the correlation time of the two noise termsξi is spec-
ified by γi > 0 and the variance byσi > 0. These must be
specified as part of the model. HeredW represents the incre-
ment of the Wiener process, and essentially reflects the fact
that stochastic differential equations require a careful math-
ematical interpretation due to the non-smooth nature of the
noise (Gardiner, 1990). There is a considerable literature on
the mathematics, approximation and numerical solution of

stochastic differential equations (Kloeden and Platen, 1992;
Ottinger, 1996; Gardiner, 1990). We will adopt the so-called
Langevin approach. In other words, we consider individual
integrations of Eqs. (1) and (2). In the following we ap-
ply the Milstein (Ottinger, 1996) method for the discretiza-
tion of the stochastic differential equation and the Mersenne
Twister algorithm (Matsumoto and Nishimura, 1998) to gen-
erate realizations of the stochastic perturbation. The numeri-
cal algorithm employed in the integration of the equations is
of order1t in time in both the deterministic and stochastic
parts of the governing equation and converges strongly (Ot-
tinger, 1996). The strong convergence implies we can make
mathematically valid conclusions regarding individual paths
(for example we can plot accurate approximations of indi-
vidual paths). The Mersenne Twister algorithm allows for
the rapid construction of large ensembles while maintaining
confidence in the temporal characteristics of the stochastic
perturbations. The second approach to dealing with stochas-
tic differential equations forgoes the individual paths of the
Langevin approach in favour of the Fokker-Planck equa-
tion, a partial differential equation, governing the probability
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density. Under certain mathematical conditions, such as the
case of additive white noise (see Ottinger, 1996 or Gardiner,
1990 for details), the two approaches are equivalent. How-
ever, in many instances, the former approach is preferable
from a computational viewpoint (see the discussion in Ot-
tinger, 1996) and this is especially true for exotic types of
noise in biological applications such as the run and tumble
model (Bearon, 2007). While the present model allows for a
variety of correlation time-variance combinations, through-
out the following we will assume that both noise terms have
the same correlation time and variance. The coloured noise
model approaches the classical white noise limit, though the
white noise limit requires an appropriate choice of stochastic
calculus (see Gardiner, 1996 for example). While we have
performed white noise simulations corresponding to many
results reported on below, for numerical simulations we re-
port only on the coloured noise case which we believe to be
more relevant to the motions of plankton and other biota.

2.1 Stochastically perturbed motion in a vortex

We consider a steady flow with closed, circular streamlines.
The flow is along streamlines and a particular type of vor-
tex is distinguished by the radial structure of the azimuthal
velocity field. In polar coordinates we write

ui = u(r)êθ

where êθ is the unit vector in the azimuthal direction. We
have considered several standard models of vortices (irrota-
tional, Rankine, etc.) but have found no qualitative differ-
ences in behaviour. We thus focus on the simple irrotational
vortex for which the velocity field is given by

u(r) =
0

2πr
. (5)

Corresponding Cartesian expressions for the velocity field
ui = (u(x,z),w(x,z)) follow from a standard change of vari-
ables.

The study of vortices in two dimensions is a well devel-
oped discipline with many topics covered in the classical re-
view by (Aref, 1983). Dynamical systems theory has been
applied to chaotic mixing by vortices in (Rom-Kedar et al.,
1990), and more recently by (Vassilicos, 2002). Our ap-
proach is, in comparison, much simpler, serving to motivate
the subsequent work on ISW-induced motion.

In Fig. 2a the solid curve shows the effect of noise on the
mean radial position of an ensemble of 10 000 particles ini-
tially found atr = 0.2. It is clear that the mean radius gradu-
ally increases, with the rate of increase slowing as the mean
radius increases. In the same panel we demonstrate that in-
creasing the correlation time (dashed curve) while holding
the intensity of the noise fixed leads to a faster rate of in-
crease of the mean radius. In Fig. 2b we repeat the solid
curve from 2a and show the effect of a one dimensionless
unit increase in initial radius (dashed line). It is clear that the
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Fig. 2. Mean radius as a function of time for stochastically perturbed pathlines in an irrotational vortex. (a) the effect of doubling the
correlation time, solid line - control case, dashed line - double the correlation time, (b) the effect of initial position, solid line - control case,
dashed line - initial radius increased by one dimensionless unit.
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Fig. 3. (a) Diagram of the geometric explanation for the stochastically induced outward drift in a circular vortex. The flow is indicated by
arrows. A circle representing the standard deviation of the stochastically perturbed particle is shown with the bisector of the circle formed
by the tangent line to the circle. It can be seen that more than one half of the area of the circle lies outside of the grey region. (b) as (a) but
for a more complex path with varying curvature.

Fig. 2. Mean radius as a function of time for stochastically per-
turbed pathlines in an irrotational vortex.(a) the effect of doubling
the correlation time, solid line – control case, dashed line – double
the correlation time,(b) the effect of initial position, solid line –
control case, dashed line – initial radius increased by one dimen-
sionless unit.

rate of increase of the mean radius is much lower for the en-
semble of particles that begins farther from the center of the
vortex. We observed similar behaviour in simulations with
various vortex types (e.g. Rankine).

In the white noise limit, if we assume the Itô stochastic
calculus, we can derive an analytical estimate for the outward
drift. Gardiner (Sect. 4.4.5, notation follows the reference)
shows that the completely noise driven motion

dx = εdW1(t)

dz = εdW2(t) (6)

with isotropic noise of amplitudeε can be written in polar
coordinates(a(t),φ(t)) as

dφ(t) =
ε

a(t)
dWφ(t)

da(t) =
1

2

ε2

a(t)
dt +εdWa(t) (7)

where

dWa(t) = dW1(t)cosφ(t)+dW2(t)sinφ(t)

dWφ(t) = −dW1(t)sinφ(t)+dW2(t)cosφ(t). (8)

As Gardiner points out, (8) is an orthogonal transformation,
so thatdWa(t) anddWφ(t) can be taken as increments of
independent Wiener processes. Thus the stochastic motion,
through the It̂o-calculus chain rule, is responsible for a de-
terministic outward drift term (i.e. the first term on the right
hand side of Eq. 7). The case of any purely azimuthal motion,
including the irrotational vortex, follows in the same manner
(with somewhat more complicated algebra).

In Fig. 3a we demonstrate the geometric reason for the
stochastically induced outward drift. The unperturbed flow
around the grey vortex is indicated by arrows. A circle, the
interior of which represents all points within one standard
deviation of the mean particle position is shown along with
the bisector of the circle formed by the tangent line to the
circle. It can be seen that more than one half of the area of the
circle lies outside of the grey region. Thus the particles are
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Fig. 3. (a) Diagram of the geometric explanation for the stochastically induced outward drift in a circular vortex. The flow is indicated by
arrows. A circle representing the standard deviation of the stochastically perturbed particle is shown with the bisector of the circle formed
by the tangent line to the circle. It can be seen that more than one half of the area of the circle lies outside of the grey region. (b) as (a) but
for a more complex path with varying curvature.

Fig. 3. (a) Diagram of the geometric explanation for the stochas-
tically induced outward drift in a circular vortex. The flow is in-
dicated by arrows. A circle representing the standard deviation of
the stochastically perturbed particle is shown with the bisector of
the circle formed by the tangent line to the circle. It can be seen
that more than one half of the area of the circle lies outside of the
grey region. (b) as (a) but for a more complex path with varying
curvature.

more likely to move out of the grey circle, and the tangential
speed of motion along the circle is irrelevant to the rate at
which this occurs. As the radius of the grey circle (and hence
the radius of curvature) increases, the fraction of the area
of the circle corresponding to the standard deviation of the
particle inside the grey circle tends closer and closer to one
half, and hence the rate of outward drift decreases.

The same general geometric principle holds for more com-
plicated paths, as illustrated in Fig. 3b (for such cases an an-
alytical argument analogous to that above is impossible to
carry out). As the concavity of the path changes, so does the
direction of stochastically induced drift. Moreover, without
the symmetry of the circular path, the speed with which the
particle moves along the curve becomes important, for ex-
ample if the particle slows down in a region of small radius
of curvature. Internal solitary waves, which are a baroclinic
vorticity distribution of permanent form, do not have circu-
lar, or even closed, streamlines (essentially due to symmetry
breaking by the stratification) and as such can be expected to
exhibit more complicated behaviour than that found for the
irrotational vortex.

2.2 Stochastically perturbed motion through a solitary
wave

We performed computations of 10 000 particles initially re-
leased from the same location upstream (at the center of the
pycnocline) of a large solitary wave, as shown in the upper
panel of Fig. 1. The center of the pycnocline is chosen as
the site of particle release since it is the region of maximum
shear in the wave-induced currents. The solitary wave is a
solution of the DJL equation,
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Fig. 4. Plot of the outliers of a 10 000 member ensemble of parti-
cles initially located upstream of the ISW and at the center of the
pycnocline superimposed on a shaded plot of density contours. Un-
perturbed location of particle indicated by thick black circle. See
text for detailed description.

∇
2η+

N2(z−η)

c2
η = 0,

an elliptic, nonlinear eigenvalue problem for the isopycnal
displacementη and the wave propagation speedc that is
equivalent to the full Euler equations governing an invisicid
fluid. In all cases considered we make the Boussinesq ap-
proximation. The particular stratification profile, as a func-
tion of depth, is given by the functional form ofN2(z), the
so-called buoyancy frequency squared (Gill, 1982) which is
defined from the background density profileρ̄(z) as

N2(z) = −g
1

ρ0

dρ̄

dz

whereg is the acceleration due to gravity andρ0 is a refer-
ence density. Throughout we consider a simple, single pycn-
ocline profile for which

ρ̄(z) = ρ0[1−0.01tanh

(
z−z0

d

)
]

and

N2(z) = (0.01g/d)sech2(
z−z0

d
)

wherez0 specifies the pycnocline center (taken to be 20 % of
the total depth below the surface) andd specifies the pycno-
cline thickness (taken to be 5 % of the total depth). Onceη

andc are known the density field is given byρ = ρ̄(z−η)

and the wave-induced velocities in a frame moving with
the wave are given by(u,w) = c(ηz,−ηx), where subscripts
denote partial derivatives. The vertical velocities are anti-
symmetric across the wave crest (x = 0), however the hor-
izontal velocities do not have a simple line of symmetry,
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Fig. 5. Particle clouds with the mean position subtracted (white), the ellipse corresponding to the covariance matrix and 10,000 draws from
a bivariate Gaussian whose covariance matrix matches that of the particle cloud (black). (a) t = 5 and t increases by 5 units for each panel.
The axis labels, ‘x’ and ‘z’ have been removed to make larger sub–panels.

Fig. 5. Particle clouds with the mean position subtracted (white), the ellipse corresponding to the covariance matrix and 10 000 draws from
a bivariate Gaussian whose covariance matrix matches that of the particle cloud (black).(a) t = 5 andt increases by 5 units for each panel.
The axis labels, “x” and “z” have been removed to make larger sub-panels.

since wave-induced flow above (below) the deformed pyc-
nocline is in (against) the direction of wave propagation. As
the lower panels 1–4 of Fig. 1 show the primary effect of the
wave-induced currents is to greatly enhance the horizontal
shear. As the particle cloud passes through the wave, it is ini-
tially stretched in both the horizontal and vertical directions.
However, as the particle cloud passes beyond the wave crest
(x = 0) it begins to be compressed in the vertical direction.
Thus particles which find themselves below the pycnocline
may begin their upward motion while particles which find
themselves above the pycnocline are still moving downward.
This leads to the tilde-shaped cloud labeled as 3 in Fig. 1.

Figure 4 shows further details of this process, by identify-
ing the outliers of the particle cloud after passage through the
wave and tracing them backward in time. Outliers found far-
thest upstream are marked white, while those farthest down-
stream are marked black. It can be seen that the departure
from the unperturbed location is quite significant (leftmost
cloud of particles and solid circle). Particles that are farthest
upstream (downstream) are found above (below) the center
of the pycnocline. For early times (first cloud from the right)

it can be seen that the particles that end up farthest upstream
are those that have been perturbed to lie above the center of
the pycnocline before they have moved into the wave. When
they do move into the wave, both clouds of particles are ad-
vected downward to roughly the same degree. However the
particles lying above (below) the center of the pycnocline are
also advected in (against) the direction of wave propagation.
This effects the time spent in the wave. Indeed, for the third
cloud from the right, the outliers found below the pycnocline
are moving up the rear face of the wave, while the outliers
found above the pycnocline are at approximately the same
height, two units of length upstream.

The above described results are also reflected in the statis-
tical properties of the particle distribution during, and after,
passage through the wave. The standard deviation of the ver-
tical position is non-monotonic (not shown) in time, with a
local minimum occurring roughly at a time corresponding to
cloud (3) in Fig. 1. Note, however that the cross-correlation
between vertical and horizontal positions increases rapidly
during passage through the wave indicating that the proba-
bility distribution is no longer aligned with the x and z axes.
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Fig. 6. The effect of wave amplitude on the particle clouds. The first column (a andd) corresponds to Fig. 1, the second to a 15% reduction
in wave amplitude (33 % reduction in wave available potential energy), and the third to a 55 % reduction in wave amplitude (83 % reduction
in available potential energy).t = 49.2 (a–c), t = 65.6 (d–f).

In Fig. 5 we show the particle clouds with the mean posi-
tion subtracted off during passage through the wave (white),
along with the quadratic form (an ellipse) corresponding to
the covariance matrix of each particle cloud. Panels in the
same row have the same axes. It is particularly interesting
how the ellipses’ axes are not aligned with the x and z axes
after the particles pass completely through the wave (panels
g–i). Were the particle distribution bivariate Gaussian, all
the statistical information to describe it would be contained
in the means and the covariance matrix. The black clouds of
particles in each panel correspond to 10 000 draws from a bi-
variate Gaussian distribution matching the covariance matrix
of the particle cloud at each particular time. It can be seen
that from panel (d) onward the particle cloud is clearly non
Gaussian. Indeed standard statistical tests (Mardia, 1970,
Trujillo-Ortiz and Hernandez-Walls, 2003, the latter modi-
fied by D. Graham, personal communication, 2010) indicate
that from panel (c) onward, the particle distribution is non
Gaussian using either a skewness (third moment) or kurtosis
(fourth moment) statistic, to a significance level smaller than
10−4.

Figures 1, 4 and 5 were all produced with the same ISW, as
well as standard deviation and correlation time of red noise.
In order to ensure that the presented results are broadly rep-
resentative of parameter space we have varied the standard

deviation of the noise, the noise memory and ISW amplitude.
Figure 6 shows particle clouds as they pass the wave crest (a–
c) and as they leave the wave (d–f). The first column (a and
d) corresponds to Fig. 1, the second to a 15 % reduction in
wave amplitude (33 % reduction in wave available potential
energy), and the third to a 55 % reduction in wave amplitude
(83 % reduction in available potential energy). It can be seen
that all the cases yield qualitatively unchanged behaviour, es-
pecially surprising in the case of the smallest wave. In partic-
ular, the particle distribution after passage through the wave
has a sharp cutoff on the downstream side. Since exact ISWs
are computed by a priori specifying the available potential
energy, and not the wave amplitude, a very broad range of
wave available potential energy values will yield similar par-
ticle behaviour.

Figure 7 repeats Fig. 6 for changes to the stochastic param-
eters for the particle. The first column (a and e) corresponds
to Fig. 1, the second (b and f) to noise with a tenfold in-
crease in correlation time accompanied by a tenfold decrease
of standard deviation, the third to a tenfold increase in corre-
lation time with standard deviation (one fifth of the value in
the first column) chosen by trial and error so that the particle
cloud matches the first column, and the fourth to a one hun-
dredfold increase in correlation time and a tenfold decrease
in standard deviation. As was the case with varying wave
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Fig. 7. The effect of changes in noise parameters on the particle clouds.t = 49.2 (a–d), t = 65.6 (e–h). (a, e)Control case,(b, f) tenfold
increase in correlation time, tenfold decrease of standard deviation,(c, g) tenfold increase in correlation time, 80 % reduction of standard
deviation,(d, g) one hundredfold increase in correlation time, tenfold decrease in standard deviation.

amplitude, the figure shows that, by and large, the qualitative
nature of the results is consistent over a very broad region
of parameter space. Indeed, from the third column we note
that even very different noise properties can yield essentially
identical particle distributions. There are some differences
evident in panels (b) and (f), and these indicate that for small
standard deviations even strongly correlated noise does not
yield a great deal of spreading of the particle cloud. Were we
to allow the particle cloud to continue evolving, its spread in
the vertical would continue unchecked, eventually tending to
an unrealistic uniform distribution in the vertical. Systematic
swimming by the plankton can modify this situation, and we
discuss this case next.

2.3 Effects of systematic swimming behaviour

Zooplankton exhibit a wide variety of swimming behaviour,
going well beyond the purely random motion discussed
above. Here we discuss the coupling of wave-induced cur-
rents, random motion and the simplest behaviour from the
literature: return to a constant light (or photic) level (depth),
modeled by modifying the vertical motion Eq. (2):

dz

dt
= w(x,z)+ws(x,z,t)+ξ2 (9)

wherews represents the plankton’s desire to return to its ini-
tial light level. For phytoplankton this swimming behaviour
is an expression of its desire to remain in the region suitable
for photosynthesis, while for zooplankton it is an expression
of the organism’s desire to remain at a depth optimal for zoo-
plankton grazing and predator avoidance.

If we consider purely vertical motion with no wave in-
duced motion and take the white noise limit we can write
down the Fokker-Planck equation (Gardiner, 1990) for the
problem (subscripts denote partial derivatives)

Pt = −wsPz +σ 2Pzz/2. (10)

or in steady state, 0= −wsPz + σ 2Pzz/2. If we consider
the simplest case of piecewise constant swimming behaviour,
ws = w0−2H(z−zl)w0 wherew0 > 0 andzl is the vertical
position corresponding to the desired light level we can find
the steady state probability distribution,

P(ζ ) = P0exp(−|ζ |/ζ0) (11)

where ζ = z − zl and the decay length scale is given by
ζ0 = w0σ

2/2. P0 is a normalization constant. Clearly an
increased swimming speed leads to a more localized steady
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Fig. 8. Quasi-steady state particle distribution for particles with return to equilibrium photic level swimming.(a) particle clouds,zl = −0.15
black,zl = −0.25 white, five isopycnals are shaded.(b) number densityzl = −0.15 solid,zl = −0.25 dashed.

state distribution, while an increase in the standard deviation
of the random motion leads to a broader distribution.

We extended the point release experiments from the previ-
ous subsection by allowing the ensemble to settle into a ver-
tical equilibrium before being advected into the wave. We
found that, provided the deterministic component of swim-
ming (i.e. to the original light level) was below five times of
the standard deviation of the random component of swim-
ming, the results largely matched those of point release ex-
periments, with an exact match as the speed of the deter-
ministic component of the swimming tended to zero. More
importantly, the return to light level swimming allows for
the simulation of a more realistic situation in which the en-
tire region upstream of the wave consists of a distribution
of particles that are uniformly distributed in the horizontal
while having a steady state distribution in the vertical that is
a balance between random and systematic swimming. Such
behaviour provides further symmetry breaking in the prob-
lem. Consider a particle initially at the mid-point of the py-
cnocline. As it begins to descend down the wave front it
descends below its desired light level and the swimming be-
haviour causes it to swim upward. Once it passes the wave
crest the wave-induced currents begin to force it upward to
an equilibrium position that is above the mid-point of the

pycnocline. Thus the particle overshoots its equilibrium level
at the rear of the wave and only subsequently slowly returns
to its equilibrium level.

In Fig. 8 we present the results att = 50, of a simulation
with 50 000 particles initially in a vertical steady state, and
uniformly distributed in the horizontal upstream of the wave
(i.e. not the point release of Fig. 1). Panel a shows two parti-
cle clouds, the white has an equilibrium level atzl = −0.25,
or 5 % of the water column below the pycnocline center,
while the black has an equilibrium lightzl = −0.15 or 5 %
of the water column above the pycnocline center. It can be
seen that the white cloud has moved farther through the wave.
This is due to the fact that the black cloud lies completely in
the region of wave-induced horizontal currents directed in
the direction of wave propagation. The white cloud, on the
other hand, begins in the region of wave-induced horizontal
currents directed against the direction of wave propagation.
However, as the white cloud is advected down the upstream
face of the wave, the particles begin to swim upward toward
their equilibrium level. They cross the pycnocline between
x = −1 andx = 1, are partially advected in the direction
of wave propagation, exit the wave above their equilibrium
height, and subsequently slowly drift downward, reaching
equilibrium some distance behind the wave. The black cloud
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Fig. 9. The effect of equilibrium light level on the steady state distribution of particles near the rear of the wave for return to equilibrium
photic level swimming.(a) zl = −0.15, (b) zl = −0.25. Equilibrium level denoted by a solid line. Five isopycnals are shaded.

experiences a similar, though smaller overshoot. Panel b
shows the particle distribution as a function ofx. It can
be seen that the white cloud (dashed line) has an increased
particle number density in the region−1.25< x < −0.75,
or at the rear of the wave, while the black cloud has an
even larger increase in particle number density in the region
−0.1< x < 0.2. Both of these regions are well behind the
maximum near surface convergence zone (nearx = 2) where
completely passive Lagrangian particle would be expected to
have their maximum number density.

In Fig. 9 we compare the overshoot region for the two
cases. Panel a indicates that the mean overshoot is about
0.035 for the particle cloud withzl = −0.15, and 0.055 for
the particle cloud withzl = −0.25.

In nature, ISWs are often observed in rank-ordered groups,
or packets (Helfrich and Melville, 2006). Provided that the
inter-wave spacing allows the particles to return to a statis-
tical steady state, near their equilibrium levelzl , the above
results should be observed for each wave in the packet, with
the only difference being the individual wave amplitude.

3 Discussion

We have considered the motion of stochastically perturbed,
Lagrangian particles through a passing finite amplitude,

exact internal solitary wave. For deterministic motion, the
primary effect of the wave is to enhance horizontal spreading
of an ensemble of particles via a height dependent, wave-
induced transport, and to induce increased particle number
densities in the wave-induced convergence regions, e.g. near
the surface at the front of a wave of depression, (Lamb,
1997). This is due to the fact that internal solitary waves
are long waves, with horizontal wave-induced currents that
are considerably stronger than vertical wave-induced cur-
rents. Moreover, horizontal wave-induced currents are di-
rected in opposite directions above and below the main
pycnocline, while vertical wave-induced currents are anti-
symmetric across the vertical line passing through the wave
crest. The anti-symmetry of the vertical currents means that
for particles without any random motion, a particle must re-
turn to its initial height after passing through the wave.

The combination of stochastic and wave-induced motion
leads to an asymmetric spreading of the particle ensemble.
This asymmetry leads to the observation that the variance of
the vertical particle position is a non-monotonic function of
time, which is in turn an expression of the cross-correlation
between vertical and horizontal particle position during, and
after, passage through the wave. Indeed the particle dis-
tribution is non Gaussian during passage through the wave
and remains so after passage through the wave. In particu-
lar, a marked skewness in the horizontal particle position is
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evident. For an ensemble of particles released upstream of
the wave and at the pycnocline mid-depth, the statistical be-
haviour of the particles may be understood as being due to
differential transport of particles that move above and below
the pycnocline. Particle variance increases faster than that
of purely stochastic particles (i.e. particles with only ran-
dom motion) as the particles enter the wave, and decreases
as the mean particle position reaches the wave crest. In-
terestingly, the convergence of the particle ensemble as it
passes over the downstream half of the wave is sufficient to
reduce the variance of the particle cloud after all particles
have passed through the wave to values well below those of
purely stochastic particles. These results were robust over a
broad range of wave amplitudes, noise correlation times and
standard deviations.

We subsequently extended these results to particles that
had an organized swimming component to their motion.
While many types of swimming behaviour are possible, we
chose to focus on return to initial light level behaviour since
it is the simplest situation that allows for a steady state par-
ticle distribution in the vertical. For a uniform horizontal
distribution upstream of the wave that was in steady state in
the vertical we found that the wave led to an overshoot of the
equilibrium particle height, and a consistent increase in the
particle number density over the rear half of the wave.

As a whole, the results suggest that irregular motion dur-
ing passage through a wave does not yield any clear bio-
logical advantage to the small particles (zooplankton) that
are generally found in, or above the pycnocline in the near-
surface region. However, for larger animals (e.g. plankton
eating fish) the particle distribution shown in Figs. 8 and 9
could be exploited. The predator would sense the downward
currents on the upstream side of the wave and swim so as to
pass through the center of the cloud of plankton as it over-
shoots its equilibrium light level over the downstream face
of the wave. Given that internal waves, often in rank-ordered
groups, are systematically forced by tidal flow over the con-
tinental shelf (Helfrich and Melville, 2006) as well as other
topographic features, predators would have an opportunity
to exploit internal wave-induced currents to increase the effi-
ciency of their feeding. For semi-diurnal tides, for example,
this opportunity would occur at least twice a day.

Future work should consider a wider variety of swimming
behaviour, as well as more biologically relevant stochastic
behaviour. Preliminary experiments with the “run and tum-
ble” model (Bearon, 2007) suggest that many of the conclu-
sions found for red noise stochastic motion are quite robust.
The swimming of fish through internal waves could also be
pursued using more realistic models, for example immersed
boundary methods, though this would likely require high res-
olution, three dimensional simulations.
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