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The internal transcribed spacer (ITS) region is the accepted DNA barcode of fungi. Its use

has led to a step-change in the assessment and characterisation of fungal communities

from environmental samples by precluding the need to isolate, culture, and identify

individuals. However, certain functionally important groups, such as the arbuscular

mycorrhizas (Glomeromycetes), are better characterised by alternative markers such as

the 18S rRNA region. Previous use of an ITS primer set in a nationwide metabarcoding

soil biodiversity survey revealed that fungal richness declined along a gradient of

productivity and management intensity. Here, we wanted to discern whether this trend

was also present in data generated from universal 18S primers. Furthermore, we wanted

to extend this comparison to include measures of functional diversity and establish

trends with soil types and soil organic matter (SOM) content. Over the 413 individual

sites examined (arable, grassland, woodland, moorland, heathland), we found congruent

trends of total fungal richness and β-diversity across land uses, SOM class, and soil

type with both ITS and 18S primer sets. A total of 24 fungal classes were shared

between datasets, in addition to 15 unique to ITS1 and 12 unique to 18S. However, using

FUNGUILD, divergent trends of functional group richness became apparent, especially

for symbiotrophic fungi, likely driven by an increased detection rate of Glomeromycetes in

the 18S dataset. The disparate trends were also apparent when richness and β-diversity

were compared to soil properties. Additionally, we found SOM class to be a more

meaningful variable than soil type biodiversity for predicting biodiversity analyses because

organic matter was calculated for each sample whereas soil type was assigned from

a national soil map. We advocate that a combination of fungal primers should be

used in large-scale soil biodiversity surveys to capture important groups that can be

underrepresented by universal barcodes. Utilising such an approach can prevent the

oversight of ubiquitous but poorly described species as well as critically important

functional groups.

Keywords: UNITE, SILVA, identification bias, high-throughput sequencing, arbuscular mycorrhizal fungi,

Archaeorhizomycetes
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INTRODUCTION

Soil fungi are the dominant eukaryotic component of soil
communities and are known to perform crucial ecosystem
functions (Peay et al., 2008). Characterising the diversity of
fungi within the landscape and their response to anthropogenic
perturbation therefore represents an important topic within
ecology. High-throughput sequencing has allowed the rapid
estimation and identification of fungi by overcoming historical
limitations of culture isolation and classifying fruiting bodies
(Tedersoo et al., 2015). Using these DNA-based approaches it
has been estimated that global fungal diversity in soil ranges
from 3.5 to 5 million species. Yet at the beginning of the present
decade, only around one-tenth of fungal diversity was thought to
have been described (Rosling et al., 2011). In terms of ecosystem
function, the majority of fungi are important in organic matter
turnover and nutrient recycling as they facilitate the conversion
of complex organic polymers into forms more readily accessible
to other organisms (Peay et al., 2008; Nguyen et al., 2016).
Consequently, they play a crucial role in regulating both below-
and above-ground productivity (Peay et al., 2008). Many soil
fungi also form important interactions with plants. Some form
mutualistic relationships, best exemplified by the wide range
of mycorrhizas (Wang and Qui, 2006; Smith and Read, 2008;
Nguyen et al., 2016), whereas others are pathogens, responsible
for numerous plant and animal diseases within agriculture and
forestry (Fisher et al., 2012; Nguyen et al., 2016). Depending
on environmental conditions or life stage, fungi are capable of
taking on some or all of these roles (i.e., saprotroph, symbiotroph,
pathotroph; Fisher et al., 2012). Despite the recognition that
fungi are extremely important in soil ecosystems, characterising
fungal communities has remained a challenge, exemplified by the
numerous studies on soil bacteria in comparison to fungi.

Fungal barcode sequences are found within the ubiquitous,
multicopy ribosomal RNA gene. Within this, the internal
transcribed spacer (ITS) region has been accepted as a
universal barcode for fungi (Schoch et al., 2012). Recent
development of ITS-based databases such as UNITE (Kõljalg
et al., 2013) and Warcup (Deshpande et al., 2016) have
overcome limitations in collecting and assigning taxonomic
identities to unknown sequences, though database selection may
introduce bias into results (Tedersoo et al., 2015; Xue et al.,
2019). Yet ITS barcodes exhibit some limitations when dealing
with unknown or environmental samples. Generally, the ITS
region cannot be aligned above the family-level (Cavender-Bares
et al., 2009), making phylogenies based on ITS sequence data
unreliable. Importantly, the ITS region has proven unreliable at
distinguishing certain fungal groups at the species-level, such as
Glomeromycetes (Stockinger et al., 2010). Such inconsistencies
mean that ITS primers may not accurately detect target
organisms. For instance, Berruti et al. (2017), found that ITS
primers underestimated Glomeromycetes in bulk soil. Such
uncertainty may confound experimental results and lead to
erroneous conclusions.

Despite the widespread use of ITS barcodes, other markers
may better capture the diversity of some fungal taxa. Primers
targeting the small and large subunits as well as the ITS

regions of the rRNA gene have all been applied to fungi
(Tedersoo et al., 2015; Xue et al., 2019). For example, early
diverging lineages such as Chytridiomycota (Schoch et al.,
2012; Tedersoo et al., 2015) and Glomeromycetes (Tedersoo
et al., 2015) are poorly represented in ITS sequencing.
Additionally, advancements in classification have highlighted the
shortcomings of environmental DNA barcoding. For example,
the Archaeorhizomycetes are a poorly understood but ubiquitous
class of soil fungi and their previously unidentifiable sequences
have beenmajor components of past soil biodiversity assessments
(Anderson et al., 2003; Rosling et al., 2011). Overlooking these
lineages may potentially lead to erroneous assumptions of
biological and functional diversity in soils.

Underrepresentation of Glomeromycetes in particular
exemplifies this issue. Arbuscular mycorrhizal fungi (AMF)
form symbiotic relationships with more than 80% of vascular
plant families and have been categorised into the monophyletic
Glomeromycetes (Schüβler et al., 2001). Unlike most fungi,
the ITS region has consistently demonstrated poor resolution
in some closely related AMF species (Stockinger et al., 2010)
as it is too hyper-variable (Thiéry et al., 2016). As mentioned
previously, the ITS region underestimates Glomeromycetes in
bulk soil (Berruti et al., 2017). Instead, the 18S region is more
commonly used for barcoding AMF, especially in ecological
studies (Öpik et al., 2014). Therefore, it is important to recognise
biases inherent even in supposedly universal barcodes.

We previously undertook a nation-wide assessment of
soil biodiversity across Wales, representing a breadth of
heterogeneous land uses, which included agricultural land,
grasslands, woodlands, and upland bogs. In this case, fungal
richness and β-diversity were assessed using soil environmental
DNA, utilising ITS1 primers (George et al., 2019). Yet, from the
earliest stages of experimental design, we were cognisant that
the ITS1 universal primer choice may not account for numerous
functionally important fungal groups, particularly AMF. Thus,
the primary objective of the present study was to assess whether
observed fungal biodiversity (richness and β-diversity) across
contrasting land uses from the ITS1 dataset would differ when
compared to a dataset derived from an alternative choice of
primer and database. We therefore sought to assess if primer
choice influenced fungal biodiversity across land use, soil type,
and soil organic matter (SOM) class. Our next aim was to
critically evaluate the influence of climatic and edaphic factors
[e.g., soil pH, total carbon (C), nitrogen (N), phosphorus (P)] on
fungal diversity arising from the use of the two different primer
sets. Our final aim was to look for differences in coverage of
taxonomic and functional diversity between the two primer sets
across the broad range of land uses and soil types evaluated.

MATERIALS AND METHODS

Study Design
Data were collected as part of the Glastir Monitoring &
Evaluation Programme (GMEP). The GMEP initiative was
established by Welsh Government to monitor their most
recent agri-environment scheme, Glastir, which involved 4,911
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FIGURE 1 | Map of sites selected for GMEP monitoring. To protect landowner

anonymity, each triangle gives an approximate location of every 1 km2 plot

from which samples were taken.

landowners over an area of 3,263 km2 (Figure 1). Through the
GMEP framework, survey teams collected samples in 2013 and
2014 between April and October in each year (Emmett and the
GMEP Team, 2017). Sampling protocols were based on those
of the UK-wide ecosystem monitoring programme, Countryside
Survey (Emmett et al., 2010). The survey design randomly located
300, 1 km squares across 26 land classes in Wales which survey
teams sampled with 5 plots in each square. A subset of samples
were then randomly chosen from squares with a maximum of
3 selected in an individual square. A total of 437 samples were
collected for biodiversity analyses.

At each sampling location, 2 cores were collected. One was a
15 cm deep by 4 cm diameter core from which measurements of
soil physical and chemical properties were taken, including total
C (%), N (%), P (mg/kg), organic matter (% loss-on-ignition),
pH (measured in 0.01M CaCl2), mean soil water repellency
(water drop penetration time in seconds), bulk density (g/cm3),
volume of rocks (cm3), volumetric water content (m3/m3),
as well as percentage sand and clay. For complete details
on chemical analyses methodology, see Emmett et al. (2010).
Soil texture data were measured by laser granulometry with a
LS320 13 analyser (Beckman-Coulter) as described in George
et al. (2019). The cut-off points for clay, silt, and sand were:
2.2, 63, and 2,000µm, respectively. Clay and sand percentages

were selected for subsequent analyses and normalised using
Aitchison’s log10-ratio transformation. Further geographic data
including grid eastings, northings, and elevation were also
collected. Mean temperature (◦C) on date of sample collection
and annual precipitation (mL) data were extracted from the
Climate Hydrology and Ecology research Support System dataset
(Robinson et al., 2017). Environmental variables were normalised
(by log10 or square root transformation) where appropriate
(see Table 1).

Each sampling site was assigned to a land use category, soil
type, and SOM class (based on percentage organic matter).
The land use classification used in this study was originally
developed for the UK Countryside Survey in 1990 (Bunce
et al., 1999). Briefly, vegetation was recorded by surveyors
and used to classify each site into one of the 8 Aggregate
Vegetation Classes (AVCs) as described in Bunce et al. (1999;
for further details please see Supplementary Material). The
AVCs have been shown to follow a gradient of soil nutrient
content from which productivity and management intensity can
also be inferred (see Supplementary Material and Bunce et al.,
1999). There were 7 AVCs identified in the present study. The
AVCs in descending order of productivity are: Crops/weeds
(including arable land), Fertile grassland, Infertile grassland,
Lowland woodland, Upland woodland, Moorland grass-mosaic,
Heath/bog (Supplementary Table 1). Soil type based on the
predominant major soil group classification was extracted from
the National Soil Map (Supplementary Material; Avery, 1980).
Additionally, we classified soils on a per sample basis by organic
matter content. Each sample was grouped into one of four
organic matter classes based on percent loss-on-ignition (LOI)
following the protocols of the 2007 Countryside Survey (Emmett
et al., 2010): mineral (0–8% LOI), humus-mineral (8–30% LOI),
organo-mineral (30–60% LOI), and organic (60–100% LOI).
Mean values for each environmental variable were recorded for
each land use, soil organic matter class, and soil type.

DNA Extraction
Soils used in DNA extraction were collected from 15 cm deep
by 8 cm diameter cores. Soil samples were transported in
refrigerated boxes; samples were received at Environment Centre
Wales, Bangor within an average of 48 h post-extraction and
frozen at −80◦C upon arrival. Soils were then thawed and
homogenised as they passed through a sterilised 2mm stainless
steel sieve after which they were returned to a −80◦C freezer
until DNA extraction. Sieves were sterilised between samples by
rinsing with tap water at high pressure and an application of
Vircon R© laboratory disinfectant followed by UV-treating each
side for 5min. DNA was extracted by mechanical lysis from
0.25 g of soil per sample using a PowerLyzer PowerSoil DNA
Isolation Kit (MO-BIO Inc.). Soils were pre-treated with 750 µL
of a suspension of CaCO3 (1M) following Sagova-Mareckova
et al. (2008) to improve PCR performances, especially for acidic
soils. Extracted DNA was stored at−20◦C until amplicon library
preparation began. The extractions and homogenisation steps
were performed in triplicate. To check for contamination in
sieves, 3 negative control DNA extractions were completed as
well as 2 negative control kit extractions using the same technique
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but without the CaCO3 pre-treatment. Aliquots of the resultant
DNA were used to create amplicon libraries for sequencing with
each primer set.

Primer Selection and PCR Protocols for
Library Preparation
Amplicon libraries were created using primers for the
ITS1 (ITS5/5.8S_fungi) area to specifically target fungi
(Epp et al., 2012) and the V4 region of the 18S gene
(TAReuk454FWD1/TAReukREV3; Behnke et al., 2011)
targeting a wide range of, but not all, eukaryotic organisms,
including fungi. A two-step PCR following protocols devised in
conjunction with the Liverpool Centre for Genome Research
was used as described in George et al. (2019). Amplification of
amplicon libraries was run in triplicate on DNA Engine Tetrad R©

2 Peltier Thermal Cycler (BIO-RAD Laboratories Inc.) and
thermocycling parameters for both PCR protocols started with
98◦C for 30 s and terminated with 72◦C for 10min for final
extension and held at 4◦C for a final 10min. For the ITS1 locus,
there were 15 cycles of 98◦C for 10 s; 58◦C for 30 s; 72◦C for 30 s.
For the 18S locus there were 15 cycles at 98◦C for 10 s; 50◦C
for 30 s; 72◦C for 30 s. Twelve microliters of each first-round
PCR product were mixed with 0.1 µL of exonuclease I, 0.2 of
µL thermosensitive alkaline phosphatase, and 0.7 µL of water
and cleaned in the thermocycler with a programme of 37◦C
for 15min and 74◦C for 15min and held at 4◦C. Addition of
Illumina Nextera XT 384-way indexing primers to the cleaned
first round PCR products were amplified following a single
protocol which started with initial denaturation at 98◦C for
3min; 15 cycles of 95◦C for 30 s; 55◦C for 30 s; 72◦C for 30 s;
final extension at 72◦C for 5min and held at 4◦C. Twenty-five
microliters of second-round PCR products were purified with an
equal amount of AMPure XP beads (Beckman Coulter). Library
preparation for the 2013 samples was conducted at Bangor
University. Illumina sequencing for both years and library
preparation for 2014 samples were conducted at the Liverpool
Centre for Genome Research.

Bioinformatics
Bioinformatics analyses were performed on the Supercomputing
Wales cluster as previously described in George et al. (2019). A
total of 104,276,828, and 98,999,009 raw reads were recovered
from the ITS1 and 18S sequences, respectively. Illumina adapters
were trimmed from sequences using Cutadapt (Martin, 2011)
with 10% level mismatch for removal. Sequences were then
de-multiplexed, filtered, quality-checked, and clustered using a
combination of USEARCH v. 7.0 (Edgar, 2010) and VSEARCH
v. 2.3.2 (Rognes et al., 2016). Open-reference clustering (97%
sequence similarity) of operational taxonomic units (OTUs) was
performed using VSEARCH; all other steps were conducted with
USEARCH. Sequences with a maximum error greater than 1
and shorter than 200 bp were removed following the merging of
forward and reverse reads for ITS1 sequences. A cut-off of 250 bp
was used for 18S sequences, according to higher quality scores.
There were 7,242,508 (ITS1) and 9,163,754 (18S) cleaned reads
following these steps. Sequences were sorted and those that only
appeared once in each dataset were removed.

Frontiers in Environmental Science | www.frontiersin.org 4 November 2019 | Volume 7 | Article 173

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


George et al. Primers Affect Fungal Functional Diversity

Remaining sequences were matched first against the UNITE
7.2 (Kõljalg et al., 2013) and SILVA 128 (Quast et al., 2013)
databases for the ITS1 and 18S sequences, respectively. Ten per
cent of sequences that failed to match were clustered de novo and
used as a new reference database for failed sequences. Sequences
that failed to match with the de novo database were subsequently
also clustered de novo. All clusters were collated and chimeras
were removed using the uchime_ref command in VSEARCH.
Chimera-free clusters and taxonomy assignment summarised in
an OTU table with QIIME v. 1.9.1 (Caporaso et al., 2010) using
RDP (Wang et al., 2007) methodology with the UNITE database
for ITS1 data. Taxonomywas assigned to the 18SOTU table using
BLAST (Altschul et al., 1990) against the SILVA database and
OTUs appearing only once or in only 1 sample were removed
from each OTU table. Based on DNA quality and read counts,
413 samples were used for analyses of the ITS1 data and 422 for
18S data (from the total of 438).

A Newick tree was constructed for the 18S tables using 80%
identity thresholds and was paired with the 18S OTU table as
part of analyses using the R package phyloseq (McMurdie and
Holmes, 2013). Non-fungi OTUs were removed from both OTU
tables. Read counts from each group were rarefied 100 times
using phyloseq (as justified byWeiss et al., 2017) and the resulting
mean richness was calculated for each sample. The ITS1 table
was rarefied at a depth of 4,000 reads whereas the 18S table was
rarefied to 10,000 reads. A subset of the 18S data was rarefied
to 400 reads across 398 samples to analyse Glomeromycetes
OTUs separately. Samples with observed lower read counts were
removed before rarefaction. To assess functional diversity, both
OTU tables were processed using FUNGUILD (Nguyen et al.,
2016) and the resulting matched OTU tables were used to
investigate functional roles based on trophic mode. Sequences
have been uploaded to The European Nucleotide Archive and
can be accessed with the following primary accession codes
after the end of the data embargo: PRJEB28028 (ITS1), and
PRJEB28067 (18S).

Statistical Analysis
All statistical analyses were run using R v. 3.3.3 (R Core
Team, 2017) following rarefaction. For each data set, NMDS
ordinations using Bray-Curtis dissimilarity were created with
the vegan package (Oksanen et al., 2016) to assess β-diversity.
Environmental data was fitted linearly onto each ordination
of AVCs using the envfit function. NMDS scores were plotted
against these values for each variable to determine the direction
of associations. Differences in β-diversity amongst AVCs were
calculated with PERMANOVA and homogeneity of dispersion
was also assessed.

Linear mixed models were constructed using package nlme
(Pinheiro et al., 2016) to show the differences in α-diversity
amongst AVCs, soil types, and LOI classification, for both ITS1
and 18S fungal data sets. Sample year as fixed factors; sample
square identity was the random factor. This methodology was
also used for the subsets of data that matched to the FUNGUILD
database. For each model, significant differences were assessed by

ANOVA and pairwise differences were identified using Tukey’s
post-hoc tests from the multcomp package (Hothorn et al., 2008).

Partial least squares regressions from the pls package (Mevik
et al., 2016) were used with the variable importance in projection
(VIP) approach (Chong and Jun, 2005) to sort the original
explanatory variables by order of importance to identify the most
important environmental variables for richness. Such analysis is
ideal for data where there are many more explanatory variables
than sample numbers or where extreme multicollinearity is
present (Lallias et al., 2015; George et al., 2019). Variables with
VIP values > 1 were considered most important. Relationships
between important variables and richness values for each group
of organisms were investigated by linear regression. Richness was
normalised before regression when necessary.

RESULTS

Soil Properties
Soil properties displayed a range of changes across land uses
(Table 1). Notably, total C [F(6, 427) = 89.13 p < 0.001], total
N [F(6, 427) = 61.03, p < 0.001], C:N ratio [F(6, 427) = 94.41,
p < 0.001], organic matter content [F(6, 428) = 107.02, p <

0.001], elevation [F(6, 429) = 78.42, p < 0.001], and mean
annual precipitation [F(6, 429) = 72.6, p < 0.001], and moisture
[F(6, 427) = 33.74, p < 0.001] increased with declining land use
productivity. We also observed a reduction in pH [F(6, 428) =
69.56, p < 0.001], bulk density [F(6, 428) = 79.87, p < 0.001],
and clay content [F(6, 344) = 19.54, p < 0.001] across the land
use productivity gradient. Trends in other variables such as soil
water repellency [F(6, 428) = 22.08, p < 0.001], total P [F(6, 424)
= 7.1, p < 0.001], sand content [F(6, 344) = 5.71, p < 0.001],
stone content [F(6, 427) = 10.4, p < 0.001], and temperature at
time of sampling [F(6, 429) = 4.4, p < 0.001], though significant,
were less clear across land uses however. These findings were also
apparent when samples were grouped from low-to-high organic
matter content by organic matter class (Supplementary Table 2).
Overall, no clear trends were evident across the different soil
types (Supplementary Table 3).

Sequencing Data
A total of 7,582 and 4,408 fungal OTUs were recovered using
the ITS1 and 18S primer sets, respectively. Of these, 5,666 were
assigned an identifier at the class-level in the ITS1 dataset while
4,367 were assigned an identifier in the 18S dataset. There
were 15 classes that were only found in the ITS1 dataset and
12 unique to the 18S data. Endogonomycetes was the most
abundant class found only in the ITS dataset (19 OTUs), whereas
Laboulbeniomycetes (17 OTUs) was the most abundant fungal
class unique to the 18S data. A total of 24 classes were present in
both ITS1 and 18S data (Figure 2A).

As reported in George et al. (2019), Agaricomycetes were
the most abundant class of fungi in the ITS1 dataset
overall. There were also a large proportion of Sordariomycetes
(Figure 2B). Archaeorhizomycetes was the most abundant class
in the 18S dataset (Figure 2C). Proportionate abundances
of Sordariomycetes and Agaricomycetes followed contrasting
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FIGURE 2 | Composition of fungal classes from ITS1 and 18S datasets. (A)

Venn diagram denoting total number of shared and unique classes in each

data set, following exclusion of unknown sequences. Sankey diagrams of

proportional abundances of fungal OTUs from all samples from (B) ITS1 data

and (C) 18S data. Arms denote proportions of OTUs of the most populous

classes.

trends, with the dominance of the former replaced by the latter in
lower productivity AVCs in the ITS1 data, as described previously
(Figure 3A). Although Agaricomycetes and Sordariomycetes
comprised smaller fractions of the 18S dataset (Figure 2C),
this trend was still apparent (Figure 3B). Additionally, the
Archaeorhiozmycetes from 18S data generally followed the
same trend as the Sordariomycetes (Figure 3B). The preceding
trends observed across land uses are also evident across organic
matter classes (Figure S1) but are not as clear across soil types
(Figure S2).

When a class was present in both datasets, it was usually much
more prevalent in one than the other (Supplementary Table 4).
For example, there were 1858 Agaricomycetes and 915
Sordariomycetes OTUs in the ITS1, yet these numbers
dropped to 646 and 417 OTUs in the 18S dataset. Similarly,
Glomeromycetes accounted for 162 of the OTUs in the 18S
data, but only 6 OTUs in the ITS1 dataset. Abundances of
classes unique to the ITS1 and 18S datasets can be found in
Supplementary Tables 5, 6, respectively.

Fungal Richness and β-Diversity From ITS1
and 18S Data
We found that fungal richness followed the same trends across
land use, irrespective of primer set. As previously demonstrated
in George et al. (2019), fungal OTU richness from ITS1
metabarcoding significantly declined [F(6, 258) = 39.87, p< 0.001;
Figure 4A] from high to low productivity/management intensity.
Richness in Fertile grasslands was significantly greater than all
other AVCs (p < 0.001) except Crops/weeds. In the 18S dataset,
richness was also significantly higher [F(6, 267) = 82.73, p< 0.001]
in more productive/managed land uses and declined along this
gradient. However, richness in grasslands was highest in this
dataset (Figure 4B). For complete pairwise differences between
land uses see Supplementary Material.

The trend of declining richness with productivity was also
apparent when samples were categorised by organic matter
content (Figure 5). In both datasets, richness was significantly
greater [F(3, 259) = 48.13, p < 0.001; F(3, 269) = 46.71, p < 0.001;
for ITS1 and 18S, respectively] in mineral and humus-mineral
than all other classifications (ITS1, Figure 5A; 18S, Figure 5B).
There was no consistent pattern of richness when soils were
categorised by soil type (Figure S3). Again pairwise differences
between organic matter classes and soil types are described in the
Supplementary Material.

Community composition based on non-metric
multidimensional scaling of Bray-Curtis distances also showed
consistent trends between the datasets. Plots demonstrate tight
clustering of Crops/weeds, and grassland AVCs in both ITS1
(Figure 6A) and 18S (Figure 6B) compared to the wide dispersal
of other AVCs. Such results are supported by PERMANOVAs,
which show significant differences [F(6, 406) = 10.74, p = 0.001;
F(6, 415) = 15.65, p = 0.001]; however, analyses of dispersion
were also significant [F(6, 406) = 41.30, p = 0.001; F(6, 415) =

10.69, p = 0.001] as a result of the large disparity in replicates
between land uses.

When these results are visualised by organic matter
classification, the tight clusters are populated by mineral
and humus-mineral samples, whereas organo-mineral and
organic samples are more common in the widely dispersed
areas of the plots (Figures S4, S5). Soil types are more widely
dispersed but Brown and Surface-water gley soils are more
common in the tightly grouped area (Figures S6, S7). Again,
significant results were observed for both PERMANOVA and
dispersion of variance across organic matter classes and soil
types in both datasets.

Relationships Between Soil Properties and
Fungal Biodiversity
Fungal richness showed similar relationships to soil properties in
both datasets. Across samples, PLS and VIP analyses highlighted
strong correlations between fungal richness and soil properties.
There were significant, positive relationships of richness with
pH and bulk density; and significant, negative correlations
between richness and C:N ratio, organic matter, elevation, and
mean annual precipitation (Table 2). Although these results
followed the same trend in ITS1 and 18S data, however, their
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FIGURE 3 | Proportionate abundances of fungal OTUs for (A) ITS1 and (B) 18S data across Aggregate Vegetation Class. Aggregate Vegetation Classes are ordered

from most (Crops/weeds) to least (Heath/bog) productive.

FIGURE 4 | Boxplots of fungal OTU richness for (A) ITS1 and (B) 18S datasets plotted against Aggregate Vegetation Class. Aggregate Vegetation Classes are

ordered from most (Crops/weeds) to least (Heath/bog) productive. Boxes cover the first and third quartiles and horizontal lines denote the median. Black dots

represent outliers beyond the whiskers, which cover 1.5X the interquartile range. Notches indicate confidence interval around the median. Overlapping notches are a

proxy for non-significant differences between medians. Black dots are outliers.
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FIGURE 5 | Boxplots of fungal OTU richness for (A) ITS1 and (B) 18S datasets plotted against organic matter class. Organic matter classes are listed in order of

increasing percent organic matter. Boxes cover the first and third quartiles and horizontal lines denote the median. Black dots represent outliers beyond the whiskers,

which cover 1.5X the interquartile range. Notches indicate confidence interval around the median. Overlapping notches are a proxy for non-significant differences

between medians. Black dots are outliers.

FIGURE 6 | Non-metric dimensional scaling ordinations of fungal community composition across GMEP sites. Samples are coloured by Aggregate Vegetation Class.

Data from ITS1 (stress = 0.13) is shown in (A); data from 18S (stress = 0.11) is shown in (B).

relative rankings varied. For example, fungal richness from
ITS1 data was most strongly correlated with bulk density and
organic matter, while richness from 18S data was more strongly
correlated to C:N ratio and elevation in addition to bulk

density (Table 2). Furthermore, there were some relationships
unique to each dataset. Significant negative relationships were
observed between richness and soil water repellency. Similarly,
richness derived from 18S data was negatively related to total
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TABLE 2 | Results of partial least squares regressions for fungal richness against

environmental variables.

Soil and environmental variables Fungi (ITS) Fungi (18S)

Total CL 0.44 1.03 (R2 = 0.38***)

Total NL 0.93 0.56

C:N ratioS 1.64 (R2 = 0.28***) 1.71 (R2 = 0.41***)

Total PS 0.70 0.87

Organic matter (% LOI)L 1.13 (R2 = 0.29***) 1.17 (R2 = 0.38***)

pH (CaCl2) 1.52 (R2 = 0.23***) 1.55 (R2 = 0.37***)

Soil water repellencyL 1.23 (R2 = 0.13***) 0.82

Volumetric water content (m3/m3) 0.60 0.70

Rock volume (mL) 0.64 0.43

Bulk density (g/cm3) 1.41 (R2 = 0.29***) 1.33 (R2 = 0.41***)

Clay content (%)A 0.84 1.19 (R2 = 0.11***)

Sand content (%)A 0.6 1.11 (R2 = 0.1***)

Elevation (m) 1.68 (R2 = 0.22***) 1.83 (R2 = 0.41***)

Mean annual precipitation (mL) 1.44 (R2 = 0.18***) 1.52 (R2 = 0.27***)

Temperature (◦C) 0.56 0.52

Positive relationships are underlined; negative relationships are written in italics.

***indicates P < 0.001, blank indicates P > 0.05. Adenotes Aitchison’s log10-ratio

transformation; Ldenotes log10-transformation;
Sdenotes square-root-transformation.

C and sand content of soil but also positively related to
clay content.

We found pH was the best predictor of β-diversity from
linear fitting for fungi no matter what gene region is amplified
(Tables 3, 4). All fitted variables were significantly correlated
to β-diversity, though most of these only weakly. It is likely
that they did not strongly influence the fungal communities.
Variables followed similar rankings in both the ITS1 and
18S data. Elevation, annual precipitation, soil moisture, C:N
ratio, organic matter, and bulk density all had R2 values
greater than 0.35, but their relative order differed between
datasets (Tables 3, 4).

Effect of Land Use on Functional Diversity
There was a distinct difference in trophic modes of OTUs
that were successfully matched to the FUNGUILD database
between ITS1 and 18S datasets. In total, 3,402 and 1,783 OTUs
from the ITS1 and 18S datasets, respectively were matched to
the FUNGUILD database. Overall, saprotrophs were the most
abundant trophic mode in both datasets (Figure 6); however,
pathotrophs ranked second in ITS1 (Figure 6A) data while the
pathotroph-saprotroph-symbiotroph multi-trophic group was
second-most abundant in 18S data (Figure 6B). Across land
uses, proportions of pathotrophs and pathotroph-saprotroph-
symbiotrophs fell with declining productivity (Figure 7). In
matches from the ITS1 data, pathotroph-saprotrophs increased
across the productivity gradient (Figure 7A), as did saprotrophs
in the 18S data (Figure 7B). The aforementioned trend
in proportional abundance of pathotrophs and pathotroph-
saprotroph-symbiotrophs was also present across organic matter
classes (Figure S8). Symbiotrophs appeared to follow an opposite
trend, increasing as productivity fell. Interestingly, this was

TABLE 3 | Summary of relationships amongst environmental factors and fungal

communities based on ITS data.

Variable Correlation

R2 Axis1 Axis2

pH (CaCl2) 0.6*** – +

C:N ratioS 0.47*** + –

Elevation (m) 0.41*** + –

Volumetric water content (m3/m3 ) 0.41*** + –

Mean annual precipitation (mL) 0.39*** + –

Bulk density (g/cm3) 0.38*** – +

Organic matter (% LOI)L 0.37*** + –

Total CL 0.31*** + –

Clay content (%)A 0.28*** – +

Soil water repellencyL 0.24*** + –

Total N (%)L 0.21*** + –

Sand content (%)A 0.19*** + +

Total P (mg/kg)S 0.11*** – –

Rock volume (mL) 0.07*** – +

Temperature (◦C) 0.04*** – +

+/– signify the direction of association between each variable and respective NMDS

axes. ***indicates P < 0.001, blank indicates P > 0.05. Adenotes Aitchison’s log10-ratio

transformation; Ldenotes log10-transformation;
Sdenotes square-root-transformation.

TABLE 4 | Summary of relationships amongst environmental factors and fungal

communities based on 18S data.

Variable Correlation

R2 Axis1 Axis2

pH (CaCl2) 0.61*** – +

Elevation (m) 0.50*** + –

Mean annual precipitation (mL) 0.46*** + –

Volumetric water content (m3/m3 ) 0.45*** + –

C:N ratioS 0.43*** + +

Organic matter (% LOI)L 0.43*** + +

Bulk density (g/cm3) 0.39*** – –

Total CL 0.34*** + +

Clay content (%)A 0.30*** – +

Total N (%)L 0.28*** + –

Soil water repellencyL 0.21*** + –

Sand content (%)A 0.14*** + +

Total P (mg/kg)S 0.10*** – –

Rock volume (mL) 0.06*** – +

Temperature (◦C) 0.05*** – +

+/– signify the direction of association between each variable and respective NMDS

axes. ***indicates P < 0.001, blank indicates P > 0.05. Adenotes Aitchison’s log10-ratio

transformation; Ldenotes log10-transformation;
Sdenotes square-root-transformation.

the case for saprotrophs in the 18S (Figure S8B) but not the
ITS1 (Figure S8A) dataset. Proportional abundances of fungal
OTUs grouped by trophic modes did not follow a discernable
pattern across changing soil types (Figure S9). For simplicity, we
focused further analyses only on the broadly defined saprotroph,
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FIGURE 7 | Proportionate abundances of fungal OTUs matched to FUNGuild trophic groups for (A) ITS1 and (B) 18S data across Aggregate Vegetation Classes.

Aggregate Vegetation Classes are ordered from most (Crops/weeds) to least (Heath/bog) productive. Abbreviations for multi-trophic mode groups are as follows:

Path.-Sap. (Pathotroph-Saprotroph); Path.-Sap.-Sym. (Pathotroph-Saprotroph-Symbiotroph); Path.-Sym. (Pathotroph-Symbiotroph); Sap.-Path.-Sym

(Saprotroph-Pathotroph-Symbiotroph); Sap.-Sym. (Saprotroph-Symbiotroph).

pathotroph, and symbiotroph groups, ignoring all combination
groups; pairwise differences for all of the following comparisons
are described in the Supplementary Material.

Across land uses, significant differences were observed in the
richness of saprotrophic fungi in both the ITS1 [F(6, 258) = 25.14,
p < 0.001] and 18S [F(6, 267) = 31.10, p < 0.001] data; however,
there were differences between datasets (Figure 8). In the ITS1
dataset, richness followed the same trend as overall fungal
richness, with the highest and lowest values in the Crops/weeds
and Heath/bog AVCs respectively (Figure 8A). Although this
pattern was preserved in the 18S data (Figure 8B), richness of
saprotrophs was much more even across AVCs in this case.
Indeed, rather than the linear decline of richness along the
productivity gradient, there appeared to be 3 distinct levels in the
data affiliated with (i) grassland/agricultural sites, (ii) woodlands,
and (iii) bogs.

The same pattern was also apparent across organic matter
classifications in both datasets [ITS1: F(3, 260) = 32.86, p < 0.001;
18S: F(3, 269) = 41.13, p < 0.001; Figure 9]. In the ITS1 dataset,
each class was significantly different from the others (Figure 9A).
In the 18S data, saprotroph richness was significantly higher
in mineral and humus-mineral soils than organo-mineral and
organic soils (all p < 0.001 except mineral—organo-mineral p
= 0.02) (Figure 9B). Again, the overarching trend of fungal
richness was not apparent when samples were grouped by soil
type. Although there were significant differences across soil types
in both the ITS1 [F(5, 259) = 9.7, p < 0.001] and 18S [F(5, 268)

= 10.73, p < 0.001] datasets, these differences did demonstrate
consistent patterns across soil types (Figure S10).

In the case of pathotrophic fungi, richness also followed a
similar trend to the saprotrophs across both datasets. In the ITS1
data, significantly [F(6, 258) = 26.11, p < 0.001] greater richness
values were observed in Crops/weeds and grassland samples
(Figure 8A). Richness of pathotrophs was significantly highest
in Crops/weeds sites. Again, this trend was present, though not
as clear, in the 18S dataset (Figure 8B). Significant differences
[F(6, 267) = 52.26, p < 0.001] were observed between AVCs,
with the highest richness of pathotrophs occurring in the Fertile
grassland and Crop/weeds land uses.

Across organic matter classes, significant differences were also
observed in pathotroph richness in the ITS1 [F(3, 250) = 24.91, p
< 0.001] and 18S [F(3, 269) = 30.49, p< 0.001] datasets. However,
in this case the trends were more apparent in the 18S data than
the ITS1 data (Figure 9). Pathotroph richness was highest in
mineral soils and lowest in organic soils when compared to all
other classes in the ITS1 data (Figure 9A). However, all organic
matter classifications were statistically different from each other
in the 18S data (Figure 9B), in descending order from mineral
to peat soils. Again, trends were less clear across soil types
(Figure S10). Significant differences were observed in the ITS1
data [F(5, 259) = 6.93, p < 0.001] with the lowest pathotroph
richness found in peat soils (Figure S10A). In the 18S data,
differences between pathotrophic fungi across soil types were
more similar to those observed in other groups (Figure S10B).
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FIGURE 8 | Boxplots of richness of fungal OTUs matched to the pathotrophic, saprotroph, and symbiotroph trophic modes in FUNGuild for (A) ITS1 and (B) 18S

datasets plotted against Aggregate Vegetation Class. Aggregate Vegetation Classes are ordered from most (Crops/weeds) to least (Heath/bog) productive. Boxes

cover the first and third quartiles and horizontal lines denote the median. Black dots represent outliers beyond the whiskers, which cover 1.5X the interquartile range.

Notches indicate confidence interval around the median. Overlapping notches are a proxy for non-significant differences between medians. Black dots are outliers.

FIGURE 9 | Boxplots of richness of fungal OTUs matched to the pathotrophic, saprotroph, and symbiotroph trophic modes in FUNGuild for (A) ITS1 and (B) 18S

datasets plotted against organic matter class. Organic matter classes are listed in order of increasing percent organic matter. Boxes cover the first and third quartiles

and horizontal lines denote the median. Black dots represent outliers beyond the whiskers, which cover 1.5X the interquartile range. Notches indicate confidence

interval around the median. Overlapping notches are a proxy for non-significant differences between medians. Black dots are outliers.
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FIGURE 10 | Boxplots of richness of Glomeromycetes OTUs plotted against (A) Aggregate Vegetation Class; (B) organic matter class; (C) soil type. Aggregate

Vegetation Classes are ordered from most (Crops/weeds) to least (Heath/bog) productive. Organic matter classes are listed in order of increasing percent organic

matter. Soils are listed in increasing order of moisture retention. Boxes cover the first and third quartiles and horizontal lines denote the median. Black dots represent

outliers beyond the whiskers, which cover 1.5X the interquartile range. Notches indicate confidence interval around the median. Overlapping notches are a proxy for

non-significant differences between medians. Black dots are outliers.

Pathotroph richness was significantly [F(5, 268) = 13.6, p < 0.001]
different across soil types with the highest values found in brown
soils and the lowest in peats.

The previously described trend of declining richness across
the land use productivity gradient (i.e., Figure 4) was not
apparent when considering symbiotrophs. Furthermore,
although significant differences were apparent in both the ITS1
[F(6, 258) = 14.88, p < 0.001] and 18S [F(6, 267) = 55.13, p <

0.001] datasets they were by no means identical (Figure 8).
Symbiotroph richness was highest in Lowland wood sites
followed by Upland wood. This trend was not apparent in the
18S dataset, however (Figure 8B). Here richness of symbiotrophs
was greatest in grassland AVCs and lowest in Heath/bog sites
much like the overarching trend of total fungal OTU richness.

When samples were grouped by organic matter class,
further discrepancies became apparent between the datasets.
Whereas, the previously described trend of decreasing richness
with increasing organic matter content held true in the 18S
data [F(3, 269) = 36.28, p < 0.001; Figure 9B], no significant
differences were observed in the ITS1 dataset [F(3, 260) = 1.88,
p = 0.13; Figure 9A]. In the 18S data, richness of symbiotrophs
was greater in mineral and humus-mineral soils when compared
to organo-mineral (p= 0.002, p= 0.04, respectively) and organic
(p < 0.001) soils (Figure 9B). There were also no significant
differences [F(5, 259) = 1.43, p = 0.21] in symbiotroph richness
across soil types in ITS1 data (Figure S10A), though there were
in 18S data [F(5, 259) = 12.52, p < 0.001; Figure S10B]. As
described previously, richness was lowest in peat soils and highest
in brown soils.

We suspected that the differences in functional diversity
observed between datasets might be a result of differential
coverage of important groups. We were able to confirm
this when we analysed the richness of OTUs identified as
Glomeromycetes present in the 18S dataset (Figure 10). All
of the 162 Glomeromycetes OTUs were assigned as highly-
probable symbiotrophs through FUNGUILD. Across land uses,
richness of Glomeromycetes followed similar trends to those
of symbiotrophs and saprotrophs from 18S data. There were
significant [F(6, 244) = 33.47, p < 0.001] differences across land
uses, though they appeared, like the saprotroph richness to
be tiered between grasslands, woods, and bogs (Figure 10A).
Richness of Glomeromycetes was higher in grasslands than all
other AVCs except Crops/weeds and lowest in Heath/bog sites.
Again, when grouped by organic matter class (Figure 10B) and
soil type (Figure 10C), Glomeromycetes richness followed the
same trend as saprotrophs and symbiotrophs from the 18S
dataset. Richness was significantly [F(3, 246) = 37.65, p < 0.001]
greater in mineral and humus-mineral soils than all others.
Across soil types, richness of Glomeromycetes was significantly
[F(5, 245) = 8.65, p < 0.001] lower in peat soils when compared to
most other soil types.

Relationships Between Soil Properties and
Fungal Functional Diversity
Across all samples, PLS and VIP analyses highlighted strong
correlations between fungal richness and soil properties by
trophic groups. Richness of pathotrophs showed similar
relationships to soil properties in both datasets. There were

Frontiers in Environmental Science | www.frontiersin.org 12 November 2019 | Volume 7 | Article 173

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


George et al. Primers Affect Fungal Functional Diversity

significant, positive relationships of richness with pH and bulk
density; and significant negative correlations between richness
and total C, C:N ratio, organic matter, elevation, and mean
annual precipitation (Table 5). As with the total fungal data,
the relative rankings of the strength of relationships between
pathotroph and each property varied between datasets. Organic
matter was most strongly correlated with pathotroph richness
from ITS1 data whereas pH was most strongly correlated with
pathotroph richness in the 18S data (Table 5). Also soil moisture
content was also negatively correlated with pathotroph richness
in the ITS1 dataset only.

Organic matter, elevation (both negative), pH, and bulk
density (both positive) all showed significant relationships with
saprotroph richness in both datasets (Table 5). The correlations
between richness of saprotrophs and both bulk density and pH
were the strongest observed in the ITS1 data. There were also
negative correlations between saprotroph richness and total C,
mean annual precipitation, soil moisture, soil water repellency,
and mite abundance in the ITS1 data. However, it again should
be noted that the correlation with mites was extremely weak.
C:N ratio was strongly and positively correlated with saprotroph
richness in the 18S data. Similarly, richness from 18S data
was negatively related to total C and sand content of soil but
also positively related to clay content. In addition, there was a
significant, positive, but weak correlation between sand content
and saprotroph richness.

In both datasets, symbiotroph richness was significantly
correlated with pH and C:N ratio (Table 5). Interestingly, the
relationships were positive in the case of C:N ratio and negative
for pH in ITS1 data but the opposite was apparent in the 18S data.
There were also many more relationships unique to each dataset.
Weak but significant positive relationships were observed
between symbiotroph richness and rock volume, Collembola
abundance, and temperature as well as a negative correlation
to soil moisture. In the 18S data, stronger relationships were
observed between symbiotroph richness and bulk density
(positive) and elevation (negative). Furthermore, a weakly
negative correlation was observed with sand content in addition
to weak positive correlations with clay content and total P.

DISCUSSION

Primer Choice and the Total Fungal
Community
We observed congruent patterns in total fungal OTU richness
across land uses, organic matter classes and soil type when
measured with either ITS1 or 18S primer sets. Richness was
greater in arable and grassland land uses, which are highly
productive, intensively managed and declined in the less
productive, largely unmanaged bogs. Although these findings had
been previously known from the ITS1 dataset (George et al.,
2019), it is important to note that the trend was also present
in the fungal OTUs identified from 18S sequencing. A similar
trend was observed across organic matter classes. Here, fungal
richness fell as organic matter increased. Fungal α-diversity
is known to be greater in arable soils than in grasslands or T
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forests (Szoboszlay et al., 2017). Potential mechanisms for this
include: (i) increased nutrient availability due to fertiliser input
(Szoboszlay et al., 2017), and (ii) beneficial disturbance from
tillage and other standard agricultural practices. The latter is
consistent with the intermediate disturbance hypothesis whereby
high levels of diversity are maintained by consistent interruption
of successional processes (Connell, 1978).

Soils rich in organic matter, especially peats, found in upland
moors, bogs, and other wetlands across harbour distinct fungal
communities from neighbouring habitats (Anderson et al., 2003).
Fungi dominate microbial communities in bogs (Thormann
and Rice, 2007) although their proportional abundance drops
sharply below the first 5 cm of bog habitats (Potter et al.,
2017). Yet, richness in bogs is consistently low, perhaps due to
environmental pressures such as high acidity, highly recalcitrant
SOM, low nutrients, and oxygen levels (Rousk et al., 2010;
Tedersoo et al., 2014) or reduced competition within the
fungal community.

In comparison to AVC and SOM levels, differences in fungal
communities were not as clear across soil types as defined
by the National Soil Map (Avery, 1980), which is inline with
previous work on microbial activity across the UK (Jones et al.,
2014). Richness was highest in brown soils and was lowest in
peats. Brown soils commonly support grassland communities
across Wales (Avery, 1980; Rudeforth et al., 1984). Nearly half
of the Fertile and Infertile grasslands surveyed in GMEP were
categorised as brown soils. The absence of other major trends
besides these may be due to the use of the dominant soil type
and lack of resolution for the soil classification. The soils map
used in this study simply does not provide enough resolution
(1:63, 360; Avery, 1980) for soil type to be an effective category.
Furthermore, this system heavily uses subsoil properties to
determine soil type (Avery, 1980), while our work only involved
the upper 15 cm. However, it is our opinion that the use of
organic matter classification is more effective and simple metric
that can be easily implemented in large-scale studies in lieu of
fine-scale maps.

Results of PLS analyses demonstrates that soil properties and
associated environmental factors influencing fungal richness are
consistent across ITS1 and 18S datasets. Major drivers included
pH, bulk density, C:N ratio, organic matter, elevation, and mean
annual temperature (Table 2). Such results from 18S data are
consistent with previous findings from the ITS1 data (George
et al., 2019). However, there were certain properties that were
significant in only one of the datasets and the relative importance
of these properties does vary between the two datasets. There
are several possible explanations for this. Firstly, 9 more samples
were used in the 18S dataset (n = 422) than the ITS1 data (n
= 413), which may have introduced the discrepancy in relative
importance of the data. However, it is much more likely that a
differential coverage of fungal groups between the two datasets
caused these discrepancies.

Community composition showed consistent clustering across
land uses, organic matter classes, and soil types in both data sets.
As in George et al. (2019), communities were most similar in the
grassland and arable sites and more spread out across woodlands
and upland habitats. This was likely driven by environmental

factors acrossWales. In both datasets, pHwas themost important
environmental variable influencing community composition and
although the remaining properties followed similar patterns,
their relative importance again differed in the dataset. The
importance of pH, elevation, C:N ratio, and precipitation in
determining fungal community composition fits well in the
wider context of soil fungi biogeography. Tedersoo et al. (2014)
previously highlighted the importance of these variables in the
distribution of fungi at the global scale. Furthermore, the strong
positive correlation with C:N ratio is indicative of the expected
fungal dominance (de Vries et al., 2006) of nutrient-poor, acidic
soils (Bloem et al., 1997).

Primer Choice and Fungal Functional
Diversity
Differences between richness of trophicmodes of fungi, used here
as a proxy for functional diversity, showed some discrepancies
across land uses and soil classification between data sets.
Saprotrophs made up the largest proportion of the 3 functional
groups studied and generally exhibited the same trends as total
richness across soils and land uses. This was also the case
for pathotrophs. Indeed, correlations between environmental
variables with pathotroph and saprotroph richness were largely
consistent across datasets. However, we observed divergent
trends in symbiotroph richness across land uses and soils.
Symbiotroph richness was highest in woodlands in the ITS1
dataset whereas it was highest in grasslands according to the
18S data (Figures 7A,B). A similar increase in richness within
grasslands in the 18S data is repeated when Glomeromycetes
were considered on their own (Figure 9); AMF are the
predominant mycorrhizal fungi in grassland systems (Smith and
Read, 2008). The symbiotroph peak in the ITS1 data may be
explained by an increase in coverage of ectomycorrhizas which
are the most common group to associate with trees and shrubs
(Smith and Read, 2008). Despite these differences, both datasets
suggest that symbiotroph richness was low in arable land, which
is in line with previous findings demonstrating high susceptibility
of mycorrhizal fungi to disturbance, for example tillage (Schnoor
et al., 2011; Säle et al., 2015), and the addition of fertilizers,
which decreases the receptiveness of many agricultural plants to
mycorrhizal infection (Smith and Read, 2008).

The divergent trend in symbiotroph richness and
discrepancies in relationships between functional groups
and environmental variables likely stem from primer biases.
Primer biases have been well-recognised as a confounding
factor in categorising communities from environmental DNA
(Cai et al., 2013; Elbrecht and Leese, 2015; Tedersoo et al.,
2015). Tedersoo et al. (2015) assessed the effectiveness of
fungal barcodes from the ITS, 18S, and 28S rDNA regions and
found that primer choice did not affect richness or β-diversity
results of soil fungi communities from Papua New Guinea,
although fewer OTUs were recovered by 18S primers than ITS
primers. In silico analyses suggests such findings are the result of
lumping of sequences in the 18S that may predominantly affect
rare sequences, thereby strengthening community matrices.
Similarly, results were similar enough for all primers to be
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suitable for analyses at the class-level (Tedersoo et al., 2015).
Although the 18S primers used here were designed to cover the
breadth of eukaryotes and may lack specificity to fungi (Behnke
et al., 2011), our results show strong congruence to the ITS1 data
across total richness and indeed most functional groups.

Unlike Tedersoo et al. (2015) we observed considerable
differences in the proportions of fungal classes between the
ITS1 and 18S data sets. We suspect that such differences stem
from the need to use appropriate databases to assign taxonomy
to OTUs to each dataset (Xue et al., 2019). Perhaps only 30–
35% of Glomeromycetes are present in 18S and ITS databases,
respectively (Hart et al., 2015), and although sequences are
continuously being uploaded to such repositories, it is likely
the majority of AMF are not identifiable from environmental
samples (but see Öpik et al., 2014). Similarly we suspect that,
although not studied in detail, primer choice may lead to
biases in other groups. Archaeorhizomycetes accounted for
nearly 25% of the 18S sequences but less than 1% from the
ITS1 data (Figure 2B). Primer bias has been recognised for
Archaeorhizomycetes even before the class’ formal description;
∼19% of 18S sequences collected from Anderson et al. (2003),
have been matched to Archaeorhizomycetes, whereas none were
recovered from the same samples using ITS primers. Despite
its recent description, Archaeorhizomycetes are ubiquitous
components of soil communities. Strong associations have been
observed with trees, yet precise functional roles of these fungi
have yet to be determined (Rosling et al., 2011). Subsequently,
such biases likely account for divergent relationships between
functional group richness and environmental properties.

CONCLUSIONS

Our comparison of the use of ITS1 and 18S primers and their
respective databases in a nationwide metabarcoding survey of
fungi yielded 3 major findings. First, the congruent findings
of total richness and β-diversity across land use and their
relationships to environmental variables confirmed our previous
research (George et al., 2019). Second, soil organic matter was
found to be a more sensitive metric than soil type in our
survey design. Third, biases from the combination of primer
and database choice became apparent for certain classes of
fungi, including Glomeromycetes and Archaeorhizomycetes,
which strongly influenced functional group richness across
land uses as well as their relationships with environmental
variables. It is therefore important to recognise the sensitivity
of metabarcoding to primer choice, even when using universal
primers. Without simultaneous analyses of environmental DNA
using both primers and databases, the presence of AM fungi as
well as the newly characterised Archaeorhizomycetes would have
been overlooked and unquantified in this survey. Furthermore,
since the majority of soil biodiversity is undescribed (Ramirez
et al., 2015), utilising multiple primers will elucidate a more
complete picture of belowground biodiversity by revealing
shortcomings in existing probes and revealing the presence of
as yet undescribed organisms. We therefore advocate that future
nation-wide surveys included both a sample-based metric of soil
type (i.e., organic matter classification) and multiple primers for

fungal biodiversity. Such measures should not be arduous to
implement, especially if researchers can identify specific fungal
groups of particular interest to accommodate.
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