
Contents lists available at ScienceDirect

Progress in Oceanography

journal homepage: www.elsevier.com/locate/pocean

A generalised volumetric method to estimate the biomass of
photographically surveyed benthic megafauna
Noëlie M.A. Benoista,b,⁎, Brian J. Betta, Kirsty J. Morrisa, Henry A. Ruhla,c

aOcean Biogeochemistry and Ecosystems, National Oceanography Centre, European Way, Southampton SO14 3ZH, United Kingdom
b School of Ocean and Earth Science, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, United Kingdom
cMonterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, United States

A R T I C L E I N F O

Keywords:
Ecology
Benthos
Body size
Biovolume
Photography
Image analysis
Northeast Atlantic
Porcupine Abyssal Plain
Celtic Sea

A B S T R A C T

Biomass is a key variable for understanding the stocks and flows of carbon and energy in the environment. The
quantification of megabenthos biomass (body size ≥ 1 cm) has been limited by their relatively low abundance
and the difficulties associated with quantitative sampling. Developments in robotic technology, particularly
autonomous underwater vehicles, offer an enhanced opportunity for the quantitative photographic assessment of
the megabenthos. Photographic estimation of biomass has typically been undertaken using taxon-specific length-
weight relationships (LWRs) derived from physical specimens. This is problematic where little or no physical
sampling has occurred and/or where key taxa are not easily sampled. We present a generalised volumetric
method (GVM) for the estimation of biovolume as a predictor of biomass. We validated the method using fresh
trawl-caught specimens from the Porcupine Abyssal Plain Sustained Observatory (northeast Atlantic), and we
demonstrated that the GVM has a higher predictive capability and a lower standard error of estimation than the
LWR method. GVM and LWR approaches were tested in parallel on a photographic survey in the Celtic Sea.
Among the 75% of taxa for which LWR estimation was possible, highly comparable biomass values and dis-
tribution patterns were determined by both methods. The biovolume of the remaining 25% of taxa increased the
total estimated standing stock by a factor of 1.6. Additionally, we tested inter-operator variability in the ap-
plication of the GVM, and we detected no statistically significant bias. We recommend the use of the GVM where
LWRs are not available, and more generally given its improved predictive capability and its independence from
the taxonomic, temporal, and spatial, dependencies known to impact LWRs.

1. Introduction

A census of biomass on Earth is important to understanding both the
structure and the functioning of the biosphere (Bar-On et al., 2018).
Population and assemblage biomass, together with individual body size
(mass), are generally seen to be critical variables in the assessment of
the stocks and flows of mass and energy in marine ecosystems (e.g.
Tomlinson et al., 2014). These stocks and flows influence the primary
ecosystem goods and services that the marine environment provides,
and in turn, monitoring their status is likely to be essential to achieving
the corresponding sustainable development goals (United Nations
General Assembly, 2015). In the following, we consider the need for
benthic biomass data, the current synthesis of global megabenthos data
(large fauna living on or near the seafloor), and the suitability of the
currently predominant biomass estimation method.

1.1. Biomass as an essential variable

The Framework for Ocean Observing (e.g. Lindstrom et al., 2012)
indicates a region of overlap between the essential biodiversity vari-
ables (EBVs) of the global biodiversity observing system (GEO BON;
Kissling et al., 2018) and the essential ocean variables (EOVs) of the
global ocean observing system (GOOS; Muller-Karger et al., 2018),
within which the variable body mass lies. Body mass directly, or in-
directly, features in several EBVs: (a) population abundance (as a proxy
for numerical abundance); (b) population structure by age/size class;
(c) body mass; (d) physiological traits (as a key predictor of metabolism
and related traits; e.g. Peters, 1983); and (e) secondary productivity (as
a key predictor; e.g. Banse, 1980). Assessment of these EBVs is con-
sidered relevant to Aichi Biodiversity Targets 4–12 and 14–15 for the
maintenance and the restoration of biological ecosystems by 2020 (GEO
BON, 2011; Pereira et al., 2013).
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Recent examinations of EOVs (e.g. Constable et al., 2016;
Miloslavich et al., 2018; Levin et al., 2019) have made frequent refer-
ences to abundance and to biomass variables, and occasional references
to body-mass spectra, in connection with zooplankton, fish, and benthic
invertebrates. The GOOS currently recognises stock assessments of
marine biota groups, including benthic invertebrate stocks, as ‘emer-
ging’ EOVs (www.goosocean.org, accessed September 2019). The deep
ocean observing strategy (DOOS; Levin et al., 2019) recommends the
consideration of EOVs and of ‘emerging’ EOVs, with the addition of
individual body size and of sponge-habitat cover (www.
deepoceanobserving.org, accessed September 2019). There is general
agreement in the identification of biomass as a key variable in the EBVs
by GEO BON, and in the biology and ecosystem EOVs by GOOS and
DOOS.

Given the central roles that individual body size and total biomass
play in the stocks and flows of mass and energy through marine eco-
systems, it seems clear that they should be established as EOVs.
Selection as an essential variable is not determined by the variable’s
perceived ‘value’ or ‘need’ alone. The expert panels and other re-
searchers that consider candidate EOVs necessarily give regard to many
factors (e.g. Miloslavich et al., 2018); key among these are likely to be:
(a) impact, i.e. scientific and societal relevance; (b) feasibility, i.e.
monitoring scalability and practicality; and (c) cost effectiveness, i.e.
scientific and operational capacity. Given that body mass already fea-
tures in multiple EBVs of the GEO BON, its impact for ecological re-
search seems clear. It is therefore timely and of particular significance,
for both the scientific community and conservation practitioners, to
establish a method for the estimation of individual body size and total
biomass that (i) has general, broad-scale, application, (ii) can readily be
adopted for use in multiple environments by a wide range of users, and
(iii) can be achieved using readily available existing technologies.

1.2. Existing benthic megafauna biomass data

In the marine environment, recent field studies (Kelly-Gerreyn et al.,
2014; Labra et al., 2015; Laguionie-Marchais et al., in review) and
theoretical considerations (Bett, 2013) have suggested that total esti-
mated seafloor biomass increases with the mean, or maximum, body
size of the organisms included in the study. In effect, the largest or-
ganisms present, e.g. benthic megafauna (megabenthos; ≥1 cm body
size), contribute substantially to the ‘true’ total standing stock biomass
in the system (Bett, 2019). Seafloor megafaunal assemblages are often
assessed by trawl sampling (e.g. Gage and Bett, 2005); however, this
approach is typically limited to sedimentary habitats and is likely to be
semi-quantitative at best (e.g. McIntyre, 1956; Uzmann, 1977; Bett
et al., 2001). Moreover, trawling, be it for scientific sampling or com-
mercial fishing purposes, is a rather destructive process (e.g. Huvenne
et al., 2016) and thus should be avoided if possible; a factor that may be
of concern in time-series studies (e.g. Billett et al., 2010). In response to
these limitations, there has been a general increase in the use of seafloor
photography to quantify megabenthos assemblages (Durden et al.,
2016c), which has recently accelerated with the development of au-
tonomous underwater vehicles (AUVs; Wynn et al., 2014; Jones et al.,
2019) and their use in quantitative seafloor ecology (Morris et al.,
2016; Simon-Lledó et al., 2019). AUV-based seafloor photography en-
ables the rapid quantitative survey of large areas that can comprise
multiple habitats in a consistent and non-destructive manner (e.g.
Morris et al., 2014; Marzinelli et al., 2015; Milligan et al., 2016; Benoist
et al., 2019).

Wei et al. (2010) provide a major compilation and assessment of
global benthic biomass (from bacteria to megabenthos) that is widely
cited (129 Web of Science Core Collection citations, May 2019) and that
has been used as the basis of other major works, e.g. to predict future
trends of seafloor biomass in response to climate change (Jones et al.,
2014; 58 Web of Science Core Collection citations, May 2019). How-
ever, the megabenthos biomass data synthesised by Wei et al. (2010)

encompasses records based on bottom-trawl catches and on photo-
graphic surveys, potentially introducing mismatches in the spatial scale
observed and in the body sizes and the taxonomic groups assessed. We
examine the possible significance of this methodological variation in
our evaluation of available methods below.

1.3. Photographic estimation of individual biomass

Generating quantitative ecological data from large sets of seafloor
photographs poses a number of challenges including specimen detec-
tion and identification, biomass estimation, and data standardization.
Durden et al. (2016a) provide a brief review of existing methodology
that essentially comprise two options: (i) calculating the product of
numerical density and of a representative value for the individual
biomass of a particular taxon, or (ii) the use of a taxon-specific length-
weight relationship (LWR) approach. Both methods require access to
existing morphometric data on the taxa of interest, which are frequently
unavailable in poorly studied geographic regions, in particular deep-
water environments, or for the attached fauna of hard-substratum ha-
bitats.

Nevertheless, the LWR approach is commonly employed in both the
analyses of photographic surveys (e.g. Durden et al., 2015) and of trawl
catches (e.g. Robinson et al., 2010). These conversions are typically
expressed as an allometric equation of the form:

= ×M a SLE
b (1)

where ME is estimated body mass, SL is a defined standard linear body
dimension, and a and b are taxon-specific constants obtained by log-log
regression of measured body mass on SL, and consequently require
adequate prior data for the taxon in question (e.g. Durden et al.,
2016a). These two constants are an expression of life history and local
environmental settings (i.e. ecological factors affecting individual me-
tabolism; e.g. Peters, 1983). In biological terms, the b parameter (or
allometry coefficient) is indicative of the rate of weight gain relative to
growth in length (see Eq. (2) below). The LWR method is attractive for
both its simplicity and its ability to generate biomass estimates for in-
dividual specimens, such as are required in the study of individual-
based body-size spectra (Edwards et al., 2017; Laguionie-Marchais
et al., in review) or any research involving the structuring role of body
size in ecosystems (e.g. Sewall et al., 2013; Lewis et al., 2018; Durden
et al., 2019).

Durden et al. (2016a) accessed a database of some 47,000 speci-
mens of megabenthos collected by otter trawl from the Porcupine
Abyssal Plain Sustained Observatory (PAP-SO; 4850 m water depth,
northeast Atlantic) to produce LWRs for 34 morphotypes (species/
species groups/higher taxa; e.g. Althaus et al., 2015). A typical otter-
trawl catch from the PAP-SO returns specimens from between 60 and
80 morphotypes, and the current morphotype catalogue for photo-
graphic studies in the area has some 70 morphotypes (Durden et al., this
issue; Hosking et al., this issue). However, despite the high research
effort at PAP-SO (Billett and Rice, 2001; Lampitt et al., 2010; Hartman
et al., 2012; Guest editors, this issue), LWRs are only available for ap-
proximately half of the taxa present. Similarly, Robinson et al. (2010)
undertook a major beam-trawl survey of 283 stations in the North Sea,
encountering 497 benthic fish and invertebrate taxa, from which they
were able to produce LWRs for 216 taxa, i.e. approximately half of the
taxa present. Of those 216 LWRs, only 95 were based on 50 or more
specimens. Nine of these invertebrate species were sufficiently nu-
merous and widespread in their geographic distribution to analyse
temporal (year of sampling) and spatial (north or south of the 50 m
isobath) variation in the LWRs. The authors detected statistically sig-
nificant temporal and/or spatial variations in the LWRs of seven of
those species (see also Stoffels et al., 2003).

Potential temporal (and spatial) variation in the a and the b para-
meters of LWRs are linked to the concept of condition factor (or con-
dition index), as frequently implemented in studies of fish populations
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(e.g. Froese, 2006). The condition factor is essentially a ratio of mea-
sured specimen body mass to the mass predicted from the specimen’s
length. Froese (2006) provides a formula for calculating relative weight
(Wrm) as:

= ×W W a L100 /rm m
bm (2)

where W is specimen weight, L is specimen length, and am and bm are
the geometric means of the available LWR parameters. In terms of
statistical significance, the number of specimens used to calculate a
LWR can be expected to impact its reliability. We examine the possible
significance of systematic variation in condition factor in our evaluation
of available methods below.

1.4. The need for a generalised method

LWRs are potentially subject to systematic, temporal and spatial,
variation, and may be highly taxon-specific. Consequently, the use of
LWRs out of temporal, spatial, or taxonomic, context may result in
substantial systematic error. More fundamentally, taxon-specific LWRs
simply do not exist for the vast majority of megafaunal species, im-
posing an immediate severe limitation on the general application of this
approach. Environmental assessments, particularly in relation to deep-
sea mineral resource exploitation, are now regularly being conducted in
very poorly known areas where physical sampling of the megafauna is
rare or absent (e.g. Gates et al., 2017; Durden et al., 2018; Stratmann
et al., 2018), demonstrating a growing need for a more tractable
method of taxon-independent biomass estimation.

Consequently, we have developed a taxon-independent method for
the estimation of biovolume, from geometric considerations of photo-
graphed specimens, as a proxy for biomass. Similar biovolume-based
approaches are well established for small organisms (microbes: Saccà,
2017; phytoplankton: Jiménez et al., 1987; Hillebrand et al., 1999; Sun
and Liu, 2003; zooplankton: Alcaraz et al., 2003; Mustard and
Anderson, 2005; copepods, nematodes: Baguley et al., 2004; Di Mauro
et al., 2011; Jung et al., 2012; Moore et al., 2013; Mazurkiewicz et al.,
2016; gastropods: McClain, 2004) and fossil invertebrates (Novack-
Gottshall, 2008). Briefly, these approaches select a geometric form to
represent approximately the biovolume of a given taxon, then make the
measurements necessary to estimate the volume of the selected geo-
metric form. Further conversion of biovolume to units of (fresh) wet
weight mass, carbon mass (C), or energy (e.g. joule) can be achieved via
established factors (e.g. Brey et al., 2010).

In this contribution, we describe and test a generalised volumetric
method (GVM) for the estimation of megafaunal specimen biovolume,
as an estimator of biomass, from photographic observations. We first
validated the method against measured specimen mass and volume
using a collection of fresh trawl-caught specimens from the PAP-SO site.
The full methodology was then trialled by two operators in a case study
of benthic ecology based on a large photographic dataset derived from
AUV surveys on the Celtic Shelf (100 m water depth, northeast
Atlantic), where both sedimentary and hard substratum habitat types
occur. Comparative assessments of the conventional taxon-specific LWR
approach and the proposed taxon-independent GVM are provided, to-
gether with an assessment of inter-operator variation in biovolume and
biomass estimation.

2. Materials and methods

2.1. Evaluation of current methods

2.1.1. Field methods
To evaluate the influence of field method, megabenthos biomass

data (invertebrates and fish) from the Wei et al. (2010) dataset, limited
to deep-sea records (water depth > 200 m), were separated into trawl
catches and photographic surveys. A general linear model (LM) of log
(biomass) on water depth by method of biomass estimation was

developed using the Minitab software package (v18.1; Minitab, Inc.).

2.1.2. Length-weight relationship (LWR) method
To examine the characteristics of the LWR method for predicting

individual biomass, we examined morphometric data for the large ho-
lothurian Psychropotes longicauda (n= 984) from 15 trawl catches
spanning seven research cruises (different years) to the PAP-SO. This
species is a biomass dominant at PAP (e.g. Billett et al., 2010) and easily
identified in both trawl catches and seafloor photographs. Corre-
sponding LWRs were examined by linear regression (preserved wet
weight ~ standard body length), and temporal variation (between in-
dividual catches and years) by LM (preserved wet weight ~ standard
body length × trawl or × year), as performed in Minitab. The relative
weight of P. longicauda specimens was calculated using Eq. (2) with the
am and bm parameters taken to be the cruise (year) values. Non-para-
metric tests (Spearman’s rank correlation and Mood’s median test;
Minitab) were used to further examine variations in relative weight.

2.2. A generalised volumetric method (GVM)

The GVM models specimen body volume as a cylinder, and there-
fore it requires two defining measurements that correspond to the ra-
dius (measured as the diameter) and to the length of an equivalent
cylindrical object. This approach represents a much simplified ap-
proximation of the full range of body forms exhibited by benthic
megafauna. Consequently, the method requires the user to compress
conceptually the specimen into a cylinder of approximately equivalent
volume. (1) The user must first choose the most appropriate axis of
rotation for the cylinder; this will become the dimension along which
length is measured. The choice of an ‘appropriate’ axis is essentially
determined by the general body plan and the orientation of the pho-
tographed specimen (Fig. 1). (2) The next choice is an appropriate
equivalent cylindrical diameter (ECD) perpendicular to the axis of ro-
tation, i.e. given the chosen axis of rotation, what is the most appro-
priate representative diameter for a conceptually compressed cylinder
in that orientation? (3) Finally, given that choice of ECD, what is the
most appropriate equivalent cylindrical length (ECL) that will best es-
timate the volume of the cylinder (Figs. 1 and 2)? The estimated spe-
cimen biovolume (VE) is then calculated as:

= × ×V ECD ECL( /2)E
2 (3)

The process is simplest to conceive in the case of vermiform or-
ganisms (Fig. 2a and b); however, it is readily translated to a wide range
of morphologies (Fig. 2c–l). The method is necessarily subjective in that
the measurements are not made between distinct morphological fea-
tures, but they are instead aimed at the most effective volumetric

Fig. 1. Body dimensions of a conceptualised cylindrical specimen as observed
from (a) a vertical or (b) a horizontal orientation. The observed body surface
(shaded), the axis of orientation (red line), the equivalent cylindrical diameter
(ECD; solid dimension line), and the equivalent cylindrical length (ECL; dashed
dimension line) are illustrated. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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representation. The method is, therefore, (recommendation 1) best
implemented by users with zoological knowledge of the taxa involved
and, preferably, (recommendation 2) with experience in directly
handling comparable physical specimens. It is simplistic but affords
considerable flexibility in practical application, enabling the user to
deal with varying specimen orientation and/or partially obscured spe-
cimens. From experience, (recommendation 3) our primary advice to
potential users is to retain a simple focus on the objective of estimating
the tissue biovolume of the specimen in question, including its appen-
dages if they make an appreciable contribution to the organism’s vo-
lume. The user should avoid the temptation of making a ‘standard
measurement’ if that has been their previous practice, and treat each
specimen encountered as a new case. The method draws on the user’s
prior knowledge and experience of three-dimensional morphology;
consequently, that knowledge is a prerequisite for successful operation.

The GVM is readily adapted to colonial, encrusting, or morpholo-
gically plastic, forms (e.g. Ascidiacea, Bryozoa, Cnidaria, Porifera). In
colonial forms, the user can opt to estimate the colony as a unit, or to
make estimates for the unitary components (zooids, polyps). For ex-
ample, with close-encrusting colonies and Porifera, the user can esti-
mate an ECD to best represent the areal extent of the subject and then
estimate an ECL to best represent the typical thickness of the corre-
sponding layer of biological tissue. With erect colonial Cnidaria (e.g.
Octocorallia), the user can (a) estimate the biovolume of each single
polyp with a representative contribution of connecting tissue; (b) esti-
mate the biovolume of a single polyp with a representative contribution
of connecting tissue, and apply a multiplier for the number n of polyps
in the colony (i.e. ECL is replaced by ECL× n in Eq. (3)); or (c) estimate
an ECD representative of stem tissue thickness and then estimate an ECL

that represents the total length of the tissue-bearing stem. A very si-
milar approach can be applied to branching Porifera. With other sponge
growth forms, the user can readily adopt similar methods, for example:
(i) laminar, ECD to represent the plate area, ECL to represent the plate
tissue thickness; (ii) cup/goblet/barrel forms, ECD to represent one-half
of the outer surface of the cup, ECL to represent double the cup tissue
thickness. Again, our primary advice to potential users is to retain a
simple focus on the objective of estimating the tissue biovolume of the
specimen in question (recommendation 3).

2.3. Method validation with physical specimens

Fresh specimens of benthic invertebrate megafauna and demersal
fish were collected from the Porcupine Abyssal Plain Sustained
Observatory site (PAP-SO; 48°50′N 016°30′W) at 4850 m water depth
(Hartman et al., 2012), using a semi-balloon otter trawl during the RRS
Discovery cruises DY050 in 2016 (Stinchcombe, 2017) and DY077 in
2017 (Lampitt, 2017). In total, 206 intact specimens were selected for
direct physical measurement on board and subsequent indirect photo-
graphic body-size measurement. The test specimens were chosen to
represent a wide range of body shapes, sizes (five orders of magnitude),
taxonomic identities (six phyla, 34 taxa; Appendix A in Supplementary
Material), and ecological characteristics (deposit feeder, filter feeder,
predator, scavenger, mobile, sessile).

2.3.1. Direct measurement of specimens
Blotted individual fresh wet weight (fwwt) biomass (MM) was re-

corded to the nearest 0.1 g using a motion-compensated electronic
balance (POLS S-182 Marine Onboard Scale, Lorrimar Weighing Ltd.).

Fig. 2. Examples of the application of generalised volumetric method measurements to a range of benthic megafauna body forms. The corresponding equivalent
cylindrical diameter (ECD; solid line) and equivalent cylindrical length (ECL; dashed line) measurements are illustrated. (a) Holothuroidea. (b) Polychaeta. (c)
Anthozoa. (d) Echinoidea. (e–g) Asteroidea. (h) Ophiuroidea. (i–k) Brachyura. (l) Actinopterygii.
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Fresh biovolume (VM) was measured by displacement using a mea-
suring cylinder suited to the specimen size (100, 250, 1000, or
2000 mL) and recorded to the nearest 0.5, 1.0, 5.0, or 10.0 mL, re-
spectively. Specimen biomass and biovolume ranged c. 0.5–1225 g and
0.5–1210 mL, respectively.

2.3.2. Indirect measurement of specimens
Each fresh specimen was then photographed (Fujifilm FinePix

F550EXR) from above (i.e. high oblique, near perpendicular view), in a
position to match the typical view obtained from seafloor AUV-survey
photographs (e.g. dorsal view of squat lobster with tail folded beneath
body, dorsal view of shrimp, oral view of anemone; Fig. A.1).
Photograph-derived body-size measurements were then made at
0.5 mm resolution, typical of seafloor survey photographs (e.g. Morris
et al., 2014), via image analysis software (Image-Pro Plus, v7.0, Media
Cybernetics Inc.). Three body dimensions were recorded from each
specimen: (i) GVM equivalent cylindrical diameter (ECD), (ii) GVM
equivalent cylindrical length (ECL), and (iii) LWR standard linear body
dimension (SL), as employed in previously established PAP-SO taxon-
specific LWRs (i.e. Durden et al., 2016a). The ECD and ECL measure-
ments were converted to estimated biovolume (VE) using Eq. (2), i.e.
the proposed GVM approach. The SL measurement was converted to
fresh wet weight biomass (ME) using Eq. (1), i.e. the LWR method de-
tailed by Durden et al. (2016a).

2.3.3. Analytical approach
Relationships between measured and estimated specimen mass and

volume were examined by regression. We primarily based our assess-
ment on the predictive results of model I ordinary least squares (OLS)
regression, as implemented in Minitab (Sokal and Rohlf, 1995), on the
premise that our focus was the prediction of mass from estimated vo-
lume (VE), or from standard length (SL), and that the test specimens
were deliberately selected (i.e. intact) rather than randomly sampled
from the trawl catches. We carried out OLS regressions on the native
variables and on their transformation to natural logarithms to ac-
knowledge potential inhomogeneity of variance. In reporting regression
results, we have included the ‘Predicted R2’ statistic (Minitab, 2013);
this is based on a leave-one-out cross-validation approach and assesses
how well the model predicts new observations (see e.g. Allen, 1971). In
addition, we also carried out model II regressions (Legendre and
Legendre, 1998) that are suited to the assessment of functional re-
lationships where both variables are measured with error, and where
the focus is on the symmetric relationship between the two variables,
rather than the asymmetric case of predicting one from the other. We
implemented two forms of model II regression: (i) ranged major axis
(RMA) using the ‘lmodel2’ package (v1.7–3; Legendre, 2018), and (ii)
standardised major axis (SMA) using the ‘smatr’ package (v3; Warton
et al., 2012), in the R environment (v3.3.2; R Core Team, 2016). These
various regression techniques are extensively discussed by Warton et al.
(2006) and Legendre (2018).

2.4. Method trial in a photographic case study

Seafloor images were obtained from three shelf-sea locations in the
Celtic Sea, northeast Atlantic, c. 100 m water depth (Thompson et al.,
2017), using the AUV Autosub3 (McPhail et al., 2009) during the RRS
Discovery cruise DY034 in 2015 (Ruhl, 2016). The AUV was pro-
grammed to survey at a target altitude of 2.5 m above the seafloor,
yielding a nominal resolution of c. 0.5 mm per pixel. The optical axis of
the camera was approximately perpendicular to the seafloor, with the
AUV’s pitch and roll angles recorded for subsequent image processing.
General field method and subsequent image processing and assessment
were as described by Morris et al. (2014, 2016), with data generated
from 4160 images, representing c. 4000 m2 of seafloor.

2.4.1. Image analysis
All benthic invertebrate megafauna and demersal fish (≥1 cm body

size) observed were counted and identified to the lowest taxonomic or
morphotype unit (Table A.1). As defined above, three body dimensions
were recorded per specimen: ECD, ECL, and SL. Where specimens could
not be assigned to a taxonomic unit or morphotype, they were recorded
as indeterminate (< 1% of specimens) and excluded from subsequent
analyses. Specimen body-size measurements were converted to esti-
mated volume (VE) using Eq. (2), i.e. the GVM approach, and to esti-
mated mass (ME) using Eq. (1), i.e. the LWR approach, where possible
(via conversion factors obtained from the literature; Coull et al., 1989;
Richardson et al., 2000; Robinson et al., 2010; Silva et al., 2013;
Durden et al., 2016a). The biovolume of all identifiable specimens re-
corded was estimated using the GVM; however, LWRs were only
available for c. 75% of the taxa encountered. To enable direct com-
parison of the two methodologies, we refer to biovolume estimates for
only those specimens for which ME could be calculated as VE-partial.
Each seafloor image was also visually classified to habitat type: (i) hard
substrata (boulder, cobble; total 54 m2), (ii) sand (1169 m2), (iii) mud
(2034 m2), and (iv) mosaic where there was substantial hard sub-
stratum present in sand or mud (10–50% areal coverage; 618 m2; e.g.
Benoist et al., 2019). To acknowledge the likely inhomogeneity of
variance and the unbalanced sampling design, standing stock data
(biovolume or biomass standardised to seafloor area observed) were
log10-transformed and assessed using Welch’s ANOVA (Welch, 1951)
with subsequent pairwise comparisons made using the Games-Howell
method (Games and Howell, 1976), as implemented in Minitab.

2.4.2. Inter-operator variation assessment
Two operators (O1, O2) were trained jointly to apply GVM body-

size measurements on a selection of photographed individual mega-
benthos specimens representative of the range of taxa encountered in
the study area. Training consisted of repeat measurements of the se-
lected specimens and joint quality/control assessment of the resultant
data to minimise intra- and inter-operator inconsistencies. This process
yielded two final training samples of 130 paired specimen records (VE-
training). Each operator then independently processed a set of c. 2400
images. A subset of 20% of those images was analysed by both opera-
tors (i.e. c. 480 images common to O1 and O2), yielding two field
samples of estimated standing stock (ME, VE-partial, VE). To measure
variability in standing stock estimates between operators, the training
and the field datasets were randomly resampled with replacement to
establish an appropriate measure of inter-operator error in standing
stock estimation using a modified form of bootstrapping (Davison,
1997). This process was repeated 10,000 times using a custom script
implemented in the R environment (R Core Team, 2016). For each
dataset, total standing stock (VE-training, ME, VE-partial, VE) was calcu-
lated for each bootstrap sample, and the 95% confidence interval (CI) of
relative difference between operators was estimated using the simple
percentile method (Davison, 1997). To give context to the inter-op-
erator variability estimates, the overall relative variability in field
standing stock was also estimated using the same method for the same
sampling unit size (i.e. 10,000 resamples with replacement of c. 480
images from the complete image set).

3. Results and discussion

3.1. Evaluation of current methods

3.1.1. Trawl sample versus photographic survey
Fig. 3 presents the megabenthos biomass data (invertebrates and

fish) from the Wei et al. (2010) dataset as divided into trawl catch and
photographic survey methods. These data suggest substantial under-
estimation of biomass when based on trawl catches. More formally, the
LM of log(biomass) on water depth by method reveals a statistically
significant effect of method (F1,220 = 76.4, p < 0.001) and no
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statistically significant interaction between water depth and method
(F1,219 = 0.75, p= 0.388). Consequently, the model predicts a common
slope for the response of log(biomass) to water depth for both methods
of −3.75 × 10−4, with a 95% CI of −4.32 × 10−4 to −3.17 × 10−4

that does not encompass the slope originally published (i.e.
−3.07 × 10−4; Wei et al., 2010). In particular, note the substantial
offset in the estimated intercepts: trawl 1.73 (95% CI 1.59, 1.88) and
photo 3.01 (95% CI 2.87, 3.15). This equates to a factor of 20 under-
estimation of biomass at a given water depth by trawl catch relative to
photographic survey.

We suggest that this substantial, systematic, methodological bias
should be carefully considered, particularly when estimates of standing
stock biomass are being produced (e.g. Wei et al., 2010), and where
those estimates are being used in future climate change scenario fore-
casts (e.g. Jones et al., 2014). The current state of knowledge may be
substantially biased towards underestimated stocks of seafloor biomass.
Fig. 3 illustrates two additional biomass estimates from the PAP-SO site
as provided by recent photographic assessments (Durden et al., 2015;
Morris et al., 2016). The mean value of these estimates, 258 mgC m−2

(photographic data), is over two orders of magnitude greater than the
corresponding estimate from the original regression of 2 mgC m−2

(pooled trawl and photographic data; Wei et al., 2010). The ‘true’ trawl
estimate of PAP-SO megabenthos biomass (invertebrate only) is
17 mgC m−2, based on 44 otter trawls covering the period 1989–2005
(Billett et al., 2001, 2010). We conclude that the state-of-the-art in
megabenthos biomass estimation (e.g. Wei et al., 2010) is generally a
factor of 20 below the likely true value and may be underestimated by a

factor of 200+ locally. This is not a new observation, nor is the po-
tential use of underwater photography to tackle the issue a new solution
(e.g. McIntyre, 1956; Uzmann, 1977; Bett et al., 2001). We therefore
suggest that there is both a clear need and scope for substantial im-
provement via the widespread adoption of photographic-survey-based
megabenthos biomass estimation.

3.1.2. Evaluation of LWR method
Illustrated in its linear form, the LWR for P. longicauda demonstrates

the rather diffuse nature of that relationship (Fig. 4). For example, a
specimen of 20 cm standard length (19.5 < SL≤ 20.5 cm) has an ob-
served weight range of 84–358 g preserved wet weight (pwwt) and a
predicted weight range of 203–226 g pwwt using the LWR method.
Although the LWR approach may superficially appear to be an exact
numerical method, i.e. individual biomass is obtained mathematically
from a standard measurement, it is effectively an approximate tech-
nique, with the predicted value ranging 40–170% of the true value in
this example.

The LWR illustrated in Fig. 4 represents a composite of 15 trawl
catches from seven cruises spanning almost 15 years. When the iden-
tities of individual catches, or cruises, are included in a LM, statistically
significant variation is evident in both cases (trawls F1,14 = 3.54,
p < 0.001; cruises F1,6 = 4.97, p < 0.001), and in both cases there are
statistically significant interactions with standard body length
(length × trawl F1,14 = 2.86, p < 0.001; length × cruise F1,6 = 2.77,
p= 0.011). Consequently, there are statistically significant differences
in both the a and the b parameters among trawls and cruises (e.g.
Fig. 5). Such variation calls in to question the selection of the most
appropriate value for these parameters in the case of P. longicauda or
indeed any other species.

Fig. 6 illustrates the variation in the relative weight of P. longicauda
by year of sampling. Spearman’s rank correlation of relative weight and
standard body length indicated the effective independence of these
measures (rs984 = −0.037, p= 0.247). A Mood’s median test detected
statistically significant temporal variation in relative weight

Fig. 3. Megabenthos biomass as a function of water depth and estimation
method: trawl catches and photographic surveys. Data shown are as compiled
by Wei et al. (2010) with the addition of (i) two values for the Porcupine
Abyssal Plain Sustained Observatory site derived from recent photographic
assessments (Durden et al., 2015; Morris et al., 2016), and (ii) the ‘true’ trawl
estimate of PAP-SO megabenthos biomass (invertebrate only; Billett et al.,
2001, 2010), with units of mass converted from fresh wet weight to carbon
mass using the coefficients provided by Brey et al. (2010). Lines represent re-
gressions of log(biomass) on water depth: (i) black, original regression provided
by Wei et al. (2010), with general linear model results for (ii) green, trawl
catches, and (iii) red, photographic surveys. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 4. Length-weight relationship of the holothurian Psychropotes longicauda
sampled from the Porcupine Abyssal Plain Sustained Observatory between
2004 and 2017. Scatter plot of individual values with corresponding log–log
regression (red line) and associated 95% prediction interval (blue lines);
F1,982 = 4232.4, p < 0.001, R2 = 81.1%, W= 0.442 × SL2.42. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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(χ26 = 136.8, p < 0.001). In effect, specimens collected in 2005 and
2015–2017 were c. 15% heavier at a given length than the general LWR
prediction, and those collected in 2004, 2011, and 2013 were c. 15%
lighter than the prediction. Such systematic temporal variation could,
for example, be linked to the known intra- and inter-annual variation in
the supply of organic matter to the seafloor in this location (e.g. Bett
et al., 2001). This, again, calls in to question the selection of the most

appropriate LWR parameter values for P. longicauda or any other spe-
cies.

3.2. Validation with physical specimens

We tested the relationships between direct physical measurement
(MM, VM) and indirect photographic body-size measurement (ME, VE)
obtained from a variety of trawl-caught specimens from the PAP-SO
study site (Appendix A). All of the relationships examined between
measured and estimated mass and volume yielded strong and statisti-
cally significant Pearson’s product-moment correlations (r), ranging
between 0.897 for MM ~ME to 0.997 for MM ~ VM (Table 1). Conse-
quently, there was only minor variation between the regression slope
coefficients estimated by the model I (Table 2) and the model II
(Table 3) methods. Indeed, in most cases the 95% CI of the regression
slope encompasses the value 1.0; the primary exception being the re-
lationship MM ~ME that yielded substantially lower slope values (c.
0.6; Tables 2 and 3).

Similarly, ordinary least squares regressions were all statistically
significant and exhibited good predictive capacity with predicted R2

ranging between 76.1% for MM ~ME to 99.4% for MM~ VM (Table 2).
All OLS regression coefficients were statistically significant, except in
the case of the intercept for MM ~ VM in both linear and logarithmic
forms, suggesting a very close correspondence between body mass and
body volume (Table 2). In other words, for every additional mL in body
volume, body mass is expected to increase by c. 1 g fwwt, suggesting an
average tissue volumetric mass density of 1.053 (linear) and 1.058
(logarithmic; Fig. 7a; Table 2), with very similar values derived from
the linear forms of RMA (1.056) and SMA (1.056) model II regressions
(Table 3).

Among the fresh specimens, the proposed GVM appeared to have
good predictive capability for both volume (predicted R2 89.4–92.0%;
Fig. 7c) and mass (89.7–95.4%; Fig. 7b), which exceeded that of mass
prediction by the conventional LWR method (76.1–86.9%; Table 2). In
practical terms, the standard deviation of the estimate was 47.1 g fwwt
for the GVM and 68.1 g fwwt for the LWR method, where the corre-
sponding value from directly measured volume was 11.6 g fwwt.

Although the estimation of mass from standard length is a com-
monly applied technique, it is not entirely surprising that the proposed
GVM has an improved predictive capacity. The estimation of mass from
a single measured dimension (SL) relies on a consistent relationship
between the measured dimension and the two unmeasured dimensions,
whereas the volumetric approach measures two dimensions, with the
second-dimension measurement (ECD) subjectively modified to be re-
presentative of the third unmeasured dimension. Further, as previously
discussed, the mass of an individual of a given standard length may be,
for example, substantially influenced by its life stage, physical condi-
tion, feeding success, health, season, and geographic location (e.g.
Kimmerer et al., 2005; Méthot et al., 2012; Meyer, 1989; Primavera
et al., 1998; Zilli et al., 2017).

The volumetric assessment of individual biomass is frequently used
in the study of microscopic and small-bodied organisms (Baguley et al.,

Fig. 5. Variation in length-weight relationship (LWR) of the holothurian
Psychropotes longicauda sampled from the Porcupine Abyssal Plain Sustained
Observatory between 2004 and 2017. For each trawl catch, the a and the b
parameters of the LWR are illustrated, together with corresponding 95% con-
fidence intervals. The red line represents the log-linear regression of a on b. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 6. Temporal variation in the relative weight (specimen weight/LWR-pre-
dicted weight; Eq. (2)) of the holothurian Psychropotes longicauda from the
Porcupine Abyssal Plain Sustained Observatory between 2004 and 2017. The
median value is presented with corresponding 95% confidence interval. Dashed
line serves as reference line.

Table 1
Relationships between biomass and biovolume of megabenthos specimens from
the Porcupine Abyssal Plain Sustained Observatory, as directly measured and
photographically estimated using the generalised volumetric method and the
length-weight-relationship approach. Pearson’s product-moment correlation
coefficients (r) of measured (M) and estimated (E) specimen mass (MM, ME; g
fwwt) and volume (VM, VE; mL), for linear (lin.) and logarithmic (log.) re-
lationships (in all cases n= 206, and p < 0.001).

Variable MM (lin., log.) VM (lin., log.) ME (lin., log.)

VM (lin., log.) 0.997, 0.981
ME (lin., log.) 0.897, 0.977 0.901, 0.960
VE (lin., log.) 0.952, 0.934 0.954, 0.923 0.907, 0.941
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2004; Mustard and Anderson, 2005; Novack-Gottshall, 2008;
Mazurkiewicz et al., 2016). Studies of macro- and megafaunal marine
organism biovolume have previously been used as an indicator of re-
lative biomass, or the physical space occupied by individuals (McClain,
2004, 2009; Jones et al., 2007). In the present study, we have been able
to compare directly mass estimates by our proposed taxon-independent
GVM and the taxon-specific LWR method, where those relationships
were derived from a very extensive measurement database of c. 47,000
specimens (Durden et al., 2016a). The GVM appears to outperform the
traditional LWR method, having a higher predicted R2 value and lower
standard error of estimate value. The generalised volumetric estimate
(VE) does requires the user to measure two body dimensions (ECD,
ECL). Nonetheless, the additional time (cost) of making the second
measurement is small compared to the full process of locating a spe-
cimen within an image, identifying that specimen, and making a single
measurement (SL). The proposed method is taxon, time, and location
independent, offering considerable benefits that are further explored in
the following case study.

3.3. Celtic Sea case study trial

In total, 2896 specimens from eight phyla and 92 taxa were mea-
sured from photographs using both the GVM and the LWR approach
(Appendix A). The estimated range for individual biovolume (VE) was
0.001 mL to 16.98 L, and for biomass (ME) 0.001 g to 17.35 kg. Total
standing stock estimated by the GVM was very similar to that estimated
with the LWR method (VE-partial 7.74 × 10−3 mL m−2, ME

7.34 × 10−3 g m−2). No statistically significant differences were de-
tected between VE-partial and ME estimates for the total surveyed area,
or within the individual habitat types encompassed by the survey
(Fig. 8). Similarly, both methods illustrated the same pattern and de-
tected the same statistically significant differences between habitat
types (VE-partial F3,267 = 46.69, p < 0.001; ME F3,266 = 53.13,
p < 0.001). The same pattern and statistically significant differences
were also apparent in the total biovolume data, i.e. including those taxa

for which LWR estimation was not possible (VE F3,274 = 131.67,
p < 0.001). However, there were appreciable increases in estimated
standing stock from the ME and VE-partial values to the VE values
(Fig. 8). By application to the full range of taxa present, the GVM in-
creased the total standing stock estimate over the LWR method by a
factor of 1.6 for the total seafloor area surveyed, by about double in the
case of mosaic and mud habitats, and around four-fold on hard sub-
strata.

The potential advantage of the GVM, compared to the LWR method,
was well demonstrated in the Celtic Sea case study trial. This region
encompasses substantial areas of mixed substratum types (mosaics of
hard rock and mobile sediments) that are not easily surveyed using
physical sampling methods, such that photography may be the only
uniformly applicable approach to stock assessment across habitat types.
Estimated biovolume (VE-partial) was highly consistent with the bio-
mass estimates (ME) obtained by the LWR method, suggesting at least
an equal performance for the proposed method. Further, the volumetric
method enabled the assessment of the c. 25% of taxa for which no LWR
data were available (mainly bryozoans, sponges, and colonial cnidar-
ians). Located in the European Atlantic shelf seas, the fauna of this
study area is very well known with a substantial literature from which
to derive LWR conversion factors (Coull et al., 1989; Robinson et al.,
2010; Silva et al., 2013; Benoist et al., 2019). However, in marine re-
gions lacking that information, the proposed taxon-independent GVM
offers the prospect of useful standing stock assessments despite a lack of
taxon-specific information. In addition, the volumetric approach en-
ables the assessment of those organisms that do not exhibit a distinctive
body form or that are rarely sampled as complete entities (e.g. sponges,
colonial and encrusting taxa).

The Celtic Sea dataset was produced by two different operators
trained to apply GVM body-size measurements using a common
training image dataset. Following that training, there was no statisti-
cally significant difference in the total volume estimated (VE-training)
between operators O1 and O2 (Fig. 9a). This preliminary test was fur-
ther expanded in the full field trial. As suggested by Durden et al.

Table 2
Predictive capacity of photographic methods to estimating body size. Model I linear regressions between measured and photographically estimated body size of
megabenthos specimens from the Porcupine Abyssal Plain Sustained Observatory, using the generalised volumetric method and the length-weight-relationship
approach. Results of model I ordinary least squares regression analyses of measured (M) and estimated (E) specimen mass (MM, ME; g fwwt) and volume (VM, VE; mL).
(Pred., predicted; CI, confidence interval; ***, p < 0.001).

Equation F[1,204] R2 (%) Pred. R2 (%) Intercept 95% CI t[204] Slope 95% CI t[204]

MM= 1.250 + 1.053 VM 35768*** 99.4 99.4 (-0.543, 3.043) 1.37 (1.042, 1.064) 189***
ln(MM) = 0.056 + 0.996 ln(VM) 5254*** 96.3 96.2 (-0.036, 0.147) 1.20 (0.968, 1.023) 72.5***
MM= 13.91 + 0.982 VE 1992*** 90.7 89.7 (6.831, 20.99) 3.87*** (0.939, 1.026) 44.6***
ln(MM) = 0.472 + 0.938 ln(VE) 4303*** 95.5 95.4 (0.381, 0.562) 10.3*** (0.910, 0.966) 65.6***
MM= 20.49 + 0.547 ME 844*** 80.5 76.1 (10.32, 30.67) 3.97*** (0.510, 0.584) 29.1***
ln(MM) = 0.408 + 0.837 ln(ME) 1386*** 87.2 86.9 (0.248, 0.568) 5.03*** (0.793, 0.882) 37.2***
VM= 12.11 + 0.931 VE 2057*** 91.0 89.4 (5.500, 18.72) 3.61*** (0.891, 0.972) 45.4***
ln(VM) = 0.504 + 0.908 ln(VE) 2403*** 92.2 92.0 (0.387, 0.622) 8.48*** (0.872, 0.945) 49.0***

Table 3
Functional relationship between photographically estimated and measured body size. Model II linear regression between measured and photographically estimated
body size of megabenthos specimens from the Porcupine Abyssal Plain Sustained Observatory, using the generalised volumetric method and the length-weight-
relationship approach. Results of model II regression (RMA, ranged major axis; SMA, standardised major axis) analyses of measured (M) and estimated (E) test
specimen mass (MM, ME; g fwwt) and volume (VM, VE; mL). (CI, confidence interval).

Equation RMA intercept (95% CI) RMA slope (95% CI) SMA intercept (95% CI) SMA slope (95% CI)

MM~VM 1.019 (0.199, 1.830) 1.056 (1.045, 1.067) 1.028 (-0.766, 2.822) 1.056 (1.045, 1.067)
ln(MM) ~ ln(VM) 0.002 (-0.077, 0.079) 1.014 (0.987, 1.042) 0.001 (-0.039, 0.040) 1.015 (0.988, 1.042)
MM~VE 10.62 (7.517, 13.58) 1.032 (0.987, 1.078) 10.65 (3.497, 17.80) 1.031 (0.989, 1.076)
ln(MM) ~ ln(VE) 0.410 (0.335, 0.483) 0.962 (0.934, 0.992) 0.180 (0.141, 0.220) 0.960 (0.932, 0.989)
MM~ME 13.34 (8.703, 17.66) 0.614 (0.573, 0.657) 13.78 (3.378, 24.18) 0.610 (0.574, 0.648)
ln(MM) ~ ln(ME) 0.226 (0.082, 0.362) 0.899 (0.853, 0.948) 0.101 (0.031, 0.171) 0.897 (0.853, 0.942)
VM~VE 9.210 (6.330, 11.97) 0.975 (0.933, 1.018) 9.109 (2.437, 15.78) 0.977 (0.937, 1.018)
ln(VM) ~ ln(VE) 0.397 (0.297, 0.492) 0.950 (0.913, 0.990) 0.177 (0.126, 0.228) 0.946 (0.910, 0.983)
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(2016b), a subset of images were analysed by both operators to quantify
potential inter-operator bias in the estimation of mass and volume using
both the LWR and the GVM approaches. There were no statistically
significant differences in estimated biomass (ME) or estimated biovo-
lume (VE-partial, VE) between operators (Fig. 9b–d). Note also that the
field sample relative variability was appreciably greater than the inter-
operator relative variability for both LWR and GVM approaches
(Fig. 9b–d).

3.4. Generalised volumetric method

Individual body size and total biomass of the megabenthos are es-
sential variables given their central roles in the regulation of marine
ecosystems. Yet, the lack of an appropriate and cost-effective method,
applicable at broad scale, has limited their consideration in the
Framework for Ocean Observing. The increasing use of robotic tech-
nologies, remotely operated vehicles and particularly autonomous un-
derwater vehicles, to study the seafloor, has delivered new opportu-
nities for the quantitative assessment of the megabenthos across a range
of spatial scales and environments. The collection and analysis of large
amounts of photographic data (digital stills, digital video, chemical
films) does bring new challenges, including the estimation of biomass in
the absence of physical specimens or prior knowledge of LWRs. In these
cases, we suggest that the use of the generalised volumetric method
(GVM) offers an effective means to estimate biovolume. Indeed, given
that the volumetric method appears to outperform the LWR method
even where extensive prior information is available (e.g. PAP-SO and
UK Celtic Sea sites), we would suggest that it is considered for use more
generally. We would also again note that there is clear evidence that
LWRs can exhibit substantial taxon, time, and location, specificities that
have the potential to introduce appreciable biases to biomass estimates
where those variations in LWRs are not known or controlled. It may
also be worth noting that to describe how individuals acquire and use
energy, some ecological models adopt biovolume as their main body-
size currency, such as dynamic energy budget (DEB) models (Kooijman,
2000) that typically include ‘structural length’ (i.e. biovolume1/3) as a
primary variable (e.g. Sousa et al., 2010), under the assumption that
most physiological processes are volume dependant.

The GVM does require the user to convert virtually the specimen
into a compressed cylinder of equivalent volume in order to best esti-
mate ECD and ECL. We would therefore recommend the user should
have significant zoological experience, be familiar with the morphology
of the taxa involved, and ideally, have prior experience with handling
comparable physical specimens (see recommendations in Section 2.2).

Fig. 7. Comparison of measurements and estimates
of volume and biomass of fresh megabenthos spe-
cimens from the Porcupine Abyssal Plain Sustained
Observatory. Log-log linear regressions. (a)
Measured mass (MM) on measured volume (VM). (b)
Measured mass (MM) on geometrically estimated
biovolume (VE; Eq. (3)). (c) Measured biovolume
(VM) on geometrically estimated biovolume (VE).
Solid red lines are regressions, dashed white lines
are corresponding 95% confidence intervals, and
shaded areas the corresponding 95% prediction in-
tervals.

Fig. 8. Celtic Sea megabenthos standing stock biomass by habitat type and
estimation method. The mean value is presented with 95% confidence interval,
as estimated using the length-weight-relationship (LWR) approach (ME, g m−2;
Eq. (1)) and the generalised volumetric method (mL m−2; Eq. (3)), excluding
(VE-partial) and including (VE) those taxa for which LWR estimation was not
possible.

Fig. 9. Inter-operator variability in the estimation of
Celtic Sea megabenthos standing stock biomass.
Variability, as 95% confidence interval of individual
operator mean value, is illustrated as relative dif-
ference (%) from the joint mean value (i.e. 100%) of
the two operators (O1, O2). (a) Total biovolume
estimated by the generalised volumetric method
(GVM) for an initial training dataset (VE-training).
(b) Total survey biomass estimated using the length-
weight-relationship (LWR) approach (ME, i.e. Eq.
(1)). (c–d) Total survey biovolume estimated using
the GVM, excluding (c; VE-partial, i.e. Eq. (3)) and
including (d; VE, mL) those taxa for which LWR es-
timation was not possible. The shaded bands (b–d)
represent the variability, as 95% confidence inter-
vals, of the full survey estimates of the corre-
sponding standing stock parameter (i.e. ME, VE-par-
tial, VE).
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The GVM necessarily incorporates a subjective element in this con-
ceptual specimen-to-cylinder conversion. Consequently, multiple users
contributing to a common dataset should inter-calibrate their approach,
as we have illustrated in the Celtic Sea case study trial. It may be im-
possible to eliminate all such differences in measurement within and
between analyses (e.g. Mazurkiewicz et al., 2016); however, some
simple precautions, such as randomisation, can readily be implemented
(see recommendations in Durden et al., 2016b, c). For example, in the
Celtic Sea case study trial, we ensured that each operator was randomly
allocated images from the full image set available to avoid bias between
AUV deployments and between habitat types. Similarly, we randomised
the order in which each operator assessed images in order to avoid
temporal variation in the operator’s performance being unintentionally
translated into spatial variation, had the images been analysed in the
original field sequence.

There are clearly opportunities for further development of the
generalised volumetric method. One is in the automation of the basic
process, as has been achieved for particulate organic matter (Iversen
et al., 2010) and nematode biovolume assessment (Moore et al., 2013;
Mazurkiewicz et al., 2016). This could be more challenging in the case
of megabenthos in seafloor photographs; firstly, because the complex
background (i.e. the seafloor) makes in situ specimen delineation more
involved, and secondly, because of the wide variety of body shapes
exhibited across taxa. Nevertheless, automation could be achieved
through recent rapid advances in machine vision and in machine
learning (Schoening et al., 2012, 2016; Langenkämper and Nattkemper,
2017). Machine recognition of basic morphological types could enable
automated application of our proposed method. A second challenge will
be to improve the conversion of estimated biovolume (fresh wet weight
mass) to units of carbon mass and energy that may be particularly va-
luable in the application of numerical modelling frameworks such as
the metabolic theory of ecology (Brown et al., 2004) and DEB
(Kooijman, 2000) models in the assessment of ecosystem stocks and
flows. Conversions from wet weight are widely available (e.g. Brey
et al., 2010) and serve as a useful approximation, i.e. by assumption of
volumetric mass density (e.g. 1.056; see Section 3.2).

4. Conclusions

Biomass is a key ecological variable that informs the fields of con-
servation, environmental quality assessment, resource management,
and the study of the stocks and flows of mass and energy through
ecosystems. It is featured as an essential biodiversity variable (EBV) and
as an ‘emerging’ essential ocean variable (EOV), prompting the need for
a method for the measurement of individual biomass, which is broadly
applicable and which can be readily adopted by a wide range of users.
In seafloor imagery, the traditional LWR approach employed to derive
individual biomass relies on pre-existing taxon-specific data and may be
subject to systematic, temporal and spatial, variation. The LWR method
is also restricted to readily sampled taxa that have a fixed body form.
These significant limitations may be overcome with the taxon-in-
dependent generalised volumetric method described here. The pre-
dictive ability of the GVM, in accuracy and in precision, appears to at
least equal that of the LWR approach, and it has much more general and
much more immediate applicability.
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