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The importance of Antarctic krill in
biogeochemical cycles
E.L. Cavan1,12*, A. Belcher 2, A. Atkinson 3, S.L. Hill 2, S. Kawaguchi4,

S. McCormack 1,5, B. Meyer6,7,8, S. Nicol1, L. Ratnarajah9, K. Schmidt10,

D.K. Steinberg11, G.A. Tarling2 & P.W. Boyd1,5

Antarctic krill (Euphausia superba) are swarming, oceanic crustaceans, up to two inches long,

and best known as prey for whales and penguins – but they have another important role. With

their large size, high biomass and daily vertical migrations they transport and transform

essential nutrients, stimulate primary productivity and influence the carbon sink. Antarctic

krill are also fished by the Southern Ocean’s largest fishery. Yet how krill fishing impacts

nutrient fertilisation and the carbon sink in the Southern Ocean is poorly understood. Our

synthesis shows fishery management should consider the influential biogeochemical role of

both adult and larval Antarctic krill.

Ocean biogeochemical cycles are paramount in regulating atmospheric carbon dioxide
(CO2) levels and in governing the nutrients available for phytoplankton growth1. As
phytoplankton are essential in most marine food webs, biogeochemistry is also

important in fuelling fishery production2. The role of phytoplankton in atmospheric CO2

drawdown and fish production has been the central focus of many biogeochemical studies (e.g.,
refs. 3,4). However, despite evidence of their potential importance, higher organisms (metazoa)
such as zooplankton (e.g., copepods and salps), nekton (e.g., adult krill and fish), seabirds and
mammals5–12, have received less attention concerning their roles in the global biogeochemical
cycles.

One of the main mechanisms by which metazoa can influence biogeochemical cycles is
through the biological pump1 (Fig. 1). The biological pump describes a suite of biological
processes that ultimately sequester atmospheric CO2 into the deep ocean on long timescales.
During photosynthesis in the surface, ocean phytoplankton produce organic matter and a
fraction (< 40 %) sinks to deeper waters13. It is estimated that 5–12 Gt C is exported from the
global surface ocean annually14, with herbivorous metazoa contributing to the biological pump
by releasing fast-sinking faecal pellets, respiring carbon at depth originally assimilated in the
surface ocean and by excreting nutrients near the surface promoting further phytoplankton
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growth7,8. It is essential that the role of metazoa in biogeo-
chemical cycles is recognised15 to improve the mechanistic
understanding of the present-day environment. This will enable
predictions of how biogeochemical cycles may change in the
future, as metazoa become impacted by multiple anthropogenic
pressures such as fishing and climate change16,17.

Here we focus on the role of krill (specifically Antarctic krill,
Euphausia superba) in biogeochemical cycles for three key rea-
sons: this single species has extraordinarily high biomass (Box 1)
and so could have large impacts on biogeochemical cycles18; they
are among the largest pelagic crustaceans with commensurately
high swimming speeds; they have high grazing capacity, large
fast-sinking faecal pellets and the ability to migrate vertically; and
the fact that little attention has been given to assessing the
importance of krill in ocean biogeochemical cycles. This review is
centred on E. superba as the Southern Ocean is the location of the
largest krill fishery19, one of the largest carbon sinks globally20,
and a site of water mass formation transporting nutrients

throughout the global oceans21. E. superba are also one of the few
pelagic crustacea to be commercially harvested, as most fished
crustacea are bottom-dwelling (e.g., crabs and prawns)22. The
majority of processes discussed here are also relevant to other
fisheries, particularly those of small pelagic fish such as anchovy
and sardines, which are also feeders on plankton and may be
important in biogeochemical cycles23,24. Management of the
Southern Ocean E. superba fishery is currently centred around
the importance of E. superba in supporting populations of
megafauna (e.g., seals, penguins, whales etc.) and maintaining a
sustainable commercial fishery19. At present, there is no con-
sensus on the effect that harvesting large quantities of E. superba
(or any other species) could have on global ocean biogeochemical
cycles and hence atmospheric CO2 levels. Here, we synthesise
current knowledge on the importance of E. superba in regulating
ocean biogeochemical cycles and consider the effects that com-
mercial harvesting of these krill could have on ocean
biogeochemistry.
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Fig. 1 Processes in the biological pump. Phytoplankton convert CO2, which has dissolved from the atmosphere into the surface oceans (90 Gt yr−1) into
particulate organic carbon (POC) during primary production (~ 50 Gt C yr−1). Phytoplankton are then consumed by krill and small zooplankton grazers,
which in turn are preyed upon by higher trophic levels. Any unconsumed phytoplankton form aggregates, and along with zooplankton faecal pellets, sink
rapidly and are exported out of the mixed layer (< 12 Gt C yr−1 14). Krill, zooplankton and microbes intercept phytoplankton in the surface ocean and sinking
detrital particles at depth, consuming and respiring this POC to CO2 (dissolved inorganic carbon, DIC), such that only a small proportion of surface-
produced carbon sinks to the deep ocean (i.e., depths > 1000m). As krill and smaller zooplankton feed, they also physically fragment particles into small,
slower- or non-sinking pieces (via sloppy feeding, coprorhexy if fragmenting faeces), retarding POC export. This releases dissolved organic carbon (DOC)
either directly from cells or indirectly via bacterial solubilisation (yellow circle around DOC). Bacteria can then remineralise the DOC to DIC (CO2,
microbial gardening). Diel vertically migrating krill, smaller zooplankton and fish can actively transport carbon to depth by consuming POC in the surface
layer at night, and metabolising it at their daytime, mesopelagic residence depths. Depending on species life history, active transport may occur on a
seasonal basis as well. Numbers given are carbon fluxes (Gt C yr−1) in white boxes and carbon masses (Gt C) in dark boxes
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Krill and biogeochemical cycles
Carbon. Pelagic crustaceans such as krill can have a prominent
role in regulating the magnitude of carbon stored in the ocean via
the biological pump (Fig. 1)7,25. During photosynthesis, uni-
cellular phytoplankton transform dissolved inorganic carbon
(DIC or CO2), a portion of which originates from the atmo-
sphere, into organic carbon in their cells in the surface ocean26

(Fig. 1). Krill feed either directly on phytoplankton, or on protists
and invertebrates (mainly zooplankton) that have consumed
phytoplankton. A large part of the ingested carbon is absorbed
(estimates range from 42 to 94%, dependent on food type and
availability27), with the remainder being egested via their faecal
pellets (Fig. 2). The absorbed carbon components are either
catabolised to supply energy (leading to the respiration of CO2),
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Fig. 2 Cycling of nutrients by an individual krill. When krill moult they release dissolved calcium, fluoride and phosphorous from the exoskeleton (1). The
chitin (organic material) that forms the exoskeleton contributes to organic particle flux sinking to the deep ocean. Krill respire a portion of the energy
derived from consuming phytoplankton or other animals as carbon dioxide (2), when swimming from mid/deep waters to the surface in large swarms krill
mix water, which potentially brings nutrients to nutrient-poor surface waters (3), ammonium and phosphate is released from the gills and when excreting,
along with dissolved organic carbon, nitrogen (e.g., urea) and phosphorous (DOC, DON and DOP, 2 & 4). Krill release fast-sinking faecal pellets containing
particulate organic carbon, nitrogen and phosphorous (POC, PON and POP) and iron, the latter of which is bioavailable when leached into surrounding
waters along with DOC, DON and DOP (5)

Box 1. | The ecology and abundance of E superba

E. superba are by far the dominant of the seven Southern Ocean krill species in terms of biomass128. They display a circumpolar distribution, which
largely coincides with the extent of winter sea ice129. Typically, E. superba live for 5–6 years in the wild, and grow up to 65mm in length, and hence are
larger than other abundant krill species some of which (e.g., Meganyctiphanes norvegica and Euphausia pacifica) play crucial roles in northern marine
ecosystems. These northern species are key members of much more diverse ecosystems, so rarely dominate the pelagic biomass the way that E.
superba does. This important ecological role is reflected in the way E. superba are represented in Southern Ocean foodweb models, where they are
parameterised as their own functional, species-resolved group, whereas other euphausiids are combined with other species112. Even though all krill are
much larger than many planktonic species, they are often regarded as plankton, however the strong swimming abilities of adult krill are a characteristic
feature of nekton130. Krill form some of the largest monospecific aggregations (swarms) in the animal kingdom131, making them a critical food item for
whales, seals and seabirds, and the target of the Southern Ocean’s largest fishery. E. superba themselves are a major grazer of primary production in the
Southern Ocean68.
The vast spatial distribution of adult E. superba, 19 million km2 132, means that it is currently very difficult to conduct a synoptic survey of the entire
population, resulting in highly uncertain estimates of krill biomass. The preferred method for assessing krill biomass is via hydroacoustics, but this involves
methodological uncertainties and does not survey either surface (< 20m) or deep water107. Best estimates from acoustics of post-larval E. superba density
in the southwest Atlantic Southern Ocean was 29 gm−2 (biomass= 60 million tonnes) in 200018, and 5.5 gm−2 (1996)133 and 23 gm−2 (2006)134 at
two different Indian Ocean sector sites.
Circumpolar estimates of E. superba abundance are based on net data, for which there is a much longer (since the 1920s) historical record of data135

than for acoustics. Nets also have their own limitations associated with animal avoidance, low sampling frequency and limited sampling of the water
column, typically up to 200m107. Data from multiple scientific net surveys over several decades estimate circumpolar post-larval biomass at 379
million tonnes, with the highest biomass located in the Southwest Atlantic132. However, combining net and acoustic data gives a slightly lower
circumpolar biomass estimate of 215 million tonnes132. The high Southern Ocean biomass of E. superba is further confirmed by the large number of E.
superba-dependent predators. Combined with body size, the high biomass of E. superba means they are likely a significant vector for recycling nutrients
and transporting carbon on large scales.
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excreted as dissolved organic carbon28 or incorporated into body
tissue and potentially transferred to krill predators.

Faecal pellets are an integral part of the biological pump8

(Fig. 1), with some being dense, compact particles that can sink
quickly through the ocean. As krill are some of the largest pelagic
crustaceans, they produce large faecal pellets (typically up to 1 cm
length strings) with variable but often rapid sinking rates27,29.
Krill pellets constitute the majority of sinking particles analysed
in shallow (170 m) and deep (1500 m) Southern Ocean sediment
traps deployed west of the Antarctic Peninsula and downstream
of South Georgia respectively30,31. As krill mostly swarm in vast
numbers, their contribution to particulate organic carbon flux can
be huge, and estimates span over orders of magnitudes from 7 to
1300 mg Cm−2 d−132–35. However, most observed rates tend to
be at the lower end of that range, such as those reported in the
marginal ice zone (e.g., 7–104 mg Cm−2 d−1 at 100 m35). For
reference, values of total (all particle types) particulate organic
carbon flux in the Southern Ocean at 100 m, as determined by
Thorium-234, ranges from 10 to 600 mg Cm−2 d−1, with an

average across latitudes between 100 and 150 mg C m−2 d−1 36.
In the Scotia Sea (Atlantic Southern Ocean) where krill biomass is
high18, total particulate organic flux at 100 m in the summer is up
to 90 mg Cm−2 d−1, with highest fluxes in the marginal/seasonal
ice zones37. In the marginal ice zone over the productive season,
the modelled estimate of the total export flux of krill faecal pellets
at 100 m is 0.04 Gt C yr−135 (equivalent to 42 mg Cm−2 d−1

based on the mean area of the marginal ice zone).
The number of faecal pellets observed generally declines with

depth owing to scavenging and degradation5,6,38 (Fig. 3).
However, some studies in the seasonal and marginal ice zones
of the Southern Ocean indicate that krill faecal pellets can be
transferred extremely efficiently, with minimal attenuation with
depth, i.e., the amount of krill faecal pellet carbon in the surface is
similar to that at depths of 100 s of metres below6,37,39. Such low
rates of faecal flux attenuation have not been observed in other
oceanic regions or for other crustaceans, suggesting that krill play
a disproportionately important role in the sinking of carbon to
the deep ocean35. Low attenuation of krill pellets in ice regions is
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Fig. 3 Role of E. superba in biogeochemical cycles. Krill (as swarms and individuals) feed on phytoplankton at the surface (1) leaving only a proportion to
sink as phytodetrital aggregates (2), which are broken up easily and may not sink below the permanent thermocline. Krill also release faecal pellets (3)
whilst they feed, which can sink to the deep sea but can be consumed (coprophagy) and degraded as they descend (4) by krill, bacteria and zooplankton. In
the marginal ice zone, faecal pellet flux can reach greater depths (5). Krill also release moults, which sink and contribute to the carbon flux (6). Nutrients
are released by krill during sloppy feeding, excretion and egestion, such as iron and ammonium (7, see Fig. 2 for other nutrients released), and if they are
released near the surface can stimulate phytoplankton production and further atmospheric CO2 drawdown. Some adult krill permanently reside deeper in
the water column, consuming organic material at depth (8). Any carbon (as organic matter or as CO2) that sinks below the permanent thermocline is
removed from subjection to seasonal mixing and will remain stored in the deep ocean for at least a year (9). The swimming motions of migrating adult krill
that migrate can mix nutrient-rich water from the deep (10), further stimulating primary production. Other adult krill forage on the seafloor, releasing
respired CO2 at depth and may be consumed by demersal predators (11). Larval krill, which in the Southern Ocean reside under the sea ice, undergo
extensive diurnal vertical migration (12), potentially transferring CO2 below the permanent thermocline. Krill are consumed by many predators including
baleen whales (13), leading to storage of some of the krill carbon as biomass for decades before the whale dies, sinks to the seafloor and is consumed by
deep sea organisms
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likely owing to a combination of krill behaviour including
pronounced vertical migrations37,39,40 and the formation of large
swarms that produce a ‘rain’ of fast-sinking faecal pellets that
overwhelm detrital consumers6,27,35,37,39. In addition, short
migrations (40 m) just below the mixed layer can occur multiple
times during a night’s feed, dependent on the satiation state of the
krill41,42, which may increase the chance of faecal pellet export by
shunting pellets deeper into the water column.

Vertical migrations can also shunt carbon to depth when krill
occupy deeper layers and respire carbon consumed at the surface,
a process termed active carbon flux. This occurs especially in
younger developmental stages of E. superba (larvae and juveniles),
which can undergo extensive diel (daily) vertical migrations
(DVMs)43,44 travelling to deeper depths than adults, often below
permanent thermoclines41,45 (Fig. 3). Larval DVMs may follow a
normal pattern of ascent during the night and descent during the
day46, or a reverse pattern of ascent during the day and descent at
night44. DVM patterns in adult krill are less clear, and a range of
behaviours may be exhibited, including normal and reverse DVM
as well as remaining at particular depths throughout the diel
cycle47,48, so their biogeochemical role may differ depending on
the depth they inhabit or migrate to. Even so, where DVM does
take place in adults, they generally remain above the permanent
thermocline, within the surface mixed layer49. Difficulties in
resolving the complex DVM of Antarctic krill means that
estimates of the total contribution of this species to active carbon
flux have yet to be fully resolved41,48,50.

There are further additional mechanisms by which krill might
contribute to the carbon sink. For instance, in winter adult E.
superba populations appear to move to coastal basins51 and
studies using under-water cameras and active acoustics have
revealed that krill aggregate at greater depths in winter than in
summer52,53. Metabolism of their lipid reserves to CO2 when
residing in deeper waters in winter, as observed in copepods54,
releases surface-produced carbon to the deep ocean. This process
is termed the lipid pump and is significant in that it moves carbon
to depth without depleting surface concentrations of potentially
limiting nutrients over winter (e.g., nitrogen and phosphorus).
Rapid transport of carbon to the deep ocean/sea floor is also
facilitated by the short phytoplankton-krill-whale food chain,
where krill carbon is stored as biomass in baleen whales for
decades, whose carcasses rapidly sink to the deep sea floor when
they die55 (Fig. 3). Finally, some E. superba also feed on detritus
on the seabed, often at great depth, and are then fed upon by
benthic fish and invertebrates meaning the carbon stays in the
deep ocean50 (Fig. 3). The contribution of all these processes to
carbon transport is potentially significant but remains
unquantified.

Iron. Iron is an important trace element in the oceans and its low
availability limits primary productivity in large areas, including
much of the ice-free Southern Ocean56,57. The largest sources of
new iron to the Southern Ocean surface waters are deep winter
mixing58 and the seasonal melting of sea ice59. Following the
depletion of this winter-spring iron pulse, further primary pro-
duction depends increasingly on recycled iron58. E. superba have
an important role in oceanic iron cycling49,50,60–62 facilitated by
the ingestion of iron-rich phytoplankton and lithogenic particles.
The iron concentration in an individual whole adult krill ranges
from 4.4 to 190.5 mg kg−149,50,60,61,63,64, with the > 40-fold dif-
ference in krill iron content reflecting seasonal and regional dif-
ferences in their dietary iron content64. Eventually, the iron
retained in individual bodies can be released back into surface
waters when baleen whales and other vertebrates consume E.
superba and subsequently defecate60. Thus, in the iron-limited

Southern Ocean iron recycled via krill and their predators is
important for stimulating primary production (Fig. 3).

A small proportion of dissolved iron (dFe, < 0.2 μm49) in excess
of the demand by E. superba is excreted, with excretion rates
ranging from 0.2 to 5.5 nmol dFe ind−1 d−149. Highest rates
occur when krill feed on diatoms, which is consistent with some
diatoms’ ability to acquire and store excess intracellular iron65.
Upon digestion of phytoplankton, E. superba may also release
iron-binding ligands (e.g., porphyrin compounds)9, which can
complex with inorganic iron and thereby increase the concentra-
tion of soluble iron available to phytoplankton49. However, most
(90%) of the iron in E. superba is released via their fast-sinking
faecal pellets, which have 3–4 orders of magnitude more iron
their muscle tissue (Fig. 2)49. Therefore, the cycling of iron via
krill is closely linked to the fate of their faecal pellets, which may
sink to great depths without being consumed37,39. A study on
salps showed that iron was not readily leached from their faecal
pellets66, and, if also true for krill, their pellets would need to be
fragmented to release dFe into the water column as the pellet
sinks. Nevertheless, the feeding activity of the abundant E.
superba as a whole provides the basis for several pathways of dFe
supply to phytoplankton (Fig. 3)—involving also microbes,
zooplankton and krill predators—which, together with the release
of ligands, can benefit phytoplankton growth. Such fertilising
processes mediated by krill may explain why phytoplankton
blooms downstream of the island of South Georgia last longer
and are more intensive during years with high krill abundances
on-shelf49.

Macronutrient regeneration and grazing. Krill also release
macronutrients such as ammonium (Fig. 3), which can be par-
ticularly important in iron-limited regions, as using ammonium
rather than nitrate reduces the phytoplankton iron demand by ~
30 %67. Regions of frequently high but spatially variable E.
superba density have been used as a series of natural experiments
in examining the role of krill nutrient recycling and grazing in
shaping the abundance and composition of phytoplankton. At
South Georgia, grazing was sufficient to suppress phytoplankton
biomass toward the east of the island68, yet E. superba ammo-
nium excretion also supplied a large fraction of the requirements
to the ungrazed cells. Rates of ammonia excretion in South
Georgia have been measured to range from 12 to 273 nmol NH4

ind−1 h−169, with higher rates measured further south off the
Western Antarctic Peninsula (61–475 nmol NH4 ind−1 h−1)70.

In addition, E. superba grazing and deep mixing has been
found to shift the phytoplankton community from diatoms to
flagellates at the Antarctic Peninsula71. Krill grazing can also
fragment phytoplankton cells or other particulate matter releasing
dissolved organic matter into the water (termed sloppy feeding,
Figs. 1 & 2)38,72, which can be further broken down and
remineralised by bacteria (termed microbial gardening73). This
process reduces the flux of carbon to the deep ocean, although,
thus far a link between sloppy feeding and increased microbial
activity has not been explicitly shown for krill. E. superba can thus
exert two opposing top–down controls on phytoplankton; they
can rapidly graze blooms decreasing phytoplankton biomass but
also excrete nutrients increasing phytoplankton biomass.

Transport of nutrients. In addition to shunting carbon to deeper
waters, krill are also involved in the vertical and lateral transport
of other nutrients. For instance, adult E. superbamoult as often as
every 2 weeks depending on temperature and season74, resulting
in a high number of moults produced per krill over their long life-
span (5–6 years in wild). The release of moults, which sink at
rates of 50–1000 m d−175, contributes to the carbon sink, but also
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to the release of other micronutrients to the water column as the
moult sinks. For instance, fluoride concentrations in live E.
superba exoskeletons are at least 2500 times higher than the
surrounding waters76, and this fluoride is leached out during
ecdysis75 and degradation of the exoskeletons. A range of other
elements are also found in the exoskeletons of krill, for example
the exoskeleton contains 47% of the phosphorous and 84% of the
calcium concentrations of these minerals in krill77. How quickly
these nutrients are released from shedded exoskeletons (moults)
and their possible contribution to biogeochemical cycles has yet
to be quantified.

Krill can also mix nutrients; mass migrations of krill swarms
from deep nutrient-rich water, particularly in localised, perma-
nently or temporarily oligotrophic waters, could mix nutrients to
the surface and stimulate phytoplankton growth42,78 (Fig. 3).
Conversely, the carbon transferred by krill from the surface to
below the mixed layer is subjected to remineralisation by bacteria
and detritivores, which convert dissolved organic carbon to
CO2

6,38. The depth at which this remineralisation occurs, or the
depth of krill respiration, is crucial for determining the longevity
of CO2 storage in the deep ocean; i.e., whether the released CO2 is
mixed back up to the surface (shallow remineralisation) or is
stored for decades in the deep ocean (deep remineralisation)79. If
CO2 is released above the permanent thermocline (deepest winter
mixed layer depth, globally < 750 m80), then CO2 will be
subjected to seasonal physical mixing to the surface ocean and
potentially re-exchanged with the atmosphere within a year
following release from the krill (Fig. 3). The length of time CO2

(or nutrients) will remain in the deep ocean also depends on the
water mass it enters owing to ocean circulation81. For E. superba
that live south of the Antarctic Circumpolar Current (ACC, i.e., a
substantial part of the population82), any nutrients they release
will likely remain in the Southern Ocean. However, nutrients
released from an organism within the ACC, or at the northern
boundary of the ACC, may be subducted into the Antarctic
Intermediate Water. Currently we do not know whether nutrients
released by Southern Ocean organisms make a significant
contribution to production elsewhere.

Larval stages. The contribution of larval krill to biogeochemical
cycles is different to that of adults due to their unique pattern of
growth and development, smaller size and feeding ecology83.
Larval E. superba use sea ice as a feeding ground and shelter84 and
owing to their ingestion of ice biota and subsequent migration into
the water column, play an important role in ice-pelagic coupling.
E. superba larvae consume up to 26% of their body weight in
carbon per day, of which ~ 10% is egested as faecal pellets85. This
equates to larval egestion of ~ 4 µg C d−1, which is ~ 1000 times
less than adults41 although in the Scotia Sea they can be up to 100
times more abundant than adults86. If these relative abundances
hold across the wider ocean sector, this would equate to larvae
contributing an additional 1–10% of the adult faecal pellet flux.
Furthermore, DVM in larval E. superba takes them considerably
deeper than adults (400m and 200m, respectively)43,48. The
pronounced DVM patterns of larval krill in the proximity of ice
may be responsible for the low attenuation of krill faecal pellets
with depth in the marginal ice zone of the Atlantic Southern
Ocean6,37 (Fig. 3), rather than the DVMs of adult krill. Larvae may
be more likely to contribute to active transport of carbon via
egestion and respiration at depth, although the mass and sinking
potential of larval faecal pellets have yet to be characterised.

In summary, E. superba influence many biogeochemical cycles
including carbon, nitrogen and iron, from larval through to adult
life stages, and also have a diverse, multi-faceted role within these
individual elemental cycles. Whilst there has been some focus on

the contribution of E. superba to organic carbon and iron cycles,
given our current lack of knowledge and uncertainty in biomass
estimates, (Box 1) it is difficult to quantify its complete role in
these cycles. Nonetheless, the substantial biomass, diurnal vertical
migrations and broad horizontal distribution of E. superba
suggests a significant contribution. Quantification of these rates,
as well as better constrained estimates of krill biomass, are critical
to provide meaningful data so biogeochemical modellers can
sufficiently parameterise the influence of E. superba on nutrient
cycles. A better understanding of krill–nutrient interactions will
also allow assessment of the impact of human activities,
particularly fishing, on biogeochemical cycles and help to identify
management approaches that will minimise these impacts.

Implications of declining E. superba biomass
The complex biogeochemical roles of E. superba means that
harvesting krill (Box 2) could have variable and potentially
opposing effects on ocean biogeochemistry. In this section, we
detail the possible impacts harvesting krill could have on the
Southern Ocean carbon sink given current knowledge. We also
briefly discuss the biogeochemical implications of potential
changes in krill biomass owing to the recovery of whale popu-
lations and to climate change.

As discussed, large, fast-sinking krill faecal pellets can form
a large proportion of total particulate organic carbon flux in
the Southern Ocean6,37. If krill are removed from the ecosystem,
this faecal pellet flux will decrease. To estimate the reduction in this
sink owing to the removal of E. superba by the Atlantic Southern
Ocean fishery (Box 2), we assume pellet production and attenua-
tion rates as reported in Belcher et al.35 (3.2mg C ind−1 d−1 and
0.32, respectively) and use a mean (2014–2018) annual E. superba
catch of 264,505 tonnes in Area 48 (Fig. 4). We estimate that the
decline in the E. superba faecal pellet carbon flux at 100m over
spring and summer due to fishing is 0.6–0.8 mg Cm−2 d−1, with
the range incorporating pellet egestion at 40 or 80m, respectively.
Total pellet fluxes from krill and other zooplankton can be up to
78mgCm−2 d−1 in the Southern Ocean marginal ice zone37, thus
this average decline in pellet flux is fairly low because only <0.5 %
of the E. superba population is caught by the fishery. If the trigger-
or catch limits in Area 48 (0.62Mt yr−1 and 5.61Mt yr−1,
respectively) were met, then fishing would result in a respective
decline of the E. superba pellet flux by 1.5–1.8 mg Cm−2 d−1 or
13.1–16.7mg Cm−2 d−1. These calculations contain certain
assumptions (e.g., krill egestion depth, pellet egestion and
attenuation rate), but are presented as a thought experiment to
highlight how the magnitude of the pellet carbon flux may change
if the fishery expanded.

The above faecal pellet flux calculations consider adults only
and do not include any active transfer via DVM or the lipid
pump. As larval E. superba migrate deeper in the water column
than adults they may egest pellets deeper, resulting in a lower
attenuation rate (< 0.32) of larval pellet flux and a higher pro-
portion of carbon reaching the deep sea, even though their pellets
are likely smaller and potentially sink slower than those of adults.
Given that migrating larvae will also respire CO2 deeper and
eventually become the next generation of adults, larval biomass is
important to protect. Currently, the fishery only targets adult E.
superba, but we recommend measures are put in place to ensure
that as fishing technology advances, the fishery does not further
encroach on larval habitat (i.e., near the sea ice) and precautions
are taken to prevent larval bycatch when nets become clogged by
adult E. superba. As it is not currently known if larvae are caught
by the fishery, CCAMLR should initiate research to determine
whether the current fishery is catching larval krill as bycatch and,
if so, adopt regulations to prevent this happening in the future.
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Fishery-driven declines in adult E. superba biomass could
result in opposing effects on the carbon sink. As E. superba
consume phytoplankton and the subsequent phytodetrital flux, a
decline in E. superba could reduce grazing, potentially increasing
the proportion of phytoplankton biomass that is exported as
phytodetrital flux (process #2 in Fig. 3). The ratio of phytodetrital
aggregates to faecal pellets in particle flux varies globally but is
generally low in the Southern Ocean where pellets dominate6.
However, we do not know to what extent removing krill may
increase the magnitude of aggregate flux. Whilst removing krill
may increase phytoplankton biomass through a decline in con-
sumption rates, it would also decrease the fertilisation effects of
krill (e.g., ammonium excretion) that have been observed to
increase phytoplankton biomass. As we are unable to quantify
many of the other aspects of the carbon cycle (e.g., contribution
of E. superba to active transfer of carbon, or an increase in

aggregate flux), it is not clear what the exact effect of removing E.
superba via the fishery would be on the carbon sink, and this is a
key question that needs to be answered.

Another unknown regarding the impact of the fishery is which
zooplankton (i.e., copepods, salps etc.) could replace the ecolo-
gical niche left by any decline in E. superba. Copepods, which
have a higher production rate than E. superba46,87, also recycle
iron88, produce sinking faecal pellets and contribute to the
Southern Ocean lipid pump87. Yet, E. superba have a different
biogeochemical role than the dominant (smaller) grazers in the
Southern Ocean. The size of krill gives them a strong swimming
ability allowing swarm formation, which we speculate contributes
to their efficiency in pellet export, alongside large pellet size and
associated high sinking speed. Also relating to body size is an
ability to feed on a very wide range of particle sizes using a large
but fine mesh filter46, including large, iron-storing diatoms and

Box 2. | The E. superba fishery

E. superba have been fished in the Southern Ocean since the 1970s, to produce meal used as aquaculture feed and oil for human consumption. Catches
peaked at 530,000 tonnes (t) yr−1 in the 1980s and declined with the collapse of the Soviet fishing industry, but have since increased steadily to over
306,000 t yr−1 in 2018 (Fig. Box 2)136. The fishery is managed by CCAMLR (Commission for the Conservation of Antarctic Marine Living Resources),
and a range of Conservation Measures regulate mandatory notification of intention to fish, minimisation of seal and bird bycatch, reporting, scientific
observation and annual catch limits19. CCAMLR is mandated to apply ecosystem-based management137 with no explicit measures to regulate fishery
impacts on biogeochemical cycles. Rather, management relies on catch limits that are low relative to estimates of pre-exploitation biomass.

Precautionary catch limits on the krill fishery136

Conservation
measure

Area/Division Total catch
limit (Mt)

Trigger
level (Mt)

Pre-exploitation biomass (Mt),
(year of estimate)

51-01 48.1, 48.2, 48.3, 48.4 (Southwest Atlantic) 5.61 0.62 60.3, (2000)
51-02 58.4.1 (Eastern Indian) 0.44 n/a 4.8, (1996)
52-03 58.4.2 (Western Indian) 2.645 0.452 27.8, (2006)

Mt million tones

The catch limits total < 10 % of estimated adult E. superba biomass in areas open to fishing. CCAMLR has also established much lower trigger levels in
most surveyed areas, that cannot be exceeded until sufficient information is available to avoid localised concentration of the catch. In the southwest
Atlantic this trigger level is 620,000 t yr−1 (~ 1 % of the estimated pre-exploitation biomass) and can only be changed by a consensus decision by all
Members of the Commission. The trigger level in the Southwest Atlantic sector, where almost all current fishing occurs19, has been subdivided into
further catch limits in each of the individual subareas and for the last 4 years the catch in subarea 48.1 (Fig. 4) has reached the 155,000 tonne limit and
the subarea has been closed for the rest of the season138.
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Fig. Box 2 Fishery catch (million tonnes) of Euphausia superba in the Southern Ocean from 1973 to 2018, from three CCAMLR areas − 48, 58 and 88.
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lithogenic particles. While these functions of recycling nutrients
are partially available to smaller grazers49, the size and swarming
behaviour of krill results in different impacts on biogeochemical
cycles than zooplankton. Thus, the biogeochemical role of krill
would not be replaced like-for-like by copepods. Salps are non-
selective feeders, can exist in swarms and have fast-sinking pellets
and caracases89 and thus could potentially fill part of the bio-
geochemical niche of krill, if they replaced E. superba biomass
removed by the fishery. Although salp particle flux is generally
thought to be high, it can be variable with high attenuation rates
observed in the Southern Ocean90, and thus the contribution of
salps to biogeochemical cycles is an area for future research.

Krill biomass is also influenced by the abundance of their
predators. Exploitation of Southern Ocean organisms since the
late 1700s has severely perturbed the krill foodweb and thus krill
biomass, via the sequential extraction of fur seals, baleen whales
and endemic fish species91,92. For example, the reduction in
whales potentially increased krill grazing pressure on phyto-
plankton (diatoms in particular92), and so decreased iron recy-
cling93. With the rapid recovery of baleen whales94 E. superba
biomass may further decline, although it has been suggested that
a large whale population feeding on krill might increase the
recycling of iron in surface waters thus increasing Southern
Ocean productivity95. Because ecosystem change associated with
recovering baleen whales is occurring alongside human-driven
warming it will be complicated to tease apart the factors that
might be changing krill biomass in the future. There is an urgent
need to better understand the recovery of baleen whales in the
Southern Ocean and the ecological consequences of their return.

There are concerns for the future of E. superba in a rapidly
changing climate. The Southwest Atlantic sector warmed
rapidly during the last century96,97, and this is both the main
population centre for E. superba and is where the Antarctic
fishery is concentrated. There are reports of declines in krill
density within this sector98–101, particularly in the northern
part of the Southwest Atlantic, with evidence of a more stable
population toward the south, including over the continental
shelf of the Western Antarctic Peninsula101. Recruitment to
juvenile E. superba has declined rapidly over the last 40 years,
associated with increasing positive anomalies of the Southern
Annular Mode101. Probably coupled with changes in mortality,
this has resulted in a 75% increase in mean body mass of the
post-larval population101. Population dynamic models predict
further declines in krill populations, particularly around the
high phytoplankton biomass and carbon export region of South
Georgia97,102. With the possible exception of increased acid-
ification103, most of the projected future climate change sce-
narios, such as trends in temperature, sea ice cover and climatic
modes are likely to have a negative impact on adult E. superba
biomass104–106.

Each of these observed and potential future changes has
implications for biogeochemical cycles. A larger mean body size
of the krill population may increase pellet size and sinking speeds,
yet a decline in krill biomass is likely to reduce the role of krill in
biogeochemical cycling. Investigating how perturbing the food-
web via commercial harvesting, together with climate change and
changing predator populations, is important to assess the future
of state of biogeochemical cycles.
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Fig. 4 Map of Antarctica and fishing areas for E. superba. Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) Area 48 is
subdivided into six smaller areas (48.1–48.6) covering the Atlantic sector of the Southern Ocean. Numbers in grey are subareas not fished and those in
black are fished. Bathymetry is shown in blue with dark blue, representing deeper waters (data from the GEBCO_2014 Grid, version 20150318, http://
www.gebco.net). The Antarctic coastline was obtained from the Scientific Committee on Antarctic Research (SCAR) Antarctic Digital Database
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Future directions
Compiling our current knowledge of E. superba in biogeochem-
ical cycles has highlighted some key areas of future research in
order to quantify fully the role of E. superba in biogeochemical
cycles. This includes some hitherto neglected areas, such as the
contribution of larval E. superba to the Southern Ocean carbon
sink (Fig. 5) and determining whether larvae are currently part of
the E. superba fishery bycatch, as well as including some areas
where progress has started to be made. These include quantifying
the extent to which adult E. superba may enhance primary pro-
duction through fertilisation and identifying the other species that
may replace the ecological and biogeochemical niche left by E.
superba. In addition, determining if krill contribute to mesoscale
nutrient mixing requires combining laboratory mixing experi-
ments with estimates of vertical migrations, and answering such
questions as; what proportion and what age (e.g., adults vs. lar-
vae) of the population migrates, what depth do they migrate
from, do they migrate every day and/or seasonally, and, if feeding
at the seabed, do they reside there permanently or swim to the
surface too?

Whilst there is a clear need for more understanding on the role
of E. superba in biogeochemical cycles, of equal importance are
more accurate estimates of their biomass (Fig. 5) and distribution
in the water column. As discussed in Box 1, sampling for krill is
sporadic, seasonal, spatially and temporally patchy and based on
different methods (nets or acoustics), contributing to uncertainty
in krill biomass estimates. Other key information surrounding
biomass include the biomass of larval krill (in open water and

under ice), the daytime residence depth of all krill life stages and
the proportion of krill undergoing ontogenetic migrations. Better
estimates of biomass would help constrain the potential scale of
the impact krill have on all biogeochemical cycles. These could be
achieved through improved conversion factors between acoustic
return and biomass, experimental comparisons between the
results of nets and acoustics, synoptic surveys in regions outside
of the Atlantic sector of the Southern Ocean, and new technol-
ogies such as remote acoustic samplers and long-range sonars107

and cameras attached to remotely operated vehicles52. These
should be combined with biogeochemical experiments to deter-
mine the biogeochemical function of different krill populations
residing at or transiting to different depths. To produce cir-
cumpolar E. superba biomass estimates, data assimilation and
syntheses may be necessary. Some key parameters needed for this
are food availability (e.g., satellite primary production), predator
consumption rates, population estimates, suitable habitat volume
and maximum swarm density. These approaches have been
attempted individually with varying success108–110, but are yet to
be assimilated and used together to estimate E. superba biomass.
Primary production can provide an upper limit on krill popula-
tion biomass110, but foodweb models are needed to fill gaps where
data are sparse and variable for krill predators111.

Foodweb and fishery models are also useful for investigating
how krill biomass may change owing to fishing pressure, climate
change or predator biomass changes112,113. Lower trophic levels
(including krill) are particularly under-represented in Southern
Ocean foodweb models, with krill, mesozooplankton and trophic

Species information

Climate change
impacts

Increasing research priority

Faecal properties

Daily migration

Moults

Migration behaviour

Number of krill feeding at
seabed
Do they reside there
permanently or swim
to surface Nutrient regeneration

Release of macro/micro
nutrients from krill
Stimulation of primary
production
Feeding and nutrient
regeneration

Ontogenetic migration

Larvae

Proportion of larvae
undergoing DVM
What depth?
How much carbon is
transferred?
Larvae as fishery
by-catch

Lipid pump
Over-wintering

Moulting rates
Degradation of moults

Spatial-temporal changes
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for all life stages

Proportion of migrating adult krill
How often?
Contribution to mixing
nutrients
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Fig. 5 Future research priorities on E. superba processes for the next decade. The pyramid illustrates the rates and states of krill life history, habitat and
biogeochemical function, which need to be prioritised as areas of key research in the coming decade. The underlying ones, namely biomass (including
spatial and temporal variations) and the residence depth of krill, are listed at the top of the pyramid. Determining the influence of climate change on all of
these processes is vital. Autonomous vehicles fitted with biogeochemical sensors and cameras and acoustics will be instrumental in collecting data on this
cryptic species. These key areas of research are needed to be able to parameterise krill in both ecosystem and biogeochemical models
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levels below representing a small proportion (mean= 25%,
Table 1) of the total functional groups. Aggregation of lower
trophic levels is often necessary to reduce uncertainty related to
incomplete trophic information112. These models (Table 1) are
focused on the Antarctic Peninsula where the information
required to parameterise krill life stages is available, while system-
specific information for krill is unavailable for regions such as the
Indian sector where few foodweb models exist114. Whilst E.
superba are often parameterised as a separate functional group in
Southern Ocean foodweb models (Table 1), the same cannot be
said for biogeochemical models, where typically krill are incor-
porated into a large zooplankton pool115. The benefit of bio-
geochemical models though is that the low trophic level
organisms (e.g., phytoplankton and krill) interact with nutrients
in the surrounding water, whereas foodweb models only capture
trophic interactions. With temperature and nutrient concentra-
tions projected to change globally116, more progress is necessary
on coupling foodweb and biogeochemical models to build an
end-to-end model from nutrients to top-predators117. A current
example for the Southern tracks organic carbon through the
ecosystem from phytoplankton to penguins, including an expli-
citly parameterised krill group118. Ideally end-to-end models will
be able to incorporate nutrients and physical water circulation to
make spatial projections of the impacts of climate change and
fishing on biogeochemical cycles and vice versa.

To understand fully the role of a fishery or the changing cli-
mate on E. superba and biogeochemical cycles we need infor-
mation on krill in today’s environment but also on how they will
behave and fare in a warmer more acidic ocean. We also need to
account for spatial heterogeneity, because climate change may
make lower latitudes uninhabitable and open new habitats in the
south. Laboratory experiments should be combined with newer
and advancing technology such as autonomous vehicles (e.g.,
ocean gliders or autosubs) and camera systems52, which could
simultaneously measure critical nutrients such as nitrate, iron etc.
and image krill swarms and behaviour in situ. In addition, linking
krill behaviour and biomass/location to features that can be
measured by satellite (e.g., temperature, ocean colour and sea ice)
would provide large spatial and temporal coverage that could be
used in models. Using multiple approaches to study krill will be
vital to gain all the information needed on these cryptic organ-
isms. Collaborating with the krill fishing fleet by providing them

with biogeochemical sensors, and possibly autonomous vehicles,
would widen the temporal and spatial coverage of data (Box 2).

Summary
The large body size, high biomass and swarming ability of E.
superba, coupled with physiological traits such as large faecal
pellets and excretion into nutrient-limited waters, means E.
superba has a prominent role in the cycling of nutrients in the
Southern Ocean. The vertical migratory habits of E. superba
throughout the water column, a trait particularly prominent in
larvae but more complex in adults, shows they can influence both
the deep carbon sink and stimulate surface primary production.
As the Southern Ocean has a disproportionately important role in
the global carbon sink, and productivity is limited in iron-deplete
areas, the cycling of carbon, iron and ammonium by E. superba
has a particularly significant role compared with krill in other
regions. However, the life-history traits of all krill (e.g., large body
size, swarming ability) potentially means other krill species are
important in biogeochemical cycles.

We have shown that the role of E. superba in biogeochemical
cycles is significant, but uncertain: this uncertainty extends to the
times and locations when biogeochemical activity is most intense
and to the magnitude of the role of E. superba. Particularly crucial
are ongoing efforts to estimate the absolute E. superba biomass
and determine their residence depths and migration patterns,
including that of larvae.

Our lack of knowledge of the true extent of krill’s ability to
regulate biogeochemical cycles is a concern given E. superba are
the target of the largest fishery in the Southern Ocean. Whilst the
E. superba fishery is managed and regulated by CCAMLR
(Commission for the Conservation of Antarctic Marine Living
Resources), there has been no active consideration of the bio-
geochemical role of krill by CCAMLR or to our knowledge the
biogeochemical effect of any other managed fishery. Globally,
measures to maintain biomass and productivity of stocks of fished
species indirectly help to preserve their biogeochemical role.
However, fishery management needs to consider the influence of
harvesting on biogeochemical cycles. E. superba biomass and
their biogeochemical role are both likely to be impacted by the
activity of fisheries and climate change, with uncertain implica-
tions for future biogeochemical cycles.

Table 1 Summary of lower trophic level representation (krill, zooplankton and below) in Southern Ocean foodweb models

Reference Model base Modelled system FGs P FGs Z FGs Aa krill
own FG?

Aa krill life
stage FG?

Aa krill
predators

% lower trophic
level FGs

115 Ecopath Prydz Bay 28 1 5 Yes No 15 28%
119 Ecopath Antarctic Peninsula 39 1 1 Yes Yes

2 life stages
17 10%

120 Ecopath Antarctic Peninsula 28 1 2 Yes Yes
2 life stages

17 18%

121 Ecopath Antarctic Peninsula 58 4 4 Yes Yes
4 life stages

31 21%

122 Ecopath Antarctic Peninsula 24 3 6 Yes Yes
2 life stages

10 46%

123 Ecopath Antarctic Peninsula 63 4 8 Yes Yes
4 life stages

30 25%

124 Ecopath South Georgia 30 1 4 Yes No 10 20%
125 Ecopath South Georgia 30 3 4 Yes No 17 27%
126 Ecopath The Ross Sea 38 3 6 Yes No 13 26%
127 Ecopath Southern Ocean 18 1 4 Yes No 11 33%

Krill are not included in the zooplankton FGs. FGs functional groups, P phytoplankton, Z zooplankton, AaAntarctic
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