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Abstract
Quantitative models play an increasing role in exploring the impact of global change 
on biodiversity. To win credibility and trust, they need validating. We show how 
expert knowledge can be used to assess a large number of empirical species niche 
models constructed for the British vascular plant and bryophyte flora. Key outcomes 
were (a) scored assessments of each modeled species and niche axis combination, (b) 
guidance on models needing further development, (c) exploration of the trade‐off 
between presenting more complex model summaries, which could lead to more thor‐
ough validation, versus the longer time these take to evaluate, (d) quantification of 
the internal consistency of expert opinion based on comparison of assessment scores 
made on a random subset of models evaluated by both experts. Overall, the experts 
assessed 39% of species and niche axis combinations to be “poor” and 61% to show 
a degree of reliability split between “moderate” (30%), “good” (25%), and “excellent” 
(6%). The two experts agreed in only 43% of cases, reaching greater consensus about 
poorer models and disagreeing most about models rated as better by either expert. 
This low agreement rate suggests that a greater number of experts is required to 
produce reliable assessments and to more fully understand the reasons underlying 
lack of consensus. While area under curve (AUC) statistics showed generally very 
good ability of the models to predict random hold‐out samples of the data, there 
was no correspondence between these and the scores given by the experts and no 
apparent correlation between AUC and species prevalence. Crowd‐sourcing further 
assessments by allowing web‐based access to model fits is an obvious next step. To 
this end, we developed an online application for inspecting and evaluating the fit of 
each niche surface to its training data.
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1  | INTRODUC TION

Quantitative biodiversity models have become an important tool 
in our attempts to understand past ecological change and to pre‐
dict what may lie ahead as humans increasingly dominate the Earth 
system (Ellis, 2015). The development and application of ecological 
models is a burgeoning field yet producing models that are cred‐
ible when applied in predictive mode and easy to use is a major 
challenge (Evans et al., 2013; Houlahan, McKinney, Anderson, & 
McGill, 2017). Independent validation of the performance of mod‐
els is critical if they are to win credibility and be deployed to ad‐
dress real problems. Recent decades have seen a rapid increase in 
the development and application of statistical Species Distribution 
or Species Niche Models (hereafter SNM) that reproduce the dis‐
tributions of species based on correlative matching of presence/
absence or presence‐only datasets to environmental covariates 
(Elith & Leathwick, 2009; Guillera‐Arroita et al., 2015). The advan‐
tage of such models is that they are easy to develop and apply. 
However, they have been criticized on a number of grounds. These 
include reliance on the assumption of niche conservatism as con‐
ditions change (Pearman, Guisan, Broennimann, & Randin, 2007), 
inappropriate extrapolation to future, potentially novel, configura‐
tions of environmental conditions (Yates et al., 2018), omission of 
demographic processes and biotic interactions (Merow et al., 2014; 
Zurell, Jeltsch, Dormann, & Schröder, 2009), omission of parame‐
ters linked to adaptive capacity such as phenotypic and genotypic 
variation and rate of likely evolution (Catullo, Ferrier, & Hoffmann, 
2015). Building models that address these criticisms is essential but 
remains heavily data constrained given the number of species of 

interest. Moreover, there is no guarantee of an improvement in ac‐
curacy even if models are trained on demographic data that ought 
to confer realistic dynamism (Crone et al., 2011 but see Chapman, 
Haynes, Beal, Essl, & Bullock, 2014; Merow et al., 2014). Therefore, 
empirical SNM are likely to see continued development and use 
but in parallel with building more sophisticated hybrid models. 
Wise application of SNM is also fostered by the guidance emerging 
from a growing number of large scale tests of model transferability 
in space and time (Dobrowski et al., 2011; Norberg et al., 2019; 
Pearman et al., 2008; Yates et al., 2018).

The urgency of the problems typically addressed by SNM 
has also meant an increase in the formal inclusion of expert 
knowledge in model‐building (Addison et al., 2013; Low Choy, 
O'Leary, & Mengersen, 2009; Shirk, Wallin, Cushman, Rice, & 
Warheit, 2010) and testing (Drew & Perera, 2012; van Zonneveld, 
Castañeda, Scheldeman, Etten, & Damme, 2014). Confidence in 
the use of SNM should increase if there is a degree of consen‐
sus between model predictions and independent expert judg‐
ment. Using statistical models of the realized niche of vascular 
plants and bryophytes in Britain, we investigated how expert 
opinion can be used to rapidly evaluate a large number of SNM 
that have been developed for a significant fraction of the British 
flora, covering all common dominant and numerous rare and 
subordinate species. The models are freely available within an R 
package called MultiMOVE (Henrys et al., 2015). It is more likely 
that these models will be used and gain credibility if they can be 
shown to reproduce the response of each plant species to major 
ecological gradients reliably. This can be done quantitatively, by 
testing the ability of each model to reproduce random samples 

F I G U R E  1    Steps involved in building and assessment of the MultiMOVE species niche models based on expert judgment and comparison 
with AUC. Color codes are as follows: Blue = model inputs. Green = quantitative modeling steps. Orange = Model outputs. Light red = model 
assessment steps. See Henrys et al. (2015) and Smart, Scott, et al. (2010) for detailed accounts of the construction of the species niche 
models including descriptions of the input data
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of the training data, but also by seeking the view of experts not 
involved in model construction but who possess comprehensive 
knowledge of the British flora. In this paper, we apply and com‐
pare the results of both approaches.

Each SNM in the MultiMOVE package is a statistical representa‐
tion of the realized niche of each species across British ecosystems. 
That is, each niche is a modeled probability space defined by the 
main effects and interactions between climate, vegetation height, 
indicators of substrate pH, fertility, and substrate wetness across 
the time interval in which the model‐building data were collected. 
A large database of species presence–absence data from quadrat 
locations across Britain was used to build models for 1,188 vascular 
plants and bryophytes (Figure 1). The availability of fine‐resolution 
co‐located soil measurements lends the models potentially greater 
accuracy in defining each realized niche (Coudun, Gegout, Piedallu, 
& Rameau, 2006; Wamelink, Goedhart, & Frissel, 2014) while also 
allowing models to be used to explore scenarios of environmental 
change that drive change in soil variables (Smart, Henrys, et al., 
2010; de Vries, 2010). Species presence/absence data used to build 
the models were available at relatively fine resolution (maximum 
200 m2 [14.14 × 14.14 m] to minimum 4 m2). This lessens the chance 
of poor model fit resulting from the averaging of environmental 
heterogeneity (Huston, 1999). SNM were derived by fitting species 
presence and absence to the explanatory variables using five dif‐
ferent statistical modeling techniques (Figure 1). While the model 
development process is rigorous and scientific, in as much as it is 
clearly documented and therefore repeatable, it is not given that 
each model represents the true realized niche of each species. For 
example, a model may be missing important predictors, there may 
be insufficient occurrences to parameterize the model, or the data 
may not fit the assumptions of the model. To address these issues, 
an ensemble of modeling techniques was used recognizing that 
there is no single best statistical approach to species niche model‐
ing (Araújo & New, 2006; Norberg et al., 2019; Smart, Henrys, et al., 
2010). Moreover, the notion that it is possible to define the “true” 
realized niche as a spatially and temporally invariant pattern is prob‐
lematic even though the concept of the niche remains extremely 
useful (Araújo & Guisan, 2006; Chase & Liebold, 2003; Pulliam, 
2000). We assume pragmatically that the shape of each species’ 
niche is stable enough to be usefully approximated by popular niche 
modeling methods and, as we explore here, embodied in the experi‐
ential knowledge that can be elicited from experts (Drew & Perera, 
2012; O'Hagan et al., 2006). Many of the species that we modeled 
have ranges that extend into the European mainland. Restrictions 
on data availability resulted in models that only included presence/
absence for Britain thereby constraining the environmental range of 
some of the models to a subset of their occupied area (c.f. McCune, 
2016; Thuiller, Brotons, Araújo, & Lavorel, 2004; Yates et al., 2018). 
A useful consequence is that we did not require experts to demon‐
strate knowledge of the ecological preferences of species outside 
Britain.

We report the results of a model assessment exercise carried 
out by two independent expert botanists covering all niche axes 

of all species in the MultiMOVE R package (Figure 1). Both ex‐
perts were deemed sufficiently familiar with the habitat prefer‐
ences of the British flora to be able to judge the quality of each 
species' model as a representation of its realized niche. Our aim 
was ultimately to generate species‐specific guidance for users, 
alerting them to potentially good and bad representations of the 
realized niche of each species and to help identify models in need 
of improvement. Clearly, the experiential impression of each niche 
can differ between experts depending upon the geographic and 
ecological scope of their familiarity with British vegetation. In this 
respect, two experts are better than one but not as good as an 
even greater number. We return to this issue in the discussion in 
light of an analysis of the consistency between the two experts in 
their assessment results for a random 5% subsample of the vascu‐
lar plant species models.

Each species assessment can be broken down into three linked 
questions: (1) Do the response curves resulting from each of the 
five modeling techniques reproduce the expected niche response 
of the species according to the experience of the expert? (2) Since 
each model is fitted to a dataset of presences and absences does 
each model accurately predict the observations that were used to 
build the model? (3) Does the observed presence/absence data ad‐
equately represent the ecological range of the species in Britain? A 
poor representation of the niche could for example arise from biased 
or unrepresentative model‐building data despite the model being a 
good fit to these data. Since a total of 1,188 species models needed 
to be assessed we asked each expert to inspect the modeled re‐
sponse to each abiotic niche axis averaged across model types rather 
than evaluating each of the model types along each niche axis. Thus 
our principal objective was to address question 1 via an inspection 
of the ability of each of the ensemble models to represent the real‐
ized niche averaged across the five modeling techniques (Figure 1). 
We then address question 2 by generating area under curve (AUC) 
statistics describing the fit of each model to random hold‐out sam‐
ples of the training data. The correspondence between the experts' 
evaluations and the model fit statistics were then compared with the 
expectation that better fitting models should coincide with higher 
expert scores for the species and niche axis combinations making up 
each model (Figure 1). In light of these results, we discuss the trade‐
off between the time required to evaluate more complex graphical 
representations of model fit versus the possibility that more infor‐
mation‐rich visualisations could yield more accurate and compre‐
hensive validation.

In summary, we sought to answer the following questions:

1. How did the two experts rate the ability of the models to 
capture the niche of each species?

2. To what extent did the experts agree with each other based 
on joint validation of a random subsample of the vascular plant 
models?

3. Did modeled species and niche axis combinations judged to be 
better representations of the species’ niche coincide with higher 
quantitative model fit statistics for each species model?
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2  | METHODS

2.1 | Selection of experts

We circulated a request for experts to colleagues within the veg‐
etation surveying community in Britain. Two experts were selected 
both of whom were prepared to commit themselves to the large size 
of the validation task. While we can assume that a greater number 
of experts should lead to more robust consensus (Drew & Perera, 
2012), our investigation was limited by the funding available to pay 
each expert for the large number of assessments required. A previ‐
ous expert‐based assessment of the habitat affinities of a subset of 
British plant species successfully employed three experts, hence we 
had no prior reason to expect that just two experts with comprehen‐
sive knowledge of the British flora would be insufficient (McInnes et 
al., 2017). However, in order to further identify the strengths and 
weaknesses of this approach we carried out a literature review of 
papers documenting the use of expert knowledge in validating sta‐
tistical species distribution or niche models (Appendix S1). We were 
especially interested in the range of variation in the ratio of experts 
to numbers of species and in conclusions as to the usefulness of ex‐
pert assessment given the levels of agreement found between ex‐
perts and between experts and models.

The two expert botanists satisfied the six criteria for selection of 
experts in elicitation studies listed by O'Hagan et al. (2006), (a) Tangible 
evidence of expertise, (b) Reputation, (c) Availability and willingness to 
participate, (d) Understanding of the problem area, (e) Impartiality, (f) 
Lack of an economic or personal stake in the findings. Neither of the ex‐
perts were previously acquainted with the authors either in a personal 
or professional capacity. Both agreed to take part in the assessment 
exercise and in doing so felt that their levels of botanical experience 
were sufficient to tackle the national scope of the assessment. Their 
expertise and experience of the British flora is summarized below:

Expert 1: This expert trained as a botanist and vegetation ecol‐
ogist gaining a master degree in ecology and then further plant 
identification qualifications from the British Natural History 
Museum. The expert has 15 years' experience practicing as a 
professional botanist and, in the last 8 years as a professional 
bryologist. The expert has been a vice‐county recorder for the 
Botanical Society of Britain and Ireland (BSBI) for the past 
12 years and a regional recorder for the British Bryological 
Society for 8 years.
Expert 2: This expert is a vegetation ecologist, bryologist and 
botanist with over 20 years' experience in the nature con‐
servation sector. The expert specializes in detailed vegetation 
surveys especially the UK National Vegetation Classification, 
designing & implementing vegetation monitoring programs, 
training in identification and survey skills, bryophyte surveys 
and statistical analysis of ecological data.

In this instance, the two experts are not considered to be human re‐
search subjects in the sense of the Declaration of Helsinki and so it was 

not deemed necessary to seek approval and review by an Institutional 
Ethics Committee.

2.2 | Assessment methodology

The modeled responses of each species along each of the seven 
niche axes were made available to each expert as a “shiny” ap‐
plication (Chang, Cheng, Allaire, Xie, & McPherson, 2016) allow‐
ing each species to be selected by the expert for inspection and 
scoring via a user‐friendly interface (see Figure S2.1 in Appendix 
S3). The modeled response curve for each niche axis was plotted 
as the average of the predictions generated from the GLM, GAM, 
MARS, and Neural Network models for the species. The Random 
Forest models were excluded because of the frequent occurrence 
of abrupt spikes in the modeled curves that were uninterpretable 
and probably reflected local over‐fitting (Wenger & Olden, 2012). 
The resource constraints of the project meant that only one aver‐
age curve was plotted per niche axis rather than separate curves 
for each method with uncertainty intervals on each. Had we done 
so this would have increased the number of required assessments 
fourfold from 8,316 to 33,264 (1,188 species * 7 niche axes * 4 
model methods) and confronted the expert with a more complex 
representation of each niche that would have needed longer to 
evaluate. We return to this issue in the discussion. The modeled 
response curves were derived by solving each model for values 
of the respective predictor. The range of the predictor variable 
on each x‐axis was defined by the maximum and minimum val‐
ues in the complete training dataset used to build the models and 
was therefore the same for every species assessed (Henrys et al., 
2015). Since each niche model included terms to be solved for 
other predictors these also needed to contribute to the solution 
of each model along each ecological gradient. This was done by 
setting the value of all other predictors to their median value in 
the training data, the default option in MultiMOVE. Hence, when 
inspecting a species response along a single gradient, model pre‐
dictions were generated by varying the input values for this gradi‐
ent only and fixing the input value for all other covariates at the 
median of each covariate across the training data. An alternative 
approach is to set the values of the background predictors to their 
observed values in each of the sampled locations in the training 
data. We explore this option later in the paper. Raw probabilities 
from each species' model were rescaled to account for varying 
prevalence in the model‐building data with the result that all val‐
ues ranged between 0 and 1 (Real, Barbosa, & Vargas, 2006).

The experts were introduced to the use and installation of the 
software and the assessment methodology via email and tele‐
phone. A guidance note on carrying out the assessment was also 
circulated (see Appendix S1). Bryophyte species (n = 307) were 
assigned to one of the experts who had particular experience of 
the British bryophyte flora. The vascular plants (n = 881) were split 
between the two experts at random. From this pool, 45 vascular 
plants (5% of the total) were selected at random to be assessed by 
both experts. These were included among the larger list given to 
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each expert so that neither expert knew the identity of the species 
that would also be inspected by the other. Experts were asked to 
assess the accuracy of each niche axis using four categories; poor, 
moderate, good, excellent (Appendix S1). No attempt was made to 
define this scale hence assessment was left entirely to the judg‐
ment of the expert. The exact quote from the guidance note issued 
to each expert is as follows:

[The niche of each species is described in terms 
of seven environmental axes that are all shown 
together on each species page;] …..[You should 
evaluate each of these separately by comparing 
what the response curve implies about the species’ 
preference with your experience of the species in 
British habitats. If unsure because you cannot un‐
derstand the response or you suspect you do not 
have enough experience of the species' preferences 
throughout its range then don't hesitate to select 
‘Cannot evaluate’].

2.3 | Analysis

The results of the validation exercise are presented showing the fre‐
quency of species assigned to each class. The results for niche axes 
and species combinations that were assessed independently by both 
experts are presented as a confusion matrix showing the number 
of times the experts agreed and the frequency of disagreements by 
pairs of score; for example, by indicating how often expert 1 gave an 
assessment of “good” when expert 2 gave an assessment of “poor.” 
From these data % agreement was calculated as follows:

By restricting the two sums above to just pairs containing one 
of the assessment categories, agreement values can also be read‐
ily calculated for each, showing for example whether experts were 
more likely to disagree when applying the “excellent” score or the 
“poor” score.

2.4 | Comparison with quantitative model 
fit statistics

Area under the receiver‐operator curve (AUC) statistics for each 
species and each model type in the MultiMOVE ensemble were 
computed as follows: The presence absence data for each mod‐
eled species were split randomly into a 75% training and 25% 
test set. For each species and modeling method we train on the 
training set and predict the probability of presence on the test 
set. From this we calculated AUC values on the test set using 
the “evaluate” function in the R package dismo (Hijmans, Phillips, 
Leathwick, & Elith, 2011). For each species and modeling method 
we repeated this process 10 times and extracted the average of 

the AUC values. Scatter plots and a loess smoother were used to 
explore whether the assessment category awarded by each expert 
to each species × niche axis combination varied systematically 
with the mean AUC of the respective species model. We would 
for example, expect models that best predicted a hold‐out sample 
of their observations to be a better description of their niche and 
to attract a better assessment. This assumes that the observations 
used to build the model are representative of the species ecologi‐
cal range as perceived by each expert. Prevalence was plotted 
against mean AUC because the high true negative rates associated 
with species that rarely occur in the data would be expected to 
result in higher AUC values (Lobo, Jiménez‐Valverde, & Real, 2007; 
Peterson, Papeş, & Soberón, 2008). The area under curve (AUC) 
statistic is simply the area beneath the ROC curve, and provides a 
single value that is used to summarize overall performance (Boria 
& Blois, 2018; McCune, 2016; Yates et al., 2018).

3  | RESULTS AND DISCUSSION

3.1 | Expert assessment results

Overall, the experts assessed 39% of niche axes to be “poor” and 61% 
to show a degree of reliability split between “moderate” (30%), “good” 
(25%), and “excellent” (6%) (Figure 2a). The two experts exhibited dif‐
fering tendencies in their approach to model assessment. Expert 1 as‐
signed a greater proportion of models to categories associated with 
stronger model performance (Figure 2b). Expert 2 showed the reverse 
tendency, in particular assigning a much greater proportion of mod‐
eled niche axes to the “poor” category (Figure 2c). Since species were 
allocated randomly these differences cannot be attributed to any prior 
ecological bias in the species assessed. Expert 1 was the only expert to 
assess the bryophyte models. The distribution of scores was similar to 
results for vascular plants; 36% of model axes being considered “poor,” 
28% “moderate,” 29% “good,” and 7% “excellent” (Figure 2d).

Joint assessment of a 5% random subset of vascular plant models 
yielded 43% agreement between experts. They were more likely to 
agree on the assessment of poor niche axes with increasingly less 
consensus about niche axes considered to be better by at least one 
of the experts (Table 1). These levels of disagreement are interest‐
ing; in 14 cases expert 2 assigned “poor” where expert 1 assigned 
“good” and in five cases expert 1 assigned “poor” where expert 2 
gave “good” consistent with the tendency for expert 2 to judge more 
harshly than expert 1. In nine cases, disagreements centered on cli‐
mate axes, in seven cases on the succession/disturbance axis con‐
veyed by vegetation height and in the remaining 3 cases on abiotic 
substrate conditions. Species‐specific examples of model fits are 
discussed below. Model assessment scores for all species and niche 
axes are available in Appendix S4.

3.2 | Quantitative assessment of model fit

Mean AUC statistics for the species models were invariably greater 
than 0.8 with most species having scores >0.9 suggesting good 

%agreement= (total numberof identical assessments/total

numberofassessments)∗100.
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and excellent ability to predict the test data, respectively (Figure 3; 
Swets, 1988). Since a high proportion of absences is expected to de‐
crease the false‐positive rate thereby increasing AUC, we would ex‐
pect a negative correlation between species prevalence and AUC. 
Interestingly, while this effect cannot be ruled out, mean AUC was 
in fact lowest at the very lowest levels of prevalence. Regardless of 
the relationship between AUC and prevalence, there was no obvious 
difference in AUC between assessment categories for either expert 
(Figure 3). There was a weak indication that species models with 
higher AUC were more likely to be assigned as “excellent” by expert 2. 
However, the smoothed lines did not differ by any meaningful amount 
(Figure 3b).

3.3 | Assessment results in light of the 
literature review

We located 25 published papers that reported an independent as‐
sessment of statistical species distribution models using expert 
opinion (Appendix S1). Compared to these papers, our assessment 

involved by far the lowest ratio of experts to study organisms (1–307 
for bryophytes and 1–881 for vascular plants with 45 species evalu‐
ated by both experts). It would however, be wrong to assume that 
these low ratios are an accurate measure of the fraction of knowl‐
edge that could be applied by each expert to each species in the as‐
sessment. The experts were chosen based on their experience and 
expertise in surveying British plant communities. As such, this experi‐
ence ought to have enabled assessment of the habitat preferences 
of each of the species embedded within the mixed‐species assem‐
blages widely encountered by the experts. We also encouraged the 
experts to select the “cannot evaluate” category if they felt unable to 
evaluate a model through lack of experience. Even so, the levels of 
disagreement between the experts suggest that various unquantified 
biases may have influenced their judgment. For example, a species 
whose abiotic niche varies geographically will be wrongly evaluated if 
the expert's home‐range did not include the full range of the species 
(Drew & Perera, 2012; Murray et al., 2009; Appendix S1). In addition 
to these expert‐centered sources of variation, we suspect that the 
simplicity of the univariate model summaries may have also mitigated 

F I G U R E  2    Results from assessments of the MulitMOVE models by two independent experts: (a) both experts combined. (b) Expert 1, 
vascular plants only. (c) Expert 2, vascular plants only. (d) Expert 1, bryophytes only
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against more accurate (nearer to the truth) and more precise (less un‐
certainty surrounding estimates of the truth) assessments.

3.4 | Trade‐offs between simple versus complex 
model summaries

At least three factors come into play when evaluating each model; 
(a) the effectiveness of the way model fit was summarized for the 
expert, (b) the extent to which each model reproduces the obser‐
vations used to build the model, (c) the extent to which the obser‐
vational data adequately represents the ecological preferences of 
the species. The AUC statistics address the second issue. Across 
the prevalence range, mean AUC values indicated generally very 
good fits between the model predictions and hold‐out samples of 
the training data. We might therefore have expected fewer “poor” 
and “moderate” expert assessment scores. The two experts were 
able to validate the fit of each species model to each abiotic axis 
based on a plot of the simple model average for the five model types 
across each separate niche axis. Raw predicted probabilities were 
also standardized to range between 0 and 1 thereby allowing spe‐
cies to be compared on an equal basis (Figure S1.1 in Appendix S2). 
This simple presentation was designed to make the assessment as 
quick as possible. More realistic yet complex presentations are how‐
ever possible, including graphing outputs from all available model 
types with attached confidence intervals rather than presenting 
just the average prediction. Expert assessors may have responded 
differently to such treatments but their complexity may well have 
meant prohibitively greater time spent on each assessment and ad‐
ditional training to help interpret more complex graphs. For example 
Coeloglossum viride, an orchid of shortly grazed calcareous grassland 
with an expected optimum at high pH and short vegetation height, 
was assessed by both experts. Plotting the predictions from each 
type of model shows how the average prediction combines outputs 
consistent with expectation versus models that completely fail to re‐
produce the expected ecological response (Figure 4). The inspection 
of the full range of models on the same graph would have allowed 
assessment and scoring of each model type as well as each axis how‐
ever this will have meant a longer assessment process requiring sig‐
nificantly greater resourcing and training.

Expert 2

Expert 1

Excellent Good Moderate Poor Expert 2 totals

Excellent 2 (8) 2 1 1 6

Good 9 16 (17) 7 5 37

Moderate 9 39 44 (25) 14 106

Poor 1 14 62 64 (40) 141

Expert 1 totals 21 71 114 84 126 (43)

Note: Numbers refer to the count of niche axes and species combinations that were assessed. Thus 
the diagonal gives the number of assessments where both experts agreed. The figure in brackets is 
the % agreement for each category of score.

TA B L E  1   Confusion matrix of results 
for species assessed by both experts

F I G U R E  3    Comparison of expert assessments—(a) Expert 
1. (b) Expert 2—for each species niche axis combination versus 
AUC statistics for the associated model and the prevalence of 
each species in the training data used to build each model. Loess 
smoothers are fitted to each species*niche axis combination 
grouped by the assessment category awarded by the expert. Thus 
each point is a species * niche axis combination whose position is 
defined by its prevalence on the x‐axis and the mean AUC for the 
species model on the y‐axis. Note that prevalence (the proportion 
of presences/ total number of quadrats) was square‐root‐
transformed to spread the data more evenly across the x‐axis
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Further insight into the way each species model represents the 
realized niche can be gained from examining observed data and mod‐
eled occurrence simultaneously along more than one niche axis. Such 
plots are better able to reveal peaks in the probability of occurrence 
that are not visible when predictions are averaged for all other possible 
axes. For example the modeled maximum probability of occurrence for 
C. viride increases when the joint response to substrate pH and vegeta‐
tion height is plotted (Figure 5a). The result is a more accurate depiction 
of the modeled response for C. viride because its optimum is approxi‐
mated more clearly by two rather than one niche axis (Figure 5a). The 
2D plot highlights the dependence of the species on both pH and veg‐
etation height, responses that are averaged out by examining only one 
dimension. However, had we presented these plots to the experts for 
every pair of axes this would have increased the volume of assessment 
material from seven graphs to 21 graphs per species.

3.5 | The critical importance of the 
background variables

Another important difference in the way model responses can be 
summarized centers on the choice of values for background variables; 
that is those explanatory variables other than the ones that define 
the particular abiotic gradient being assessed. The default setting in 
MultiMOVE is to set the background variables to the median for the 
input data. This effectively holds all other variables constant allow‐
ing predictions to vary only in response to the gradient of interest. 
However, the assessment results show that this can lead to predic‐
tions being made for unrealistic combinations of explanatory variables 
while at the same time missing those conditions that are optimal with 
respect to the observed occurrences of the species. Turning again to 
C. viride, when all explanatory variables other than pH and vegetation 

height are set to the median values for the training data unrealistic 
predictions are generated outside of the observed range of the spe‐
cies. Moreover all predicted habitat suitability values are extremely 
low (Figure 5b). Predicting across the same two gradients but solving 
the model based on observed values at each sampled location for all 
other explanatory variables results in the region of highest prediction 
coinciding much more closely with the observed range of the species 
(Figure 5a). This is a clearer test of the ability of the model to reproduce 
the abiotic responses in the observations used to build the model. As 
such we must be clear that this is not a test of the transferability of the 
model to predict new, independent observations (Wenger & Olden, 
2012; Yates et al., 2018). Rather it is a validation of the fit of the model 
to the observations upon which the model was based. The greatest 

F I G U R E  4    Modeled response of Coeloglossum viride to an 
indirect indicator of substrate pH. The modeled response was 
assessed by both experts as moderate (expert 1) and poor (expert 
2). Their assessment would have been based solely on inspection of 
the unweighted model average (brown line). Raw probabilities have 
been rescaled to between 0 and 1. Gray ribbons indicate the 95% 
confidence region for the relevant modeled response
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F I G U R E  5    Modeled response of Coeloglossum viride to 
vegetation height (1, <10 cm, 8 ≥ 15 m), (assessed as poor by 
both experts) and an indirect indicator of substrate pH (assessed 
as moderate and poor by the two experts). Colors indicate 
the weighted average model prediction for all training plots in 
the MultiMOVE database. The red line encloses all observed 
occurrences of the species (black dots) in the training data. The gray 
polygon encloses the ecological space defined by the training data. 
(a) Model predictions based on observed values of background 
explanatory variables in each training plot. (b) Background 
explanatory variables set to their median values in the training data
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difference between the two methods for introducing background 
variables is to be expected where a species exhibits multiple optima so 
that the median values of explanatory variables for the training data 
are not representative of any of the individual realized peaks in occur‐
rence. Schoenus nigricans, a tussock‐forming rush that has distinct eco‐
logical loci in base‐rich soligenous mires in the low‐rainfall southeast 
of Britain and in the lower pH, higher rainfall northwest, is an example 
(Figure 6). Interestingly the model predicts lower values away from the 
high‐ and low‐rainfall extremes despite a large number of observations 
being found in this range (Figure 6a). The model therefore appears to 
be a poor fit to the observations even though the observations are 
a reasonable representation of the ecological range of the species in 
these two dimensions. However, when based on median values for 
background explanatory variables the pattern is substantially worse 

(Figure 6b). The highest probabilities all occur outside of the observed 
ecological range of the species and again the probabilities are lower. 
Solving the models based on median background variables in the train‐
ing data is therefore likely to have resulted in an assessment of poorer 
model fit to either axis than if model predictions were based on ob‐
served values at each sample point.

These considerations suggest that there are a number of ways of 
achieving improved model presentation for assessment. More com‐
plex yet information‐rich summaries of the modeled niche are possi‐
ble to produce but they are likely to take longer to evaluate. Surface 
plots showing observed presences overlaid with model predictions 
more clearly show the extent to which the small ensemble of model 
types has reproduced the observed data. Solving the models using 
observed values of explanatory variables for each location rather 
than median values across all locations also avoids applying unre‐
alized and unrealistic combinations of input variables that do not do 
justice to the fit of the model to observations.

3.6 | The value of expert elicitation

Human judgment is affected by a range of known biases (McCarthy 
et al., 2004; Tversky & Kahneman, 1974) and experts are no ex‐
ception yet their opinions carry greater weight than the nonex‐
pert and therefore have the potential for great benefit if correct 
(Ellenberg, 2014) or grave disbenefit if false (Hill, 2004). Having 
two experts assess our niche axes was better than having one. Yet 
just as the power of the ensemble approach to modeling relies on 
a consensus among models that reduces the eccentric influence of 
any one model (Araújo & New, 2006; Smart, Henrys, et al., 2010) 
it would be desirable to have more experts carry out the model 
assessment. The size of the task is large however, given the many 
species and niche axis combinations. A way forward would be to 
expose the MultiMOVE models to crowd‐sourced expertise. We 
have implemented this step by presenting bivariate modeled niche 
surfaces and associated training data in a publicly available online 
application (https ://shiny‐apps.ceh.ac.uk/find_your_niche/ ). Here 
assessments can now be captured along with a self‐reported in‐
dicator of level of expertise. Such an approach allows for more 
complex yet informative model summaries to be presented since 
volunteer assessors can take as much or as little time as required 
for each species of interest. The disadvantage is that no prior con‐
trol can be exercised over the expertise of the assessor nor the 
rate at which species models are assessed.

Our results show that statistical and expert assessments of models 
can be very different for a number of reasons: models can be a poor 
representation of the phenomena of interest but fit their training data 
well indicating that the shortcoming is with the observations rather 
than the modeling method. In addition, simple model summarizes, de‐
signed to be readily evaluated by the ecologist but nonexpert in statis‐
tics and modeling, can be over‐simplifications. Moreover, experts may 
have too much faith in the transferability of their own expertise. Our 
results also confirm the variation that can occur among experts when 
asked the same question despite their expertise ostensibly covering the 

F I G U R E  6    Modeled response of Schoenus nigricans to 
precipitation (assessed as good) and an indirect indicator of 
substrate pH (assessed as moderate). Colors indicate the weighted 
average model prediction for all training plots in the MultiMOVE 
database. The red line encloses all observed occurrences of the 
species (black dots) in the training data. The gray polygon encloses 
the ecological space defined by the training data. (a) Predictions 
based on observed values of background explanatory variables in 
each training plot. (b) Background explanatory variables set to their 
median values in the training data
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same knowledge domain; in this instance the habitat preferences of the 
British vascular plant flora (e.g. Gastón et al., 2014; Murray et al., 2009; 
Appendix S1). Having more experts assess the models becomes an obvi‐
ous requirement when a small number fail to reach consensus. The key 
lessons from our investigation are (a) that a robust consensus among 
experts should be based on as large a number of experts as possible, 
(b) that excessively simple model summaries should be avoided even 
though this will necessitate additional time for assessment and addi‐
tional training of experts to interpret more complex model summaries.
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