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Abstract 10 

We undertook short case studies of how: (i) dieldrin and DDT affected populations of the 11 

peregrine falcon (Falco peregrinus) and other birds of prey in Britain; (ii) diclofenac 12 

impacted vulture populations across in SE Asia.  In both cases, high levels of [contaminated-13 

mediated] acute mortality largely drove the population crashes. Impaired, or naturally low, 14 

rates of reproduction likely limited recovery rates.  The studies illustrate the huge, long-lived 15 

impacts that contaminants can have on bird populations. They changed our scientific 16 

understanding of the importance of different exposure routes and influenced how we now 17 

conduct monitoring and risk assessment. They also demonstrated the value of long-term 18 

population monitoring and archived specimens for identifying the causal factors and 19 

mechanisms behind the population crashes. 20 
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Introduction 28 

The impacts of chemical contaminants on apex predators, particularly birds, have been well 29 

studied over the last 50 years.  This is partly because exposure to a diverse range of 30 

contaminants, including toxic heavy metals (such as lead), insecticides, biocides and 31 

pharmaceuticals, has resulted in lethal poisoning and/or impaired reproduction  that, in 32 

some cases, has directly led to global population declines [1-6]. Detection of population-33 

level effect is arguably easier in birds than for many other animals. This is because many 34 

species are relatively easy to observe and count and there is typically a cadre of professional 35 

and amateur ornithologists with an interest in ringing birds, conserving them and 36 

undertaking population counts.   37 

 38 

In this short paper, we describe two of the clearest case studies in which exposure to 39 

chemicals has caused major population declines in apex avian species. The first is the classic 40 

case of the impacts that organochlorine (OC) pesticides, particularly cyclodienes (such as 41 

dieldrin) and DDT, had on birds of prey, and in particular the peregrine falcon (Falco 42 

peregrinus).  The second is much more recent and catastrophic impact of diclofenac on 43 

vultures in SE Asia. We describe the factors that led to population declines in both cases and 44 

outline what general lessons have or can be drawn from them, and the role population 45 

monitoring played in detecting effects in particular.   46 

 47 

Case Study 1: Organochlorine pesticides and the peregrine falcon in Britain 48 

The impacts on wildlife during the late 1940s and 1950s that extensive use of synthetic 49 

pesticides were having on the environment, including birds, was highlighted to the world 50 

through Rachel Carson’s now classic book “Silent Spring” [7]. While Carson was based in 51 

America, similar concerns were also being voiced in Britain over the effects of OC pesticides. 52 

The realisation that peregrine falcon numbers were declining in Britain was due to a 1961-2 53 

survey, led by Derek Ratcliffe, which measured occupancy and breeding success of 54 

peregrines in known territories. This was initiated, somewhat ironically, because of concerns 55 

from pigeon fanciers that peregrine numbers were rising and falcons were killing increasing 56 

numbers of pigeons.  The survey in fact showed that occupation of breeding territories by 57 

peregrines was less than half that of the 1930s average and only 21% of occupied territories 58 
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were producing young; productivity in many areas had become too low to maintain 59 

population numbers [3].  There was no evidence of natural mortality factors accounting for 60 

this national-scale decline and attention began to focus on the possible toxic effects of 61 

cyclodiene pesticides used as seed dressings, and in particular dieldrin (a seed dressing in its 62 

own right and a metabolite of another compound, aldrin). These dressings were already 63 

reported to have caused the deaths of granivorous birds feeding in treated fields and there 64 

were also reports of deaths of predatory birds and mammals [3,8] in and around agricultural 65 

fields.  Analysis of addled eggs and carcasses showed that peregrines were exposed to 66 

dieldrin and other OC pesticides [9] while spatial and temporal analysis demonstrated that 67 

the extent of decline in populations was positively correlated with the prevalence of arable 68 

farming  and with the onset of use of seed dressings [3].   Such associations were also found 69 

in other similar species such as the sparrowhawk (Accipiter nisus)  [2,10-12].  70 

The role of dieldrin in causing population declines in peregrines and other species was 71 

complicated by simultaneous exposure of the birds to DDT which was used extensively 72 

around the word as an insecticide.  DDT causes eggshell thinning, although the extent of 73 

thinning can vary markedly between species [13]. Thinning results in structurally weaker 74 

eggs and impaired reproductive success. Through measurements of the shell index of failed 75 

eggs and eggs held in museum and other collections, Ratcliffe demonstrated that eggshell 76 

thinning in peregrines began as far back as 1947 [3], reflecting the post-war surge in use of 77 

the compound. There was a similar thinning in sparrowhawk eggs (Figure 1) and other 78 

species that began between 1946 and 1952.  Chemical analysis also demonstrated that DDE, 79 

the main metabolite of DDT, was detectable in peregrine shells from 1947 onwards [14]. 80 

The eggshell thinning seen in Britain was also extensively reported in other countries and 81 

regions, especially North America [15,16].  82 

The growing evidence that OC pesticides were impacting wildlife led the UK Government 83 

Advisory Committee on Pesticides to advise that their agricultural use should be limited. 84 

This led to increasing restrictions through the 1960s on the use of cyclodienes as seed 85 

dressings, with an eventual ban in Britain in 1975. DDT use was also increasingly restricted 86 

although there was not a complete ban o in Britain until the 1980s.  Monitoring of pesticide 87 

residues in carcasses of birds found dead  and in failed eggs demonstrated that exposure 88 

levels in peregrines and other species declined  following the bans, eventually falling below 89 
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toxic levels [3,17],  although trace amounts of both compounds still remained detectable in 90 

eggs and carcasses 20-30 years later [18].  91 

The coupling of dieldrin-induced mortality and DDT-impaired reproduction in peregrine, 92 

sparrowhawks [2] and other species was a powerful combination, with two key ecological 93 

drivers (survival and recruitment of young) markedly impaired.  The consequence was a 94 

drastic population crash.  This was mainly been attributed to dieldrin-induced mortality and 95 

the extent to which DDT-mediated impairment of reproduction may have increased the rate 96 

of decline is unclear. However, poor recruitment may well have slowed the recovery of 97 

peregrines and other species following the banning of dieldrin. Eggshell thickness in 98 

peregrines, although recovering, was still below pre-DDT levels in 1980 and it was only in 99 

the late 1980s that population numbers were similar to those seen in the 1930s [19,20].  100 

The Predatory Bird Monitoring Scheme [21] still tracks eggshell thickness in the similarly 101 

affected sparrowhawk and eggs only fully recovered to pre-DDT levels in in the late 1990s 102 

(Figure 1), slightly lagging behind the recovery in numbers [22] 103 

 104 

Case study 2:  New threats and pathways: Old World vultures and modern veterinary 105 

medicines  106 

In the 1980s, one species (Gyps bengalensis) of Old World vulture was considered the most 107 

abundant large raptor on Earth [23] – perhaps numbering some 40 million individuals – yet, 108 

by 2000, it was being listed by the IUCN as Critically Endangered. Surprisingly, the complete 109 

collapse of this and two other South Asian vulture species (G. indicus and G. tenuirostris) 110 

was, in 2004, clearly linked to an entirely new chemical threat and an almost completely 111 

overlooked exposure pathway.  112 

Collapsing Old World vulture populations across South Asia were first highlighted in the late 113 

1990s by field conservationists working in India [24] and Pakistan. Geographically extensive 114 

and rapid declines in three Gyps species were being observed – and the driver behind this 115 

was initially very elusive [25,26]. Then in 2004, Oaks presented his team’s findings from 116 

Pakistan [6], and identified that the wholly unexpected cause of the decline was exposure to 117 

a common veterinary pharmaceutical, diclofenac. This non-steroidal anti-inflammatory drug 118 
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(NSAID) was widely used as a veterinary drug but had not been considered an 119 

environmental toxicant of any note.    120 

Diclofenac had emerged onto the Indian sub-continent as a low-cost off-patent veterinary 121 

drug in the mid-1990s, and had quickly ascended to become the NSAID of choice for 122 

livestock treatment. Very widely used to treat mastitis, lameness, inflammation, etc., by 123 

2006 diclofenac was detectable as a residue in ~10% of livestock carcasses available to 124 

vultures across India [27]. However,  it was also extremely nephrotoxic to Gyps [6], with an 125 

LD50 of just 0.098-0.225 mg kg
-1

 bw (in G. bengalensis;  [28]. Further, very few carcasses (just 126 

0.13–0.75%) had to contain lethal residue levels to drive the mortality rates being observed 127 

[29]. From an avian ecotoxicology perspective, a “perfect storm” of sorts had unpredictably 128 

occurred (Figure 2).                          129 

Since diclofenac was recognised as the principal driver behind vulture declines in South Asia, 130 

it has been a race to effectively halt and reverse this trend - and literally “Save Asia’s 131 

Vultures from Extinction” (www.save-vultures.org). Certain critical actions have occurred, 132 

including: (a) several large Gyps captive breeding (and ultimately release) programmes have 133 

been instigated in South Asia; (b) diclofenac has been effectively banned as a veterinary 134 

drug (starting in 2006) across the region; and (c) a veterinary NSAID proven to be “vulture 135 

safe” (at normal and elevated exposure levels) has been identified – meloxicam [30]. These 136 

actions, alongside other intensive efforts, may now [31] be leading to a cessation in declines 137 

and/or some small signs of recovery for G. bengalensis – but critically, numerous wider 138 

questions regarding NSAID safety toward scavenging birds still remain. 139 

Whilst Old World Gyps vultures are now known to be particularly susceptible to diclofenac 140 

poisoning,  [32] presented the first indication (from a survey collating data from 870 birds 141 

from 79 species) that a much wider suite of NSAIDs (including carprofen, flunixin, ibuprofen 142 

and phenylbutazone) may also be nephrotoxic to a range of avian scavengers (globally). 143 

Since then, safety trials have now confirmed nephrotoxicity at plausible field exposure levels 144 

in Gyps due to ketoprofen [33], carprofen [34] and aceclofenac [35] – whilst very worryingly, 145 

both nimesulide (in South Asia; [36] and flunixin (in Europe; [37]) have now been clearly 146 

linked to wild Gyps mortalities on two continents. Further, concern now also exists 147 

regarding potential impacts on what some may consider to be more enigmatic species such 148 

as eagles, following the death of two steppe eagles (Aquila nipalensis) in India in association 149 
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with diclofenac [38].  In a concerning twist to this story – whilst SE Asia was extremely quick 150 

to ban diclofenac across that region to protect vultures – and despite immense efforts in 151 

Europe in recent decades to conserve European vulture species, diclofenac was recently 152 

permitted to emerge onto the veterinary market in Spain, Portugal and Italy.   153 

 154 

Discussion 155 

These case studies demonstrate the massive and long-lasting impact that environmental 156 

contaminants can have on bird populations.  Commonalties include the facts that acute 157 

mortality was a major ecological driver and that population recovery was/is limited by DDT-158 

impaired or naturally low (vultures) rates of reproduction and recruitment. The impact of 159 

OCs on wildlife spawned the birth of “ecotoxicology” and provided major insights into the 160 

importance of persistence, bioaccumulation and toxicity (PBT) as key characteristics of 161 

chemicals associated with environmental risk; PBT remains a cornerstone for chemical risk 162 

assessment today.  The OC “experience” also led to the development of a specific bird 163 

reproduction test (that includes measurement of eggshell thinning) as part of pre-164 

registration pesticide testing regimes, and provided a clear demonstration of how exposure 165 

to chemical mixtures can exacerbate impacts on populations.  It also led to the widespread 166 

practice of chemical and eggshell thickness monitoring in predatory birds [39] ,  these 167 

species being used as environmental sentinels to help detect the emergence of new 168 

contaminant risks [40]. The pioneering work of Ratcliffe also demonstrated the value of 169 

analysing archived historical samples to understand the mechanisms by which chemicals 170 

exert population effects and to provide proof of synchrony between chemical use and such 171 

effects. The Asian vulture case has highlighted again just how easily a new environmental 172 

contaminant can quickly and unpredictably emerge and have global population level 173 

impacts on wild species by causing direct mortality.  This occurred despite huge advances in 174 

knowledge and experience that have advanced chemical risk assessment in the last 50 175 

years. It has also highlighted the importance of assessing risk across a diverse range of 176 

ecological traits and exposure pathways. The risk to scavengers and decomposers feeding 177 

on the carcasses and waste of medically-treated animals (including humans) has largely 178 

been overlooked, but this is likely one of the most significant pathways by which wildlife are 179 

exposed to for pharmaceuticals [41]. The loss of vulture populations has also highlighted 180 
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how contaminant-induced population declines can have severe knock-on effects, such as 181 

widescale loss of invaluable and long-standing ecosystem services.  In the case of Gyps 182 

vultures, a rapid and very efficient carrion disposal system which has helped reduce the 183 

occurrence and spread of disease [42] for decades has now been almost completely lost 184 

across South Asia. 185 

Would ongoing and/or increased population monitoring have prevented the population 186 

crashes described in these case studies?  Declines may have been detected more rapidly but 187 

there are many other factors that can cause bird populations to fluctuate [43]. Even with 188 

ongoing population monitoring in place, the speed of the OC and diclofenac-mediated 189 

declines would probably still have resulted in population crashes within the time it would 190 

have taken to attribute cause and initiate mitigation. Remarkably, the Asian vulture declines 191 

were recognised, causality determined, and government bans implemented all within about 192 

a decade, yet Old World Gyps populations in South Asia still plummeted from 10s of millions 193 

to precariously low levels (just thousands to 10s of thousands) within that timeframe. 194 

Clearly, prevention rather than remediation is paramount and requires well-founded risk 195 

assessment that, as the vulture case study demonstrates, still evidently requires significant 196 

improvement. Ongoing monitoring is however likely to provide early alerts of slower 197 

contaminant-induced declines, and there clearly remains high value in linking spatial and 198 

temporal population trends to information on contaminant exposure. Detected associations 199 

are often correlative and not proof of causality but they add significantly to the overall 200 

“weight of evidence” regarding both risk and impact. In all but the most clear-cut 201 

circumstances, decisions as to whether to restrict or ban the use of certain chemicals, 202 

because of their environmental impact, will typically rely on such weight of evidence.   203 

 204 
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 347 

Figure 1. Mean annual eggshell index for sparrowhawks in Britain.  Data are updated (and 348 

statistically summarised) from those published by Newton ([2,44] 349 
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 352 

Figure 2. Some key factors (clockwise from the top) relevant to the collapse of scavenging 353 

Gyps vulture populations in South Asia due to diclofenac. 354 

 355 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Highlights 

 

• Contaminants can exert massive adverse effects on bird populations  

• We illustrate this by reviewing the effects of cyclodiene and other organochlorine 

(OC) pesticides on birds of prey and the effect of diclofenac on Asian vulture 

populations  

• In both cases, acute mortality drove population crashes and with slow (multi-

decadal)  rates of recovery  

• Long-term population monitoring and archived specimens were crucial for 

identifying the causal factors and mechanisms behind the population crashes  

• Risk assessment and monitoring methods improved following the OC “experience” in 

the 1950/60s but were not sufficient to pre-empt diclofenac –mediated effects in the 

1990s 

• Diclofenac demonstrated how contaminants can impact wildlife populations and the 

ecosystem services they provide  
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