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42

43 Abstract

44 Mass transports for the thermocline, intermediate, deep and abyssal layers in the 

45 Atlantic Ocean, at 30S and for 2003 and 2011, have been estimated using data from 

46 GO-SHIP hydrographic transoceanic sections and applying three inverse models with 

47 different constraints. The uppermost layers comprise South Atlantic Central Water 

48 (SACW) and Antarctic Intermediate Water (AAIW), with a net northward transport in 

49 the range of 12.1-14.7 Sv in 2003 and 11.7-17.7 Sv in 2011, which can be considered as 

50 the northward returning limb of the Meridional Overturning Circulation (MOC). The 

51 western boundary Brazil Current transports twice as much SACW in 2003 (-20.20.7 

52 Sv) than in 2011 (-9.70.7 Sv). A poleward current consisting of AAIW and Upper 

53 Circumpolar Deep Water (UCDW) flows beneath the Brazil Current. The eastern 

54 boundary Benguela Current, characterized by a high mesoscale eddy activity, 

55 transports 15.60.9 Sv in 2003 and 11.20.8 Sv in 2011, east of the Walvis Ridge. In the 

56 ocean interior, the northward flow is mainly located east of the Mid Atlantic Ridge 

57 (MAR) where Agulhas Rings (ARs), observed in both 2003 and 2011, transport warm 

58 and salty water from the Indian to the Atlantic Ocean. For the deep layers, the 

59 southward transport of North Atlantic Deep Water (NADW) occurs as the Deep 

60 Western Boundary Current and also in the eastern basin. The western and eastern 

61 basins transport similar amounts of NADW to the south during both years, although 

62 the eastern pathway changes substantially between both years. The total NADW 

63 transport, which is also considered the MOC, is in the range 16.3-24.5 Sv in 2003 and 

64 17.1-29.6 Sv in 2011, hence with no significant change.
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68

69

70 1. Introduction

71 During the 1990s, the international World Ocean Circulation Experiment 

72 (WOCE) surveyed all of the main ocean basins. The global network of high quality 

73 hydrographic data from transoceanic zonal and meridional sections of closely spaced 

74 stations allowed estimates of the oceanic transports of mass, heat, freshwater and 

75 other properties, from the sea surface to the bottom of every ocean (Ganachaud and 

76 Wunsch, 2003; 2000; Macdonald and Wunsch, 1996). The general features of the 

77 ocean’s global overturning long predated WOCE (e.g. summaries in Gordon (1986) and 

78 Schmitz (1995)), but the newly collected global-scale data along with the newly-

79 developed approach of inverse modeling allowed an improved, internally consistent, 

80 quantification of global transports (Roemmich and Wunsch, 1985; Wunsch, 1996). 

81 From these data, a clearer picture of the global circulation emerged, including a 

82 continued recognition of the pivotal role of the Atlantic Meridional Overturning 

83 Circulation (AMOC) (Ganachaud and Wunsch, 2003; 2000; Macdonald, 1998; 

84 Macdonald and Wunsch, 1996; Talley, 2013).

85 In the Atlantic Ocean, about 15 Sv of North Atlantic Deep Water (NADW) 

86 originate in the northern North Atlantic, essentially as Labrador Sea Water (Talley and 

87 McCartney, 1982) and overflow waters from the Nordic Sea (Smethie et al., 2000), and 

88 flow south mainly via a Deep Western Boundary Current (DWBC) (Fine and Molinari, 

89 1988; Joyce et al., 2001; McCartney, 1993). During its transit to the Southern Ocean, 

90 the NADW entrains Antarctic Intermediate Water (AAIW) at its upper boundary and 

91 Antarctic Bottom Water (AABW) at its lower boundary (de Carvalho Ferreira and Kerr, 

92 2017; Johnson, 2008), increasing to a southward mass transport of approximately -23 

93 Sv at about 30S. This southward mass transport of NADW has to be balanced by a 

94 northward flow of abyssal and thermocline waters, consisting of about 6 Sv of AABW 

95 and 17 Sv from the South Atlantic and Indian Oceans, the latter through the Agulhas 

96 leakage around the southern tip of Africa (Beal et al., 2011; Gordon, 1985a).This 

97 pattern of circulation has been summarized by Schmitz and McCartney (1993) for the 

98 North Atlantic circulation and Schmitz (1995), Talley (2008) and Talley (2013) for the 

99 global ocean circulation.
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100 Following WOCE, a natural next step has been to estimate how the property 

101 transports and patterns of circulation have changed over time. For this purpose, 

102 repeat hydrographic sections in key latitudes and longitudes have been accomplished 

103 in the framework of the Global Ocean Ship-based Hydrographic Investigation Program 

104 (GO-SHIP) (www.go-ship.org). High accuracy measurements of different ocean 

105 properties – including temperature, salinity, nutrients and oxygen – are collected from 

106 the surface to the bottom of the ocean with an approximate decadal base and with the 

107 same horizontal sampling strategy as in WOCE, that is, a spatial resolution of 55 km 

108 near the internal Rossby radius, and with sections that extend (close) from coast to 

109 coast or enclose regions, that is, with closed mass budgets. 

110 A now classical method used to estimate the ocean circulation and property 

111 transports from closed hydrographic sections is the inverse method (Wunsch, 1996; 

112 1977). However, the results differ depending on the a priori variance specified within 

113 the inverse model, and on specific constraints and initial conditions imposed in the 

114 models. As a result, each separately calculated inverse estimate of transports from a 

115 given hydrographic section tends to be different. If we are to determine that the 

116 differences in the solution are due to the decadal changes in hydrographic data, and 

117 not due to the differences in the inverse models, the same a priori variance, same data 

118 types, and same approach to constraints should be specified for the inverse models. 

119 Using this consistent approach, Hernández-Guerra et al. (2014) and Hernández-Guerra 

120 and Talley (2016) estimated the changes in the ocean circulation and Meridional 

121 Overturning Circulation at 7.5N and 24.5N in the Atlantic Ocean during 1992-93 and 

122 2010-11, and in the Indian and Pacific Oceans at 30S in 2002-03 and 2009. In addition, 

123 Katsumata and Fukasawa (2011) applied an inverse model to the hydrographic data 

124 collected in the Indian, Pacific and Atlantic oceans at 30S during the WOCE (1992-95) 

125 and repeated in 2003-04. 

126 At 30S in the South Atlantic Ocean, the boundary currents in the thermocline 

127 layers of the subtropical gyre are the Brazil and Benguela Currents. The Brazil Current 

128 is the narrow southward western boundary current (Müller et al., 1998; Zemba, 1991) 

129 and the Benguela Current is a broad eastern boundary current flowing north with 

130 intense mesoscale activity (Garzoli et al., 1996; Macdonald, 1993). In the ocean 

131 interior, the net mass transport is to the north though there are alternative 
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132 northward/southward flows, including the distinctive Agulhas Rings (Goni et al., 1997; 

133 Gordon and Haxby, 1990) often found in this part of the ocean. In the deep NADW 

134 layers, the main flow takes place via the DWBC although southward transport also 

135 occurs in the eastern basin (Garzoli et al., 2015; Reid, 1989; van Sebille et al., 2012; 

136 Tamsitt et al., 2017; Zangenberg and Siedler, 1998). In abyssal layers, AABW flows to 

137 the north with a gradual latitudinal decrease in mass transport.  

138 Our main goal here is to extend to the South Atlantic Ocean at 30S our 

139 previous studies of the Indian and Pacific Oceans, and to estimate if the ocean 

140 circulation and the Atlantic Meridional Overturning Circulation has changed in 

141 different decades, analyzing the hydrographic data collected in 2003 and 2011. To 

142 accomplish our main goal, section 2 presents the data for the two years, 2003 and 

143 2011, and the vertical sections of the different ocean properties, aimed at describing 

144 the main water masses present at 30S (e.g. Chapter 9 of Talley et al. (2011)). Section 3 

145 presents the geostrophic transport relative to initial reference level choices and 

146 describes the characteristics of our inverse box model. The final mass transports for 

147 both years, obtained after applying the inverse model, are presented in section 4, 

148 including our estimate of the AMOC and its variability. Section 5 describes the 

149 horizontal circulation focusing on the upper, deep and abyssal layers. We summarize 

150 the principal results in section 6.

151

152 2. Data, vertical sections and water masses

153 Hydrographic data collected in 2003 and 2011 over the entire water column at 

154 stations along section A10, nominally at 30S in the South Atlantic Ocean, are available 

155 through the Carbon Hydrographic Data Office (CCHDO, http://cchdo.ucsd.edu) (Table 

156 1). They were collected as part of the international Global Ocean Ship-Based 

157 Hydrographic Investigations Program (GO-SHIP) (Talley et al., 2016). The 2003 section 

158 was part of the circumpolar Japanese Beagle expedition (Katsumata and Fukasawa, 

159 2011; Katsumata et al., 2013). The 2011 section was collected by US GO-SHIP. Tracks 

160 deviated from the indicated latitude mainly at the western and eastern boundaries, in 

161 order to angle the section perpendicular to the currents (Figure 1). The distances 

162 between stations were about 50 km, with smaller spacing across boundary currents 

163 and strong topographic slopes. At each station, temperature and salinity every two 
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164 decibars was reported using a CTD as well as water samples for salinity, oxygen, silicate 

165 and other chemical tracers. For both cruises, a Lowered Acoustic Doppler Current 

166 Profiler (LADCP) – at 300 kHz and 150 kHz in 2003 and 2011, respectively – provided an 

167 absolute velocity profile at each station. As in Hernández-Guerra and Talley (2016), 

168 LADCP data are helpful to constrain the boundary currents in the inverse model. 

169 The transatlantic section may be divided into western and eastern basins, 

170 separated by the Mid-Atlantic Ridge (MAR). The vertical distributions of potential 

171 temperature (), salinity, neutral density (n, (Jackett and McDougall, 1997)), oxygen 

172 and silicate are shown for both cruises in Figures 2-6. The 2003 A10 sections were 

173 originally presented by Katsumata and Fukasawa (2011) . We use the sections to 

174 identify the vertical and density distribution of the existing water masses. With the 

175 double objective of selecting the reference level (used to integrate the thermal wind 

176 equation) and calculating the partial transports, a description of the different water 

177 masses follows, following well-known classifications (Talley et al., 2011), and similar to 

178 Katsumata and Fukasawa (2011) description.

179 The South Atlantic Central Water (SACW) extends from the surface to the 

180 density interface of n=27.23 kg/m3 (approximately 730 m depth), defining the 

181 thermocline layer. SACW is formed by subduction in the subtropical gyre of the South 

182 Atlantic Ocean, north of the subtropical front (Gordon, 1989; 1981; Sprintall and 

183 Tomczak, 1993). SACW is characterized by low silicate (<10 M/kg) and high oxygen 

184 (>210 M/kg), mainly in the shallowest thermocline layers (Figs. 5 and 6). According to 

185 Stramma and England (1999), SACW is transported to western Africa via the South 

186 Atlantic and Benguela Currents. 

187 From an Optimum Multiparameter Analysis, Poole and Tomczak (1999) 

188 concluded that the eastern thermocline layers of the South Atlantic Ocean near 30S 

189 also have a high contribution from the Indian Ocean, mainly in deeper layers (>500 m), 

190 due to the leakage of Indian Ocean thermocline waters through the Agulhas 

191 Retroflection (Gordon, 1985b; Poole and Tomczak, 1999; Sprintall and Tomczak, 1993). 

192 The relatively low-oxygen waters in the eastern basin around 3E probably come from 

193 the Indian Ocean transported by the Benguela Current (Gordon et al., 1992). Another 

194 Indian Ocean contribution comes from the Agulhas Retroflection, as the Agulhas rings 

195 slowly propagate and diffuse out in the Atlantic Ocean (Casanova-Masjoan et al., 
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196 2017). Both cruises crossed one Agulhas ring: at about 1.5E in 2003 and about 6.5W 

197 in 2011, the former being stronger and deeper, reaching to the sea bottom, as shown 

198 by the downward dome of the isotherms and isopycnals (Figs. 2 and 4).

199 The signature of the Brazil and Benguela Currents is clear in the rising of the 

200 isotherms and isoneutrals near the western and eastern margins, respectively (Figs. 2 

201 and 4). The Brazil Current stands as a relatively narrow poleward western boundary 

202 current while the Benguela Current appears as a relatively wide equatorward eastern 

203 boundary current, stretching westward to about 3E (Garzoli et al., 1996). In the ocean 

204 interior, these isolines plunge slowly to the west, implying northward geostrophic flow 

205 relative to a reference layer located in deeper layers. The relatively low-oxygen waters 

206 near the eastern boundary represents tropical South Atlantic thermocline waters 

207 advected by an undercurrent at some 200 m depth (Gordon et al., 1995). 

208 At intermediate levels (about 27.23 kg/m3<n<27.58 kg/m3, approximately in 

209 the 730-1140 depth range), the vertical section of salinity (Fig. 3) shows minimum 

210 values (<34.5) corresponding to Antarctic Intermediate Water (AAIW). The relative 

211 high oxygen in the western basin is accompanied by a salinity minimum. The sources of 

212 AAIW are primarily in the southeastern Pacific, in the northern Drake Passage and in 

213 the Malvinas Current loop (Suga and Talley, 1995). The northern limit of the minimum 

214 salinity corresponding to AAIW in the Atlantic Ocean is usually 20-25N (Talley, 1996). 

215 At the western boundary, a relatively wide tongue of AAIW is transported through the 

216 Caribbean (Joyce et al., 2001). In the eastern basin, a narrow flow of AAIW has been 

217 repeatedly measured in the Lanzarote Passage, in the channel between the eastern 

218 Canary Islands and the African coast at ~29N (Hernández-Guerra et al., 2017; Machín 

219 et al., 2010). The higher salinity in the eastern basin of the South Atlantic Ocean at any 

220 depth is due to the influence of older AAIW and mixed with Red Sea water entering 

221 from the Indian Ocean that contains higher salinity than the AAIW from the 

222 southwestern Atlantic Ocean (Shannon and Hunter, 1988). The decrease of oxygen in 

223 the eastern basin also points to origin in the Indian Ocean (Gordon et al., 1992; Talley, 

224 1996). The patches of minimum salinity (<34.3) found in the western basin suggests 

225 that more recently ventilated AAIW is transported by northward flows in the ocean 

226 interior. Silicate increases with depth, at a maximum rate in the AAIW layer. 
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227 Below the AAIW, a body of oxygen-poor and relatively fresh water (core salinity 

228 of about 34.6) is observed corresponding to the Upper Circumpolar Deep Water 

229 (UCDW). The oxygen minimum occurs at the approximate density range between 

230 27.58 kg/m3 and 27.84 kg/m3 (corresponding to approximately 1140-1560 m depth) 

231 (Figs. 4 and 5). The source of UCDW is located in the eastern South Pacific Ocean. It is 

232 transported to the western Atlantic margin through Drake Passage (Callahan, 1972) 

233 and transported to the eastern margin through an anticyclonic circulation as seen in 

234 (Reid, 1989). The UCDW stratum is thicker in the eastern than in the western basin, as 

235 also shown in Larqué et al. (1997). 

236 The North Atlantic Deep Water (NADW) is best observed in the western basin 

237 but also stretches to the eastern basin, being transported by the Deep Western 

238 Boundary Current (Stommel et al., 1958) as a tongue of relatively high salinity (>34.85), 

239 high oxygen (>240 M/kg) and low silicate (<50 M/kg) (Figs. 3, 5 and 6). The NADW is 

240 composed of two different water masses formed at different locations: the Upper 

241 North Atlantic Deep Water (UNADW) essentially formed by Labrador Sea Water (Talley 

242 and McCartney, 1982) and the Lower North Atlantic Deep (LNADW) with overflow 

243 waters from the Nordic Sea (Pickart, 1992; Smethie et al., 2000). In the North Atlantic 

244 Ocean at 24.5N, the UNADW is centered at about 2300 m and the LNADW is located 

245 at about 4000 m depth. Two lobes, one in each layer, of southward mass transport are 

246 observed centered at approximately these depths (Hernández-Guerra et al., 2014). By 

247 the time the NADW reaches 30S, mixing has eroded the two-lobe signal, appearing as 

248 a single core in the density range 27.84-28.1 kg/m3 (from about 1600 to 3400 m), 

249 where single relative maximum of salinity and oxygen and a relative minimum in 

250 silicate are observed (Figs. 3, 5 and 6) (Tsuchiya et al., 1994). The NADW extends east, 

251 towards the MAR, with a decrease in salinity and an increase in silicate. According to 

252 Larqué et al. (1997), the relative minimum in silicate observed in the eastern basin is 

253 NADW. Thus, the southward flow of the NADW in the South Atlantic subtropical gyre 

254 occurs in both the western and eastern basins (Garzoli et al., 2015; Reid, 1989; van 

255 Sebille et al., 2012; Tamsitt et al., 2017), as will be discussed in Section 5.2. During its 

256 path to the south, the NADW splits the Circumpolar Deep Water into UCDW and Lower 

257 Circumpolar Deep Water (LCDW).
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258 The densest water mass (n>28.1 kg/m3, from approximately 3420 m depth to 

259 the seafloor) is Antarctic Bottom Water (AABW), fresher with lower oxygen 

260 concentrations than the NADW (Fig. 3, 5). It is characterized by  < 2C, S < 34.86 and 

261 silica concentration >70 M/kg (Reid, 1989). The primary source of AABW at 30S is 

262 LCDW (Heywood and King, 2002; Peterson and Whitworth, 1989; Reid et al., 1977), 

263 which is a mixture of Antarctic waters with NADW (de Carvalho Ferreira and Kerr, 

264 2017; Mantyla and Reid, 1983). The westward shoaling of the near bottom isotherms 

265 and isoneutrals (n=28.15 kg/m3) indicates a northward AABW path, as shown by the 

266 highest silicate in the water column (Fig. 6). In the eastern basin, the Walvis Ridge 

267 prevents the equatorward flow of AABW.

268

269 3. Relative geostrophic transport and inverse model

270 The thermal wind equation is used to compute the relative geostrophic velocity 

271 normal to the vertical plane between two adjacent hydrographic stations. The relative 

272 geostrophic velocity depends on the selected reference layer, which is chosen near the 

273 the NADW-AABW interface, at n=28.1 kg/m3 (about 3420 m depth) (Fig. 4). This is the 

274 same reference layer used in a previous study carried out using the hydrographic data 

275 at 30S in the Pacific and Indian Oceans (Hernández-Guerra and Talley, 2016). In their 

276 study of the oceanic fluxes in the South Atlantic, McDonagh and King (2005) used a 

277 similar reference layer for the A10 section carried out in 1993. However, our initial 

278 reference layer is slightly shallower than that used by Ganachaud and Wunsch (2000) 

279 and Ganachaud (2003) in their global transport study with the WOCE sections. In those 

280 station pairs where the deepest common depth is shallower than the reference layer, 

281 the bottom is considered as the reference layer; below the deepest common depth of 

282 each station pair, velocities are considered constant. The LADCP data can be used to 

283 estimate the velocity at the reference layer (Comas-Rodríguez et al., 2010; Joyce et al., 

284 2001) and to constrain the mass transport in the boundary currents.

285 The mass and property transports have been computed for the different n 

286 layers that divide the water column, selected following Talley (2008) and Hernández-

287 Guerra and Talley (2016). When we require separate estimate of Ekman transports, 

288 which are introduced into the first layer, they have been computed from the NCEP 
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289 wind stress (Kalnay et al., 1996) corresponding to the times of the cruises (Hernández-

290 Guerra and Talley, 2016) (Table 2). 

291 The initial mass transport through 30S in the Atlantic Ocean is shown in Figure 

292 7. The total mass transports present imbalances of 36.4 Sv for 2003 and 38.6 Sv for 

293 2011, both northward as a result of thermocline and Antarctic Bottom Water 

294 transports, with almost no transport in the North Atlantic Deep Water layer, which is 

295 known from all previous analyses to have net southward transport. To reduce this 

296 large imbalance, we applied an inverse model to solve for an adjustment to the 

297 reference velocity reference velocity that seeks mass conservation (Wunsch, 1996; 

298 1978). The following equation is solved:

299

300                               (1)∬𝜌𝑏 𝑑𝑥 𝑑𝑧 =‒ ∬𝜌𝑉𝑟 𝑑𝑥 𝑑𝑧 + 𝐸𝑘

301

302 where  is the density, b is the unknown reference velocity, Vr is the relative 

303 geostrophic velocity obtained from the thermal wind equation, Ek is the Ekman 

304 transport normal to the section, and (x, z) designate the along-section and vertical 

305 coordinates, respectively. 

306 The above procedure would provide one single equation (vertically-integrated 

307 mass conservation) with 110 unknowns for 2003 and 119 unknowns for 2011 (the 

308 number of station pairs). New equations have to be introduced in order to reduce this 

309 underdetermined system. To be consistent with Hernández-Guerra and Talley (2016), 

310 when we later combine the results from those Indian and Pacific analyses with this 

311 Atlantic analysis, we apply several different inverse models using independent 

312 estimates as constraints for layer and total mass conservation (Table 3). Model A 

313 employs the mass transport and standard deviation from Talley (2008) (hereafter T08), 

314 obtained using the Reid (2003; 1994; 1997) absolute geostrophic analysis  for 

315 transoceanic hydrographic sections carried out in 1959 and 1972 in the Atlantic Ocean 

316 at 32S. Model B utilizes the mass transport and standard deviation from the Southern 

317 Ocean State Estimate (SOSE, http://sose.ucsd.edu) output for 2005-2007 (Mazloff et 

318 al., 2010), calculated from the zonally integrated flow at 30S in neutral density layers. 

319 Our hydrographic data were collected in different years than T08’s and SOSE’s outputs. 

320 However, the standard deviation, used as a priori uncertainty in the inverse model, is 
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321 large enough to allow the inverse model to adjust the mass transport for the 

322 oceanographic conditions of each cruise. Additionally, we set up model C as a ‘classic’ 

323 inverse model where, in addition to total mass conservation, we introduce several 

324 regional constraints. These local constraints are also used in models A and B.  

325 Figure 8 shows the mass transports with standard deviations from T08 and 

326 SOSE that are then applied as constraints for inverse models A and B. The resemblance 

327 of the mass transport per layer for both transports is notable given their 

328 independence: the southward North Atlantic Deep Water (NADW) transport is 

329 compensated by northward bottom and surface water transports. T08 and SOSE differ 

330 in the abyssal layers: the transport is northwards in three layers in T08 while for SOSE 

331 there is only one layer transporting water northward, with the deepest layer showing 

332 no net flow. For the thermocline and intermediate layers, the northward mass 

333 transport is 12.82.3 Sv for T08 and 13.83.8 Sv for SOSE. The southward NADW 

334 transport is also not significantly different for T08 (-17.65.5 Sv) and SOSE (-16.14.2 

335 Sv).

336 We introduce regional constraints for different longitude and depth ranges, 

337 listed in Table 4. The flow through the Bering Strait connects the Pacific and Atlantic 

338 Oceans with mean transports of -1.00.6 Sv and -1.20.6 Sv in models A and B, 

339 respectively, and -0.80.6 Sv in model C (Coachman and Aagaard, 1988); this 

340 constraint has been used in other inverse models (Ganachaud, 2003; Garabato et al., 

341 2014; Macdonald, 1993). Constraints on the deep flow along the Vema Channel, as 

342 measured by Hogg et al. (1982) and Hogg and Owens (1999), and the deep flow 

343 through bathymetric constraints as in Walvis Ridge North and entering dead-end 

344 basins as the Walvis Ridge South (Ganachaud et al., 2000), are also applied to every 

345 model. The constraint of the total deep flow into the Brazil Basin comes from 

346 estimates by Hogg et al. (1999), Speer and Zenk (1993) and Zenk et al. (1999) in the 

347 western boundary over the Santos Plateau and the Vema and Hunter Channels. This 

348 constraint was also used by Saunders and King (1995) and Vanicek and Siedler (2002)  

349 in their inverse models. Similar deep constraints were considered by Rintoul (1991) in 

350 his study of the South Atlantic interbasin exchange. McDonagh and King (2005) used 

351 lower mass transports than ours as constraints for the Vema Channel and Brazil Basin. 
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352 We also constrain the relatively strong western and eastern boundary currents 

353 (Brazil and Benguela Currents) using LADCP data from the cruises. Stations with the 

354 same flow direction were selected to delineate the boundary currents. We could have 

355 used various previous transport estimates for these currents, as in McDonagh and King 

356 (2005) and Garabato et al. (2014). Both used an initial constraint of -2510 Sv for the 

357 Brazil Current; the final adjusted solution after the inverse model was -11.41.6 Sv for 

358 Garabato et al. (2014) and -17.33.3 Sv for McDonagh and King (2005). Given this large 

359 difference between solutions and initial conditions, we have preferred to use the 

360 LADCP data from the cruises to initialize the field, as already done for the Agulhas 

361 Current in Hernández-Guerra and Talley (2016). Comas-Rodríguez et al. (2010) 

362 describe the procedure to adjust the geostrophy relative velocity to the LADCP-derived 

363 velocity profile from two adjacent stations. In order to reduce the high frequency, 

364 ageostrophic movements, we select the reference velocity by searching for a depth 

365 interval over which the vertical structure of the LADCP-derived velocity matches the 

366 relative geostrophic velocity. 

367 Figure 9 shows four profiles of the LADCP-derived velocity, the geostrophic 

368 relative velocity and the geostrophic velocity adjusted to the LADCP-derived velocity 

369 for both the Brazil and the Benguela Currents. In the Benguela Current, the flow is 

370 constrained only using the easternmost stations, where the isoneutral slopes are large 

371 (Fig. 4). Table 4 shows the initial mass transport (with zero reference velocity), the 

372 LADCP-adjusted mass transport used as a constraint, and the final mass transport 

373 resulting from each inverse model. The western boundary (Brazil) current constraint in 

374 2003 contains deeper layers (1 to 7) than in 2011 (1 to 5), where the flow has the same 

375 direction as in the thermocline layers (see sections 5.1.1 and 5.1.2). Contrary to other 

376 models (McDonagh and King, 2005), the recirculation of the Brazil Current is not 

377 imposed but rather is inferred from the inverse model.

378 The inverse models A and C also adjust the Ekman transport (Tables 2 and 3) as 

379 in Ganachaud (2003), Fraile-Nuez and Hernández-Guerra (2006), Macdonald et al. 

380 (2009) and Hernández-Guerra et al. (2010) . As already mentioned, the Ekman 

381 transport used in model C is computed from the NCEP wind stress at the time of each 

382 cruise (Kalnay et al., 1996). For model A, we use the Ekman transport computed in T08 
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383 (see Table 3). The Ekman transport in model B is included in the transport of the first 

384 layer and not as an independent transport (Mazloff et al., 2010). 

385 The solution of the inverse model follows the approach first carried out in Joyce 

386 et al. (2001) and subsequently developed in Hernández-Guerra and Talley (2016) with 

387 some specific differences. The closed box for the inverse model is formed by the 

388 transatlantic 30°S section plus the transport in the Bering Strait. The full matrix 

389 equation and its derivation is provided in the Appendix.

390 The inverse problem is solved through the Gauss-Markov method (Wunsch, 

391 1996). This method requires a priori variance for each equation and each solution. The 

392 a priori variance of each equation for models A and B comes from the standard 

393 deviation of the constraints (Table 3). The a priori variances for the regional constraints 

394 for all three models come from their standard deviations (Table 4) except for the 

395 boundary currents where we have assigned 5 Sv to account for the noise in the LADCP 

396 data. The a priori variance for the solution is (2 cm/s)2 in the ocean interior and (4 

397 cm/s)2 in the eastern and western boundaries where strong shear is expected. 

398 The velocities at the reference level for every inverse model and year are 

399 presented in Figure 10. The adjusted velocities are not significantly different from zero 

400 at most stations in the interior, as in previous inverse models (Ganachaud, 2003; 

401 Hernández-Guerra et al., 2014; Hernández-Guerra and Talley, 2016). Significant 

402 adjustments occur in station pairs located at the boundaries for models A and B. This 

403 pattern is even more pronounced for model C, which has significant boundary 

404 adjustments and very low reference velocities elsewhere, with and weaker mesoscale 

405 patterns than models A and B. The adjusted Ekman transport is -0.30.04 Sv for model 

406 C during both realizations (Table 2). The inverse model adjusts the Ekman transport in 

407 2003 but leaves it invariant in 2011. Our adjusted Ekman transports are not 

408 significantly different from the Ekman transport of -0.61 Sv estimated in Ganachaud 

409 (1999) ’s inverse model. Although several other studies do not provide uncertainties 

410 for the estimated Ekman transports, their values are in agreement with ours: Vanicek 

411 and Siedler (2002) and Holfort and Siedler (2001) estimated an Ekman transport of -0.4 

412 Sv and -0.35 Sv, respectively, at 30S. Model B is not allowed to adjust for the Ekman 

413 transport. 

414
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415 4. Final adjusted transport

416 Figure 11 shows the final mass transports per layer after application of the 

417 inverse models. The net initial mass transport imbalances using a reference level of 

418 n=28.1 kg/m3 (36.4 Sv for 2003 and 38.6 Sv for 2011) are greatly reduced and become 

419 indistinguishable from the transport in the Bering Strait, as seen from the total 

420 transports in Table 5: -1.042.62/-1.152.71 Sv in 2003/2011 for model A; -

421 1.162.76/-1.24/2.95 Sv in 2003/2011 for model B; and -0.784.48/-0.794.97 Sv in 

422 2003/2001 for model C. 

423 Table 4 shows the constraints for specific layers and longitude ranges used in 

424 the inverse models, as well as the initial and final mass transports for each inverse 

425 model.  These final mass transports satisfy the constraints within the uncertainty 

426 except for model B. This model does not meet the constraint in Vema Channel, Walvis 

427 Ridge North and eastern boundary (Benguela) current in 2011. Model A does not quite 

428 meet the Walvis Ridge North constraint in 2011.

429

430 4.1. Meridional transport per layer

431 Figure 11 and Table 5 show the meridional mass transports per neutral density 

432 layer for 2003 and 2011. Every model and year show the same pattern that is familiar 

433 from all previous analyses of the meridional overturning circulation at this latitude: 

434 northward flow corresponding to thermocline and intermediate layers, southward 

435 flow in the NADW deep layers, and northward flow in the AABW abyssal layers. 

436 Bottom/deep waters show the maximum northward/southward AABW/NADW 

437 transports in the same density layers: 28.15-28.23 kg/m3 (3760-3840 m) and 27.84-

438 28.04 kg/m3 (1560-2600 m), respectively, with no significant differences between 2003 

439 and 2011 for any model (Table 5). In contrast, for the thermocline layers, model C 

440 shows more northward transport in a shallower layer (26.14-26.45 kg/m3, 120-240 m) 

441 than models A and B (26.45-27.0 kg/m3, 240-560 m). 

442 Whereas southward NADW transport in the North Atlantic is carried in two 

443 separate layers corresponding to the UNADW formed in the Labrador Sea and the 

444 LNADW of overflow waters, as seen at 24.5N (Hernández-Guerra et al., 2014), these 

445 separate layers merge into a single layer by 30S, spanning approximately the same 

446 density layers as at 24.5N (Fig. 11). This coalescence of the UNADW and LNADW into 
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447 a single NADW layer occurs around 25°S (Tsuchiya et al., 1994) and can be tracked 

448 using tracers such as oxygen and chlorofluorocarbons on the full set of zonal WHP 

449 vertical sections for the Atlantic (Koltermann et al., 2011).

450 Table 6 shows the integrated mass transport over the set of layers that flow in 

451 the same direction. The northward flow corresponding to the thermocline and 

452 intermediate layers lies in the range from the surface to 27.58 kg/m3 (1140 m depth), 

453 which coincides with SACW and AAIW. The northward transport is in the range of 11.7-

454 14.7 Sv in 2003 and 11.2-17.7 Sv in 2011, depending on the model. The northward 

455 transports for models A and B in 2003 and 2011 are not significantly different, taking 

456 into account their uncertainty. In contrast, model C presents a significant increase 

457 from 2003 (13.41.3 Sv) to 2011 (16.31.4 Sv). Figure 11 indicates that the net 

458 northward transport in the thermocline layers is higher than the transport in the 

459 intermediate layer. For example, for model C, the northward transport for 

460 SACW/AAIW is 12.31.0/1.20.9 Sv for 2003 and 15.31.1/1.00.9 Sv for 2011. 

461 The deep (NADW) southward mass transport reaches down to n=28.1 kg/m3 

462 (3420 m depth) in model A and deeper in models B and C (n=28.15 kg/m3, 3760 m 

463 depth) as seen in Figure 11. The deep transports for both years in all three models are 

464 nearly the same, within their uncertainty (Table 6). Model C presents the highest 

465 difference in mass transport between 2003 (-20.73.8) and 2011 (-25.44.2) but not 

466 significantly different. 

467 The bottom (AABW) northward mass transport presents a similar value for 

468 2003 in all three models, with a minimum transport of 4.11.1 Sv in model A and a 

469 maximum transport of 6.51.9 Sv in model C. Northward transports for models A and 

470 B are comparable and do not change between 2003 and 2011. In contrast, the AABW 

471 northward transport in model C in 2011 (8.32.1 Sv) is significantly different from the 

472 transports in models A and B (4.81.1 Sv and 3.61.6 Sv, respectively) although model 

473 C does not change significantly between 2003 and 2011. 

474

475 4.2. Meridional Overturning Transport

476 The meridional overturning transport across 30S for the Atlantic Ocean is 

477 computed by vertically integrating the mass transport from the bottom to the surface 
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478 of the ocean (Fig. 12). The intensity of the overturning is often described as the 

479 maximum in the overturning stream function (zonally average transport integrated 

480 from the surface down), comprising northward flowing thermocline and intermediate 

481 waters, and southward flow in the deep layers (Kanzow et al., 2007; Koltermann et al., 

482 2011) (Table 6). In our case, this layer is n<27.58 kg/m3 (1140 m), approximately 

483 similar to the overturning depth estimated by Garzoli et al. (2013) and Meinen et al. 

484 (2013)  (1250 m and 1170 m, respectively) for 34.5S and slightly deeper than the 

485 overturning depth (about 1100 m) at 24.5N and 26N (Cunningham et al., 2007; 

486 Hernández-Guerra et al., 2014). Models A and B show no significantly difference in the 

487 Atlantic Meridional Overturning Circulation (AMOC) in 2003 (13.30.9 for model A and 

488 12.50.8 Sv for model B) and 2011 (12.50.8 Sv for model A and 12.00.8 Sv for model 

489 B). In contrast, model C shows a significant increase from 2003 (13.41.3 Sv) to 2011 

490 (16.31.4 Sv). 

491 Our estimates are lower than previous AMOC estimates carried out near 34.5S 

492 from expendable bathythermograph (XBT) and WOA13 data, which are in the range 

493 14.7-22.7 Sv (Garzoli et al., 2013). Dong et al. (2009) used XBT data from 2002 to 2007 

494 to infer a time-mean AMOC of 17.92.2 Sv. Meinen et al. (2018), from about 6 years of 

495 pressure-inverted echo sounders (PIES) data at 34.5S, estimated a mean AMOC 

496 transport of 14.7 Sv, closer to our results, with a relatively high standard deviation of 

497 8.3 Sv. This high standard deviation and the large differences in the assessments 

498 suggest the AMOC experiences high variability. In this sense, Meinen et al. (2013) 

499 observed a very variable AMOC transport ranging from 3 to 39 Sv using 20 months of 

500 PIES data at 34.5S. Dong et al. (2015) and Meinen et al. (2018) calculated substantial 

501 seasonal AMOC variability with the minimum from September to November, the time 

502 period when the cruises were carried out (Table 1).

503 Following Evans et al. (2017), the AMOC is also estimated as the southward 

504 flow of deep waters consisting primarily of NADW, or the converse, the northward 

505 flow of all waters that are not NADW. With this interpretation of the AMOC, the total 

506 northward flow (surface, thermocline, intermediate and abyssal waters) is considered. 

507 Table 6 shows a similar AMOC in 2003 in models A (-18.52.2 Sv) and B (-18.72.2 Sv), 

508 which are not significantly different in 2011 (-19.42.3 Sv in model A and -16.82.3 Sv 
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509 in model B). Model C presents a lower AMOC in 2003 (-20.73.8) than in 2011 (-

510 25.44.2 Sv) although not significantly different. Using a global inverse model, 

511 Ganachaud (1999)  estimated an AMOC of deep waters of -233 Sv, consistent with 

512 our results. Other estimates are also consistent with our results: -212.8 Sv by 

513 Macdonald (1998), -22.7 Sv by Holfort and Siedler (2001), -19.92 Sv by McDonagh 

514 and King (2005) and 202 Sv by McDonagh and King (2005) and -17.65.5 Sv by Talley 

515 (2008).

516

517 5. Horizontal Circulation

518 The horizontal distribution of the meridional velocity through the transoceanic 

519 sections, calculated relative to n=28.1 kg/m3 (near 3300 m), is shown in Figure 13. 

520 Substantial variability is observed in the ocean interior, characterized by an alternating 

521 velocity sign. The velocity field shows relatively strong western and eastern boundary 

522 currents. In the western basin, the Brazil Current width is some 255 km and 145 km in 

523 2003 and 2011, respectively, comparable with an offshore extension of some  200 km 

524 found by Müller et al. (1998); however, the depth of this baroclinic current is larger in 

525 2003 than in 2011 (Figure 13). In both years, a major fraction of the Brazil Current 

526 recirculates in the western basin. In the eastern basin, there is high variability, 

527 associated with both the Benguela Current and the presence of an Agulhas ring at 

528 1.5W and 6.5W in 2003 and 2011, respectively. 

529 Figure 14 shows the mean Absolute Dynamic Topography (ADT) for November 

530 2003 and September/October 2011, respectively, corresponding to the cruises carried 

531 out during these years, and the ADT for the western and eastern boundaries at the 

532 times when the hydrographic stations were done. Figure 15 shows the accumulated 

533 mass transport for the shallowest layer resulting from both the inverse models and the 

534 ADT. Both figures show the Brazil and the Benguela Currents and the equatorward 

535 ocean-interior flow, more pronounced in 2003. The inverse models and ADT match 

536 well in 2003; in contrast, in 2011 the Brazil and Benguela Currents show up more 

537 intense from the ADT than from the inverse models while the ocean interior flows are 

538 fairly similar.
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539 Figure 16 shows the horizontal distribution of the meridional transport in 

540 isopycnal layers for every inverse model and year. This distribution is obtained by 

541 integrating the mass transport in layers with the same direction of flow as seen in 

542 Figure 11 by accumulating the transport eastward from zero at the western boundary. 

543 The uppermost layers have northward transport, the mid-depth layers experience 

544 southward transport, and the bottom layers again have northward transport (section 

545 4.1). We next briefly discuss the flow and transport patterns as inferred from the 

546 velocity fields. 

547 The A10 section at 30°S is right in the midst of the South Atlantic eddy field that 

548 is dominated by Agulhas Rings (ARs) (Figure 14). These rings originate in the Agulhas 

549 retroflection, move northwestward in the Cape Basin, and then westward across the 

550 Atlantic (e.g. Laxenaire et al., 2018). The Absolute Dynamic Topography (ADT) 

551 distributions in Figure 14 display relatively strong ARs in the eastern South Atlantic 

552 east of Walvis Ridge in 2003 and 2011, at 1W and 6W, respectively. Our transport 

553 analyses especially show the strong AR in 2003 that was directly sampled by A10. 

554 Weaker ARs are also observed east of the Walvis Ridge. ARs appear as an intermittent 

555 signal in the accumulated mass transport (Figure 16). Nevertheless, the net transport 

556 and the path of the Benguela Current is apparent in the accumulated mass transport.

557

558 5.1. Upper ocean circulation

559 The accumulated mass transport for the upper ocean, consisting of thermocline 

560 and intermediate waters (surface to n=27.58 kg/m3, about 1140 m depth), shows the 

561 usual subtropical gyre: a relative intense western boundary current flowing poleward, 

562 a northward recirculation east and close to the western boundary, and a northward 

563 transport in the ocean interior with a relative intense Benguela Current in the eastern 

564 boundary (Figure 16a). The pattern of circulation of thermocline and intermediate 

565 waters is similar to that shown in Stramma and England (1999). The patterns of the 

566 layer-integrated transports for models A and B do not change substantially between 

567 2003 and 2011. In contrast, model C shows a slightly smaller accumulated transport, 

568 clearly seen between 40W and 20W. 

569

570 5.1.1.  Western Boundary current - Brazil Current
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571 The Brazil Current transports SACW poleward in the surface and thermocline 

572 layers (n<27.23 kg/m3, down to 730 m) (Figs. 13, 16, 17) (Munk, 1950; Stommel, 

573 1948). This is approximately the same depth range that Müller et al. (1998) found for 

574 the Brazil Current from current moorings installed near 28S. Previous studies have 

575 shown that the transport of the Brazil Current increases towards the south due to a 

576 recirculation cell found in the western South Atlantic south of 28S: from -10 Sv at 

577 23S-24S to -17.5 Sv at 33S (Stramma, 1989). Garzoli et al. (2013) also detected this 

578 increase in transport to the south, with even higher gradient transports: -8.64.1 Sv at 

579 24S and -214.7 Sv at 35S.

580 Table 7 presents the Brazil Current mass transports in the surface and 

581 thermocline layers, as well as the transports in the AAIW and UCDW layers flowing 

582 beneath the Brazil Current: from the initial solution (layer of no motion at n=28.1 

583 kg/m3), the LADCP-adjusted velocity, and the results from models A, B and C. The mass 

584 transport of the Brazil Current in 2003 ranges between -19.2 and -20.9 Sv for the three 

585 models, similar to the LADCP-adjusted mass transport but higher than the initial mass 

586 transport. The mass transport in 2011 for models A and C (-9.90.6 Sv and -9.70.7 Sv, 

587 respectively) differs from model B (-12.70.6 Sv). Other studies at this latitude have 

588 characterized a higher Brazil Current transport of -23.9 Sv (Talley et al., 2003). Hence 

589 our mass transports are consistent with a greatly fluctuating Brazil Current, in the 

590 range of -7 Sv to -26 Sv, as estimated by Müller et al. (1998) near 28S from a current 

591 meter array. The transport carried south by the Brazil Current at this latitude is much 

592 lower than for other western boundaries as the Gulf Stream (Joyce et al., 2001) and 

593 the Agulhas Current (Hernández-Guerra and Talley, 2016), although some studies have 

594 shown it increasing quickly to greater than 70 Sv by 36°S (Peterson, 1992).

595 In 2003, a cyclonic eddy, detected from 44.8W to 41.2W, is embedded in the 

596 western-margin recirculation (Figure 16). This probably causes fairly different 

597 recirculations for each model: 6.00.9 Sv in model B, 9.70.9 Sv in model A and 

598 12.71.2 Sv in model C. In 2011, the recirculation of the Brazil Current extends to 

599 44.9W, with higher mass transports: 13.10.7 Sv for model A, 13.40.7 Sv for model B 

600 and 11.90.7 Sv for model C. 
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601 At 30S, a poleward intermediate current of AAIW (27.23 kg/m3<n<27.58 

602 kg/m3) and UCDW (27.58 kg/m3<n<27.84 kg/m3) occurs under the Brazil Current 

603 (Hogg et al., 1999; Müller et al., 1998; Reid et al., 1977; Warner and Weiss, 1992). Our 

604 results show a relative strong/weak poleward transport of AAIW and UCDW in 

605 2003/2011 (Figure 17, Table 7). The mass transport in 2003 ranges from -4.0 to -6.3 Sv 

606 for AAIW and -3.8 to -7.2 Sv for UCDW. In contrast, the mass transport in 2011 is much 

607 less for AAIW (-0.1 to -1.1 Sv) and not significantly different than zero for UCDW. These 

608 mass transports are consistent with previous results of Müller et al. (1998) that 

609 estimated a transport of -1.4 Sv for AAIW and -2.0 Sv for UCDW. Ganachaud (1999) in 

610 his global circulation inverse model estimated a mass transport of -144 Sv at 30S for 

611 the Brazil Current but including the AAIW layer, approximately similar to our results for 

612 2003.

613

614 5.1.2. Eastern Boundary current - Benguela Current

615 The Benguela Current is the broad eastern current of the South Atlantic 

616 Subtropical Gyre, analogous but more intense than the Canary Current in the North 

617 Atlantic Subtropical Gyre (Hernández-Guerra et al., 2005; Peterson and Stramma, 

618 1991; Talley et al., 2011). The atmospheric conditions in the Benguela Current area are 

619 strongly influenced by the South Atlantic High over the subtropical South Atlantic, 

620 leading to southeasterly prevailing winds that induce offshore Ekman transport and 

621 cause coastal upwelling (Hernández-Guerra and Nykjaer, 1997; Nelson and Hutchings, 

622 1983). In the South Atlantic, the upwelled cold waters are detected along the entire 

623 west coast of southern Africa (from about 18S to the tip of Africa near 35S) (Nelson 

624 and Hutchings, 1983). The Benguela upwelling system has seasonal behavior due to 

625 the meridional shift of the high pressure system. Along the southern/northern portion 

626 of the Benguela Current area the main upwelling occurs during the southern 

627 summer/winter (Weeks et al., 2006). Figure 2 shows that the surface isotherms in 

628 2011 upwell towards the eastern coast such that isotherms warmer than 19C 

629 outcrop; such upwelling was absent in 2003. 

630 According to the sea surface dynamic topography, the Benguela Current is 

631 confined between the African coast and the Walvis Ridge (about 3E) (Reid, 1989) . It is 

632 fed by both the South Atlantic Current, the southern boundary current of the South 
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633 Atlantic Subtropical Gyre, and Indian Ocean thermocline waters, detaching as rings and 

634 filaments from the Agulhas Current round the southern tip of Africa (Gordon et al., 

635 1992; Stramma and Peterson, 1990). Clement and Gordon (1995), using ADCP-

636 referenced geostrophic velocities, estimated a baroclinic northward Benguela Current 

637 transporting 25 Sv across 30S in the upper kilometer. Similar transports were 

638 estimated by Fu (1981) from an inverse model and several other studies (Gordon et al., 

639 1992; Stramma and Peterson, 1990; 1989). Garzoli et al. (2013) used 10 years of XBT 

640 data at 35S to estimate the transport of the Benguela Current as 22.54.7 Sv.

641 Our estimates of mass transport in the surface and thermocline layers are 

642 lower than the above results. In 2003, the mass transport is 15.60.9 Sv from models A 

643 and C, and 15.40.9 Sv from model B (Table 8), and in 2011 it is even less, in the range 

644 of 10.4-12.9 Sv. Nonetheless, given the associated error bar, these estimates are 

645 comparable to the results shown in Garzoli et al. (1996) from PIES data. These authors 

646 suggested that the Benguela Current was composed of a stationary flow near the 

647 African coast (7.5E -14.7E), with a mean northward Benguela Current of 9.6 Sv for 

648 most of the observed period and a transient flow formed by large Agulhas rings shed 

649 from the Agulhas retroflection, injecting Indian subtropical thermocline water into the 

650 Benguela Current in the longitude range 3E-7.5E. The transport in this longitude 

651 range shows high variability, with a mean value of 3.2 Sv and even higher standard 

652 deviation that suggests occasional flow reversals. However, our results show high 

653 mesoscale eddy variability in the path of the entire Benguela Current, which shows up 

654 as a sawtooth-like streamfunction in the upper layers (Figure 16a). The eddy signal is 

655 noticeably observed west of about 12E, with a clear northward flow east of this 

656 longitude (where we constrained the geostrophic velocity to the LADCP-derived 

657 velocities). These results show that the Benguela Current is stronger than the Canary 

658 Current and the Chile-Peru Current, its eastern boundary counterparts in the North 

659 Atlantic and South Pacific subtropical gyres (Hernández-Guerra et al., 2005; 

660 Hernández-Guerra and Talley, 2016).

661 Beneath the thermocline layer, the AAIW flows north similar to the Benguela 

662 Current while the deeper layers generally flow south (Reid, 1989). Table 8 shows fairly 

663 similar northward AAIW transports in 2003 and 2011. The mass transport differs in 
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664 every model, presenting the lowest values in model C (1.90.9 Sv in 2003 and 1.00.8 

665 Sv in 2011) and the highest numbers in model B (3.40.9 Sv in 2003 and 3.30.8 Sv in 

666 2011). 

667

668 5.1.3. Ocean Interior Circulation

669 For every model and year, the ocean interior presents a net equatorward flow. 

670 East of approximately 15W, the three models show similar behavior in the interior 

671 gyre circulation both in 2003 and 2011. However, west of this longitude, the models 

672 display differences related to the recirculation of the Brazil Current (Fig. 16a). The 

673 streamfunctions for model C in 2003 and 2011 are flatter than for models A and B. In 

674 2003, the streamfunction in every model presents an approximate constant positive 

675 slope through the ocean interior east of the recirculation of the Brazil Current. In 

676 contrast, the streamfunction in 2011 shows a relatively large southward flow from the 

677 end of the recirculation to ~39.8W (corresponding to the Santos Plateau) with 

678 different mass transport in each model. 

679 In 2011, models A and B present relatively large mass transports (-18.71.6 Sv 

680 and -23.61.5 Sv) and model C displays a much lower value (-9.61.8 Sv). In the Brazil 

681 Basin (39.8-19.0W) there is weak southward mass transport in models A and C (-

682 4.42.4 Sv and -3.42.7 Sv) and no significant flow in model B (-0.62.4 Sv). Thus, the 

683 equatorward flow of the South Atlantic subtropical gyre is located east of the MAR, 

684 with a mass transport of 32.02.3 Sv in model A, 34.02.3 Sv in model B, and 26.32.3 

685 Sv in model C. From the boundary of the Brazil Current to the eastern boundary, the 

686 mass transport range is 35.9-40.5 Sv in 2003 and 22.9-28.1 Sv in 2011. 

687 The hydrographic data collected in 2003 and 2011 show an Agulhas ring (AR), a 

688 warm and salty anticyclonic eddy containing water of Indian Ocean origin, centered at 

689 about 1.5W and 6.5W, respectively (Figs. 2-4). The ARs are eddies shed by the 

690 Agulhas Current Retroflection, which is a tight loop formed when the southward 

691 Agulhas Current encounters the eastward South Atlantic and the Antarctic Circumpolar 

692 Currents (Feron and De Ruijter, 1992). The ARs retain their Agulhas Current 

693 characteristics (warmer and saltier than the surrounding South Atlantic surface water) 

694 for several years (usually 2-4 years) until their decay (Goni et al., 1997; Richardson, 

1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320



23

695 2007). The ARs observed in 2003 and 2011 are both about 400 km in diameter; 

696 however, their vertical extension (illustrated by the downward dome of the isotherms 

697 and isopycnals) is quite different, with the 2003 AR extending from the sea surface 

698 down to 4500 m but the 2011 AR only reaching to 1500 m (Figures 2 and 4). In 2003, 

699 the deep AR in all models has large rotating geostrophic mass transport in the 

700 thermocline and intermediate layers (layers 1-5, n<27.58 kg/m3), in the range of 57.2-

701 61.9 Sv. In deeper layers, the signal of the AR is not observed in models A and B. In 

702 contrast, model C yields a rotating mass transport of 13.22.3 Sv in layers 6-7 (27.58 

703 kg/m3<n<28.04 kg/m3). In 2011, the rotating mass transport associated with the AR is 

704 smaller than for the 2003 AR, in the range of 26.6-35 Sv from the surface to n<27.84 

705 kg/m3 (layer 6). 

706

707 5.2. Deep ocean circulation

708 Figure 16b shows the accumulated mass transport for the NADW layers, 

709 considered as those deep layers that flow south: layers 6 to 8 in model A and layers 6 

710 and 9 in models B and C. The streamfunction for model A resembles the 

711 streamfunction for model B for each year separately. In contrast, the streamfunction 

712 for model C behaves differently although the net mass transport in each model is 

713 similar (Table 6). The net southward mass transport of NADW through 30S in 2003 is 

714 similar for model A (-18.52.2 Sv) and model B (-18.72.2) and slightly higher in model 

715 C (-20.73.8). In 2011, the NADW transport is also not significantly different in models 

716 A (-19.42.3 Sv) and B (-16.82.3 Sv), while model C presents a higher mass transport 

717 (-25.44.2 Sv).

718 Many different studies have concluded that the NADW is transported 

719 southwards mainly by the DWBC in the Atlantic Ocean (Ganachaud, 2003; Meinen and 

720 Garzoli, 2014; Meinen et al., 2017; Müller et al., 1998). As shown in Figure 16b and 

721 Table 9, a relatively strong recirculating DWBC is observed in all models except for 

722 model C in 2011. In 2003/2011, the DWBC extends to approximately 39.8/39.1W. 

723 Model B shows a significantly different transport between 2003 (-35.33.4 Sv) and 

724 2011 (-44.43.7 Sv). Model A also shows a relatively strong southward DWBC, 
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725 transporting -27.54.0 Sv in 2003 and -30.23.8 Sv in 2011. In contrast, model C shows 

726 a relatively weak DWBC in 2003 (-16.15.1 Sv) and absent in 2011 (Table 9).

727 The recirculation of the DWBC extends to about 38.2W in 2003 and to 37.8W 

728 in 2011 (Table 9). The northward mass transport of the recirculation of the DWBC is 

729 lower in 2003 (9.81.4 Sv in model A and 10.91.3 Sv in model B) than in 2011 

730 (14.91.6 Sv in model A and 23.51.6 Sv in model B). Model C presents a recirculation 

731 in 2003 with a mass transport (8.41.1 Sv) not significantly different from models A 

732 and B, but shows no recirculation in 2011.

733 East of the DWBC recirculation, model C in 2003 and in 2011 presents an 

734 approximate linear southward mass transport in the entire ocean interior. In contrast, 

735 models A and B present northward and southward flow at different longitude ranges. 

736 Models A and B in 2003 and in 2011 present a flat streamfunction over approximately 

737 the Rio Grande Rise with no significant mass transport (1.33.7/-3.43.9 Sv and 

738 1.64.0/-3.94.0 Sv in 2003/2011 for models A and B, respectively). A deep 

739 anticyclonic eddy is detected over the Brazil Basin with a very strong mass transport in 

740 2011 (-20.33.7 Sv in model A and -18.14.0 Sv in model B). Every model describes a 

741 northward flow in the range of 4.5-15.0 Sv and 9.1-21-6 Sv in 2003 and 2011, 

742 respectively, on the western flank of the MAR, and a mass transport not significantly 

743 different than zero over the MAR (-2.35.0/2.64.4 Sv for models A/B in 2003 and -

744 1.14.5/2.24.5 Sv for models A/B in 2011). Thus, west of the MAR, the net southward 

745 transport is not significantly different in every model and year, with a transport of -

746 8.54.6/-3.04.7 Sv in model A/B in 2003 and -7.14.8/-5.74.9 Sv in model A/B in 

747 2011 as shown in Table 10. East of the MAR, we find a similar southward mass 

748 transport in 2003 and 2011 (-10.04.6/-15.64.6 Sv for models A/B in 2003 and -

749 12.34.7/-11.14.8 for models A/B in 2011). The zonal extension of the southward 

750 mass transport east of the MAR is narrower in 2003 (from 1E, east of Walvis Ridge, to 

751 the eastern boundary) than in 2011 (from the MAR to the eastern boundary).  Table 10 

752 also shows that model C provides similar mass transport west (-12.55.5 Sv in 2003 

753 and -12.85.5 Sv in 2011) and east (-8.25.6 Sv in 2003 and -12.75.5 Sv in 2011) of 

754 the MAR. Southward mass transports east of the MAR are similar to the estimations 

755 provided by Arhan et al. (2003). Curiously, the mesoscale patterns in 2003 mirror those 
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756 in 2011: a cyclonic eddy over the Angola Basin in 2003 is an anticyclonic eddy in 2011, 

757 similarly with the two eddies over the Cape Basin.

758

759 5.3. Abyssal ocean circulation

760 In the western basin, the path of the Antarctic Bottom Water (AABW) is 

761 constrained by the shoals of the Rio Grande Rise that define the separation between 

762 the Brazil Basin and the Argentina Basin. The northward path of the AABW is through 

763 the deepest layers over the Santos Plateau (Speer and Zenk, 1993), the Vema Channel 

764 (Hogg et al., 1982) and the Hunter Channel (Speer et al., 1992) (Figure 1). In the 

765 eastern basin, we have constrained the model to have no flow through the Walvis 

766 Ridge (Warren and Speer, 1991)  (Table 4). 

767 Figure 16c presents the accumulated mass transport for the AABW layers. The 

768 mass transport for layers 9 to 11 in model A and layers 10 and 11 in models B and C 

769 shows northward flow (Figure 11) and, therefore, these layers are considered as the 

770 bottom layers for each model. The net abyssal northward transport is shown in Table 

771 6. Model C presents the highest AABW transport in 2003 (6.51.9 Sv) and in 2011 

772 (8.32.1 Sv) compared to the mass transport in model A (4.11.1 Sv in 2003 and 

773 4.81.1 Sv in 2011) and model B (5.01.5 Sv in 2003 and 3.61.6 Sv in 2011).

774 Over the Santos Plateau, models A and B provide net southward mass 

775 transports of -2.50.9 Sv and -3.60.7 Sv, respectively, in 2003, and -2.71.1 Sv and -

776 3.41.0 Sv, respectively, in 2011. In contrast, the mass transport in model C is 

777 northward with 0.41.1 Sv in 2003 and 2.51.1 Sv in 2011. Results from model C are in 

778 agreement with previous studies of the flow of AABW over the Santos Plateau that 

779 estimated a northward transport between 0.1 and 2 Sv (McDonagh et al., 2002; Speer 

780 and Zenk, 1993). 

781 The northward transport through the Vema Channel is used as a constraint in 

782 the inverse models and the results of the mass transport from the three models have 

783 been adjusted accordingly (Table 4). However, the net mass transport just east of the 

784 Vema Channel is different in each model: models A/C present a northward mass 

785 transport of 1.21.0 Sv/3.41.1 Sv in 2003 and 0.81.1/6.11.2 Sv in 2011; in contrast, 
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786 model B has a southward mass transport of -1.00.7 Sv in 2003 and -1.60.9 Sv in 2011 

787 (Figure 16c).

788 West of the Vema Channel, every model adjusts the net northward mass 

789 transport to the constraint used in the Brazil Basin (Table 4). Models A and B show a 

790 marked anticyclonic circulation in the Brazil Basin between Rio Grande Rise and the 

791 MAR (28-19.5W) in both years, and in both the deepest and the intermediate layers 

792 (Fig. 16). This feature does not occur in the smoothed circulation maps of Reid (1989), 

793 but it is also not a strong feature of our model C. Model A presents a 

794 cyclonic/anticyclonic eddy in 2003/2011 over the Angola Basin (7-1W). The 

795 anticyclonic eddy in 2011 is a feature from the surface layers to the bottom of the 

796 ocean and associated with the Agulhas Ring with the bottom part presumably trapped 

797 by the topography. Over the Cape Basin (2.5-12E), which is well known for strong 

798 mesoscale variability (e.g., Richardson (2007)), mesoscale patterns are observed in all 

799 models.

800 6. Concluding remarks

801 Three inverse models with different constraints have been applied to the zonal 

802 sections carried out at 30S in the South Atlantic subtropical gyre. Model A constrains 

803 the mass transport per layer with the transports provided by Talley (2008), who uses 

804 the reference velocities adjusted from Reid (1994). Model B constrains the mass 

805 transport per layer using the transports estimates from the Southern Ocean State 

806 Estimate (SOSE) (Mazloff et al., 2010). The SOSE transports and standard deviation 

807 were zonally integrated in our neutral density layers from the 5-day archived SOSE 

808 output. Model C constrains the mass transport in a classical way, only using previous 

809 measurements carried out at different longitude and depth ranges (e.g., Ganachaud 

810 (2003), Lumpkin and Speer (2007) and Macdonald (1993)). These regional constraints 

811 have been also used in models A and B. Therefore, model C has greater freedom to 

812 find a solution. The three inverse models have been applied to the hydrographic 

813 sections carried out in 2003 and 2011, thus the differences in ocean circulation 

814 patterns reflect actual changes in the hydrographic data. 

815 Although the similarity of the northward mass transport per layer for T08 and 

816 SOSE is remarkable for the thermocline and AAIW layers (Figure 8), the solution is 
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817 substantially different for the deep and bottom layers, from the UCDW to the seafloor. 

818 The most noteworthy difference is at the abyssal AABW layers: T08 provides a net 

819 mass transport of 3.91.3 Sv while SOSE accounts for only 1.13.0, with zero mass 

820 transport in the bottommost layer. This is the main difference arising for the distinct 

821 set of constraints imposed in models A and B and it is also the reason why the adjusted 

822 mass transport using the SOSE constraints presents outliers and does not quite meet 

823 the different constraints in 2011. For example, results of the inverse model for layer 5 

824 shown in Table 5 provide an AAIW transport not significantly different for models A 

825 and C. However, model B provides a transport significantly different from models A 

826 and C. This difference also occurs in layer 6 corresponding to UCDW. Thus, results from 

827 model B are not considered it in the following summary.

828 Net mass transports in the thermocline, intermediate, deep and abyssal layers 

829 are roughly similar to those obtained by Ganachaud (2003) from a global inverse 

830 model using the WOCE sections. These authors estimated a mass transport of 17.43.2 

831 Sv, including the Ekman transport for the northward surface flow. Our results for the 

832 AMOC at 30S are 12.1-14.7 Sv in 2003 and 11.7-17.7 Sv in 2011. For the NADW 

833 southward flow, the calculated mass transports are -16.3-24.5 Sv in 2003 and -17.1-

834 29.6 Sv in 2011, which are not significantly different than the -233 Sv estimated by 

835 Ganachaud (2003). Northward mass transports estimated in different models and 

836 years for the bottom layers (3.0-8.4 Sv in 2003 and 3.7-10.4 Sv in 2011) are not 

837 significantly different from the 61.3 Sv estimated by Ganachaud (2003). 

838 The pattern of circulation in the thermocline and intermediate layers of all our 

839 models agrees with those proposed by Stramma and England (1999): a relatively 

840 narrow western boundary Brazil Current flowing south, a continuous flow to the north 

841 in the ocean interior following the model of Sverdrup (Sverdrup, 1947) and a fairly 

842 broad Benguela Current in the eastern basin.  

843 Our estimates indicate that the net northward thermocline transport is over 10 

844 times the northward transport in the intermediate layers (Table 5). This result 

845 indicates that the thermocline transport dominates the return flow to the north, 

846 contrary to Ganachaud (2003) and Talley (2008; 2003), who estimated a more 

847 balanced partition between the thermocline and AAIW, and las Heras and Schlitzer 
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848 (1999) who suggested the total transport to be largely controlled by the intermediate 

849 water flow. 

850 The deep circulation shows a relative strong DWBC in model A (-27.54.0 Sv in 

851 2003 and -30.23.8 Sv in 2011) and a weaker DWBC in model C (-16.15.1 Sv in 2003 

852 and absent in 2011). This different DWBC transports are consistent with the high 

853 variability estimated previously with in situ measurements: Meinen et al. (2017) used 

854 about 6 years of PIES data and showed a DWBC with a mean absolute geostrophic 

855 transport of -15 Sv with a higher standard deviation of 23 Sv. Just east of the DWBC, a 

856 northward recirculation is present in model A in 2003 and 2011 (9.81.4 Sv and 

857 14.91.6 Sv, respectively) and model C in 2003 (8.41.1 Sv).

858 In the deep layers, the circulation shown in model A is very similar to the 

859 circulation maps at the NADW level shown by Reid (1989): a fraction of the relatively 

860 strong DWBC transporting mass transport to the south turns equatorward in the 

861 western basin and flows back to the south in the eastern basin eventually to leave the 

862 South Atlantic into the Indian Ocean (Speer et al., 1995). This scheme of circulation 

863 was also proposed by Hogg and Thurnherr (2005) and Zangenberg and Siedler (1998). 

864 In contrast, our model C shows a southward flow in the western and eastern basins 

865 that resembles the pattern of circulation of Stramma and England (1999) . These 

866 authors show that the NADW circulation in the western basin is separated from the 

867 eastern basin circulation, which is fed by the northernmost branch that detaches from 

868 the DWBC at about 20S (Vanicek and Siedler, 2002). As the scheme of circulation in 

869 models A and C resemble the plots of Reid (1989) and Stramma and England (1999), 

870 respectively, we cannot conclude which is the preferred. Our results show similar 

871 southward transports west of the MAR (-8.54.6/-12.55.5 Sv in models A/C in 2003 

872 and -7.14.8/-12.85.5 in models A/C in 2011) as east of the MAR (-10.04.6/-8.25.6 

873 Sv in models A/C in 2003 and -12.34.7/-12.75.5 Sv in models A/C in 2011).  The path 

874 of the eastern flow is highly variable: from about 1E, east of Walvis Ridge, to the 

875 eastern boundary in 2003 and from the MAR to the eastern boundary in 2011. 

876 In conclusion, the ocean circulation in the surface and thermocline, 

877 intermediate and abyssal layers and, therefore, the Atlantic Meridional Overturning 
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878 Circulation (AMOC) is not significantly different between 2003 and 2011 at 30S in the 

879 South Atlantic, and is approximately similar to the 1990’s ocean circulation. 

880 The meridional circulation of the upper, deep and abyssal layers at 30S in the 

881 Atlantic Ocean has been described in this paper. Hence, this study complements early 

882 efforts by Hernández-Guerra and Talley (2016), who determined the meridional 

883 circulation at 30S in the Pacific and Indian Oceans in 2002-2003 and 2009. A 

884 circumpolar analysis, currently under progress, will naturally emerge as we stretch the 

885 30S section for all three oceans; these forthcoming analyses will include the heat and 

886 freshwater transports as well as a comparison with the WOCE sections.

887

888 Appendix. 

889 The absolute geostrophic velocity (va) for a given station pair, as a function of 

890 depth (z), is the sum of a relative velocity (v) and the velocity, b, at the reference level:

891

892 va(z)=v(z) + b

893

894 The inverse model finds the optimal solution for b for each station pair that minimizes 

895 the variance according to the Gauss-Markov method. First, we apply mass conservation 

896 for the entire water column: 

897

898 ∬𝜌𝑣𝑎𝑑𝑆 = 0                                    

899 ∬𝜌(𝑣 + 𝑏)𝑑𝑆 = 0              (𝐴.1𝑎,𝑏,𝑐)

900 And using discrete variables:

901
𝑁

∑
𝑗 = 1

𝑄

∑
𝑞 = 1

𝜌𝑗𝑞(𝑣𝑗𝑞 + 𝑏𝑗)𝑎𝑗𝑞 = 0                                   

902

903 where the area integral dS is over the entire area of the section, and ajq is for each station 

904 pair j and isopycnal layer q. In A.1 and subsequent equations, the term jqvjq is first 

905 summed over each 2 dbar interval within layer q. (For silicate conservation, we multiply 

906 these equations with the silicate concentration but further steps are the same.)  When 

907 mass transport is constrained to a particular non-zero value, for instance, the Brazil or 
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908 Benguela Currents, (A.1c) becomes:

909

910
𝑁

∑
𝑗 = 1

𝑄

∑
𝑞 = 1

𝜌𝑗𝑞(𝑣𝑗𝑞 + 𝑏𝑗)𝑎𝑗𝑞 = 𝑀𝑇𝑜𝑡𝑎𝑙                    (𝐴.1𝑑)

911

912 where MTotal is the total transport for the constraint, and the limits for station pairs and 

913 layers are related to the constraint. Due to noise from eddies, internal waves, aliasing, 

914 measurements errors, etc., total mass conservation is not exact:

915

916
𝑁

∑
𝑗 = 1

𝑄

∑
𝑞 = 1

𝜌𝑗𝑞𝑏𝑗𝑎𝑗𝑞 + 𝑛𝑇𝑜𝑡𝑎𝑙 =‒
𝑁

∑
𝑗 = 1

𝑄

∑
𝑞 = 1

𝜌𝑗𝑞𝑣𝑗𝑞𝑎𝑗𝑞 + 𝑀𝑇𝑜𝑡𝑎𝑙             (𝐴.2)

917

918 where nTotal is the noise.

919

920 Considering mass conservation in each layer q, we have the following 

921 equations:

922
𝑁

∑
𝑗 = 1

𝜌𝑗𝑞𝑏𝑗𝑎𝑗𝑞 + 𝑛𝑞 =‒
𝑁

∑
𝑗 = 1

𝜌𝑗𝑞𝑣𝑗𝑞𝑎𝑗𝑞 + 𝑀𝑞    𝑞 = 1,2,…,𝑄         (𝐴.3)

923

924 where Mq is the layer transport constraint and nq is the layer noise. This is rewritten as

925
𝑁

∑
𝑗 = 1

𝑒𝑗𝑞𝑏𝑗 + 𝑛𝑞 = 𝑦𝑞                 𝑞 = 1,2,…,𝑄                (𝐴.4)

926

927 where

928 𝑒𝑗𝑞 = 𝜌𝑗𝑞𝑎𝑗𝑞                     

929 𝑦𝑞 =
𝑁

∑
𝑗 = 1

𝜌𝑗𝑞𝑣𝑗𝑞𝑎𝑗𝑞 ‒ 𝑀𝑞                (𝐴.5)

930

931 For silicate constraints, the ejq elements are multiplied by silicate concentration at 

932 each point in the layer. We can then write the matrix equation (1):

933
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934 Ab + n = -Y                                           (A.6)

935

936 where b is an Nx1 vector of the unknowns (reference velocities), A is a (Q+1) x N 

937 matrix, n is a (Q+1)x1 vector, and Y is a (Q+1)x1 vector of values calculated from the 

938 CTD data and externally imposed mass transports. (Q is for the equations for each 

939 layer and the +1 is the equation for conservation of the whole water column.)

940 Next, the Ekman transport is included in the first layer and the total. We allow 

941 the inverse model to adjust the Ekman transport to the specific conditions of the cruise 

942 and the full matrix is:

943 ( 𝑒11

𝑒21
⋯

𝑒1𝑛        1
𝑒2𝑛        0

⋮ ⋱ ⋮            ⋮
𝑒𝑞,1

𝑒𝑞 + 1,1
⋯

𝑒𝑞,𝑛        0
𝑒𝑞 + 1,𝑛    1

)( 𝑏1
⋮

𝑏𝑛
∆𝑇𝐸𝐾

) = ( 𝑦1 + 𝑇𝐸𝐾
𝑦2
⋮

𝑦𝑞
𝑦𝑞 + 1 + 𝑇𝐸𝐾

)            (𝐴.8)

944

945 The Gauss-Markov estimator is applied to solve this matrix (Wunsch, 1996).

946
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1317 Table 1. Hydrographic cruise information. Data were collected through the Carbon Hydrographic Data 
1318 Office (CCHDO) (http://cchdo.ucsd.edu). LADCP data are available online through the CLIVAR LADCP 
1319 archive (http://currents.soest.hawaii.edu/clivar/ladcp/).

Dates No. Stations CCHDO Expocode Ship Chief Scientists
A10-2003 2003-11-06 to 2003-12-05 111 49NZ20031106 Mirai Y. Yoshikawa 

(JAMSTEC, Japan)
A10-2011 2011-09-26 to 2011-10-31 120 33RO20110926 Ronald H. Brown M. Baringer 

(AOML, USA)
A. Macdonald 
(WHOI, USA)
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1323 Table 2. Ekman transport (Sv) averaged during the time of the cruise at 30S in the 
1324 Atlantic Ocean using NCEP wind stress and adjusted Ekman transport after the inverse 
1325 model C.
1326

Ekman transport (Sv) A10-2003 A10-2011
Time of the cruise -0,20,04 -0,30,06
Model C -0,30,04 -0,30,04
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1329 Table 3. Constraints for inverse models A and B. Constraints for model A come from 
1330 (Talley, 2008) (her Table 14). Constraints for model B come from Mazloff et al. (2010).
1331

Layer Neutral density
(n)

range

Talley (2008)
Model A

Mazloff et 
al. (2010)
Model B

Constraint Constraint

0 Ekman trans. 1.150.23 (In layer 1)

1 Surf-26.14 1.770.54 3.273.55

2 26.14-26.45 0.120.56 1.140.38

3 26.45-27.0 4.551.07 3.510.89

4 27.0-27.23 2.470.67 2.120.39

5 27.23-27.58 2.711.82 3.270.55

6 27.58-27.84 -2.451.74 0.540.64

7 27.84-28.04 -10.164.81 -6.192.82

8 28.04-28.10 -5.032.10 -6.001.36

9 28.10-28.15 0.860.87 -3.952.79

10 28.15-28.23 2.330.93 1.083.01

11 28-23-bot. 0.670.15 00

Total Surf-bot. -1.000.6 -1.210.6
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1336
1337
1338
1339
1340
1341
1342 Table 4. Regional transport constraints applied to every model. Initial geostrophic 
1343 transport (with the reference layer at n=28.1 kg/m3) and final geostrophic transport 
1344 after every inverse model. Positive transports are northward. The western and eastern 
1345 boundary currents are LADCP-based transport constraints and are cruise-dependent.
1346

1347
1348 a Bottom transport constraint in the Vema Channel from Hogg et al. (1982).
1349 b Bottom transport constraint in the Brazil Basin from Hogg and Owens (1999)
1350 c Bathymetric constraint (Warren and Speer, 1991)
1351 d Boundary currents constraints from cruise-based LADCP profiles.

1352
1353

Constraint (Sv) Longitude Layers Constraint 2003
Initial

2003
Final

2011
Initial

2011 
Final

Model

Bering Transport All 1:11 -1.00.6 36.4 -1.02.6 38.6 -1.12.7 A
-1.20.6 -1.22.8 -1.22.9 B
-0.80.6 -0.84.5 -0.85.0 C

Vema Channela 39.7-37.7W 9:11 4.00.4 1.8 3.70.3 3.8 3.50.3 A
3.60.3 3.20.3 B
3.80.4 4.00.4 C

Brazil Basinb 45-15.3W 9:11 6.91.8 5.1 5.71.4 8.3 6.91.5 A
5.51.8 6.02.0 B
6.42.0 6.62.4 C

Walvis R. Northc 7.3W-1.7E 9:11 01 -0.8 -0.20.8 -0.8 -1.30.8 A
-1.30.9 -2.10.9 B
-0.30.9 -0.20.9 C

Walvis R. Southc 2.2-13.4E 9:11 01 3.5 -0.51.0 3.3 -0.61.1 A
-0.51.1 -1.01.2 B
-0.11.2 0.01.2 C

Brazil 
Currentd

2003
2011

Coast to 44.8W
Coast to 46.3W

1:7
1:5

-40.85
-12.75

-28.7 -37.32.0 -9.9 -10.40.7 A

-33.62.0 -13.40.8 B
-38.92.1 -10.40.8 C

Benguela
Currentd

2003
2011

Coast to 11.8E
Coast to 11.3E

1:7
1:7

27.45
22.75

27.2 27.52.3 28.2 28.22.4 A

30.12.3 33.12.4 B
26.32.4 22.52.5 C
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1354 Table 5. Mass transport and uncertainty (Sv) in 2003 and 2011 for all neutral density 
1355 layers for the three inverse models (A, B, C).
1356
1357 Mass Transport 

(Sv)
Mass Transport 
(Sv)

Layer Neutral 
density
(n) range

Model

2003 2011

1+Ekman Tr. Surface-26.14 A 0.950.34 0.480.40
B -0.560.40 -2.120.52
C -0.770.51 -2.630.60

2 26.14-26.45 A 4.290.28 4.950.36
B 3.550.24 4.070.29
C 5.690.36 8.710.49

3 26.45-27.0 A 4.820.46 5.940.44
B 4.570.42 5.870.39
C 5.390.66 7.080.72

4 27.0-27.23 A 1.880.26 2.070.27
B 2.190.20 2.440.21
C 1.950.41 2.150.41

5 27.23-27.58 A 1.380.59 0.010.54
B 2.780.39 1.710.35
C 1.160.86 1.020.88

6 27.58-27.84 A -2.910.57 -3.380.58
B -0.980.42 -0.770.41
C -3.150.83 -3.120.90

7 27.84-28.04 A -10.921.44 -11.431.51
B -9.371.36 -8.991.40
C -10.701.84 -13.251.90

8 28.04-28.10 A -4.621.54 -4.601.61
B -5.881.14 -6.191.16
C -5.612.87 -7.003.20

9 28.10-28.15 A 0.320.74 0.990.76
B -2.441.24 -0.841.41
C -1.281.55 -2.071.84

10 28.15-28.23 A 3.080.82 2.690.83
B 4.981.48 3.571.61
C 5.421.88 5.062.12

11 28-23-bottom A 0.700.13 1.130.13
B 00 00
C 1.120.28 3.270.32

Total Surf.-bottom A -1.042.62 -1.152.71
B -1.162.76 -1.242.95
C -0.784.48 -0.794.97
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2594
2595
2596
2597
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2600
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2604
2605
2606
2607
2608
2609
2610
2611
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2616
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1358 Table 6. Net mass transport and uncertainty (Sv) for thermocline and intermediate 
1359 layers flowing to the north, deep layers flowing to the south and bottom layer flowing 
1360 to the north for every model and year.

1361
1362
1363

Mass Transport (Sv)
2003 2011

Model A Model B Model C Model A Model B Model C
Thermoc.+Interm.

(n<27.58 kg/m3)
  13.30.9   12.50.8   13.41.3   13.40.9   12.00.8   16.31.4

Deep
(27.58<n<28.15 kg/m3)

-18.52.2 -18.72.2 -20.73.8 -19.42.3 -16.82.3 -25.44.2

Bottom
(n>28.15 kg/m3)

   4.11.1    5.01.5    6.51.9    4.81.1    3.61.6    8.32.1

2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
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2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
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2692
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1364 Table 7. Initial, LADCP-adjusted and results of every inverse model mass transport (Sv) 
1365 for the Brazil Current in the surface and thermocline layers, Antarctic Intermediate 
1366 Water (AAIW) and Upper Circumpolar Deep Water (UCDW) layers for 2003 and 2011.
1367
1368

Brazil Current (Sv)
Initial LADCP-

adjusted
Model A Model B Model C

Sf+Thermocline 2003 -17.2 -20.4 -20.10.7 -19.90.7 -20.20.7
(layers 1:4) 2011  -9.4 -12.0  -9.90.6 -12.70.6  -9.70.7
AAIW 2003 -3.9 -5.7 -5.30.7 -4.70.7 -5.50.7
(layer 5) 2011 -0.5 -0.7 -0.50.4 -0.70.4 -0.60.4
UCDW 2003 -4.2 -7.3 -5.90.9 -4.70.9 -6.30.9
(layer 6) 2011 -0.0 -0.1 0.10.4 0.10-4 0.10.4

2701
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1369 Table 8. Mass transport (Sv) for the Benguela Current in the surface and thermocline 
1370 layers, and the Antarctic Intermediate Water layer in 2003 and 2011 as result of the 
1371 inverse models.
1372
1373

Benguela Current (Sv) (~3-15E)
Model A Model B Model C

2003 15.60.9 15.40.9 15.60.9Sf+Thermocline
(Layers 1:4) 2011 11.70.8 12.10.8 11.20.8

2003 2.50.9 3.40.9 1.90.9AAIW
(layer 5) 2011 1.90.8 3.30.8 1.00.8
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1374 Table 9. Mass transport (Sv) for the Deep Western Boundary Current (DWBC) and its 
1375 recirculation for every inverse model and year. The longitude shown is the eastern 
1376 boundary of the currents in 2003 and 2011. 
1377
1378

Model A Model B Model C
2003 (~39.8W) -27.54.0 -35.33.4 -16.15.1DWBC
2011 (~39.1W) -30.23.8 -44.43.7 ---
2003 (~38.9W) 9.81.4 10.91.3 8.41.1Recirculation 
2011 (~37.8W) 14.91.6 23.51.6 ---
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2843
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2849
2850
2851
2852
2853
2854
2855
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1379 Table 10. Mass transport (Sv) for the North Atlantic Deep Water (NADW) west of the 
1380 Mid-Atlantic Ridge (MAR) and east of the MAR in 2003 and 2011 and as solution of the 
1381 inverse models.
1382
1383 NADW transport (Sv)

Model A Model B Model C
2003 -8.54.6 -3.04.7 -12.55.5West of MAR
2011 -7.14.8 -5.74.9 -12.85.5
2003 -10.04.6 -15.64.6 -8.25.6East of MAR 
2011 -12.34.7 -11.14.8 -12.75.5
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1384
1385
1386 Figures

1387

1388 Figure 1. Station positions for A10 cruises carried out at 30S in 2003 and 2011. 

1389

1390 Figure 2. Vertical sections of potential temperature (C) at 30S in the Atlantic Ocean 

1391 for (a) 2003 and (b) 2011.

1392
1393 Figure 3. Vertical sections of salinity at 30S in the Atlantic Ocean for (a) 2003 and (b) 

1394 2011.

1395
1396 Figure 4. Vertical sections of neutral density (n) at 30S in the Atlantic Ocean for (a) 

1397 2003 and (b) 2011.

1398
1399 Figure 5. Vertical sections of oxygen (µM/kg) at 30S in the Atlantic Ocean for (a) 2003 

1400 and (b) 2011.

1401
1402 Figure 6. Vertical sections of silicate (µM/kg) at 30S in the Atlantic Ocean for (a) 2003 

1403 and (b) 2011.

1404

1405 Figure 7. Initial zonally-integrated meridional mass transport (Sv) per layer across 30S 

1406 during 2003 and 2011. 

1407

1408 Figure 8. Zonally-integrated meridional mass transport (Sv) per layer across 30S used 

1409 as constraint for model A from Talley (2008) and model B from Mazloff et al. (2010). 

1410

1411 Figure 9. Comparison between the initial geostrophic velocity profile (black lines), the 

1412 LADCP velocity normal to the station pairs (blue line) and the geostrophic velocity 

1413 adjusted to the LADCP data (red line, with the depth range used for LADCP referencing 

1414 between the horizontal dashed lines). The subplots (a, b) and (c, d) correspond to 

1415 selected station pairs of the Brazil and Benguela Currents, respectively. 
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1417 Figure 10. Reference velocities (m s-1) with error bars as a function of longitude for all 

1418 models, for the 2003 and 2011 sections at 30S in the Atlantic Ocean.

1419

1420 Figure 11. Final zonally-integrated meridional mass transport (Sv) per layer, with error 

1421 bars, across 30S during 2003 and 2011, for all three inverse models. 

1422

1423 Figure 12. Overturning mass transports across 30S for the Atlantic Ocean for all 

1424 models and years, computed as the zonally- and vertically-integrated mass transports 

1425 in isoneutral layers (along the entire section and from the sea surface to the seafloor).

1426

1427 Figure 13. Vertical sections of velocity (cm/s) along 30S in 2003 (left subplots) and 

1428 2011 (right subplots) as deduced by all three inverse models. Notice the change in 

1429 vertical scale, with an expanded view of the top 1250 m of the water column. Contours 

1430 are drawn every 10 cm/s with solid/dashed contours representing positive/negative 

1431 values that correspond to northward/southward velocities. The colorbar is on the left 

1432 of subplot (c). 

1433 Figure 14. a) Mean Absolute Dynamic Topography (ADT) for November 2003; b) ADT for 

1434 8/11/2003, at the time of the hydrographic stations carried out in the western boundary 

1435 in 2003; c) ADT for 01/12/2003, at the time of the hydrographic stations carried out in 

1436 the eastern boundary in 2003; d) mean ADT for September/October 2011; e) ADT for 

1437 20/10/2011, at the time of the hydrographic stations carried out in the western 

1438 boundary in 2011; and f) ADT for 29/09/2011, at the time of the hydrographic stations 

1439 carried out in the eastern stations in 2011.

1440 Figure 15. Accumulated mass transports (from the west) for the shallowest layer as 

1441 estimated from the inverse models and as inferred from the Absolute Dynamic 

1442 Topography (ADT) from Figure 14. The velocity data for the ocean interior come from 

1443 the mean ADT and the velocity data for the western and eastern boundaries come from 

1444 the ADT at the time when the hydrographic stations were carried out. 

1445 Figure 16. Eastward accumulated mass transport (Sv) at 30S for (a) upper, (b) deep, 

1446 and (c) bottom layers for 2003 (solid lines) and 2011 (dashed lines) for all models. The 
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1447 deep and bottom layers for model A are not the same as in models B and C (see text 

1448 for explanation). Bottom plot shows the bathymetry for reference.

1449

1450 Figure 17. Mass transport (Sv) per layer corresponding to the Brazil Current. (a) 

1451 Relative (dashed line) and adjusted to LADCP velocity profile (solid line) for 2003 (blue 

1452 line) and 2011 (red line). (b) Model velocities for 2003 (solid lines) and 2011 (dashed 

1453 lines).
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a) Model A − 2003 Velocity (cm/s)
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b) Model A − 2011 Velocity (cm/s)
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c) Model B − 2003 Velocity (cm/s)
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d) Model B − 2011 Velocity (cm/s)
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e) Model C − 2003 Velocity (cm/s)
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f) Model C − 2011 Velocity (cm/s)
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A10 − Acumulated Mass Transport − Deep layers (6−8 for Model A; 6−9 for Models B & C)
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A10 − Acumulated Mass Transport − Bottom layers (9−11 for Model A; 10−11 for Models B & C)
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