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Summary 

Fires play an important role in ecosystem dynamics. Long-term controls on global 

burned area include fuel continuity and moisture, with ignitions and human activity 

becoming dominant in specific ecosystems. Changes in fuel continuity and moisture 

are the main drivers of changes of fire globally.  
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Introductory paragraph 

Anthropogenically driven declines in tropical savanna burnt area ​1,2​, have recently received 

much attention due to their impact on trends in global burnt area ​3​,​4​. Large-scale trends in 

ecosystems where vegetation has adapted to infrequent fire, especially in cooler and wetter 

forested areas, are less well understood. Here, small changes in fire regimes can have a 

substantial impact on local biogeochemistry ​5​. In order to investigate trends in fire ​across a 

wide range of ecosystems​, we used Bayesian inference ​6​ to quantify four primary controls on 

burnt area: fuel continuity; fuel moisture; ignitions; and anthropogenic suppression. We 

found that fuel continuity and moisture are the dominant limiting factors of burnt area 

globally. Suppression is most important in cropland areas, whereas savannas and boreal 

forests are most sensitive to ignitions. We quantify fire regime shifts in areas with multiple, 

and often counteracting trends in these controls. Forests are of particular concern, where we 

show average shifts in controls of 2.3-2.6% of their potential maximum per year, primarily 

driven by trends in fuel continuity and moisture. This study gives added importance to 

understanding long-term, future changes in the controls on fire and the impact of fire trends 

on ecosystem function. 
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Main text  

Fire-prone tropical ecosystems account for 78% of global burnt area, despite covering just 

16% of the land surface ​7​. Consequently, changes in these fire regimes have a 

disproportionate impact on trends in global burnt area. Contribution from less-fire prone 

ecosystems to the global signal is less certain, and given the significance of multiple 

bioclimatic controls in limiting fire, it is difficult to distinguish any prime, dominant driver ​2,8,9​. 

To determine what drivers are in these areas requires an assessment of the interplay of 

different controls on burnt area, which may also highlight potential shifts in fire regimes not 

detectable via trend analysis of burnt area alone. 

Fire danger indices can be used to quantify the influence of trends in climate on fire weather 

10,11​, providing policy-relevant information for fire management ​12​. However, they often 

exclude the effects of fuel dynamics, ignitions and human activity, and it can be hard to 

relate indices to observable fire variables useful in global analyses ​13​. Fire-enabled terrestrial 

biosphere models (TBMs) can account for these drivers ​5,13,14​. However, most TBMs fail to 

reproduce trends in fire reliably, and even disagree on basic spatial patterns and magnitudes 

of burnt area ​1,2​ due to missing descriptions of key anthropogenic processes suppressing fire 

and an imbalance in the relative strength of bioclimatic controls ​2,8,15​. Conversely, studies 

aimed at determining the strength of human and bioclimatic influences on burnt area from 

observations often correlate individual drivers with burnt area in isolation ​2,16​  and so do not 

consider the complex interaction of multiple drivers. This has led to calls for frameworks that 

fuse statistical representations of fire drivers with modelling techniques that consider such 

interactions​ ​17,18​.  One such technique is the “Resource Gradient Constraint” framework 

16,19–21​, which applies changes in climate drivers to a static representation of vegetation ​19,20​. 

However, this approach relies on either invariant or modelled fuel controls, often through the 

interpretation of changes in moisture drivers. With this in mind, Bistinas et al ​15​ used 

generalised linear modelling to quantify the relative strength of human and bioclimatic drivers 
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in the presence of all other drivers, thereby allowing climate, biotic, ignition and human 

drivers a more causal influence on burnt area. Using a similar technique, ​7​ mapped the 

relative limitations imposed by fuel load, fuel moisture and ignitions controls for Australia by 

selecting one key driver from ​15​  for each control. This was subsequently developed to 

incorporate multiple drivers into each of these three controls ​20​ and expanded globally with 

the inclusion of a fourth control: human suppression ​8​.  

Here, we assess trends in four controls of burnt area in order to identify changes in global 

fire regimes. Controls combine burnt area drivers identified in ​8,15,16,20​ or which are used 

widely by the global fire modelling community ​19,22​. The four controls consisted of: (1) fuel 

continuity (referred to as “fuel”), which increases burnt area, is driven by vegetation cover 

and a fine fuel accumulation proxy ​16,19,20​ (Supplementary Fig. 1); (2) moisture, which 

decreases burning, combines proxies for live and dead fuel; (3) natural and anthropogenic 

potential ignitions (“ignitions”) which increase burning; and (4) anthropogenic suppression, 

decreasing burning, is driven by population fire suppression and land-use fragmentation. 

Supplementary Table 1 and Supplementary Fig. 2,3 contain information on drivers and data 

sources. Burnt area in our model is reduced according to the strength of each of these 

controls (Fig. 1, see methods), an approach followed by most global fire models ​22​. Controls, 

along with the contribution of each driver to their controls, were optimised against 2000-2014 

monthly burnt area observations from GFED4s ​23​ using iterative Bayesian inference ​6 

allowing us to quantify the uncertainty of the resultant parameters and control contribution.  

Our reconstructed burnt area reproduces the magnitude and spatial extent of annual burning 

and associated trends, with relatively little spread accounting for parameter uncertainty 

(Supplementary Table 2  and Supplementary Fig. 6). We reproduce the maximum burning at 

intermediate fuels and moisture due to covariance in optimised fuel and moisture controls 

14,19,24​,​ with a reduction in burnt area at fuel continuities greater than 60% and moisture of 

less than 5% (Supplementary Fig. 7). Low population densities only increase burning at 
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specific times of the year, and in just a few areas (8.76±6.96% of land coverage) and always 

decrease burning in areas with low or no suppression from cropland (Supplementary Fig. 8). 

Population densities above 288±145 people/km​2​ reduce burnt area by 50%. The impact of 

suppression also increases rapidly at low cropland cover, limiting burnt area to 50% at 

10.36±0.12% cover. 

Globally, fuel has the largest mean (or “standard”) limitation (points along the curves in Fig. 

1), followed closely by ignitions when considered in isolation from other controls 

(Supplementary Fig. 9), as is standard in many control studies ​7,8​. However, burnt area only 

increases by 3.48±0.05% if ignition limitation is removed due to the presence of the other 

controls - much smaller than the increase in burnt area from removing limitation from fuel 

(21.36±0.84%), moisture (9.82±0.07%) and suppression (4.51±0.01%) (Supplementary 

Table 3). We define this measure of determining control strength as the “potential limitation” 

(Fig. 2a). In arid ecosystems, ignitions show a substantial and significant standard limitation 

due to little human impact or lightning (Supplementary Table 3). However, as there isn’t any 

fuel, the introduction of ignitions has no impact on burnt area. Conversely, increasing 

vegetation cover would lead to a small but significant increase in fire, given the lack of 

burning. The difference between standard and potential limitation is even more important in 

boreal regions, where the standard misses the distinction between moisture-limited Northern 

Europe, western Siberia and southern Canada, and ignition-limited eastern Siberia, Alaska 

and the Canadian tundra. Rainforests show highly variable and occasionally substantial 

standard fuel limitation (Fig. 2, Supplementary Table 3) due to variations in herbaceous 

cover (Supplementary Fig. 2); a possible consequence of differences in canopy gap 

frequency effects on understorey vegetation from variations in topography, soils and 

disturbance ​25,26​. This variation in forest fuel becomes less important when considering 

potential limitations due to the strength of moisture controls. 
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More relevant for potential short-term changes in burnt area is its  “sensitivity”, or rate of 

change, given a small change in a control. We attributed changes in burnt area over our 

study period to trends in these sensitivities by calculating the annual average difference 

between burnt area reconstructed with and without the trends in each control (see methods). 

While we were able to test the sensitivity of burnt area to ignitions as a whole, changes in 

lightning ignitions were not incorporated into our assessment of trends in controls because of 

data availability. During the fire season, burnt area in most tropical savannas is 

unconstrained except occasionally by human suppression (Supplementary Fig.  9). 

However, these ecosystems show the highest sensitivity to human suppression 

(Supplementary Fig.  9f; Supplementary Table 3) which, due to increases in cropland and 

population density ​2​, are attributed as the main cause for their recent, rapid decline in burnt 

area  (Fig. 3c, 4). This is slightly offset by population-driven increases in ignitions which 

savannas are also sensitive to. Our results also indicate increases in suppression in tropical 

wet forests, particularly in Indonesia (Fig. 3, Supplementary Fig. 10) and in the southern end 

of the Amazon arc of deforestation, where changes in fire have already been attributed to a 

shift in agricultural practices from pasture to cropland ​27​ (Supplementary Fig. 3). Conversely, 

suppression decreases in areas of land-use recession and reforestation in mediterranean 

and temperate areas throughout North America and Europe ​28​. 

Fuel and moisture trends are more important than direct human influence in most parts of 

the world (Fig. 5). Increases in vegetation cover decrease fuel limitation in arid and semi-arid 

ecosystems, affecting 75±2% of all mediterranean and desert ecosystems and 63±6% of 

tropical savanna (Fig. 4). Drying conditions are causing a shift in the Kazakhstan/Russia fire 

zone, with Ural/Siberian boreal forests to the north becoming drier and more susceptible to 

fire, and more sparse vegetation cover reducing fire in Kazakhstan (Fig. 3c).  Boreal and 

temperate forests in North America and Central Europe show a change in moisture control, 

of a similar magnitude that leads to lower fire incidence. In some areas of the Siberian boreal 
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region, increases in fuel from increased vegetation cover coincide with decreases in 

moisture - both possibly driven by increases in temperature due to the accelerated warming 

at high latitudes ​29​ (Supplementary Fig 2). Likewise, increased vegetation cover in dry 

grassland and shrubland areas of Central Australia, South Africa and South America show 

increased fuel, sometimes alongside decreasing moisture. Reduced moisture limitation in 

China's tropical and warm temperate forests are compounded by a retreat in cropland cover, 

reducing suppression and increasing fuel (Fig. 3d-f, Supplementary Fig. 3,10).  Conversely, 

some areas of deforestation in the tropical western and northern Amazon and the Congo 

coincide with areas of increased moisture, both driving a decrease in burnt area.  

In most other non-arid ecosystems fuel trends correlate with moisture. As fuel and moisture 

have opposing effects on burnt area, their trends dampen each other’s impact on changes in 

burnt area (Supplementary Fig. 7). There is, therefore, a potential for a shift in controls on 

fire of a greater magnitude than identified through changes in burnt area alone. We used 

both the absolute change in burnt area over mean burnt area (Fig. 3a) and how much each 

control deviated from its trendless “potential” as a percentage of maximum deviation (Fig. 

3b) as indices of fire regime shift. This quantifies the total change in burnt area that would be 

masked by the actual mean (Fig. 4). Globally, fire controls showed a shift of 26.88±0.35% 

during our study period; almost twice as high as the 14.23±0.48% trend in burnt area (Fig. 

4,5). Despite the focus on the contribution of tropical savanna to the trend in the global burnt 

area ​2​, forests are much more susceptible to a shift in regime, with an average shift in 

absolute burnt area of 0.88-0.96% in savanna compared to 1.10-1.80%yr​-1 ​across forests. 

Changes in controls highlight an even greater shift in burning in forests, with a mean of 

2.34-2.42%yr​-1​ for temperate and boreal forests and 2.31-2.58%yr​-1​ for tropical forests. At 

least 10% of all ecosystems excluding the driest show at least 50% of the maximum possible 

shift in controls over the study period. 
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Although some of our results provide evidence of emergent “resource gradient constraints” 

16,18,19​ (Supplementary Fig. 7), 41% of areas with significant regime shifts would either not be 

captured by this hypothesis or, by necessity, be attributable to a climate driver, either from 

positively correlated changes in fuel and moisture controls (Fig. 3e), or independent shifts in 

fuel alone (Fig. 3f). This demonstrates that controls should be explicitly separated out to 

attribute fire trends ​20​. 

Our results may be used to inform TBM development and improve their representation of 

fire, particularly for trends in burnt area. We show that suppression of burnt area by cropland 

is much greater than the cropland’s own extent, suggesting that landscape fragmentation is 

an additional mechanism of greater importance than the homogenous cropland 

representation in most vegetation-fire models ​22​ (but see ​30​). Another important result is that 

suppression from population density is dramatic ​22​, drawing attention to the lack of 

representation of this effect in standard models.  

Many recent global fire model developments have focused on the correct representation of 

fuel and moisture controls ​14,22,31,32​, arguing that ignitions are less important when 

reproducing global burnt area ​7,8,15​. Our results partially support this hypothesis - areas of 

ignition limitation tend to occur in areas of even more severe fuel limitation, and have a much 

smaller “potential” limitation than other controls. However, we also show that many savannas 

and boreal forest areas are sensitive to small changes in ignitions, where levels of burning 

are important vegetative controls. The correct representation of ignitions is therefore still 

crucial for simulating and assessing changing fire regimes under changing climate, land-use 

and population growth, and projected increases in lightning ​33​.  

It is possible that a more regionalised approach might provide an improved fit to 

observations of burnt area ​34​ , but the performance of our global framework (based on 

globally-invariant parameters) has been shown clearly to be very robust and achieves our 
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objective of simulating the drivers of fire occurrence and frequency, and thereby predicting 

burnt area statistics within reasonable error. Modelling the impacts of fire on vegetation itself, 

including mortality and recovery, carbon allocation for resilience and/or recovery and the 

impact on resultant vegetation distributions is largely unconstrained at coarse global scales 

22,32​, and would also benefit from studies exploring fire-vegetation impacts ​17,18​. 

We have demonstrated that recent trends in fuel, moisture and suppression controls result in 

dramatic shifts in burnt area over much of the world. ​Some of our estimates for trends in fuel 

and moisture controls could be a consequence of decadal climate variability and may 

change over a longer period. ​This study could also be applied to explore how fire regimes 

might evolve under future climate change ​18​, particularly when considering temperature 

targets set by the Paris agreement which, despite being loosely based on perceived 

widespread ecological and socio-economic thresholds, did not explicitly include changes in 

fire regime when constructed ​36​. 

 

Code availability 

We were able to find control relationships using a Bayesian Inference framework 

which could be extended to other areas of high uncertainty in land surface modelling, and 

which we have made available for use. See ​https://github.com/rhyswhitley/fire_limitation/​ for 

more information. 

 

Data availability 

The data that support the findings in this study are available from the corresponding author 

upon request. 
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Figure 1: Limitation on burnt area by each control.​ a) fuel continuity (%); b) fuel moisture (%); c) 

potential ignitions (km​2​ month​-1​); d) anthropogenic suppression. Black lines show optimized maximum 

burnt area from each control - solid showing the median and dotted lines the interquartile range of 

ensemble parameter members. Colours are examples of ranges of controls over the study period for 

(green) desert (blue) tropical rainforest (red) savanna and (yellow) cropland areas, with locations in 

Fig. 2. Grey areas indicate quantiles of the observation with 50% of the observations fall under the 

darkest grey and 99%  under the lightest.  
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Figure 2: The relative limits and sensitivity imposed on burnt area by each control.​ Areas are 

limited by (green) fuel; (blue) moisture; (red) ignitions; (stippled) suppression; (cyan) fuel and 

moisture; (brown) fuel and ignitions; (magenta) moisture and ignitions; (grey) fuel, moisture and 

ignitions. Potential limitation shows the increases in burnt area if a control is liberated; sensitivity is the 

change in burnt area from marginal changes in a control. Coloured dots show the location (green) 

“desert”; (blue)“rainforest”; (red) “savanna”; (yellow) “cropland”  in Fig. 1. 
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Figure 3: Drivers of trends in burnt area.​ a) Annual trend in burnt area as a percentage of mean 

burnt area for the period 2000-2014. b) Absolute change in controls as a percentage of the maximum 

possible change. Stippled areas in a) and b) are where the sampled posterior parameter standard 

deviation falls within (light) 50% and (heavy) 10% of the mean change. c-f) Areas with a shift in fire 

regime equivalent to >50% in at least one control are coloured either grey or c) (cyan) increased fuel 

and moisture; (red) decreased fuel and moisture; d) (yellow) decrease in fuel moisture, (blue) 

increases in moisture;  e)  (lime green) increased continuity and decreased moisture, (violet) 

decreased fuel and increased moisture; (f) (green) increased fuel continuity, (purple) decrease in fuel. 

Ignitions increase/decrease represented by darker/lighter colors and increased/decreased 

suppression by upward/downward arrows respectively. Percentages in legend indicated land area of 

significant regime shift covered by each fuel and moisture driver combination, and small numbers the 

breakdown for increase, no change or decrease in ignitions. Individual controls trends can be found in 

Supplementary Fig. 10. 
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Figure 4: Normalised trends in controls on burnt area from 2000-2014.​ The first block of 6 boxes 

shows global trends and subsequent boxes for each vegetation type as defined in Supplementary Fig. 

11. Horizontal lines show the median, boxes show the interquartile range and whiskers show a 90% 

quantile, overlaid for each of 100 randomly selected posterior parameter sets. (orange) the trend in 

burnt area as a percentage of the fraction of land area for that vegetation type; (green) limitation 

imposed by fuel controls; (blue) by moisture controls; (brown) anthropogenic ignitions (grey) 

suppression; (purple) overall shift. 

14 
 



 
 

 Global 
Tropical 
wet forest 

Tropical 
dry forest 

Tropical 
savanna/ 
grass 

Med forest/ 
woodland 
& scrub 

Temp 
forest & 
woodland 

Boreal 
forests 

Shrub/ 
Desert 

 Burnt area trends 

Burnt area 
1.02 1.44 1.24 0.92 1.24 1.48 1.73 0.3 
0.03 0.08 0.13 0.04 0.14 0.11 0.07 0.02 

 Control trends 

Fuel 
1.81 1.77 2.19 2.42 1.69 2.45 2.56 0.49 
0.15 0.34 0.18 0.13 0.2 0.11 0.1 0.05 

Moisture 
1.01 2.44 1.07 0.64 1.21 2.19 3.46 0.05 
0.04 0.04 0.09 0.05 0.07 0.08 0.11 0.01 

Ignitions 
0.02 0.03 0.13 0.04 0.31 0.16 0 0 
0.01 0.02 0.11 0.03 0.18 0.07 0 0 

Suppression 
0.07 0.93 2.57 0.61 0.97 0.74 0 0 
0.03 0.06 0.2 0.11 0.05 0.15 0 0 

 Fire Regime Shift 
 
Mean 

1.92 2.35 2.53 2.14 1.99 2.39 2.38 1.06 
0.02 0.04 0.05 0.03 0.05 0.03 0.04 0.02 

Least 
affected 10% 

0 0.99 1.18 0.26 0.03 0.93 1.06 0 
0 0.08 0.1 0.03 0.01 0.07 0.03 0 

 

25% 
0.78 1.66 1.69 1.05 1.03 1.63 1.72 0 
0.05 0.05 0.11 0.04 0.03 0.04 0.04 0 

50% 
2.01 2.39 2.53 2.2 2.08 2.41 2.45 0.4 
0.03 0.05 0.08 0.05 0.06 0.03 0.04 0.04 

75% 
2.95 3.04 3.37 3.29 2.96 3.18 3.03 1.99 
0.05 0.09 0.1 0.07 0.09 0.04 0.04 0.04 

Most 
affected 90% 

3.61 3.62 3.9 3.71 3.59 3.77 3.57 3.2 
0.02 0.06 0.04 0.03 0.05 0.04 0.07 0.04 

 
 
Fire         
Fuel         
Moisture Least       Most 
Ignitions impact       impact 
Suppression         
 

Figure 5: Annual average impacts of trends in controls on burnt area​. Row 1, the mean absolute 

trend in burnt area as a percentage of mean burnt area, rows 2-5 the absolute mean change in burnt 

area caused by trends in fuel, moisture, ignition and suppression controls. Remaining rows show 

overall shifts in all controls and the shift for the 10% and 25% most and least affected areas, and 

median change. Colour indicates the strength of the trend. Supplementary Fig. 11 defines vegetation 

types. Top numbers in each box show mean whilst bottom shows standard deviation across 

parameter ensemble members. 
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Methods 

Modelling framework 

Monthly burnt area ( ) was calculated as a product of limitations imposed by four controls:F  

fuel (dis)continuity ( ) represented by vegetation cover, scaled by maximum 12-monthlyw  

plant available moisture anomaly (  - where  is the ratio of actual to potentialαmax
αmean

α  

evapotranspiration); fuel moisture ( ) represented by , fractional tree cover and ϖ α  

atmospheric drying potential; ignition availability ( ) represented by lightning strikes,gi  

population density and pasture cover; and direct human suppression ( ) represented bys  

cropland and population density (Supplementary Fig. 2). Each control was expressed as a 

linear combination of its respective drivers and represented by a simple logistic curve (Fig. 

1): 

(x) 1 / (1 e )f =  +  −k(x − x )o  
  

 F  Π f (x)F =  max ·    (1) 

Where  is the limitation imposed by control  (where  takes one of ),  and(x)f x x , ϖ, ig, s  w     

 is a maximum permitted monthly burnt area used to aid our model optimization.  isFmax xo  

the value of control when it imposes a limitation of 50% on burnt area (i.e, ), andx (x) 0.5f =   

 is the steepness of the logistic curve, equal to ¼ of the gradient at .  We used thek x x=  o  

logistic function to describe controls on burnt area because logits are restricted to the [0,1] 

domain, and this conveniently allows for a product of terms that proportionally modify the key 

variable of burnt area.  for liberative controls  and , where burnt area increases 0k >  w gi  

with the control, and  for suppressive  and , for which burnt area decreases. 0k <   ϖ s  

As fuel control is liberative and moisture is suppressive, and as the effects of these controls 

tend to be anticorrelated, our framework replicates the unimodal relationship with burnt area 

(Supplementary Fig. 7) previously identified along moisture or production gradients 

14,19,24,37–39​. With the exception of , each control was represented by a combination ofw  
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drivers ( ) weighted by their respective influences ( ). Where possible, units are consistentxi vi  

across drivers within each control, and so the combined drivers were normalised to maintain 

these units: 

 and  Σ v  x  / Σ vx =  i i i i i  1v1 =  (2) 

 was represented by total fractional vegetation cover ( )​40​.  is only provided on anw C C  

annual timestep, and there are some​ months in savanna and shrubland areas with very 

large burnt areas at very low annual average vegetation fractions (Supplementary Fig. 1a). 

This coincides with areas which experience very short periods of increased available 

moisture (Supplementary Fig. 1b), probably due to rapid accumulation of fine, flammable fuel 

loads during a year of seasonal water availability, where a given vegetation fraction is likely 

to contribute more to fuel continuity than the same, evergreen fraction in non-seasonal areas 

41–43​. ​In order to capture the impact of seasonal variations of moisture on semi-arid 

ecosystem vegetation cover, we weighted  by the maximum  anomaly over the previousC α  

12 months including the current month ( , normalised by the annual mean from the)αmax  

previous 12 months ( ). This follows similar seasonal, ​water availability metrics used asαmean  

a proxy for fuel load in other studies ​16,20,44​.​  was calculated from CRUTS3.23  cloud cover,α  

temperature and precipitation ​45​ using the STASH model ​46​  (Supplementary Fig. 2).  

Fractional cover was also raised to a power ( ) in order to account for saturation for highp  

coverage: 

 C  v 1)/(1 )  w =  p · ( ·   1( αmax
αmean

−  )  +  + v (3) 

Where  is an optimized weighting parameter. Both  and  can be expressed asv C   1αmax
αmean

−   

percentages, and as with equation 2, the denominator means that the fuel controls is also a 

percentage.  

 is a combination of live fuel, dead fuel drying potential, and the impact of the canopy on ϖ  

atmospheric moisture content. Live fuel moisture was represented by . Dead fuel dryingα  
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potential follows ​32​ using CRU relative humidity, temperature, wet days and precipitation ​45​. 

MODIS Vegetation Continuous Fields (VCF) fractional tree cover ​40​  was used as a proxy of 

canopy effects on moisture. As , fuel drying potential and tree cover are all expressed asα  

percentages, combining them using equation (2) means that our moisture control is also a 

percentage. 

combines natural ignitions from climatological LIS/OTD lightning flash counts​47​, withgi  

inter-cloud flashes removed using the technique described by ​32​, and human-caused 

ignitions represented by HYDEv3.1 pasture cover and population density ​35​. 

 combines HYDE population density and cropland ​35​. As population density contributes tos  

both liberative and suppressive controls, we were able to test and reproduce the humped 

relationship between fire and population ​1,21,31,48​ by explicitly representing both of its effects 

on ignitions and fire suppression (Supplementary Fig. 7).  Splitting population between 

ignitions and suppression allows a more causal representation of population on fire than in 

previous studies ​15,20​. However, population density and our land use drivers still represent 

more complex mechanisms that could cause a decrease, for example, in burned area when 

population is increasing as a result of multiple drivers (e.g. a more fragmented and managed 

landscape, active suppression efforts or an increase due to human accidental/deliberate 

ignitions or control burns). 

All variables were resampled to the coarsest (and most common) resolution of 0.5° using the 

r raster package ​49​, with the exception of VCF, where tiles were merged and resampled to 

0.5° using gdal ​50​. Fractional cover and HYDE variables were interpolated from an annual to 

a monthly timestep. LIS lightning 12-month climatology was recycled each year. Equations 1 

to 3 constitutes our predictive burnt area model, with 17​ ​unknown parameters that were 

optimised using a form of heuristic search technique. Parameters are global, and therefore 

the contribution of each driver to a control depends solely on the value of that driver in a 
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given location and time. However, drivers can still affect burnt area in different locations 

depending on the relative strengths of each control. 

 

Bayesian optimization 

The model framework was optimized against the GFED version 4 ​3​ with small fires ​51​ dataset 

(GFED4s) ​23​ for the period July 2000 to June 2014 (the common years among all datasets) 

using Bayesian inference. Bayes’s theorem states that the likelihood of the values of theβ  

unexplained parameter set (i.e. all  and  in equation 1,  in equation 2 and, x− k  0 Fmax vi  

 in equation 3), given a set of observations , is proportional to the prior probability, Vp  X  

distribution of  ( ) by the probability of  give . i.e.β (β)P X β  

(β|X)  P (β) (X |β)P ∝  · P (4) 

No prior knowledge of the parameter values were assumed, and bounded uniform priors 

were used for all parameters, i.e. bounds that were only physically plausible, but generously 

large ​6​. For the sake of simplicity, the model error was defined as normally distributed: 

(β|X)  ℵ(F , σ) exp  P =   =  N
σ√2 π Σ{ i

N( σi

y  − Fi i)2} (5) 

where  represents an individual data point,  is the GFED4s burnt area observation, ​σ​ isi yi  

the standard error, and ​N​ is the observation sample size. Given that the sample size is 

relatively large, the likelihood information dominated over the priors, such that the 

optimization reduced to a maximum likelihood problem. Consequently, inferring the posterior 

solution was a case of minimising equation 5. T​he posterior solutions were inferred for the 

models' parameters using a Metropolis-Hastings Markov Chain Monte Carlo (MCMC) step, 

running​ 5 chains with 10,000 iterations using ​52,53​ each over 10% randomly sampled data 

points on a 0.5°, monthly time step for 14 years; this represented a sample size of 2,314,512 

data points. The logistic representation on controls (equation 1) is particularly well suited to 

inference using Monte-Carlo sampling, as it avoids pathologies in the posterior space that 
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become computationally unreasonable. Unless otherwise stated, the analysis was 

conducted on a posterior solution constructed by sampling 100 parameter ensemble 

members from the last 5000 iterations of each chain. Final parameter values and 

distributions are shown in ​Supplementary ​Fig. 4. 

 

Standard, potential and sensitivity to limitation 

Using the same logistic function for all controls allowed comparison of the strength of 

different measures on impact and trends across all controls. “Standard” limitation refers to 

the limitation imposed by each control under otherwise ideal burning conditions and was 

defined as  (point along the curve in  Fig. 1). “Potential” limitation (  for control  f (x)1 −  )pi i  

was defined as the potential increase in burnt area if the limitation imposed by a control is 

removed, in the presence of other controls: 

 Π f (x ) F /f (x )pi = Fmax ·  j
N (i)

︿

j =  i (6) 

(i.e. the product of all fire controls excluding the one being considered). In Supplementary 

Table 3  and in the text, the potential increase from the removal of a control is simply the 

difference in potential limitation and reconstructed burnt area ( ). Fpi −   

The sensitivity to limitation ( )  was defined as the change in burnt area ( ) relative to theSi G  

maximum rate of change in burnt area for that control (i.e when ), weighted by the xx =  0  

potential limitation for that cell: 

 G =  δf (x)/δx 
δf (x )/δx 0

 

 G  Si =  i · pi (7) 

 

Framework assessment 

The Bayesian inference model contains a framework error parameter which describes the 

standard deviation of reconstructed fire from GFED4s observations. This was normalised by 
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GFED4s observed deviation to help interpret the deviation between observations and each 

parameter combination. This is similar to the Normalised Mean Squared Error benchmarking 

method described in  ​54​, but for each month rather than an annual average. As 

recommended by Fire Model Intercomparison Project (FireMIP) ​55​, we also used the 

non-square metrics from ​54​ to assess each parameter combination’s ability to reconstruct the 

annual average burnt area and spatial trends in burnt area. The difference between 

reconstructed annual average burnt area from a given parameter set ( ) and observed (ims

 was assessed using the Normalised Mean Error ( ) metric, which sums thebs)o MEN  

difference over all cells ( ) weighted by cell area ( ) and normalises by the averagei Ai  

distance from the mean of observations ( ):obs  

ME N =
 · obs −obs∑

 

 
Ai | i  |

 · sim −obs∑
 

 
Ai | i i|

(8) 

NME comparisons were conducted in three steps: 

1. As described above; 

2. With  and taking  the difference between observations or simulation andbso i ims i  

their respective means. ie  ​removing systematic bias and describingxxi, step 2 = xi −  ˉ  

the performance of the model around the mean. 

3.  and  from step 2 were divided by the mean deviation. i.ebso i ims i  

 This transformation removes the influence x /|x | (x x)/|xxi, step3 =  i, step 2 i, step2 =  i −  ˉ i − x|ˉ  

of the variability and describes the models' ability to reproduce the spatial pattern in 

burnt area. 

The trend in burnt area was assessed on a 12-month running mean to remove seasonal 

effects. As burnt area assumes values in the standard unit interval [0, 1], a logit 

transformation was performed on both simulated and observed burnt area to assess trends 

relative to the annual average burnt area, taking into account maximum or minimum possible 
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burnt area bounds. This removes model error in spatial patterns already assessed by 

equation 8 from our assessments of trends. Furthermore, as burnt area can take extremes of 

0 and 1, an initial transformation was required so that bounds become  (0, 1): 

 nx → (x · (n − 1) 0.5)+  /  

 n  x → l ( x
1 − x) (9) 

Where, in this case,  is burnt area and  is the number of timesteps, in this case, 168x n  

months. 

The burnt area trend was calculated for each grid cell using a simple linear regression model 

 x  tx =  0 +  δt
δx  (10) 

The difference in  between observations and simulation were compared using  in δt
δx MEN  

order to assess spatial variations in temporal trends (equation 8). Non-significant trends in 

the observations (i.e, p-value > 0.1) were not compared. 

The smaller the score, the closer the simulation to observation, with a perfect scoreMEN  

(i.e., simulation that perfectly matches observations) of 0. Three null models were used to 

help interpret the score. The mean null model is the score obtained by comparing the mean 

of all observations with the observations. As is normalised by the mean difference,MEN  

s mean null model score is always 1. The best “single value” model was obtained byMEN  

comparing the median of observations to observations, and its score is by definition less 

than or equal to the mean model score for .  The randomly resampled null modelMEN  

compares randomly-resampled observations (without replacement) to the observations. As 

this score obtained was different depending on resampling order, 1000 bootstraps were 

used to describe three randomly resampled null models: the mean randomly resampled 

score and ± the standard deviation of our bootstrap. Randomly resampled bootstraps were 

almost always worse than the median and mean null models.  

Our reconstructed annual average burnt area obtained an NME score of 0.60-0.63 vs 

GFED4s and 0.73-0.78 against other FireMIP benchmark datasets (Supplementary Table 2), 
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which outperformed all null models, and is better than published assessments of other global 

vegetation-fire models using the same comparison method ​22,37,48,54,56​, although most of these 

are driven by simulated vegetation and fuel. Similar scores for step 1 to 3 NME suggests our 

spatial pattern in burnt areas also performs well. Our spatial variations in trends in burnt area 

(Supplementary Fig. 6) scores of 0.75-0.88 were also better than null models, beating the 

median null model by approximately the same percentage as our annual average scores. 

As well as performing well in spatial patterns and trends in burnt area, our optimized control 

strength (Fig. 1,2) and trends (Fig. 3) matches with field studies and greenhouse 

experiments. Moisture limits burnt area to 10% at moistures of 29% (±0.15%), similar to 

studies of fuel moisture content levels that prohibit fire ​57–59​.  Fuel allows 50% monthly 

burning at 55%±0.01% fuel continuity which equates to roughly 87% of total vegetative cover 

(equation 3), meaning some limitation is still experienced in forested ecosystems. This is 

backed up by repeat burn studies which suggest forests can become fuel limited after 

removal of ground fuel ​26,39​. The Eastern USA is shown to be highly limited by, and sensitive 

to, human suppression (Fig. 2 and Supplementary Fig. 8), in agreement with ​21,60​. We also 

reproduced the transition from ignition/climate sensitive burnt area in northern and coastal 

California to fuel sensitive fire regions in southern inland California that has been found other 

studies ​20​. And we reproduce the climate-induced drying trend that is causing an increase in 

fire in Western USA ​61​ (Fig. 3c,d, Supplementary Fig. 10) 

 

Trend analysis 

Trends were calculated for burnt area by fitting a simple linear regression model as 

described in equation 9 & 10 for each month of the year over our time period. We also 

calculated trends for each control in the same way to assess its impact on burnt area. 

Because lightning ignition data was provided as a climatology, we only show the impact of 

population density on ignition trends. Trends were removed from each control, leaving 
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behind just seasonal and interannual variability. The impact of the trend in control  ( ) isi dxi

δF t
 

 

the reconstructed burnt area with the control’s trend removed: 

    f (x  t  )dxi

δF t
t

=  i i,t −  · dt
δxi

 
· pi, t

(11) 

The difference between this and reconstructed burnt area including the trend (i.e inF  

equation 1) was summed over our study period, and normalised between -100% and 100% 

to describe the maximum possible decrease or increase in burnt area due to trends in the 

control: 

)   dt  /FD(xi = ∫
t

0
F t − dxi

δF t
t

 

F  ax(  dt ,  dt) = m ∫
t

0
F t  ∫

t

0
dxi

δF t
t

(12) 

As this measure is normalised to total burnt area over the study period, the time units cancel 

and the measure is the change in fractional burnt area over the period. Dividing by the 

number of years in the study period (14 years) expresses  as the change in burnt areas)D(xi  

per year in Fig. 3,5. This also forms the basis of a measure of the overall shift in fire regime 

over the study period ( ). The overall change in our controls was quantified as theD|All|  

Euclidean distance between the potential impact of controls with and without detrending. 

This was normalised by the maximum possible change in potential limitation (i.e. when the 

change in a given control over our study period is ±1) which is . As there are√no. controls = 2  

4 controls, the change in fire regime is therefore determined by: 

 /2  D|All| =  √Σ ( D(x ))i i
2 (13) 

 is equal to 0 if there is no change in controls, 1 if all controls change by the maximumD|All|  

possible, and 0.5 if one control changes by its maximum and with equal potential amongst all 

controls. This is similar to the square chord distance used in fire model evaluations to 
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measure the difference between four items in two different datasets ​54,55​, with the potential 

limitation of each control taking the place of an “item”. 

A shift in fire regime was described as robust and significant (Fig 3c) if ​ >95% of ensemble 

members show a  ​of > 0.25 over the study period - equivalent to a 50% shift in burntD|All|  

area from one control if all other controls stay constant. A given control shows a robust 

contribution to this shift if >95% of ensemble members agree on the direction of the control’s 

trend (equation 12). The control with the largest trend is defined as significant, and additional 

controls are also significant if the 90% of ensemble members show a contribution of greater 

than 10% of the control with the largest trend.  
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Supplementary Figure 1​: ​Vegetation fraction vs monthly burnt area.​ Vegetation cover taken from 

VCF​ ​1​ is used as a driver for fuel continuity controls, and burnt area from GFED4s​ ​2​ is the target 
dataset used to optimize the framework. Areas with no burning are masked out. a) coloured by 

vegetation types. The main 4 types that containing fire are, from humid to arid, (blue) tropical wet 
forest; (green) tropical dry forest; (red) tropical savanna and grass; (orange) shrubland. See 

Supplementary Fig. 11 for vegetation types definitions. b) coloured by , with highly seasonal (highαmax
αmean  

) in dark shades and non-seasonal in light. Note the transformation on the x-axis using  -αmax
αmean x3.18  

where the power,  is the median of the optimized value in equation 3 when  (i.e no influencep  0v =   
of ).αmax

αmean  
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Supplementary Figure 2: Mean annual values for the variables used to reconstruct burnt area. 
Green box contains variables used to describe fuel continuity control: a) total percentage vegetation 

cover ​3​; b) annual maximum monthly over mean annual actual over potential evapotranspiration 
anomaly ( ) calculated using the SPLASH model ​4​. Blue box contains variables used for fuelαmax

αmean  
moisture: c) percentage tree cover ​3​; d) mean annual actual over potential evapotranspiration ( ) ​4​; e)α  
equilibrium moisture content (EMC) calculated as per ​5​. Red box contains variables used for ignitions: 

f) number of lightning flashes from LIS ​6​ corrected for cloud-to-ground strikes following ​5​; g) 
percentage pasture cover ​7​; f) population density ​7​. Black box contains variables used for 

anthropogenic suppression which, in addition to f), includes g) percentage cropland cover ​7​.  h) is the 
mean annual burnt area ​2​ the framework is optimized against. 
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Supplementary Figure 3​: ​Mean annual trends for the variables used to reconstruct burnt area. 
Shows the same drivers and the same units as in Supplementary Fig. 1. Fitted using a simple linear 

model (equation 11 in methods). Stippling show significance in trends, measured on  in methodsx/dtd  
equation 8: light stippling is where , heavy stippling is where ..01 p alue 0.10 <  − v <  p alue 0.01 − v <   
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Supplementary Figure 4:​ ​Probability distributions used to reconstruct burnt area and its 
controls​. Parameters are described in equations 1-3 in methods, obtained using the Bayesian 
inference technique outlined in equations 4-5 in methods. See methods for parameter definitions. 
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Supplementary Figure 5: Mean monthly controls on burnt area​. a) fuel continuity (%); b) fuel 
Moisture (%); c) ignitions (km​-2​ month​-1​); d) anthropogenic suppression. Light stippling showing where 
90% of ensemble members falling within 10% of the ensemble mean and heavy showing 99% falling 

within 10% of the ensemble mean. 
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Supplementary Figure 6: Comparison of reconstructed vs. observed burnt area.​ a, c  show 
annual % burnt area and b, d yearly mean trends in burnt area normalised by burnt area for 

2000-2014 for (top row, a, b) GFED4s observations and (bottom, c, d) reconstructed burnt area, with 
light stippling showing where 90% of ensemble members falling within 10% of the ensemble mean 

and heavy showing 99% falling within 10% of the ensemble mean. 
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Supplementary Figure 7: Emergent unimodal gradient from fuel and moisture controls. ​a and c 
show moisture and fuel controls respectively vs burnt area. Lines show maximum allowed burnt area 

for the given control (i.e. the same lines as Fig. 1).​ Solid black lines show optimized maximum 
possible burnt area for a given value of that control, using the median ensemble parameter values. 

Dotted lines show the interquartile range of our parameter ensemble members (see Methods). ​Density 
cloud shows the mean monthly maximum burnt area from the interaction of fuel and moisture controls 
(i.e max. from fuel  max. from moisture). b) fuel control vs moisture control, with the R​2​ value given×  

in the top right-hand corner. 
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Supplementary Figure 8​: ​Cropland, pasture and population density impact on burnt area.​ In the 
first column, the impact of each driver (x-axis) on burnt area (y-axis) is calculated as the difference in 
burnt area reconstructed with and without each variable as a percentage of the burnt areas without 
that variable. The percent annual average of this difference is mapped in the second column. The 
percent annual mean impact on burnt area of each driver in the 3rd column is calculated as per 

equation 11-12 in methods, but with trends in each variable removed instead of an entire control. The 
1st row shows the impact of cropland, 2nd shows the impact of pasture, 3rd population density and 

the 4th row show the impact of all three drivers. Light stippling shows where 90% of ensemble 
members falling within 10% of the ensemble mean and heavy showing 99% falling within 10% of the 

ensemble mean.   
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Supplementary Figure 9​: ​Spatial variation of the relative limits imposed on burnt area by each 
control.​ Green areas are predominantly fuel limited, blue are moisture limited, red by ignitions and 

stippled by suppression. Combined shades demonstrate co-limitation: (cyan) fuel and moisture; 
(brown) fuel and ignitions and (magenta) moisture and ignitions. Grey areas are equally limited by all 

coloured controls. Standard limitation is the limitation by each control in isolation of other controls (i.e., 
points on the curve in Fig. 1); potential limitation shows relative increases in burnt area if control is 

fully liberated in the presence of other controls; sensitivity is the change in burnt area from marginal 
changes in control in the presence of other controls. The 1st column shows the annual average 

limitations or sensitivity; the 2nd column the average limitation or sensitivity during the climatological 
month of the maximum reconstructed burnt area in each cell (i.e. month when equation 1 is 

maximised). Dots show the locations of coloured sections in Fig. 1, with green showing the location of 
“desert”, blue “rainforest”, red “savanna” and yellow “cropland”.  
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Supplementary Figure 10: The impact on burnt area of each control between 2000-2014 as a 
percentage of the maximum possible change in burnt area.​ a) fuel continuity; b) fuel moisture; c) 
ignitions; d)  anthropogenic suppression.​ ​See equation 12 in methods. Blue shows reductions in burnt 

area, yellow and brown increases. Light stippling shows where 90% of ensemble members falling 
within 10% of the ensemble mean and heavy showing 99% falling within 10% of the ensemble mean.  

  

10 



 

 

Supplementary Figure 11​: ​Ecosystems defined by grouping vegetation types from ​8​. ​Tropical 
wet forests are defined as tropical & subtropical wet broadleaf forest, tropical and subtropical 
coniferous forests​8​; tropical dry forest as tropical and subtropical broadleaf dry forest, tropical 
savanna/grassland as tropical and subtropical grasslands, savannas and shrublands, wooded 
grasslands & savannas; mediterranean forest/woodland and scrub as mediterranean forests, 

woodlands and scrub; temperate forest and woodland as temperate broadleaf and mixed forests, 
temperate grasslands, savannas & shrublands, temperate conifer forests; boreal forests as boreal 

forests/taiga; shrublands as montane grasslands and shrublands, tundra, deserts and xeric 
shrublands. 
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Supplementary Tables 
 

Supplementary Table 1: Controls and their driving variables. “​Calculated as” column describes 
how, or cites from where, the variable was calculated. “Driver represented” described what aspect, or 

driver, of a given control the variable represents. 
 

Control Variable Calculated as Driver represented Data source 

Fuel continuity 
“Fuel” 
(%) 

Total vegetation 
cover 
(%) 

1 - bare cover Allowed fire spread MODIS 
Vegetation 
Continuous Fields 
(VCF) ​1 

Maximum 
seasonal 
anomalies in 
water availability 

 
αmax
αmean − 1  

(see row below) 

Rapid seasonal 
accumulation of fire 
fuel 

CRUTS3.23 
relative humidity, 
temperature, wet 
days & 
precipitation ​9 

Fuel moisture 
“Moisture” (%) 

α  
(%) 

Actual:potential 
evapotranspiration 
- SPLASH model​ ​4 

Live fuel moisture 
proxy 

CRUTS3.23 
cloud cover, 
temperature & 
precipitation ​9  

Equilibrium fuel 
moisture content 
(%) 

Kelley et al ​5  Dead fuel moisture 
proxy 

CRUTS3.23 
relative humidity, 
temperature, wet 
days & 
precipitation ​9 

Tree Cover 
(%) 

 Canopy effects on 
moisture. 

VCF ​1 

Potential 
ignitions 
“Ignitions” 
(no. km​-2​) 

Lightning strikes 
(strikes km​-2​) 

Cloud-to-ground 
as per Kelley et 
al ​5  

Natural ignitions LIS/OTD lightning 
flash counts​6 

Population 
density  
(people km​-2​) 

 Human ignitions HYDEv3.1​7 

Pasture 
(%) 

 Pasture fires ​10 

Anthropogenic 
suppression 
“Suppression” 

Cropland 
(%) 

 Land use 
fragmentation 

Population 
density 
(people/km​2​) 

 Fragmentation/ 
landscape 
management and 
fuel reductions 

  

12 

https://paperpile.com/c/UCSSVE/NmsRw
https://paperpile.com/c/UCSSVE/NCGY7
https://paperpile.com/c/UCSSVE/JkhMX
https://paperpile.com/c/UCSSVE/NCGY7
https://paperpile.com/c/UCSSVE/DvgGJ
https://paperpile.com/c/UCSSVE/NCGY7
https://paperpile.com/c/UCSSVE/NmsRw
https://paperpile.com/c/UCSSVE/DvgGJ
https://paperpile.com/c/UCSSVE/rZ9ki
https://paperpile.com/c/UCSSVE/jzeaK
https://paperpile.com/c/UCSSVE/qSMHN


Supplementary Table 2: Performance of reconstructed fire against burnt area observations​. 
Uses the metrics described by equation 6-8 in methods. Datasets are the same used in the FireMIP 

benchmarking protocol ​11,12​, with references given in the table. Scores are provided for the best (min), 
worst (max) and by score quantiles across our sampled posterior. Colouring follows ​12​ where, in this 

case, blue scores are better than all null models, and green is better than all but one. 

Comparison Metric Step 

Null Models 
Reconstructed fire score quantiles 

Median Mean 
Randomly 
Resampled 

Mean Sd Min 10% 25% 50% 75% 90% Max 

Model error NMSE 1 1.00 1.00 1.743 0.005 0.772 0.800 0.804 0.818 0.826 0.833 0.853 

GFED4s ​2 
annual 
average 
2000-2014 

NME 

1 

0.745 1.00 1.167 0.002 

0.603 0.612 0.613 0.623 0.627 0.629 0.63 

2 0.598 0.606 0.61 0.625 0.629 0.632 0.637 

3 0.615 0.62 0.623 0.625 0.655 0.665 0.677 

MERIS 
13​annual 
average 
2006-2009 

1 

0.691 1.00 1.120 0.003 

0.699 0.713 0.720 0.733 0.750 0.752 0.755 

2 0.704 0.720 0.724 0.753 0.785 0.787 0.792 

3  0.642 0.647 0.648 0.650 0.679 0.693 0.705 

MCD45 ​14 
annual 
average 
2001-2009 

1 

0.722 1.00 1.150 0.003 

0.708 0.712 0.718 0.757 0.797 0.799 0.803 

2 0.718 0.721 0.725 0.784 0.841 0.843 0.848 

3 0.653 0.659 0.666 0.673 0.674 0.685 0.694 

GFED4s ​2 
trends 
2000-2014 

1 

0.957 1.00 1.044 0.004 

0.85 0.852 0.852 0.873 0.876 0.878 0.881 

2 0.877 0.877 0.878 0.894 0.897 0.9 0.901 

3 0.923 0.924 0.925 0.952 0.957 0.959 0.961 
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Supplementary Table 3: Limitation and sensitivity of controls across different vegetation types​. 
Green rows indicate the strength of fuel controls, blue rows indicate moisture, red ignitions and grey 

suppression. Standard limitation is the strength of  each control in isolation of other controls (i.e, points 
on the curve in Fig. 1); potential limitation shows relative increases in burnt area if control is fully 
liberated in the presence of other controls; sensitivity is the change in burnt area from marginal 
changes in control in the presence of over other controls. Top numbers in each box show mean 
across our posterior, whilst the bottom shows standard deviation across parameter ensemble 

members. The most important control for standard or potential limitation for a given vegetation type is 
in ​bold​, the 2nd most important in ​italics​. 

 Global 

Tropical 
wet 
forest 

Tropical 
dry 
forest 

Tropical 
savanna
/grass 

Med 
forest/ 
wood 
& Scrub 

Temp 
forest & 
wood 

Boreal 
forests 

 
Shrub/ 
Desert 

 Standard 

Fuel 
78.64 
2.84 

66.76 
1.60 

80.31 
0.45 

75.98 
0.86 

83.91 
0.39 

83.10 
0.87 

75.41 
1.03 

91.47 
0.55 

Moisture 
57.62 
0.44 

82.13 
0.07 

69.36 
0.06 

58.08 
0.13 

67.23 
0.07 

69.27 
0.18 

79.47 
0.08 

37.98 
0.25 

Ignitions 
67.35 
2.15 

60.10 
0.77 

 72.14 
0.44 

56.10 
0.80 

75.74 
0.42 

72.74 
0.90 

84.83 
0.35 

76.24 
0.87 

Suppression 
 29.98 
1.08 

36.56 
0.44 

36.93 
0.25 

31.50 
0.46 

36.48 
0.26 

45.70 
0.59 

18.07 
0.24 

16.94 
0.37 

 Potential 

Fuel 
20.49 
0.08 

5.25 
0.01 

9.32 
0.01 

30.18 
0.04 

10.51 
0.01 

11.39 
0.02 

5.08 
0.01 

32.48 
0.04 

Moisture 
9.82 
0.07 

23.5 
0.06 

6.01 
0.01 

12.21 
0.02 

4.13 
0.01 

4.01 
0.01 

5.59 
0.01 

1.93 
0.01 

Ignitions 
3.48 
0.03 

1.50 
0.00 

1.97 
0.00 

3.91 
0.01 

2.12 
0.00 

1.9 
0.01 

5.85 
0.01 

2.93 
0.01 

Suppression 
4.51 
0.05 

4.95 
0.02 

5.44 
0.01 

8.60 
0.02 

2.50 
0.01 

3.64 
0.02 

1.21 
0.00 

1.57 
0.01 

 Sensitivity 

Fuel 
2.20 
0.02 

1.02 
0.01 

0.38 
0.00 

0.66 
0.01 

0.35 
0.00 

0.89 
0.01 

0.80 
0.01 

0.52 
0.01 

Moisture 
0.53 
0.01 

0.09 
0.00 

0.07 
0.00 

0.16 
0.00 

0.08 
0.00 

0.16 
0.00 

0.08 
0.00 

0.34 
0.00 

Ignitions 
1.33 
0.01 

0.44 
0.00 

0.25 
0.00 

0.40 
0.00 

0.28 
0.00 

0.57 
0.01 

0.27 
0.00 

0.66 
0.01 

Suppression 
3.34 
0.03 

1.23 
0.01 

0.68 
0.01 

1.27 
0.01 

0.69 
0.01 

1.34 
0.01 

0.96 
0.01 

1.57 
0.02 
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