1 2	Carbonation of <u>cementitious backfill for geological disposal of nuclear waste</u>	Commented [C1]: Or something like this to describe the work more clearly. No one but a handful of people in the
3	Nirex Reference Vault Backfill	UK know what on earth NRVB is
4		
5		
6	Nicholas C Collier ^a , David W Heyes ^a , Ed J Butcher ^a , Jason Borwick ^a , Antoni E	
7	Milodowski ⁰ , Lorraine P Field ⁰ , Simon J Kemp ⁰ , Ian Mounteney ⁰ , Susan A Bernal ⁰ ,	
8	Claire L Corkhill ^e , Neil C Hyatt ^e , John L Provis ^e , Leon Black ^a	
9 10		
10		
11	a National Nuclear Laboratory, Hauslack Dd. Darwart Hawa Warkington CA14	
12	² National Nuclear Laboratory, navelock Rd, Derwent Howe, workington, CA14	
13	51Q, UK.	
14	^b British Geological Survey, Environmental Science Centre, Nicker Hill, Keyworth	
16	Nottingham NG12 5GG UK	
10		
18	^c NucleUS Immobilisation Science Laboratory, Department of Materials Science and	
19	Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.	
20		
21	^d School of Civil Engineering, University of Leeds, Woodhouse Lane, Leeds LS2	
22	9JT.	
23		
24		
25	* Corresponding author. Email ed.j.butcher@nnl.co.uk.	
26		
27		
28	Keywords: NRVB, Nirex Reference Vault Backfill, carbon dioxide, carbonation,	
29	cement, intermediate level waste, immobilization.	
30		

Abstract

31

32		needs
33	The ability of Nirex Reference Vault Backfill (NRVB), a cement backfill material, to	
34	remove capture carbon dioxide from Iintermediate Llevel Rradioactive waste	
35	packages after repository backfilling, has been assessed. Large-scale trials assessed	
36	the physical and chemical reaction of carbon dioxide with the hardened <u>backfill</u> grout.	
37	A carbonation front, radial in nature, was observed extending in-to the grout and $-$	
38	<u>T</u> <u>three distinct regions were identified in the hardened grouts. A carbonated, partially</u>	
39	carbonated and uncarbonated. Within the partially carbonated region, a carbonation	
40	front_ and a transition zone were discerned. Potassium_ and to a lesser extent sodium_	
41	are-were concentrated within a zone-in the carbonated region just ahead of the main	
42	reaction front. The area just ahead of the carbonation front wais enriched in both	
43	sulphur and aluminium, while sulphur is was found to be then depleted from the	
44	carbonated material behind the main reaction front indicating that???.	Comm
45	main carbonated region, virtually all of the hydrated cement phases are were found to	this?
46	be carbonated, and carbonation extended throughout the - Some carbonation had	
47	occurred throughout the canistergrout, even within material indicated by	
48	phenolphthalein solution to be uncarbonated. Importantly, since the cement backfill	Com
49	relies upon its high porosity to fulfill its groundwater buffering function, carbonation	Comm
50	was found to significantly impact the porosity of the cement; in the carbonated region	under
51	the porosity was significantly reduced, while in the partially carbonated region it was	known
52	increased.	
53	The porosity of the carbonated grout is lower than in the uncarbonated material due to	
54	replacement of pore space with precipitated calcium carbonate, but the highest	
55	porosity was measured in the partially carbonated region.	
56		

Commented [C2]: If this is going to be REF returnable, it needs to say something about "so what?".

Commented [C3]: What is the scientific significance of this?

Commented [LB4]: ?

ommented [NC5]: JP Issue.

Commented [LBGR5]: I think that this has been addressed. It is known that phenolphthalein can underestimate the depth of carbonation, and calcium carbonate enveloping portlandite (as seen in figure 9) is snown to cause this.

57 1. Introduction

58			
59	Geological disposal in an engineered facility underground is the preferred option for		
60	disposal of nuclear waste. A range of generic disposal concepts for High Level Waste		
61	(HLW), spent fuel (SF) and Intermediate and some Low Level Waste (ILW/LLW)		
62	streams are being considered in the UK [Nuclear Decommissioning Authority,		
63	2010a]. Such Geological geological disposal facilities (GDFs) are based on concepts,		
64	also known as Geological Disposal Facilities (GDFs), have been selected based on		
65	three host rock types (higher strength rock, lower strength sedimentary rock and		
66	evaporites). All these concepts the of use a multi barrier containment approach, which		
67	involves the application of engineered barriers, that would working in combination		
68	with natural geological features, to reduce the rate of radionuclide release to the		
69	biosphere. and delay ultimate return to the surface environment. In the United		
70	Kingdom, for the disposal of Intermediate Level Waste (ILW) /LLW in a higher		
71	strength rock, it is proposed that packages of grouted waste are proposed to will be		
72	emplaced in sub-surface vaults and surrounded with a Portland cement-based backfill		
73	called Nirex Reference Vault Backfill (NRVB)[Vasconcelos et al. 2018]. The primary		Commented [C7]: Please add Rita's
74	advantages of using this material are: i) One of the main reasons cementitious grout		Vasconcelos R. G. W., Beaudoin N., Har Provis J. L. and Corkhill C. L. Character
75	is being considered for waste encapsulation and back-filling, is its ability to maintain		cement backfill for the geological disp waste: The Nirex Reference Vault Bac
76	highly alkaline pore solutions, which . This reduces the solubility and mobility of		Geochemistry, 89, 180 – 189 (2018).
77	many of the important radionuclides, thereby restricting retarding their migration		
78	from the GDF and into the geosphere; - It also inhibits and slows the corrosion of the		
79	steel waste canisterii) its high porosity and . The NRVB is not a structural cement: in		Commented [NC8]: Added by Tony.
80	addition to providing a chemical conditioning function, the NRVB is specifically		Formatted: Highlight
81	formulated to be gas-permeability, which give a high surface area for radionuclide	$\overline{\ }$	Formatted: Highlight
82	sorption and allows relief of any pressure from gas egress from the waste packages:		Formatted: Highlight
83	iii) its low strength, which le and to be weak enough to be supports easy ity		Formatted: Highlight
84	excavatedion of waste packages, if required; and iv) it also inhibits and slows the	$\overline{}$	Formatted: Highlight
85	corrosion of the steel waste canister. in the event of the need for waste recovery.		Formatted: Highlight
86			Commented [AM9]: Added this stat
87	It is expected that some of the wastes in a GDF would produce gaseous emissions		Formatted: Highlight
88	T[Nuclear Decommissioning Authority, 2010b], the bulk of gaseous emissions from		Formatted: Highlight
89	ILW packages which willare expected to be hydrogen (H2), mainly produced from the		Commented [NC10]: Use more rece
90	corrosion of metallic waste products- <u>and m</u> Methane (CH4)and carbon dioxide		Identified?

Commented [C7]: Please add Rita's new paper here: Vasconcelos R. G. W., Beaudoin N., Hamilton A., Hyatt N. C., Provis J. L. and Corkhill C. L. Characterisation of a high pH cement backfill for the geological disposal of nuclear waste: The Nirex Reference Vault Backfill. Applied Geochemistry, 89, 180 – 189 (2018).

Formatted: Highlight
Formatted: Highlight
Formatted: Highlight
Formatted: Highlight
Formatted: Highlight
Formatted: Highlight
Commented [AM9]: Added this statement to provide relevant introductory information: it is relevant to why the NRVB has its specific formulation.
Formatted: Highlight
Formatted: Highlight

Commented [NC10]: Use more recent reports Tony has identified?

91	(CO ₂) _a are also likely to be produced via the microbial degradation of organic waste		Format
92	materials under aerobic anaerobic or aerobicanaerobic conditions [Nuclear		Comme
93	Decommissioning Authority, 2010b. A small proportion of the gas produced would	_	consiste anaerob
94	be radioactive which would include radioactive tritium (3H), 14C- labeled species		Comme
95	(including ¹⁴ CH ₄ and ¹⁴ CO ₂) and radon (Ra). After backfilling, and before and after		Identifie
96	the subsequent closure of the vaults, iIt is desired that, after backfilling, either the		
97	cementitious material in the waste packages, or in the backfill, would capture -any		
98	waste CO ₂ generated <i>in situ</i> within the grouted waste packages (including ¹⁴ CO ₂)		Format
99	would, thus preventing its egress to the geosphere. react fully with either the		
100	ILW/LLW encapsulation grouts or the cementitious backfill by carbonation of		
101	cationic species, and so would be removed from the gaseous phase and retained in		
102	either the engineered barrier system, the encapsulation grouts, or the backfill, or the		
103	engineered barrier system,.		Comme
104			the inne
105	Carbon dioxide is known to react with cementitious materials in a process known as		
106	carbonation [Basheer et al., 2001; Hobbs, 2001; Poonguzhali et al., 2008]. While this		
107	may be a durability concern for reinforced concrete, it may also confer benefits, for		
108	example reduced porosity and so improved durability of in fact, deliberate		
109	carbonation of pre-cast concrete members or, in the case of NRVB, sequestration of		
110	carbon dioxide can be used as a means of improving durability. This process is		
111	controlled by the movement of gaseous CO2 into the material, driven by concentration		
112	and/or pressure gradients, and its chemical reaction with calcium rich phases present		
113	in the binding phase. The extent of carbonation is controlled by the chemistry and		
114	permeability of the cement. The main effect of carbonation in Portland cement based		
115	binders is a reduction in the alkalinity of the material, along with a possible variation		
116	in mechanical strength, and alteration in permeability of the binder [Bary and Sellier,		
117	2001; Basheer et al., 2001; Fernández-Bertos et al., 2004; Morandeau et al., 2014].		
118	The combined effect of the changes induced by carbonation in a cement grout can be		
119	detrimental, as the presence of a highly alkaline pore solution is one of the main		
120	criteria used to determine the life span of the UK geological disposal repository		
121	concept for radioactive wastes [Atkins and Glasser, 1992]. Such conditions reduce the		
122	solubility and enhance the sorption of many radionuclides, which restricts retards		Comme mention
123	their release from the cement and the repository into the geo-and bio spheres		Farmer
124			color: A

ormatted: Font: Italic

Commented [EJB11]: Changed so that the order is consistent with the gases being produced – CH4 from inaerobic

Commented [NC12]: Use more recent reports Tony has identified?

Formatted: Font: Italic

Commented [EJB13]: Changed for logic – starting with he inner most grout and working outwards

Commented [C14]: Repeated from above – no need to mention again

Formatted: Font: (Default) Times New Roman, Font color: Auto

125	The carbonation of cementitious materials has been studied widely in the construction	
126	industry because of its effects on the performance of reinforced concrete engineering	
127	structures exposed to atmospheric CO2 [Thiery et al., 2007; Black et al., 2008]In	Con
128	ordinary Portland cements used for construction purposes, CO2 from the atmosphere	rele
129	diffuses through gas-filled pores and dissolves into the pore solution to-forming	rem
130	aqueous HCO3 ⁻ . The uptake of acidic CO2 into the alkaline pore solution reduces the	
131	internal pH of the binder, and the dissolved carbonate also reacts with calcium-rich	
132	hydration products present in the matrix, mainly with portlandite (Ca(OH) ₂), calcium	
133	silicate hydrate (C-S-H $^{\!$	
134	solid calcium carbonates, silica gel and hydrated aluminium and iron oxides	
135	[Johannesson and Utgenannt, 2001; Živica and Bajza, 2001; Fernández-Bertos et al.,	
136	2004].	
137		
138	The effect of carbonation on the ability of a cementitous backfill grout to buffer	
139	groundwater to high pH (as desired to retard release of radionuclides to the	
140	geosphere) has not been fully elucidated. In addition, carbonation of the cement grout	
141	reduces the ability of the cement to buffer the pore waters to high pH, which is one of	
142	the main geochemical functions of the cement within the engineered barrier system.	Con
143	The reaction of CO_2 with typical waste encapsulation grouts and NRVB has been	tildt
144	studied [Harris et al., 2003a; Harris et al., 2003b; Sun, 2010], but further information	
145	is required to enable a safety case for disposal to be put forward on firm scientific	
146	foundations.	For
147		
148	We report here on full-detailed larger scale experimental studies investigating the	Con
149	reaction of gaseous CO ₂ with hardened NRVB grout to support understanding of	simu
150	determine the likely interactions between the CO2 wastes and the backfill material	Con time
151	following closure of the GDF. The trials provided new insight into the reaction of	thro
152	CO2-with hardened NRVB grout, mMaking use of chemical and microstructural	
153	analyses, we show that [need to put conclusions here].high resolution analytical	
154	tools to provide an unprecedented level of insight into the carbonation process of	
155	NRVB, and its implications for the material in service.	For

¹Calcium silicate hydrate is the principal binding phase in Portland cement based systems. C. S and H indicate the oxides of calcium, silicon and hydrogen respectively, while the hyphens reflect the variable composition of the material.

Page 5

Commented [LB15]: Don't think that this reference is elevant.

Commented [EJB16]: Happy enough for this to be removed

Commented [EJB17]: Doesn't this repeat the statement that's in line 102-107 above?

Formatted: Font: (Default) Times New Roman, Font color: Auto

Commented [EJB18]: Changed because RWM were clear in their comments on the original report that we are not simulating a GDF

Commented [C19]: Sometimes this is called grout, other times backfill. Need to pick one and be consistent throughout.

Λ	Formatted: Highlight
-{	Formatted: Highlight
-(Formatted: Font: (Default) Times New Roman,
-	Formatted: English (United Kingdom)

156						
157						
158	2.	Experimental				
159						
160	2.1	Materials				
161						
162	Nirex	Reference Vault Back	f <u>ill (</u> The NI	RVB) was formulated a	ccording to [ref] using	
163	<u>Ribbl</u>	esdale Sellafield specif	<u>ication po</u>	wders consisted of:		
164	•	Ordinary Portland Ce	ment <u>(- Se</u>	llafield Ltd specification	n ordinary Portland	Formatted: Normal, No bullets or numbering
165	ceme	nt, supplied by Hanson	Cement) ,	x Ribblesdale works [C	ann and Orr, 2010] <u>, l</u> -	
166	This -	cement is developed spe	ecifically for	or the UK nuclear waste	processing industry	
167	and is	s different from cements	s used in co	mstruction, in that it do	es not contain calcium	
168	carbe	mate and is ground with	out the use	of organic grinding age	ents.	
169	•	—Limestone flour (– s	applied by	-Tendley Quarries to H	\$\$594-1 -[B\$594-1,	
170	2005] <u>) and h</u> .				
171	•		nbux hydra	ted lime supplied by Ta	rmac Buxton Lime and	
172	Ceme	ent [BS EN 459-1, 2015]). Charact	erisation of each of thes	se materials (e.g.	
173	partic	ele size, surface area, co	mposition	etc. are provided in Vas	concelos et al. (2018)).	
174						
175	The f	ormulation of the NRV	B paste is s	hown in Table 1; the ov	verall water to +solids	
176	ratio	(w <u>/</u> ÷s) was 0.55.				
177						
178						
179						
180						
181						
182		Table 1. N	RVB com	oosition [Francis et al.,	1997]	
183						
	Com	ponents	Mass	Paste Proportion	Solids Proportion	
			(g)	(wt <u>.</u> %)	(wt <u>.</u> %)	
	Ordi	nary Portland cement	450	26.01	40.36	
	Lime	estone flour	495	28.61	44.39	

9.83

15.25

170

Hydrated lime

Wa	iter		615	35.55	-
		Total	1,730	100	100
2.2	Large-sca	le trial			
	0				
Pov	vders sufficien	t to produce	a 500 L bate	ch of grout were weig	hed and then added to
the	desired weight	t of water at	a controlled	rate over a 25 minute	period into a BNFL
gro	<u>ut</u> mixer (an in	npeller in <u>-</u> v	essel mixer,	as used in the Sellafie	ld Wastes
Enc	apsulation pla	nt (WEP)) a	nd then mixe	ed for a further 15 min	nutes. The grout was
the	poured into a	bespoke 40	0 L stainless	s steel curing vessel (F	Figure 1). The vessel
had	an internal dia	ameter of 79	0 mm, an in	ternal height of 780 m	im, and incorporated a
stai	nless steel ILV	V drum lid (with a standa	ard sintered metal ven	t at the centre of the
lid)	fixed inside. A	A sealed con	npartment lo	cated directly below t	he vent provided a
gas	-tight reservoir	from which	the CO ₂ wa	as emitted. Before the	400L vessel was
fille	ed with grout, t	he inside fa	ces were rou	ghened <u>.</u> and coated v	vith an<u>After filling</u>
wit	h the NRVB, t	he edge inte	rface betwee	n the top surface of th	e NRVB and the
ves	<u>sel was filled v</u>	with a beading	ng of epoxy	resin-based concrete	bonding material to
ens	ure good adhes	sion between	n the grout a	nd the walls of the ves	ssel (and hence reduce
the	pathways avai	lable for the	CO_2 to flow	around the grout). The	he vessel was then
fille	ed with 302 L o	of grout to c	over the dru	m vent and form an in	terface with the drum
lid;	this simulated	the backfill	ing of a GD	F vault filled with ILV	V containers. The
sam	ple was sealed	l and -then cu	ured at 40°C	for 28 days to mimic	represent potential
repo	ository conditi	ons. After th	is period the	e internal gas reservoir	rs were filled with
CO	2 (99.8 % purit	ty) to 0.15 N	IPa from an	external gas bottle thr	ough a penetration
<u>con</u>	nection in the	base of the	vessel and in	to the reservoir. CO ₂	pressure was
mea	sured at the ga	as inlet reser	voir through	out, and gas consump	otion was calculated
fror	n pressure cha	nges. The ca	arbonation tr	ial was performed at 3	30°C and autogenous
RH	;, and t empera	ture and pre	ssure were re	ecorded for the duration	on. The vessel was
fitte	ed with a carbo	on dioxide se	ensor in the e	external lid of the 400	L vessel to detect any
rele	ase of CO ₂ fro	m the top su	urface of the	grout, which would in	ndicate either
pre	mature materia	ll failure, <i>e</i> .g	. by crackin	g, or <u>CO2</u> permeation	of through the whole
dep	th of the grout	by the CO ₂			

Commented [LB20]: Can we give a justification for this? I think that it's valid, but if you get a pedantic review they will query whether the conditions are appropriate.

ould you expect high CO2 concentrations in an ncapsulation matrix?

Commented [EJB21]: Leon – I'm not sure we can, given the uncertainties about the waste the pressure was selected to give sufficient driving force to expel the CO2, but wasn't a comprehensive representation of what the conditions in waste packages are,

Formatted: Subscript

216

243		
244	2.4 Analytical methods	
246	2.4 Maryucar includus	
247	Information describing the details of the techniques used is included in	
248	Supplementary Material, but brief summaries are given here. Thermogravimetric	
249	Analysis (TGA) and Differential Scanning Calorimetry (DSC) were performed using	
250	a Netzsch STA409PC Simultaneous Thermal Analyser, using ~30 mg samples in a	
251	nitrogen atmosphere, heated from 50 to 1000°C at 10°C/min. For permeability testing,	
252	a Temco MP-402 'mini'- or 'probe-permeameter' was used. Measurements were	
253	made on the cut flat face of one half of the intact cement cores in a horizontal	
254	orientation. Flow rate and pressure were recorded and permeability was calculated.	
255	Measurements were repeated several times at the same spot and the mean was taken	
256	as the representative permeability. Measurements were recorded at various points	
257	along the length of each core at intervals of $\sim 10 - 20$ mm apart.	Formatted: English (United States)
258		
259	Selected thin sections of each sample were carbon coated (~25 nm layer) and then	
260	examined using backscattered scanning electron imaging (BSEM) and energy-	
261	dispersive X-ray microanalysis (EDXA) elemental mapping. This was performed	
262	using an FEI QUANTA 600 environmental scanning electron microscope (ESEM)	
263	equipped with an Oxford Instruments INCA Energy 450 EDXA system, <u>Semi-</u>	Formatted: Highlight
264	quantitative EDXA point analyses were recorded from selected X-ray mapped areas	
265	to aid phase differentiation and identification, and processed using the inbuilt	
266	"standardless" calibration Oxford Energy INCA Suite Version 4.15 (2009) software	
267	package.	
268		
269	Laser ablation-inductively coupled-mass spectroscopy (LA-ICP-MS) was performed	
270	using an Agilent 4500 ICP-MS, combined with a laser ablation function, on 1 mm	
271	thick samples. X-ray microtomography measurements were carried out using a Nikon	
272	Metris Custom Bay instrument, and porosity was calculated by thresholding and	
273	segmentation of the reconstructed data [Provis et al., 2012]. Raman and Fourier	
274	Transform Infra-Red (FTIR) spectroscopy were both used to study material either side	
275	of a visible carbonation front. Raman spectra were recorded using a Renishaw System	
276	2000 Raman spectrometer fitted with an Ar ⁺ _a laser (514.5_nm). Twenty spectra were	Formatted: Superscript
•		

277	accumulated, with a 10 second acquisition time, typically over the wavenumber range	
278	200 to -1200 cm ⁻¹ , and samples were left under the laser light for up to 20 minutes	
279	prior to collection of the spectra to "photobleach" and reduce fluorescence. For FTIR	
280	analysis, mid-IR images were collected using a Varian 680 IR FT-IR spectrometer	
281	fitted with a 64 x 64 mercury-cadmium-telluride focal plane array detector. Three	
282	images were measured in transflection mode (FoV 350 x 350 µm) using a spectral	
283	resolution of 8 cm ⁻¹ , an integration time of 0.025 and 512 co-additions. Images were	
284	taken either side of, and directly on, the transition zone. For X-ray diffraction (XRD),	(
285	samples were <u>finely-ground</u> micronised under acetone with 10% corundum (Al ₂ O ₃) as	is
286	an internal reference to allow validation of quantification results. XRD was carried	b
287	out using a PANalytical X'Pert Pro series diffractometer equipped with a cobalt target	F
288	tube, X-Celerator detector and operated at 45 kV and 40_mA. The micronized-powder	F
289	samples were scanned from 4.5 - 85° 20 \square at a scan rate of 2.76° 20/minute.	
290	Quantification was achieved using the Rietveld refinement technique (e.g. Snyder and	
291	Bish [1989]) using PANalytical HighScore Plus software together with the latest	
292	version of the International Crystal Structure Database (ICSD).	
293		
294		
295	3. Results and Discussion	
296		
297	3.1 Carbonation front and visual characteristics	
298		
299	Visual analysis of the phenolphthalein staining in the large-scale samples	
300	demonstrated that carbonation does not proceed via a horizontal reaction front	
301	progressing in a direction parallel to the horizontal surface of the sample, but actually	
302	progresses <u>d</u> radially from the vent-because of the point source of CO ₂ . However,	
303	pPhenolphthalein staining showed no evidence to suggest that gas travelled along the	
304	drum lid interface and/or up the side of the vessels, suggesting a good circumferential	
305	seal between the grout and the container.	
306		
307	Phenolphthalein staining does not reveal the precise location of a carbonation front,	
308	but it does show where complete carbonation has occurred. Phenolphthalein staining	
309	(later confirmed by micro-focus techniques) was used to identify three distinct regions	
310	within each core of hardened NRVB grout: (i) the uncarbonated region; (ii) the	
•		

Commented [LB24]: This can be deleted since FTIR data is no longer being included.

Commented [AM25]: Delete "micronised". And replace by "finely-ground". This should make it cleare for those unfamiliar with the term "micronized"

Formatted: Highlight

Formatted: Strikethrough

311 partially carbonated; region, and; (iii) the carbonated regions. The partially 312 carbonated region was observed as a distinct interface between uncarbonated and 313 carbonated material, and was likely to be where a carbonation front was located; these 314 three regions are each analysed in detail below. For each core, the assignment of 315 uncarbonated, partially carbonated and carbonated regions was made based on the 316 results obtained using phenolphthalein staining. Phenolphthalein staining was also \$17 used to measure the depth of carbonation in each of the three cores; and the average depth was measured to be 26.8 mm, 21.5 mm and 11.8 mm for Core 6.1, 12 and 9, 318 319 respectively (these were obtained over by average averaging readings of between 6 320 and 8 measurements each). 321 322 3.2 Micropermeametry 323 324 The permeability, results of micropermeability analyses measured along longitudinal 325 profiles through the three cores, are shown in Table 2, and varied between 0.12 and 326 1.07 mD (Table 2). These values are were close to the lower limit of detection of the 327 permeabilities that can be measured by the micropermeameter instrument, thus and it 328 was difficult to identify any distinct trends. However, a number of observations could 329 be made. The permeability of the majority of the uncarbonated cement varied mostly 330 between 0.12 and 0.26 mD. No relationship was observed between permeability and 331 distance along the core, other that than in the bottom 1-2 cm of each core (within the 332 carbonation zones) where it was significantly higher, particularly for samples cores 333 6.1 and 9. Not only did the carbonation cause an increase in the permeability, but the 334 texture of the grout was observed to become "chalky" in all carbonated zones.

335

Commented [C26]: Yup, "Cores 1 and 2" would be much nicer to use here!

Commented [C27]: Do you mean crumbly? Not sure what else chalky could mean.

Commented [LB28]: This runs counter to prevailing wisdom which says that carbonation lead to a decrease in capillary porosity, (Ngala & Page, CCR, 1997). Now, with a high CO2 concentration from a localized source, the effect on microstructure may be different, hence the increase in porosity.

Having said this, I've looked at the permeability data in the table and there isn't an increase in permeability. In cores 12 and 9 there is a decrease in permeability after carbonation. (You can't take the bottom value which is clearly an outlier).

Commented [EJB29]: Agree – looking at the data, aside from the very bottom of the cores the permeabilities (carbonated/uncarbonated) look to be very similar

Table 2. Micropermeametry results

Vertical Position ^a	Intri	insic permea	bility		
(cm)		(mD)			Commented [AM30]: Would it be better to stick to SI
	Core 6.1	Core 12	Core 9		units (mm or m) throughout the rather than cm in this table?
1 (top)	0.24	0.19	0.23		Formatted: Highlight
3	0.21	0.12	0.22		Commented [C31]: Core 1, Core 2, Core 3 perhaps?
5	0.18	0.26	0.21		
7	0.18	0.12	0.20		
9	0.16	0.14	0.19		
10-11	0.17	0.15	0.21		
12-13	0.15	0.22	0.21		
14-15	0.16	0.23	0.23		
15-16	0.18	0.26	0.20		
17-18	0.24	0.26	0.20		
19-20	0.23	0.12	0.20		
21-22	0.20	0.20	0.21		
23-24	0.20	0.15	0.24		
25-27	0.17	-	0.23		
27-29	0.22	0.18	0.15		
29-31	0.23	0.14	0.20		
31-33	0.21	0.19	0.17		
33-36	0.24	0.13	0.18		
34-36	0.17	0.20	0.18		
36-39	0.16	0.20	0.17		Commented [AM32]: Confusing – am I reading this
39-40	0.16	0.19	0.19		wrong? Please check this is correct in the table – the shaded area shown in this compiled table seems to be
40-41	0.17	0.18	0.17		inconsistent with the depths of carbonation stated as "26.8, 21.5 and 11.8 mm for Core 6.1.12 and 9 respectivel
41-42	0.15	0.20	0.19		in Section 3.1. You may want to think about presenting or illustrating this slightly differently
42-43	0.78	0.19 0.17	As shown by the shading in this table in comparison to the		
43-44	0.72	0.26	0.19		depth indicated in the "vertical position" column, it appear read as if the depth of carbonation is up to 28, 22 and 4

1.07

Notes. ^a – from top surface of core. The shaded values represent the depth of

44 (bottom)

338 339

336

337

carbonation indicated by phenolphthalein solution (as reported in section 3.1).

Commented [LB33R32]: Agree. The vertical position must be in mm, surely Commented [EJB34]: Agree these must be in mm - see Table 6 (page 43) of the NNL 13296 report , which I've sent a link to.

centimeters, in cores 6.1, 12 and 9, respectively

340 3.3 Acid digestion and LA-ICP/MS

The chemical profile of the cores Very similar LA-ICP/MS were similar irrespective
of the core analyzed, therefore results were obtained for each of the cores, so the
results described here are representative results from both are discussed herein. of
each, and it is important to analyse these results based on an understanding of the total
compositional profiles of the samples. For this reason, tThe total elemental
concentrations of all elements other than Ca determined by acid digestion of each of
the sub-samples taken from each identified region are shown in Figure 2 (Ca is not
shown here due to the very high concentration of $\sim 3 \times 10^5$ ppm). By far the major
element in each of the carbonated, partially carbonated and uncarbonated regions was
Ca, the concentration of which was of the order of $-3x10^5$ ppm in each of these three
regions. This was at least 1 order of magnitude greater than any of the other elements,
and so to aid analysis of the other elements present, the Ca data were excluded from
Figure 2. The concentrations of Al, Fe, Mg and Si are were very similar in each of the
regions, indicating that if they migrateion of these elements occurs during
carbonation, it is likely to be only over short distances, as shown below.; the behavior
of these elements immediately around the carbonation front does show subtle yet
important changes which will be addressed below. Compared to the uncarbonated
region, the carbonated and partially carbonated regions appeared to be relatively
enriched in Na and K, and the carbonated region was depleted in S.
Important trends were also observed in the minor element distributions, Figure 2b.
The concentrations of Sr and Ni were higher in the carbonated region than in the
uncarbonated material (although this was a small difference for Sr. Fig. 2). The Ni
concentration is was very low overall, but was highgreatest in the carbonated
sampleregion; ; this may be because the Ni present is likely to be sorbed on to the C-
S-HNi sorbed to C-S-H may be, and will be released during carbonation of this phase;
Ni has been reported to show very limited incorporation into calcite [Hoffmann and
Stipp, 1998]. The elevated concentration of Sr in the carbonated region is likely to be
due to co-precipitation with Ca and incorporation (by solid-solution) in CaCO ₃ , which
is precipitated in pores during the carbonation reaction [Shafique et al., 1998]. The
concentration of metals is also likely to be higher in pore space filled with secondarily
precipitated CaCO ₃ [Lange et al., 1997]. Within error There there was no little if any

Commented [C35]: I'm afraid this all so horribly repetitive! Would suggest a new format to make the story so very much clearer (i.e. don't structure by technique). It could look like this: results section (1): chemical changes as a function of carbonation; results section (2) microstructural changes. Then a discussion to bring it all together.

Formatted: Superscript

Commented [NC36]: Tony comment. Petrographic studies here and elsewhere suggest these do probably react with CO2

Commented [EJB37]: We're going to need a phone discussion on this – I could see that if we are freeing up water during the carbonation reaction and pushing the soluble Na and K ahead of the reaction front, the uncarbonated would be enriched in Na/K but I can't see why the carbonated zone is.

Commented [LB38]: I can understand depletion upon carbonation, since the Sulphur could be displaced by the carbonate. But how do you get elemental enrichment? unless the CO2 contains K and Na there is no means of getting these elements into the system.

Commented [LB39R38]: I think that the key must lie in the definition of the carbonation front being that shown by phenolphthalein. Now we've shown that there is carbonation ahead of the phenolphthalein front, then this becomes more feasible. Text should reflect that, by carbonated, we mean regions which are colourless when sprayed with phenolphthalein.

Commented [EJB40]: Agree with Leon's comments on the definition of carbonated (as shown using phenolphthalein)

- \$88 front) and <u>the other another region just</u> behind the carbonation front (the transition
- zone), indicating that carbonation <u>did not occur in is not a simple</u>-single-step process
- 890 that occurs at a well-defined single front. The carbonated region was depleted in Ca
- due to its release from C-S-H during the carbonation process [Morandeau et al.,
- 392 2014]) and was rich in Si; the decalcification of C-S-H is known to result in the
- 393 formation of a highly-polymerised Si-rich gel [Fernández-Bertos et al., 2004]. Both
- 394 Ca and Si were depleted within the transition zone. The contents of Fe and Mg were
- 395 similar in both the carbonated and uncarbonated regions, but both these elements were
- 396 slightly depleted in the transition zone, which corresponds to the results obtained by
- 397 acid digestion (Figure 2a). It is not immediately obvious from thermodynamic or
- 398 solubility arguments why this should be the case, but this is a point worthy of further
- 399 investigation in the future.
- 400

401 The most striking difference between regions of carbonated and non-carbonated

402 NRVB shown in Figure 9 wais the distribution of S-, which was either depleted

403 (carbonated region), low (non-carbonated region) or enriched (carbonation front). The

- 404 carbonated region was completely depleted in S, the non-carbonated region had a low
- 405 S concentration, while the carbonation front was enriched in S compared to either of
- 406 the other regions. This is also reflected in the concentrations of S found
- followingmeasured after acid digestion of each of the samples investigated (Fig.ure
- 408 2).; and the S concentrations in the carbonated, partially carbonated and uncarbonated
- **409** regions were 280, 3220 and 2500 ppm respectively. This phenomenon may be
- 410 because <u>A</u>-any S present is likely to exist be present in calcium aluminate hydrate
- 11 phases (, particularly ettringite (see section 3.7) and maybe also AFm-), which have
- **412** phases. These phases have low solubility at high pH but are unstable under lower pH
- 413 conditions, such as those prevalent during carbonation (pH 7 8.5) [Morandeau *et al.*,
- 414 2014]. Therefore, any S is present would likely to dissolve upon carbonation, and
- 415 migrate away from the carbonated region towards uncarbonated material before the
- 416 carbonation front. This same phenomenon was observed for appears to occur with Al,
- 417 where the high-elevated concentration of Al concentration before the carbonation
- front again suggestsupports the hypothesis that s the decomposition of ettringite or
- 419 AFm phases decompose upon carbonation and <u>-A1 the migrationes towards the of A1</u>
- 420 to uncarbonated material [Nishikawa et al., 1992]. It is possible that other oxyanions,
- 421 such as $PO_{4^{3}}$, which are present in the calcium silicate phases of Portland clinker and

Commented [LB41]: This doesn't make sense. Ca will be depleted only because of the presence of additional carbonates. But this will lead to depletion of all elements.

This is suggesting that the Ca/Si ratio of the carbonated paste is lower than in the non-carbonated paste.

It also implies that there's movement of the calcium from the calcium from the carbonated region

Commented [EJB42]: I agree with Leon concerning the Ca depletion. I can't see how the Ca is going to migrate. Is the reduction in the apparent Ca concentration a function of adding carbonate into the system and the instrumental technique such that the RELATIVE amount of Ca per unit are is decreased? Again worth a phone discussion.

Commented [C43]: Do you mean Figure 3 or 4?

422	interlayers of C-S-H [Poulsen et al. 2010], may undergo a similar process, as
423	evidenced by leading to the apparent enrichment of P in the partially carbonated
424	samples region and depletion in the carbonated samples region, shown in Figure 3.
425	
426	
427	
428	The differences in the elemental concentrations identified between the partially
429	carbonated region and the carbonated and uncarbonated regions of NRVB were
430	investigated further by studying the spatial distribution of specific elements in the
431	partially carbonated region by LA-ICP-MS; the elemental maps for Ca, Si, Al, S, Mg
432	and Fe in this region are shown for Core 6.1 in Figure 3. The results for the other
433	cores were consistent with the data presented here.
434	

436 437

440 Further elemental maps (Fig. 4) were acquired on a duplicate sample, taken from a

- 441 region which that was also measured using X-ray microtomography (see below), see
- 442 Section 3.4. Figure 4 shows the resulting elemental distributions of Ca, Si, Al, and S,
- 443 in addition to the alkali elements Na and K. In agreement with the data presented in

444	Figure 3, this sample also demonstrated a carbonation reaction front, however the
445	determination of its location and the analysis of a transition zone was hampered by
446	the presence of an unreacted particle of cement at the carbonation front (see Si, Al
447	and S elemental maps, Figure 4) and also by the presence of a crack (see Si, Na and K
448	elemental maps, Figure 4).
449	
450	The distributions of <u>elements Ca, Si, Al and S in Figure 4 appear to bewere</u> broadly
451	consistent with those observed in Figure 3, giving further evidence for the
452	decalcification of C-S-H in carbonated regions.
453	
454	In agreement with the digest data for Na and K (Fig. 2), , but not yet full carbonation
455	of an Al-rich ettringite or AFm phase ahead of the carbonation front. these elements
456	were observed to be The acid digestion concentrations of Na and K were significantly
457	different in the non-carbonated region from the partially carbonated and carbonated
458	regions (Figure 2), indicating an enrichment of the alkali elements in the carbonated
459	region. This is consistent with the elemental maps shown in Figure 4, where both Na
460	and K are enriched in the carbonated region and depleted in the non-carbonated
461	region. <u>TFurthermore</u> , the distribution concentration of both Na and K was lower in
462	the vicinity of the front _a . The the implications of these observations will be explored
463	in more detail in Section 4.
464	
465	
466	
467	
468	
469	
470	
471	
472	
473	
474	
475	
476	
477	

Page 20

NRVB, corresponding to the region analysed by X-ray microtomography (see Section

3.4. The presence of a carbonation front and transition zone is evident, separating

areas of carbonated and non-carbonated NRVB.

500	
501	
502	The distributions of Ca, Si, Al and S in Figure 4 appear to be broadly consistent with
503	those observed in Figure 3, giving further evidence for the decalcification of C-S-H in
504	carbonated regions, but not yet full carbonation of an Al-rich ettringite or AFm phase
505	ahead of the carbonation front. The acid digestion concentrations of Na and K were
506	significantly different in the carbonated, partially carbonated and non-carbonated
507	samples (Figure 2), indicating an enrichment of the alkali elements in the carbonated
508	region. This is consistent with the elemental maps shown in Figure 4, where both Na
509	and K are enriched in the carbonated region and depleted in the non-carbonated
510	region. Furthermore, the distribution of both Na and K was lower in the vicinity of the
511	front. The implications of these observations will be explored in more detail in
512	Section 4.
513	
514	3.4 X-ray microtomography
515	
516	Selected slices of the representative volume of interest (VOI, 601×601×601 voxels at
517	5 μm resolution) for samples assessed from Cores 6.1 and 9 are shown in Figure 5.
518	The brightest isolated phase regions are-were assigned to unreacted Portland cement
519	particles [Galluci et al., 2007]. In the case of the partially carbonated regions (Figure
\$20	5(b) and (e)) there is was also a very bright feature corresponding to the <u>accumulation</u>
521	of carbonation reaction products accumulating inat the carbonation front. This
522	difference in brightness indicates that the density of the carbonation front is higher
523	than that of the other material. Voids appeared as darker areas [Galluci et al., 2007]
524	and were clearly identified by their spherical morphology in all samples assessed.
525	

Commented [LB44]: this relates to permeability. How can you have a more dense microstructure by micro-CT yet a more permeable material?

We should amend the text regarding micropermeability. There is not a statistical difference between the carbonated and non-carbonated regions.

Commented [EJB45]: Agree also worth discussion on whether a denser material and a higher permeability can be reconciled

Commented [C46]: This is in the methodology, so no need to repeat here.

- 547 <u>enclosed reservoir here. AThe higher highest porosity was observed in the transition</u>
- 548 zone just behind the carbonation front-than anywhere else in the samples.
- 549 550

Formatted: Left

Figure 6. The images show 2D VOI reconstructions of samples from Core 9. The top
row shows grey scale images, the centre row the images segmented into solid (white)
and pore (black) regions, and the bottom row the images segmented into areas of large
pores (black) of:- The (a) column represents the carbonated region:- the (b) column
the partially carbonated region; and: the (c) columns the uncarbonated region.

- 558
- 559

560	The 3D reconstructions of the VOI (Fig.ure 7) are consistent with the observations of
561	2D results shown in Figure 6. The images in Figure 6 are individual slices (horizontal
562	orientation) through the samples, whereas the images in Figure 7 are side on views of
563	the reconstructed stack of slices. The slices in Figure 6 would thus be viewable if
564	looking down from the top of the 3-dimensional stacks as shown in Figure 7. It is
565	elearly seen that there indicate a is a higher fraction of large pores were present in the
566	uncarbonated region (Fig.ure 7-(c)) than in the carbonated region (Figure 7 (a)), and
567	that there is-was a high fraction of pores in the vicinity of the carbonation front,
568	particularly just ahead of the very dense (bright) region in the sample (Fig. 7b).
569	
570	

572 \$73

Figure 7. The images show 3D reconstructions of the VOI (top row) and the VOI rethresholded to show only the large pores (bottom row), of the sample from Core 9.-:
The (a) column represents the carbonated region, -: the (b) column the partially
carbonated region (carbonation is from top left as showncorner), and; the (c) column
the uncarbonated region.

580

581 The porosity determined from <u>XCT</u> analysis of this data for two samples from Cores

582 6.1 and 9 is summarised in Table 3. The average segmented porosity of the

583 carbonated region <u>wais found to be</u> ~30% lower than that in the uncarbonated region,

which confirmsing the hypothesis that carbonation products are precipitatinged in

pore space, resulting in an increase in density.

586

587

588

589

Table 3. Summary of segmented porosity results

Core	Regions							
	Carbonated	Uncarbonated						
6.1								
Sample 1	33.3	-	-					
Sample 2	22.0	41.4	37.9					
9								
Sample 1	36.5	-	-					
Sample 2	31.7	43.2	43.5					
Average	30.9	42.2	40.7					
SD^1	6.2	1.2	3.9					

590 Notes: 1 – Standard deviation.

591

592

593 3.5 Raman spectroscopy

594

Despite leaving the samples to photobleach, all the spectradata recorded were
detrimentally affected still plagued by fluorescence, swamping almost the entire
Raman signal and leaving just the most intense bands visible. Ordinary Portland
cements are known to fluoresce [Richardson *et al.*, 2010], and so while not entirely
unexpected, the fluorescence was more severe than had been anticipated.
All of the spectra obtained showed the characteristic v₁ carbonate band at 1085 cm⁻¹,
attributed to either calcite or aragonite [Black, 2009]. No There was never any

Page 25

Commented [LB47]: it was these two samples which showed lower permeabilities earlier in the manuscript.

603	evidence of any other calcium carbonate polymorphs, or of carboaluminate phases	
604	was observed. In some of the more well-defined spectra it was possible to see a lattice	
605	vibration band at 280 cm ⁻¹ or the v_4 carbonate band at about 710 cm ⁻¹ ; these bands are	
606	attributed to-to calcitecalcium carbonate. There was typically an increase in the	
607	intensity of the carbonate bands within the carbonated zone compared to regions	
608	beyond the carbonation front, indicating higher concentrations of carbonate within the	
609	carbonated zone. Similarly, in isolated spectra away from the carbonation front it was	
610	possible to discern a weak band at ~360 cm ⁻¹ attributed to portlandite. It was not	
611	possible to identify any other species within the spectra. Indeed, the region $900 -$	
612	1030 cm ⁻¹ , where characteristic sulfate v_1 bands are expected would be present, was	
613	examined closely, but no peaks were observed. This should not be taken as there	
614	having been no sulfate species present, but rather that fluorescence obscured any	
615	bands.	
616		
617	3.6 Mineralogical and elemental analysis	Commented [C48]: This section should probably go
618		after the LA-ICP-MS since it is a refinement of that technique. No?
619	The distribution of major and minor elements was mapped using BSEM-EDXA for	
620	several regions of Core 6.1 closely matching those examined by other	
621	techniques.using micro-tomography. Data acquired The results for all other cores	
622	were very similar to these.	
623		
624	The BSEM-EDXA observations across the principal carbonation front are presented	Formatted: Highlight
625	in Figure 8, whereand show that there is a major change in the microstructure of the	
626	hardened grout upon carbonation can be observed. Their involves the decomposition	
627	of the fine-grained C-S-H gel matrix and the formation of a very fine-grained	
628	intermixture of calcium carbonate and silica-rich material at a micron scale can be	
629	observed, accompanied by the formation development of very concentric fine	
630	shrinkage cracks cemented by secondary calcium carbonate. This in agreement with	
631	has been observed and described previously from and observed in other experiments	
632	on the carbonation of NRVB and other <u>Portland cements</u> OPC based cements [e.g.	Formatted: Font: Italic
633	Rochelle and Milodowski, 2013].	
634		

635	In agreement with LA-ICP-MS results, Carbonation also results in significant
636	chemical changes and movement of major chemical components. Tthe EDXA
637	elemental maps recorded across the main carbonation reaction front <u>show that</u>
638	carbonation resulted in significant chemical changes and movement of major
639	chemical components. In particular, are consistent with the LA-ICP-MS results,
640	showing that K and, to a lesser extent, Na weare concentrated within the altered
641	cement matrix behind the main carbonation front. Ca has-wasbeen strongly
642	concentrated at the reaction front and. S is-was depleted from the carbonated region
643	behind the main reaction front, but and is enriched in the relatively unaltered region.
644	EDXA mapping shows that Sulfur was is-particularly concentrated immediately ahead
645	of the main carbonation front where the calcium carbonate precipitation is-was found
646	to be dominant. In the uncarbonated region ahead of the reaction front, localized high
647	concentrations of S, Al and Ca were observed in some samples, , which may facilitate
648	the formation of ettringite or other calcium aluminosulphates, but this can ould only
649	be confirmed by XRD. Theise wasere particularly observed in large pores voids
650	created by due to the presence of air-bubbles entrained within the grout during
651	mixing, which would allow the expansive formation of ettringite. Chlorine liswas
652	present in the epoxy-resin used during sample preparation, so the map for Cl is a
653	proxy for the resin-impregnated micro-porosity within the grout. The elemental maps
654	across the reaction front show that Cl wais markedly depleted within the carbonated
655	front compared to the remaining microstructure, suggesting a lower porosity and
656	higher density in this region. This reduction in porosity is likely to result from the
657	precipitation of calcium carbonate within the main porosity of the reaction front,
658	
659	

Commented [LB49]: this needs a ref. It also correlates with micro-CT but contradicts the current text regarding permeability

Formatted: Font color: Text 1

Commented [NC50]: ew Figure 8 from Tony.

Figure 8. The image shows a BSEM image with corresponding colour-contoured relative-intensity EDXA element distribution maps, recorded from a polished thin section prepared across the carbonation reaction front for Core 6.1.

664	
665	Areas far in front of the reaction front were also mapped, and showed that the cement
666	paste had not undergone intense alteration when compared to the grout within, and
667	behind, the main alteration front. In these regions C-S-H, calcium aluminate hydrates,
668	and partially hydrated cement clinker particles were still present. There However.
669	may have been some carbonation of the portlandite and C-S-H gel in these regions
670	hasd clearly occurred (Figure 9). Although "primary" calcium carbonate is present in
671	the NRVB as limestone flour added during the preparation of the NRVB cement,
672	these limestone particles are readily distinguished petrographically from the
673	secondary calcium carbonate produced by cement carbonation. The limestone flour
674	particles are characterized by angular fragments of calcium carbonate disseminated
675	throughout the NRVB samples (Figure 9). In contrast, secondary calcium carbonate
676	formed by carbonation reaction is manifested as fine-grained secondary calcium

- 677 <u>carbonate forming alteration fringes around the margins of portlandite crystals or in</u>
- 678 irregular patches replacing C-S-H matrix material (Figure 9). Secondary calcium
- 679 <u>carbonate was also sometimes observed nucleating around limestone flour fragments.</u>
- 680 EDXA analyses and X-ray maps show that the secondary calcium carbonate forms
- 681 fringes around portlandite crystals (Figure 9). Semi-quantitative compositional
- estimates from EDXA show the secondary carbonate fringes have a Ca:O ionic ratio
- 683 (~0.3) similar to that of the limestone fragments (Ca:O ~0.34), implying that the
- 684 <u>carbonation reaction product is essentially $CaCO_3$ (Ca:O = 0.33). In contrast, the</u>
- 685 <u>relatively unaltered cores of the partially-carbonated portlandite crystals have a much</u>
- higher Ca:O ionic ratios that vary between calcium carbonate (0.33) and portlandite
- 687 (0.5). The armouring of the surface of these portlandite crystals by a reaction rim of
- 688 secondary calcium carbonate will probably have protected or limited reaction with
- 689 <u>CO₂ to some extent.</u> to produce very fine grained calcium carbonate, but this was
- 690 difficult to confirm by BSEM
- 691 This phenomenon was best observed around the margins of primary limestone grains,
- 692 where secondary calcium carbonate may be nucleating as has been reported elsewhere
- 693 [Milodowski et al., 2013].

Commented [LB51]: especially given that the NRVB contained calcite as a starting material.

Commented [AM52R51]: This is now answered by the inclusion of a new figure – Figure 9 – which clearly illustrates the carbonation of portlandite in the cement matrix ahead of he main carbonation front.

The petrographic text is now expanded to give more detail of the carbonation fabrics observed ahead of the main carbonation front

Commented [LB53R51]: I think that this is fine. We know phenolphthalein is not a 100% accurate indicator of the position of a carbonation front.

Commented [LB54]: we need an image of these.

Commented [AM55R54]: This is now answered by the inclusion of a new figure – Figure 9 – which clearly illustrates the carbonation of portlandite in the cement matrix ahead of he main carbonation front.

The petrographic text is now expanded to give more detail of the carbonation fabrics observed ahead of the main carbonation front

Page 30

prepared 100 min from the vent finet, and 90 min anead of the carbonation front, for		
<u>Core 6.1</u> .		
3.7 XRD analysis		
The concentrations of crystalline phases in for the each of the three cores, and each of		
the carbonation zones was determined, and the results are shown in (Table 4).		
together with the geometric relationship of analysed material to the carbonation zone		
and main carbonation front defined by petrographic analysis,		
The main crystalline phase present in all samples was calcite (a polymorph of CaCO ₃)		
with smaller amounts of aragonite (another polymorph of CaCO ₃), dolomite		
(CaMg(CO ₃) ₂), portlandite (Ca(OH) ₂), gypsum (CaSO ₄ .2H ₂ O) and quartz (SiO ₂) also		
detected. The very small amounts of quartz and dolomite are unlikely to have formed		
during cement hydration and carbonation, and most probably represent impurities in		
the limestone additive used in the NRVB. Petrographic observations confirmed the		Commented [C56]: Yep, see Vasconcelos et al. (2018)
presence of fine fragments of crushed quartz and dolomite. Other more mMinor		
reflections were <u>also</u> tentatively identified for ardealite (Ca ₂ SO ₄ HPO ₄ .4H ₂ O, where		Commented [AM57]: I agree with Leon's comment that
the main reflection is at a <i>d</i> spacing of 7.78Å), ettringite (Ca ₆ Al ₂ (SO ₄) ₃ (OH) ₁₂ .26H ₂ O,		monocarboaluminate and NOT ardealite, as originally
where the main reflection is at ~ 9.6 Å) and a broad reflection with a <i>d</i> -spacing of		(highlighted) to deal with this. The results are now
7.78Å that may indicate the presence of calcium monocarboaluminate		cements with added limestone. This hopefully, answers
(Ca ₄ Al ₂ (CO ₃)(OH) ₁₂ .5H ₂ O, which has a characteristic diffraction peak at around 7.6Å		absence monocarboaluminate too.
(cf. Lothenbach et al., 2008)). The calcium monocarboaluminate appears to be present		As discussed by Lothenbach det al. (2008), the lack of
throughout the cores and may represent a reaction product formed with the limestone		crystallinity. This may go part-way to answering John's
flour, which would be consistent with other studies that have previously shown that	\	Comment below.
calcium mono-carboaluminate and ealeium hemicarboaluminate		Very surprised to not see any monocarbonate or hemicarbonate in there. See
(Ca ₄ Al ₂ (CO ₃) _{0.5} (OH) ₁₃ .5.5H ₂ O) phases form in hydrated blended cements containing		http://www.sciencedirect.com/science/article/pii/S0008 884608000161 for discussion (Fig 7 showing expanded
limestone additives (Matschei et al., 2007; Lothenbach et al., 2008). Calcium		view of peak positions)
hemicarboaluminate was not identified in present study on carbonated NRVB grout.		
However, its absence is not inconsistent with the observations of Lothenbach et al		
<i>(op. cit.)</i> who observed that both mono-carboaluminate and hemicarboaluminate		
formed after 2 to 7 days, the monocarboaluminate content then increased with time,		
whilst hemicarbonate disappeared after 14 days.		
	Implementation and vertical and you manifested of the carbonatoon non-, for Core 6.1. 3.7 XRD analysis The concentrations of crystalline phases in for theeach of the three-cores, and each of the carbonation zones was determined, and the results are shown in (Table 4). meether with the geometric relationship of analysed material to the carbonation zones and math carbonation zones was determined, and the results are shown in (Table 4). meether with the geometric relationship of analysed material to the carbonation zones and math carbonation zones and zone and zone and zone and zone and analysis. The main crystalline phase present in all samples was calcite (a polymorph of CaCO ₃) with smaller amounts of aragonite (another polymorph of CaCO ₃), dolomite (CaMg(CO ₃), portlandite (Ca(OH) ₂), gypsum (CaSO ₄ , 2H ₂ O) and quartz (SiO ₂) also detected. The very small amounts of quartz and dolomite are unlikely to have formed during cement hydration and carbonation, and most probably represent impurities in the limestone additive used in the NRVB, Petrographic observations confirmed the presence of fine fragments of crushed quartz and dolomite. Other more implicit on the present in all samples are analyzed and another polymorph of CaCO ₃) (OH) _{12,2} 6H ₂ O, where the main reflection is at ~9.6Å) and a broad reflection with a d-spacing of 7.78Å that may indicate the presence of calcium monocarboaluminate (CavAl-(CO-3)(OH) _{12,5} H ₂ O, which has a characteristic diffraction peak at	Interpreter two must not the very line, and yo mut mead of the carbonation from the Core 6.1. 3.7 XRD analysis The concentrations of crystalline phases in for theeach of the three-cores, and each of the carbonation zones was determined, and the results are shown in [Table 4.] incestion with the promotive relationship of analyzed material to the carbonation zone and main carbonation from defined by perographic analyzis The main crystalline phase present in all samples was calcite (a polymorph of CaCO ₃) with smaller amounts of aragonite (another polymorph of CaCO ₃), dolomite (CaMg(CO ₃) ₂), portlandite (Ca(OH) ₂), gypsum (CaSO ₄ ,2H ₂ O) and quartz (SiO ₂) also detected. The very small amounts of quartz and dolomite are unlikely to have formed during cement hydration and carbonation, and most probably represent impurities in the limestone additive used in the NRVB. Petrographic observations confirmed the presence of fine fragments of crushed quartz and dolomite. (CasAl ₂ (SO ₃);(OH) ₁₂ ,26H ₂ O, where the main reflection is at ~9.6A) and a broad reflection with a <i>d</i> -spacing of 7.78A that may indicate the presence of calcium monocarboaluminate (CatAl ₂ (CO ₃)O(DH) ₁₂ ,5H ₂ O, which has a characteristic diffraction peak at around 7.6A (cf. Lothenbach et al., 2008)). The calcium monocarboaluminate (CatAl ₂ (CO ₃) ₀ , sfOH) ₁₂ ,5H ₂ O, phases form in hydrated blended cements containing limestone additives (Matschei et al., 2007; Lothenbach et al., 2008). Calcium hemicarboaluminate was not identified in present study on carbonated NRVB grout, However, its absence is not inconsistent with the observations of Lothenbach et al. (<i>op. cit.</i>) who observed that both mono-carboaluminate content themic

735

ī.

736	Other minor weak reflect	ions at ~14 and ~7.1Å were also identified that may	
737	represent C-S-H phases (e.g. Biagioni et al., 2015). However, the identity of thes	e e
738	phases could not be conf	rmed. No AFm phases were found in the post-experime	ental
739	<u>NRVB grouts. However,</u>	Lothenbach et al. (2008) also found the Afm phases to b	have a second seco
740	very poor crystallinity, a	nd with variable compositions, making them difficult to	
741	detect by XRD analysis.		Formatted: English (United States), Highlight
742	possibly a chlorite miner	al (an aluminosilicate clay mineral possibly containing I	Ze
743	and/or Mg, where reflect	ons at14 and7.1Å were identified). However, the	
744	presence of these minor p	shases could not be confirmed.	
745			
746	XRD analyses found no (widence for the presence of monocarbonate or	
747	hemicarbonate phases, w	hich other authors have identified to form in hydrated	
748	blended cements cements	containing limestone additives (Lothenbach et al., 200	Commented [NC59]: Need to add ref.
749	The absence of monocart	whate or hemicarbonate in the present study may be du	e to
750	the way the NRVB grout	was cured and maintained during the carbonation	
751	experiments. Lothenbach	et al. (2008) undertook their XRD analyses on limestor	le
752	blended cement pastes th	at were cured and maintained water saturated for up to	Ł
753	year. They observed that	monocarbonate and hemicarbonate formed after 2 to 7 of	days,
754	monocarbonate then incr	eased with time, whilst hemicarbonate disappeared after	<u>-14</u>
755	days. In contrast, the NR	VB grout was not cured under water and maintained in a	<u>a</u>
756	water saturated state duri	ng the carbonation experiments. This may have prevent	ed
757	the formation of monoca	bonate or hemicarbonate in the present study. Afm pha	<mark>ses</mark>
758	were also not found in th	e post-experimental NRVB grouts. Lothenbach et al. (20	908)
759	also found these phases t	a have low crystallinity, with variable compositions mal	king.
760	it difficult to detect them	in XRD patterns. The non-detection of Afm phases in t	<u>he</u>
761	present study may also b	due to these phases being poorly crystalline or amorph	Commented [NC60]: Added by Tony.
762			Commented [AM61R60]: Nick – please delete this text I provided previously, as I have revised and re-written the
/63			text above (see nignlighted section)
764		Fable 4. Summary of XRD results	
765			
	Core Dist.	Mineralogy	
	Fro	$(wt.\%)^+$	
	m		

			inlet													
				eite	gonite	omite	tlandite	ingite	lealite	unse	artz	hile	orite			Commented [AM63R62]: Quartz and dolomite now discussed above – most probably impurities in the limestone additive.
				Cal	Are	Del	Per	田	Are	<u></u>	Ŭ.	Kat	E	$ \rangle$		discussed above – most probably impurities in the limestone additive.
	(5.1	0.1	91.5	-	0.7	-	1.8	3.2	-	0.6	2.2	-			Commented [LB62]: Where do these come from? Quartz
			0.7	91.2	-	0.6	-	1.7	3.3	-	0.9	2.3	-			cannot see where kaolin would come from.
			0.9	91.6	-	<0.5	-	1.7	3.2	-	0.9	4.0	-			Also, it is unfortunate that the analysis was not
			30.7	77.3	8.8	-	3.6	-	5.2	-	1.1	4.0	-			necessarily conducted before, at and after the carbonation
		_	4 8.8	75.5	8.0	-	4.7	-	5.7	-	1.9	4 <u>.2</u>	-			front. We cannot see whether there is enrichment of ettringite just ahead of the carbonation front, but looking
		9	0.2	91.8	-	0.6	-	-	2.8	2.4	<0.5	2.0	-			at the carbonation depths in table 2, I don't think that there is a correlation between the phenolphthalein depth
			0.6	90.8	_	0.6	-	-	3.2	2.2	0.9	2.3	-			and the XRD data. What we can say is that ettringite is
			1.2	82.3	3.1	<0.5	1.8	2.6	3.3	3.1	1.0	2.6	-			decomposed by the aggressive carbonation regime (in line with the findings of Grounds et al.
			20.0	73.2	9.0	-	5.0	3.2	4.7	-	0.9	4.0	-			T Grounds H G Midgley D V Novell Carbonation of attringite by atmospheric carbon dioxide. Thermochimica
		10	44.8	74.4	/.0	-	3.5	3.1	4.7	-	+.+	3.8	-			Acta, 1988, 135, 347-352)
		12	0.1	93.6	-	0.6	-0.5	-	3.0	-	<0.3	-	1.9			
			0.3	90.7	-	0.0	~0.3	2.3 7 7	3.4 5.0	-	0.9	-	1.8			Commented [LB62]: Where do these come from? Quartz might be present in the original NRVB (I doubt it) but I
			0./ 21.5	00.2 61.0	-	-	24.0 22.5	1.1	3.0 4.0	2.0	0.8	-	2.3			cannot see where kaolin would come from.
			21.3 41.5	01.9 60.0	-	-	22.3	4.0 4.1	4.9 5.2	3.9 4.1	0.7	-	2.4 2.2			Also, it is unfortunate that the analysis was not
4	lote	s: ¹ v Cable 4	vt <u>.% of</u> . Sumr	all crys nary of	talline quant	materia) itative)	l presei <mark>XRD r</mark>	nt. esults	<mark>for cr</mark>	ystal	<mark>line co</mark>	<mark>mpone</mark>	ents			front. We cannot see whether there is enrichment of ettringite just ahead of the carbonation front, but looking at the carbonation depths in table 2, I don't think that there is a correlation between the phenolphthalein depth and the XRD data. What we can say is that ettringite is decomposed by the aggressive carbonation regime (in line
					<u>(1</u>	<u>iormali</u>	sed to	<u>100%</u>)							with the findings of Grounds et al. T Grounds H G Midgley D V Novell Carbonation of ettringite by atmospheric carbon dioxide, Thermochimica Acta, 1988, 135, 347-352)
		<u>from</u>		Relat	tive mi % norr	<u>neral p</u> nalised	roport to 100	<u>ions</u> %) ¹			20	aCO ₃ ratio				
		nce (cm									asee	al (ite)	Relati	onsł	ni	p to
	ore	<u>ent</u>									ųd.	tot	petro	rap	h	Formatted Table
	0	ul di et v		9		je.	ai				nor	ite : ara	define reacti	d ca	ro	bonation ont
		<u>Vertica</u> inl	Calcite	Aragonit	<u>Dolomite</u>	Portland	Ettringit	Gypsum	Quartz		<u>Other mi</u>	<u>Portland</u> (calcite +	Itatti			
		<u>0.1</u>	<u>96.7</u>		<u>0.7</u>		<u>1.9</u>		<u>0.6</u>	<u>M</u> 7.1	<u>ono.</u> 1 Å	0.000	Carbo	nateo	d :	zone
6	<u>i.1</u>	<u>0.7</u>	<u>96.6</u>		<u>0.6</u>		<u>1.8</u>		<u>1.0</u>	$\frac{M}{7}$	ono. 1 Å	0.000	Carbo	nated	d	Formatted Table
	-	<u>0.9</u>	<u>97.2</u>				<u>1.8</u>		<u>1.0</u>	<u>M</u>	<u>ono.</u>	0.000	Main o	carbo		tation
					1	1	1			1.	п		reactil	<u>m 10</u>	ш	

	<u>30.7</u>	<u>85.1</u>	<u>9.7</u>		<u>4.0</u>			<u>1.2</u>	<u>Mono.</u> <u>7.1 Å</u>	<u>0.042</u>	Relatively unaltered NRVB distant from reaction front
	<u>48.8</u>	<u>83.8</u>	<u>8.9</u>		<u>5.2</u>			<u>2.1</u>	<u>Mono.</u> <u>7.1 Å</u>	<u>0.056</u>	Relatively unaltered NRVB distant from reaction front
	<u>0.2</u>	<u>91.8</u>	=	<u>0.6</u>	Ξ	Ξ	<u>2.4</u>	<u><0.5</u>	<u>Mono.</u> 7.1 Å	<u>0.000</u>	Carbonated zone
	<u>0.6</u>	<u>90.8</u>	Ξ	<u>0.6</u>	Ξ	Ц	<u>2.2</u>	<u>0.9</u>	<u>Mono.</u> 7.1 Å	<u>0.000</u>	Main carbonation reaction font
<u>9</u>	<u>1.2</u>	<u>82.3</u>	<u>3.1</u>	<u><0.5</u>	<u>1.8</u>	<u>2.6</u>	<u>3.1</u>	<u>1</u>	<u>Mono.</u> <u>7.1 Å</u>	<u>0.021</u>	Matrix immediately in front of reaction front
	<u>20.0</u>	<u>73.2</u>	<u>9</u>	Ξ	<u>5</u>	<u>3.2</u>	Ξ	<u>0.9</u>	<u>Mono.</u> <u>7.1 Å</u>	<u>0.061</u>	Relatively unaltered NRVB distant from reaction front
	<u>44.8</u>	<u>74.4</u>	<u>7.6</u>	=	<u>5.3</u>	<u>3.1</u>	Ξ	<u>1.1</u>	<u>Mono.</u> <u>7.1 Å</u>	<u>0.065</u>	Relatively unaltered NRVB distant from reaction front
	<u>0.1</u>	<u>93.6</u>	Ξ	<u>0.6</u>	Ξ	Ц	Ξ	<u><0.5</u>	<u>Mono.</u> 14.1 Å	<u>0.000</u>	Carbonated zone
	<u>0.5</u>	<u>90.7</u>	=	<u>0.6</u>	<u><0.5</u>	<u>2.3</u>	=	<u>0.9</u>	<u>Mono.</u> 14.1 Å	<u>0.000</u>	Main carbonation reaction font
<u>12</u>	<u>0.7</u>	<u>60.2</u>	Ξ	Ξ	<u>24</u>	<u>7.7</u>	Ξ	<u>0.8</u>	<u>Mono.</u> <u>14.1 Å</u>	<u>0.399</u>	Relatively unaltered NRVB distant from reaction front
	<u>21.5</u>	<u>61.9</u>	Ξ	Ξ	<u>22.5</u>	<u>4</u>	<u>3.9</u>	<u><0.5</u>	<u>Mono.</u> <u>14.1 Å</u>	<u>0.363</u>	Relatively unaltered NRVB distant from reaction front
	<u>41.5</u>	<u>60</u>	=	=	<u>23.4</u>	<u>4.1</u>	<u>4.1</u>	<u>0.7</u>	<u>Mono.</u> 14.1 Å	<u>0.390</u>	Relatively unaltered NRVB distant from reaction front

771 <mark>Not</mark>

772 ¹ Normalisation excludes quantification of minor calcium monocarboaluminate and

773 <u>unidentified 7.1 Å and ~14 Å phases.</u>

774 ² "Mono." = calcium monocarboaluminae; "7.1 Å" = unidentified phase; "14 Å" =

- 775 <u>unidentified phase.</u>
- 776

777 Quantification of the absolute composition the NRVB samples by XRD is

778 problematic. Petrographic observations indicate that there is a significant amount of

779 C-S-H and AFm material present in the largely unaltered cement matrix ahead of the

780 main carbonation front. These phases are disordered or amorphous, and are not easily

781 detectedable by XRD. Therefore, the quantitative XRD data presented in Table 4 only

782 represent the "relative" proportions of the crystalline phases present. This, together

783	with a large proportion of the calcite present representing original limestone flour
784	additive, means that the extent of carbonation cannot be evaluated simply from the
785	total relative amounts of calcite and aragonite alone. However, because carbonation
786	involves the replacement of portlandite (as well as C-S-H) by calcium carbonate (as
787	shown by petrographic analysis), the amount of portlandite relative to the total
788	amount of calcium carbonate (calcite + aragonite) should provide an indicator of how
789	deep carbonation has occurred in the grout.
790	
791	The portlandite : total CaCO ₃ ratios based on the XRD results is presented in Table 4.
792	The detection of portlandite is a key marker of regions that are not yet fully
793	carbonated, and appears to correlate with the radial distance of the sample from the
794	centre of the vent. The XRD data show that portlandite has completely reacted to
795	form calcium carbonates within the reaction front and the main carbonated zone
796	behind this front. The relatively unaltered cement ahead of the- main reaction front
797	still contains significant portlandite. However, the portlandite : total CaCO3 ratios
798	progressively increase with increasing distance from this front. This implies that
799	carbonation has occurred in the cement ahead of the main reaction front (where
800	complete carbonation has occurred) but that this diminishes with increasing distance.
801	This is consistent with the BSEM-EDXA petrographic observations, which showed
802	patchily-distributed secondary fine-grained calcium carbonate replacing and
803	armouring portlandite and C-S-H in the cement matrix ahead of the main reaction
804	front (see previous discussion in Section 3.6 and illustrated in Figure 9.
805	
806	Core 12 appeareds to be anomalous, compared to cores 6.1 and 9, with respect to the
807	portlandite content of the relatively unaltered grout. The amount of portlandite
808	preserved in this core appearse to be significantly higher than the other two cores, and
809	may reflect some degree of heterogeneity of carbonation within the experimental
810	waste drum.
811	
812	Aragonite was identified within the uncarbonated material ahead of the main reaction
813	front, but is absent in the main carbonated grout regions. Significant aragonite is
814	metastable and unlikely to have been present in the original limestone flour additive.
815	Therefore, the aragonite is likely to be a reaction product in the cement, and may
816	provide some further indication of depth of penetration and reaction of CO2 ahead of

817	the main carbonation front. It would appear that if aragonite had -formed initially	
818	within the main carbonated zone, it has subsequently been replaced by calcite as the	
819	degree of carbonation alteration progressed.	
820		
821	The regions of carbonated grout behind the main reaction front contained high	
822	quantities of calcite (typically >80%). The areas closest to the centre of the vent and	
823	base of the vessel contained the highest calcite content, whereas the least amount was	
824	detected in the areas at the edge of vessel and furthest from the vent. Regions located	
825	between the two contained an intermediate quantity of calcite.	
826		
827	In most cases portlandite or aragonite were not detected in the carbonated regions, but	
828	small amounts were found distant from the centre of the vent (200mm and at the	
829	vessel edge). The detection of portlandite, which is a key marker of regions that are	
830	not yet fully carbonated, appears to correlate with the radial distance of the sample	
831	from the centre of the vent; portlandite was detected in the main alteration zone only	
832	in the samples furthest from the centre of the vent.	
833		
834	The uncarbonated zones ahead of the alteration front also contained significant	
835	quantities of calcite as the NRVB contains added limestone flour, but the amounts	
836	were typically lower (55-75%) than in the corresponding carbonated zones. The	
837	uncarbonated regions also typically contained higher quantities of portlandite than in	
838	the carbonated regions.	
839	Aragonite was identified in some samples within the uncarbonated material ahead of	
840	the main reaction front, but there was no identifiable trend between aragonite	
841	concentration and location of the samples from the vent. A significant amount of the	
842	calcite determined by XRD can be attributed to limestone flour that was originally	
843	added in the NVRB formulation (Table 1). However, the amount of calcite present in	
844	the 'nominally uncarbonated zone' identified by phenolphthalein staining is too great	
845	(over 80 wt.% in some subsamples: Table 4, Figure 8) to be due to the limestone flour	
846	additive alone. This indicates that significant carbonation of the NRVB cement matrix	
847	has proceeded ahead of the visible carbonation front. This was confirmed by BSEM-	
848	EDXA petrographic observations, which showed fine grained calcium carbonate	
849	replacing the cement matrix in diffuse, irregular patches.	Commented [NC64]: Added by Tony
850		

851	In terms of the minor mineral phases, quartz and dolomite are phases within the	
852	limestone flour used in the grout. Gypsum, ettringite and calcium	Formatted: Highlight
853	monocarboaluminate and ardealite are likely to be secondary precipitates formed	Commented [NC65]: From John Provis. I've never
854	during the hydration of the cement in the grout. These minor phases could not	before seen this as a cement hydration product, how convinced are we of its existence/presence here?
855	generally be discriminated during petrographic analysis (BSEM-EDXA) because of	
856	their low concentration, their fine grain size and the intimate mixing of the hydrated	
857	cement phases. However, discrete coarse crystals of ettringite were observed in large	
858	voids pore space in the hardened grout that represent air bubbles that were originally	
859	entrained in the cement paste during mixing, and that were previously occupied by air	
860	or water. There was no obvious relationship between the distributions of these minor	
861	phases and the carbonation front. Ardealite was tentatively identified as a very minor	
862	component on the basis of very weak X-ray reflections but no evidence for it was	
863	found during petrographic analysis.	Commented [AM66]: Delete this in the light of the
864		revisions above
865		
866	4. Further Discussion	Commented [C67]: This a pure repetition of what is
867		written in the results. It's fine, but the results need a complete re-write to avoid the repetition. I'm not
868	Using LA-ICP-MS, micro-tomography and EDXA three distinct regions were	criticizing, because I know it's difficult to put the wor several authors together, but in this state, the paper v
869	identified in each sample, 1) carbonated, 2) partially carbonated and 3) uncarbonated.	be accepted by a (good) journal, which I think RWM would prefer.
870	A carbonation front and a transition zone were identified in the partially carbonated	
871	region. Analysis by LA-ICP-MS and EDXA show <u>ed</u> that K and Na are-were	
872	concentrated within the carbonated regions behind the main reaction front, and the	
873	concentration wais greatest in a narrow zone up to 1-2mm wide immediately at the	Commented [LB68]: This supports the suggestion t
874	rear of where the Ca is-was concentrated within the main reaction front. The	the label in the first column of table 2 should be "mm "cm".
875	carbonation front is was enriched in S and Al, and the former is was depleted from the	Commented [C69]: Wrong word – choose another!
876	carbonated region at and behind the main reaction front. Micro-tomography results	
877	indicated that the porosity of the carbonated region wais lower than in the	
878	uncarbonated region due to deposition of secondary calcium carbonate within the pore	
879	space of the hardened grout (as confirmed by BSEM/EDX); however, micro-	Commented II P701. I day't arrest Three are 2 date
880	permeametry results showed that the grout is was more permeable in the carbonated	points for core 6 and 1 for core 9 which are clearly
1 881	region. This higher permeability may be due to greater interconnectivity of micro-	between the carbonated and non-carbonated regions
882	fractures within the pore network.	Commented [C71]: Or the detection limit of the
883		technique?
884	Similar porosity results to those obtained here have been reported by Hills et al.	Commented [EJB72]: Agree that we need a discussi on this - Ed

hlight

Page 37

sults. It's fine, but the results need a e to avoid the repetition. I'm not se I know it's difficult to put the words of cogether, but in this state, the paper won't (good) journal, which I think RWM

B68]: This supports the suggestion that rst column of table 2 should be "mm" not

B72]: Agree that we need a discussion on this - Ed

·...

885 [1999], who used SEM to identify a porosity reduction of up to 26% in hardened cemented wasteforms subjected to accelerated carbonation. Lange et al. [1996] have 886 887 also reported increased mechanical strength in carbonated cement wasteforms, which 888 they associated with the precipitation of calcium carbonate products in the specimen 889 pores, and an increase in density and reduction of the total porosity. The porosity of 890 the partially carbonated region is similar to that of the uncarbonated region, and Figures 6 and 7 show that there is an increase in porosity near to the carbonation 891 892 front. 893 894 The higher permeability of the carbonated regions when investigated by micro-895 permeametry appears at first to contradict the petrographic observations and the X-896 ray micro-tomography results, which indicate that the porosity of the carbonated zone 897 is reduced in comparison to the unaltered cement. However, this may be because the 898 micro-porosity in the carbonated cement is more interconnected than in the unaltered 899 cement matrix. The petrographic analysis showed the presence of micro-fractures in 900 the carbonated region (described as fine shrinkage cracks), and whilst these micro-

901 fractures largely appeared to be cemented by secondary calcium carbonate reaction

902 product, the presence of some uncemented micro-fractures may provide a network of

903 higher permeability pathways within the altered cement.

904

905 The LA-ICP-MS results suggest that alkali ions are released from the cement

\$06 component of the NRVB grout during the hydration of the \ominus PC powder, and become

907 distributed between the aqueous solution and the precipitating C_S_H phases

908 [Lothenbach et al., 2008]. The results shown here suggest that the carbonation of C-S-

909 H phases corresponds to enhanced alkali concentrations, evidenced by the higher

- 910 concentration of Na and K in the carbonated regions of the samples. In their study of
- 911 the carbonation of \ominus PC pastes, Anstice *et al.* [2005] reported a decrease in Na and K
- concentration in the pore solution extracted from carbonated samples *cf.* uncarbonated

913 material, which is the opposite of the results presented here. They postulated that this

- 914 was due to enhanced binding of alkali metals to the solid products of carbonation,
- 915 which they stated was most likely to be by the hydrous silica gel formed during
- 916 decalcification of C-S-H. Because the concentrations of Na and K were lower in the
- 917 immediate vicinity of the carbonation front in our work, it may be hypothesised that
- 918 either 1) C-S-H carbonation is not the main process that occurs in the vicinity of the

Page 38

Commented [LB73]: I don't think this is needed if we accept that there are outliers in the permeability data.

Commented [EJB74]: As above need a phone discussion on this. Ed

Commented [EJB75]: I'd agree with Leon's LB56 point below. Wouldn't we expect the carbonates of K and Na to be less soluble than the hydroxides?

919 carbonation front (which would be consistent with the fact that the large additional

quantity of Ca(OH)₂ contributed to the NRVB by the slaked lime component of its 920

- 921 formulation must also carbonate, compared to the much lower content formed in
- 922 Portland cement hydration), or 2) that C-S-H carbonation is slower in this region;
- 923 these may be the reasons why the interfacial region at the carbonation front in our
- 924 work has a higher porosity than the fully-carbonated region.
- 925

946

926 The results from the X-ray micro-tomography studies warrant further discussion. In a recent study, Morandeau et al. [2014] evaluated the carbonation of pure Portland 927 928 cement binders via a gamma ray attenuation method (GRAM), and also identified a 929 reduction in the total porosity of carbonated specimens; however, they observed 930 densification in the vicinity of the surface where carbonation seemeds to be stabilised, which differs from the results observed in this study. The discrepancy between that 931 932 study and the NRVB results reported here could be associated with differences in the 933 chemistry of NRVB and hydrated plain Portland cement as noted above, leading to 934 differences in the kinetics of carbonation of the reaction products forming in these 935 binders, or the differences in resolution of GRAM vs. micro-tomography, so that the 936 increase in the porosity near the carbonation front could not be detected by GRAM. It 937 has been proposed [Villain et al., 2007] that under natural carbonation conditions, the 938 carbonation of portlandite and C-S-H occurs simultaneously, even though from a 939 thermodynamic perspective carbonation of portlandite prevails over CSH carbonation [Glasser and Matschei, 2007]. Morandeau et al. [2014] have observed that the initial 940 941 rates of carbonation of these phases are comparable, but while carbonation of C-S-H 942 continues to take place, the carbonation of portlandite reduces and stops during the time of CO₂ exposure. 943 944 945 Additionally, it was proposed [Morandeau et al., 2014] that the carbonation of C-S-H

- is the main contributor to pore clogging, with the effects depending on its Ca/Si ratio, 947 while dissolution of portlandite via carbonation can increase the porosity to partially
- 948 counteract the pore-blocking effects of CaCO₃ precipitation. Considering this, it is
- 949 likely that dissolution of calcium hydroxide, along with carbonation of ettringite and
- 950 AFm phases, with a limited extent of decalcification of the C-S-H phases, could be
- taking place in the vicinity of the carbonation front, thereby reducing the precipitation 951
- 952 of carbonation product in the pores of this region. This hypothesis is consistent with

Commented [LB76]: I'm not sure about this. Anstice et a nalysed the pore solution, we've analysed the solid Therefore, you would expect the two to be different

It is also important to note that we have a higher portlandite content and less C-S-H than in OPC. However, the use of pure CO2 will also have an effect, where C-S-H is more likely to be carbonated than at atmospheric levels (Castellote et al)

Formatted: Font: Italic

Commented [LB77]: Again, this seems to stem from the

Commented [LB78]: Morandeau showed that C-S-H shrinks upon carbonation, but CH carbonation leads to an increase in volume. In normal cements the two almost cancel out and there is a slight reduction in porosity. In our case, there is far more CH so the overall effect would be a reduction in porosity.

Commented [LB79]: the situation in pure CO2 is different, with simultaneous carbonation of CH and C-S-H. In part this is due to steric effects with CH crystals covered with carbonation products, so preventing their further carbonation.

Commented [LB80]: My more recent results (from Julia erich, but as yet unpublished) showed carbonation of ortlandite to occur prior to carbonation of the C-S-H. Only once the CH had carbonated did the C-S-H begin to arbonate significantly. i.e. the portlandite acts as a arbonation buffer.

ven the observation that carbonation of CH leads to a eduction in porosity, while carbonation of C-S-H leads to n increase, and that the NRVB has a much higher ortlandite content, this would support a decrease i rosity upon carbonation of NRVB. This is in line with EM and micro-CT, but not with permeability. Hence my oncerns over permeability data (more specifically the st couple of data points for 2 of the 3 cores).

Commented [LB81]: I read Morandeau's paper very ifferently. Carbonation leads to decalcification of the H which leads to shrinkage. In turn calcium carbonate recipitation leads to pore blocking. There is only an ncrease in porosity if the CH dissolves and does not recipitate calcium carbonate. This is not the case in

956 silica gel forming during decalcification of C-S-H in this area. 957 958 The conditions used to induce carbonation also have a significant impact on how this 959 phenomenon proceeds, and therefore it is important to consider that the NRVB 960 evaluated in this study was carbonated under conditions of high CO2 pressure, when 961 compared to the 1-4kPa partial pressure used in most cement/concrete carbonation 962 tests (with the exception of 100% CO2 or supercritical conditions used in occasional specialised work). Under those conditions, the carbonation of the C₋S₋H phase is 963 964 known to prevail over carbonation of calcium hydroxide as a consequence of the 965 formation of crystalline calcium carbonate on the surface of the calcium hydroxide, 966 inhibiting its further dissolution [Hidalgo et al., 2008; García-González et al., 2006]. 967 Densification of samples carbonated under high CO2 pressures has been identified, 968 consistent with the theory of pore clogging due to carbonation of CSH as suggested 969 by Morandeau et al. [2014]. This further supports the hypothesis that in the vicinity of 970 the carbonation front of the NRVB evaluated, dissolution of portlandite via 971 carbonation to produce calcium carbonate, along with limited decalcification of C-S-

the LA-ICP-MS results, where a reduced concentration of alkalis in the vicinity of the

associated with their potential binding to solid carbonation products and the hydrous

carbonation front was observed, where higher concentrations of alkalis were

972 H, are the main degradation processes taking place in this region.

973

953

954 955

In analysing the XRD results further, it is relevant to discuss the following points in

975 more detail. There is significant formation of secondary calcium carbonate behind the

- 976 main reaction front (defined by the extent of phenolphthalein staining). Within the
- 977 main carbonated region behind the reaction front, nearly all the portlandite, C-S-H
- 978 and calcium (sulfo)aluminate hydrate phases are replaced by calcite. Calcite is the

979 principal carbonate phase precipitated, although a small amount of aragonite is

- 980 sometimes present.

981

- 982 <u>T</u>However, this study also demonstrates that the impact of carbonation extends well
- 983 beyond the apparent limit of reaction indicated by phenolphthalein staining, and
- 984 reaction has occurred throughout the sample. Even in the regions furthest from the
- 985 centre of the vent, where phenolphthalein staining indicates suggests that carbonation
- has not taken place, the XRD and petrographic observations results indicate show that

Page 40

Commented [LB82]: there's a lot of studies using 100% CO2. What you have written next is important. When using 100% CO2 you get more C-S-H carbonation than under atmospheric conditions.

987	portlandite and C-S-H have partially-reacted with CO2 to produce secondary calcium	
988	carbonates. This is reflected in the portlandite : CaCO ₃ ratio, which progressively	Form
989	decreases with increasing distance from the reaction front, and by the presence of	
990	portlandite crystals armoured by reaction rims of CaCO3 in the "relatively unaltered"	
991	cement. ~55 75 % of the crystalline phases present is calcite, and up to 9 % is	
992	aragonite. The total calcium carbonate content of the regions indicated by	
993	phenolphthalein staining to be uncarbonated is well in excess of the 28.61 wt.% of	
994	limestone flour in the original grout (or 44.39 wt.% of the total solids content), so	
995	the The XRD and petrographic results clearly indicate that the extent of carbonation is	
996	underestimated by phenolphthalein staining. These observations are consistent with	Comn
997	other studies which also found that significant carbonation of NRVB grout occurred	strong
998	ahead of the main visibly distinct carbonation reaction front [Rochelle and	C-S-H,
999	Milodowski, 2013]. The petrographic observations clearly showed the growth of	disord
1000	secondary calcite within the partially carbonated grout matrix. Petrographically, it is	disord is quit
1001	possible to differentiate between the calcite originally present in the limestone flour	origin of carl
1002	and the secondary calcite formed from the carbonation of other phases, and this	Com
1003	supports the observations made using XRD. Finally, there appears to be a distinct	to son
1004	relationship between the amount of carbonation and the radial proximity to the centre	with in
1005	of the vent; material closest to the vent has been carbonated more than material	Comn I don't
1006	further away from the vent.	on bor work t
1007		gas ex
1008	Needs a section here on "so what?" for geological disposal of nuclear waste?	Comn text co
1009		Studie
1010		Do we
1011	5. Conclusions	Comn illustr
1012		includ
1013	Our investigations have shown that The main conclusions resulting from this work	Comn
1014	are:	
1015	• <u>Ccarbonation of NRVB</u> does not proceed as a horizontal carbonation front, but	Form
1016	by a radial front with carbonation occurring well beyond the main reaction front.	
1017	 Three distinct regions were identified in the hardened NRVB grouts; 	
1018	carbonated, partially carbonated and uncarbonated. Within the partially	
1019	carbonated region, a carbonation front and a transition zone were discerned.	
•		

ormatted: Subscript

Commented [NC83]: From John Provis.

m concerned about this conclusion being highlighted so trongly, as I'm not convinced it's correct. The ncarbonated region should contain a significant level of -S-H, which is disordered and so excluded from the XRD uantification, and the AFm phases may also be quite isordered. If the hydrated NRVB was say 30% isordered phases (C-S-H + low-crystallinity AFms, which is quite feasible), that would match the XRD results to the riginal recipe very closely and not need the assumption f carbonation ahead of the front?

Commented [AM84R83]: I hope this is now answered to some xtent by the revised and motre complete describtion of XRD and petrographic fresults (together with images) given above.

Commented [NC85]: From John Provis. I don't think this comparison is valid – the paper cited is on borehole cements, not NRVB, and the experimental work there was based on CO2-saturated brine rather than gas exposure?

Commented [AM86R85]: Agree – I have deleted this text comparing the results to previous carbonation studies by Rochelle and Milodowski, 2013)

Commented [NC87]: From John Provis. Do we have the data to show this?

Commented [AM88R87]: We now describe and illustrate this in detail in the Petrography section, including new images

Commented [C89]: Too long, needs re-writing

ormatted: Normal, No bullets or numbering

1020	K and to a lesser extent Na are were concentrated within a 1-2 mm deep	
1021	zone in the carbonated region just ahead of the main reaction front <u>, and -</u>	
1022	• <u>Tt</u> he area just ahead of the carbonation front is was enriched in both S	
1023	and Al _{ir} and S is-was_depleted from the carbonated material behind the main	
1024	reaction front. —	
1025	within the main carbonated region, virtually all of the hydrated cement	
1026	phases (portlandite, calcium silicate hydrate and calcium aluminate hydrate) are	
1027	<u>were </u> carbonated and calcite is <u>was</u> the predominant phase<u>. Aragonite is also</u>	
1028	formed, but this appears to be initially formed ahead of the main reaction front,	
1029	and is possibly destabilized, replaced and altered to calcite as more extensive	
1030	carbonation proceeds.	
1031	Some carbonation had occurred throughout the canister. Even within	
1032	material indicated by phenolphthalein solution to be uncarbonated, partial	
1033	carbonation had occurred.	 Commented [NC90]: From John Provis.
1034	 The porosity of the carbonated grout is was lower than in the 	See comment on Page 30.
1035	uncarbonated material due to replacement of pore space with precipitated	XRD and petrography, which shows this is occurring
1036	calcium carbonate. However, the highest porosity was observed in the partially	
1037	carbonated region.	Commented [LB92]: you say the opposite to this on page 12
1038		

1039 6. Acknowledgements

1040	
1041	The authors acknowledge the contribution of S Williams at Radioactive Waste
1042	Management in funding the experimental work that led to the preparation of this
1043	paper. The X-ray microtomography work was conducted at the Manchester X-ray
1044	Imaging Facility, and the authors thank the technical staff of that facility for their
1045	assistance in scanning the samples and calculating reconstructions. We thank Neil
1046	Bramhall for assistance with LA-ICP-MS measurements. AEM, LPF, SJK, IM and
1047	AB publish with the permission of the Executive Director of the British Geological
1048	Survey (NERC). CLC is grateful to EPSRC for the award of an ECR Fellowship
1049	(EP/N017374/1). Portions of this work were performed at the MIDAS Facility, at the
1050	University of Sheffield, which was established with support from the Department of
1	

- 1051 Energy and Climate Change.
- 1052

1	007	
	$u_0/$	

1088	Collier, N. C., 2016. Transition and decomposition temperatures of cement phases – a
1089	collection of thermal analysis data, Ceramics-Silikáty 60, 338-343.
1090	
1091	Fernández-Bertos, M., Simons, S. J. R., Hills, C. D., Carey, P. J., 2004. A review of
1092	accelerated carbonation technology in the treatment of cement-based materials and
1093	sequestration of CO ₂ . J. Hazard. Mater. B112, 193-205.
1094	
1095	Francis, A. J., Cather, R., Crossland, I. G., 1997. Development of the Nirex Reference
1096	Vault Backfill; Report on Current Status in 1994, S/97/014.
1097	
1098	Gallucci, E., Scrivener, K., Groso, A., Stampanoni, M., Margaritondo, G., 2007. 3D
1099	experimental investigation of the microstructure of cement pastes using synchrotron
1100	X-ray microtomography (µCT). Cem. Concr. Res. 37, 360-368.
1101	
1102	Garboczi, E. J., Bentz, D. P., 2001. The effect of statistical fluctuation, finite size
1103	error, and digital resolution on the phase percolation and transport properties of the
1104	NIST cement hydration model. Cem. Concr. Res. 31, 1501-1514.
1105	
1106	García-González, C. A., Hidalgo, A., Andrade, C., Cruz Alonso, M., Fraile, J., López-
1107	Periago, A. M., Domingo, C., 2006. Modification of composition and microstructure
1108	of Portland cement pastes as a result of natural and supercritical carbonation
1109	procedures. Industrial Engineering Chemistry Res. 45, 4985-4992.
1110	
1111	Glasser, F., Matschei. T., 2007. Interactions between Portland cement and carbon
1112	dioxide. in: Proceedings of the 12th International Congress on the Chemistry of
1113	Cement. Montreal, Canada.
1114	
1115	Harris, A. W., Boult, K. A., Manning, M. C., Tearle, W. M., 2003a. Experimental
1116	study of carbon dioxide uptake by NRVB and 3:1 BFS/OPC, Serco Report
1117	Serco/ERRA-0453.
1118	
1119	Harris, A. W., Manning, M., Tearle, W. M., 2003b. Carbonation of Nirex Reference
1120	Vault Backfill, SERCO/ERRA-0454.

1121	
1122	Heyes, D., Butcher, E. J., Borwick, J., Milodowski, A. E., Field, L. P., Kemp, S. J.,
1123	Mounteney, I., Bernal, S. A., Corkhil, C. L., Hyatt, N. C., Provis, J.L., Black, L.,
1124	2015. Demonstration of carbonation of the NRVB, NNL(14)13296.
1125	
1126	Hidalgo, A., Domingo, C., Garcia, C., Petit, S., Andrade, C., Alonso, C., 2008.
1127	Microstructural changes induced in Portland cement-based materials due to natural
1128	and supercritical carbonation. J. Mater. Science, 43, 3101-3111.
1129	
1130	Hills, C. D., Sweeney, R. E. H., Buenfeld, N. R., 1999. Microstructural study of
1131	carbonated cement-solidified synthetic heavy metal waste. Waste Management 19,
1132	325-331.
1133	
1134	Hobbs, D.W., 2001. Concrete deterioration: causes, diagnosis, and minimising risk.
1135	Int. Mater. Rev. 46, 117-144.
1136	
1137	Hoffmann, U., Stipp, S. L. S., 1998. Preliminary results on the behaviour of Ni(II) in
1138	the calcite-water system, Mineralogical Magazine 62A, 642-643.
1139	
1140	Johannesson, B., Utgenannt, P., 2001. Microstructural changes caused by carbonation
1141	of cement mortar. Cem. Concr. Res. 31, 925-931.
1142	
1143	Landis, E.N., Keane, D.T., 2010. X-ray microtomography. Mater. Charact. 61, 1305-
1144	1316.
1145	
1146	Lange, L. C., Hills, C. D., Poole, A. B., 1996. The effect of accelerated carbonation
1147	on the properties of cement-solidified waste forms. Waste Management 16, 757-763.
1148	
1149	Lange, L. C., Hills, C. D., Poole, A. B., 1997. Effect of carbonation on properties of
1150	blended and non-blended cement solidified waste forms. J. Hazard. Mater. 52, 193-
1151	212.
1152	
1153	Lothenbach, B., Le Saout, G., Gallucci, E., Scrivener, K., 2008. Influence of
1154	limestone on the hydration of Portland cements. Cem. Concr. Res. 38, 848-860.

Matschei, 1., Louienoach, B., Glasser, F.F. 2007. The fole of calcium carbonate in
cement hydration. Cem. Concr. Res., 37, 551-558
Milodowski, A. E., Field, E., Butcher, A., Parkes, D., 2013. Preliminary petrograph
and micropermeametry investigations of reacted cements from National Nuclear
Laboratory experiments on Nirex Reference Vault Backfill (NRVB) cement
carbonation. British Geological Survey Commissioned Report CR/13/027.
Morandeau, A., Thiéry, M., Dangla, P., 2014. Investigation of the carbonation
mechanism of CH and CSH in terms of kinetics, microstructure changes and moist
properties. Cem. Concr. Res. 56, 153-170.
Nuclear Decommissioning Authority, 2010a. NDA/RWMD/033. Geological dispos
Near-field evolution status report.
Nuclear Decommissioning Authority, 2010b. NDA/RWMD/037. Geological dispo-
Gas status report.
Nishikawa, T., Suzuki, K., Ito, S., 1992. Decomposition of synthesized ettringite by
carbonation. Cem. Concr. Res. 22, 6-14.
Poonguzhali, A., Shaikh, H., Dayal, R.K., Khatak, H.S., 2008. Degradation
mechanism and life estimation of civil structures - A review. Corros. Rev. 26, 215
294.
Poulsen, S. L., Jakobsen, H. J., Skibsted, J., 2010. Incorporation of phosphorus gue
ions in the calcium silicate phases of Portland cement from 31P MAS NMR
spectroscopy. Inorg. Chemistry 49, 5522-5529.
Provis, J. L., Myers, R. J., White, C. E., Rose, V., van Deventer, J., 2012. X-ray
microtomography shows pore structure and tortuosity in alkali-activated binders.
Cem. Concr. Res. 42, 855-864.

1189	Richardson, I. G., Skibsted, J., Black, L., Kirkpatrick, R. J., 2010. Characterisation of
1190	cement hydrate phases by TEM, NMR and Raman spectroscopy. Adv. Cem. Res. 22,
1191	233-248.
1192	
1193	Rochelle, C. A., Milodowski, A. E., 2013. Carbonation of borehole seals: comparing
1194	evidence from short-term laboratory experiments and long-term natural analogues.
1195	Appl. Geochemistry 30, 161-177.
1196	
1197	Shafique, M., Walton, J., Gutierrez, N., Smith, R., Tarquin, A., 1998. Influence of
1198	carbonation on leaching of cementitious wasteforms. J. Environmental Engineering
1199	124, 463-467.
1200	
1201	Snyder, R. L., Bish, D. L., 1989. Quantitative analysis. In: D. L. Bish, J. E. Post,
1202	(editors), Modern Powder Diffraction, Reviews in Mineralogy, Volume 20,
1203	Mineralogical Society of America, USA, 101-144.
1204	
1205	Sun, J., 2010. Carbonation Kinetics of Cementitious Materials Used in the Geological
1206	Disposal of Radioactive Waste, PhD thesis, University of London.
1207	
1208	Thiery, M., Villain, G., Dangla, P., Platret, G., 2007. Investigation of the carbonation
1209	front shape on cementitious materials: Effects of chemical kinetics. Cem. Concr. Res.
1210	37, 1047-1058.
1211	
1212	Villain, G., Thiery, M., Platret, G., 2007. Measurement methods of carbonation
1213	profiles in concrete: thermogravimetry, chemical analysis and gammadensimetry.
1214	Cem. Concr. Res. 37, 1182-1192.
1215	
1216	Živica, V., Bajza, A., 2001. Acidic attack of cement based materials — a review: Part
1217	1. Principle of acidic attack. Constr. Build. Mater. 15, 331-340.
1218	

1210