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Abstract: We present a fully coupled thermo-hydro-mechanical formulation for the simulation of
sediment deformation, fluid and heat transport and fluid/solid phase transformations occurring in
methane hydrate geological systems. We reformulate the governing equations of energy and mass
balance of the Code_Bright simulator to incorporate hydrate as a new pore phase. The formulation
also integrates the constitutive model Hydrate-CASM to capture the effect of hydrate saturation
in the mechanical response of the sediment. The thermo-hydraulic capabilities of the formulation
are validated against the results from a series of state-of-the-art simulators involved in the first
international gas hydrate code comparison study developed by the NETL-USGS. The coupling with
the mechanical formulation is investigated by modeling synthetic dissociation tests and validated
by reproducing published experimental data from triaxial tests performed in hydrate-bearing sands
dissociated via depressurization. Our results show that the formulation captures the dominant mass
and heat transfer phenomena occurring during hydrate dissociation and reproduces the stress release
and volumetric deformation associated with this process. They also show that the hydrate production
method has a strong influence on sediment deformation.

Keywords: methane hydrate-bearing sediments; mechanical response induced by hydrate
dissociation; thermo-hydro-mechanical behavior; fully coupled numerical modeling; geomechanics

1. Introduction

Methane hydrates hold vast amounts of methane gas below the sea floor and in permafrost
regions [1]. If economically producible, hydrate-sourced methane could supply 10% of the global
methane consumption in the coming decades [2–4] and bring a new level of energy self-sufficiency to
countries that lack conventional reserves (e.g., Japan, India, and South Korea) [5]. Current techniques
for methane production from hydrate include thermal stimulation, depressurization, and inhibitor
injection [6,7], among which, depressurization is deemed the most mature approach. These techniques
perturb the thermodynamic and chemical conditions of the reservoir to destabilize the hydrate phase
and force its dissociation into water and gas. The release of mobile phases during dissociation and
the loss of the solid hydrate phase has a significant impact in the mechanical (e.g., strength, stiffness,
volumetric behavior) and hydraulic (e.g., retention curve, hydraulic conductivity) properties of the
sediment and may destabilize it (e.g., [8,9]).

Over the last 20 years, several numerical models have been proposed to simulate the behavior of
gas hydrate reservoirs. Initially, modeling efforts focused on evaluating the productivity of methane
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extraction from in situ sediments. As a result, numerous coupled thermo-hydraulic (TH) models
were developed (e.g., [10–17]), which improved considerably the understanding of the TH behavior
of MHBS. However, these models generally disregarded the mechanical response of the sediment or
considered it with simple approaches. Numerous experimental studies have investigated the impact of
hydrate dissociation on the mechanical properties of MHBS. These studies show that the sediment tends
to weaken during hydrate dissociation due to a reduction of the sediment stiffness and strength with
decreasing hydrate saturation (e.g., [18–21]). Additionally, they report significant changes in porosity,
permeability and stress state of the sediment during dissociation (e.g., [22,23]). Field observations also
note the impact of hydrate dissociation in the large-strain response of MHBS (e.g., [15,24–26]). Borehole
instabilities, gas blowouts and seafloor subsidence have been widely reported during conventional
hydrocarbon exploitation nearby hydrate reservoirs (e.g., [8,9,27]). Moreover, large underwater
landslides have been related to hydrate dissociation in continental margins (e.g., [25,26,28]).

Hence, geomechanics of MHBS has recently become a key factor in reservoir simulation to ensure
well-bore stability in production scenarios and mitigate hydrate-related geohazards [29]. Even though
knowledge of the mechanical behavior of MHBS is still limited, current modeling efforts have focused
on developing suitable constitutive laws for capturing it. Table 1 lists some of the most notable
thermo-hydro-mechanical (THM) formulations that incorporate advanced constitutive models for MHBS.
The models listed in Table 1 consider from linear elastic to elastoplastic and visco-plastic formulations in
which different dependencies of the yield function with the hydrate saturation are assumed.

Table 1. Notable numerical solutions incorporating advanced constitutive models for MHBS.

Model Reference Mechanical Approach

Kimoto et al. (2010) [30] Viscoplasticity with Sh dependency
Rutqvist (2011) [31] Mohr-Coloumb elastoplasticity with Sh dependency
Kim et al. (2012) [32] Mohr-Coloumb elastoplasticity with Sh dependency
Klar et al. (2013) [33] Mohr-Coloumb elastoplasticity with Sh dependency
Gupta et al. (2016) [34] Poroelasticity with Sh dependency
Sun et al. (2018) [35] Thermodynamics-based elastoplastic model with Sh dependency
Sánchez et al. (2018) [36] Elastoplasticty with Sh dependency + Damage model

Here, we develop a new fully coupled THM formulation to simulate the mechanical behavior
of MHBS, particularly focusing on hydrate dissociation scenarios. The formulation builds on the
established finite element simulator Code_Bright [37], which has been highly validated at solving
multiphase mass and heat transport problems in the geological media (e.g., [38–40]) and recently
applied to examine the THM behavior of MHBS [36]. We reformulate Code_Bright’s governing
equations of energy and mass balance in terms of the potential porosity of the sediment (i.e., space
between the mineral grains) and the remaining available porosity after the formation of hydrate
and/or ice. This volumetric distinction allows isolation of the effects of mechanical deformation from
the effects of hydrate and ice fluid/solid phase transformations, both affecting the hydraulic and
mechanical properties of the porous medium. We also implement the elastoplastic constitutive model
Hydrate-CASM [41] to capture the effect of hydrate saturation in the sediment stress-strain response,
and integrate the Peng-Robinson equation of state (EoS) [42] and the thermodynamic equations
proposed by [43] to compute methane gas density and solubility, respectively.

The TH capabilities of our formulation are validated against the results from a series of
state-of-the-art simulators involved in the NETL-USGS first international gas hydrate code comparison
study [44]. Finally, the mechanical coupling is investigated by modeling synthetic dissociation tests and
validated by reproducing published experimental data from triaxial tests performed in hydrate-bearing
sands dissociated via depressurization [21].
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2. Methodology

This section sets the theoretical framework of the problem, develops the mathematical formulation
proposed to simulate the THM behavior of MHBS and describes the strategy adopted for the
numerical solution.

2.1. Components, Phases and Partial Saturations

The multicomponent and multiphase approach followed by [37] is adopted here to describe the
MHBS system (Figure 1). The porous medium is considered to be composed by four mass components;
mineral grains (gr), methane (m), water (w), and salt (st), that can be partitioned among five possible
phases; solid (s), hydrate (h), ice (i), gas (g) and liquid (l). The incompressible mineral grains form the
non-reactive solid continuum that provides the skeletal structure to the porous medium. Within the
pores, hydrate and ice can grow as solid and immobile phases. Finally, fluid flow and storage are
restricted to the available space between the mineral grains and hydrate and ice phases.

Figure 1. Volumetric relationships and pore-scale phase distribution in an elementary volume of MHBS.
Please note that the formulation considers the existence of unfrozen water below freezing temperature
due to capillary effects.

Similar to [45], the pore-space of the sediment is divided into two porosities (Table 2) to isolate
the effects of mechanical deformation from those related to hydrate and ice phase change on both the
hydraulic and mechanical properties of the porous medium.

Table 2. Volumetric relations in an elementary volume of MHBS.

Bulk volume Vt = Vs + Vh + Vi + Vl + Vg
Potential void space Vp = Vt −Vs
Potential porosity φp = Vp/Vt
Available void space Va = Vp −Vh −Vi
Available porosity φa = Va/Vt
Hydrate saturation Sh = Vh/Vp
Ice saturation Si = Vi/(Vp −Vh)
Gas saturation Sg = Vg/Va
Liquid saturation Sl = Vl/Va
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The potential porosity (φp) is the volume of pores between the mineral grains of the sediment.
This porosity is strictly related to the volumetric deformation of the sediment and is the maximum
available space for the formation of hydrate and ice phases. The available porosity (φa) is the volume
of pores existing between solid phases (i.e., part of the potential porosity non-occupied by hydrate
or ice). This porosity determines the available space for the fluids to flow or be stored, governs the
sediment permeability and evolves according to variations in potential porosity and hydrate and ice
phase transformations. Each phase saturation is obtained as the ratio between the its volume and the
corresponding volume of voids in which it is partitioned (Table 2). Thus, the following volumetric
restrictions apply:

Sl + Sg = 1 (1)

and
φa

φp
= (1− Si)(1− Sh) (2)

Equation (1) allows the preservation of the basic structure of the classical two-phase flow models for
the gas-water system and Equation (2) provides the coupling between the gas-water system and the
solid pore-filling phases.

2.2. Multiphysical Coupled System

The behavior of the multiple phases considered within the pores involves four physical processes:
mechanical deformation, fluid flow, thermal flow and phase change reactions (Figure 2). Each of these
processes interacts with each other generating a multiphysical coupled system. Accurate representation
of the interactions between these processes in the mathematical formulation is vital for adding certainty
to the simulation of the mechanical behavior of MHBS.

Figure 2. Schematic diagram of the fully coupled THM phenomena in hydrate-bearing systems.

2.3. Governing Equations

The governing equations are divided here into two main groups; (i) balance equations and
(ii) constitutive equations and equilibrium constraints. All the parameters used in the formulation are
listed and defined in Table 3.



Energies 2019, 12, 2178 5 of 23

Table 3. Nomenclature used to define the governing equations for MHBS. Please note that superscript α

correspond to any component of the system and subscript β refers to the phase wherein the component
is partitioned. Bold symbols denote vectors and tensors.

Roman Symbols

a(T) Peng-Robinson EoS parameter M Slope of critical state line in p’-q space
Aβ Viscosity parameter Mβ Molecular mass of phase β
A(T) Viscosity thermal function n Stress-state coefficient: yield surface shape parameter
Ah Hydrate surface area nh Hydration number
b Body forces p′ Mean effective stress
b Peng-Robinson EoS constant P0 Van Genuchten parameter
Bβ Viscosity parameter of phaseβ p0 Isotropic yield stress of hydrate-free sediment
cα

β Specific heat of component α in phase β p0h Isotropic yield stress of MHBS
dmβ Mass change of phase β Peq Hydrate phase equilibrium pressure
Dα

β Diffusion coefficient of component α in phase β Pβ Pressure of phase β

e Void ratio of hydrate-free sediment Pβ0 Reference pressure for phase β
eah Available void ratio of the MHBS Pc Critical pressure
eh Hydrate void ratio Pp Pore pressure
Eβ Energy of phase β q Deviatoric stress
Eα

β Energy of component α in phase β qβ Advective fuid flow
f Hydrate-CASM yield function r Yield surface spacing ratio
f α External mass supply of component α R Subloading ratio
f Q Internal/external energy supply Rg Regnault constant
fw Peng-Robinson EoS function Rh Rate of hydrate mass change
g Gravity forces S Salinity
iα
β Diffusive flux of component α in phase β Sβ Saturation of phase β

ic Conductive heat flow Se Effective liquid saturation
iEβ

Energy dispersivity in phase β Sls Maximum liquid saturation
I Identity matrix Srl Residual liquid saturation
jα
β Mass flux of component α in phase β t Time

jEβ
Advective flux of energy of phase β T0 Reference temperature

k0 Intrinsic permeability of hydrate-free sediment T Temperature
k Intrinsic permeability of MHBS Tc Critical temperature
krβ

Relative permeability of phase β Teq Hydrate phase equilibrium temperature
KCH4 Solubility of methane in water Tr Reduced temperature
Kd Hydrate dissociation constant u Displacement
K f Hydrate formation constant u Subloading parameter controlling the
Lh Latent heat of hydrate dissociation plastic deformations before yielding
Li Latent heat of ice melting v Molar volume
m Van Genuchten parameter V Unitary volume

Greek Symbols

αB Biot’s coefficient ∇ Differential operator =
(

∂
∂x ; ∂

∂y ; ∂
∂z
)

βt Thermal expansion coefficient of the liquid phase ν Poisson’s ratio
∂ Partial derivative ωα

β Mass fraction of component α in phase β

|εp| Norm of the incremental plastic strain µβ Viscosity of phase β
εv Volumetric strain φp Potential porosity
ε(x,y,z) Cartesian strains φa Available porosity
γ Solute variation ρβ Density of phase β
κ Slope of swelling line of hydrate-free sediment ρβ0 Reference density of phase β
κh Slope of swelling line of MHBS σ Cauchy total stress (compression positive)
κr f Swelling line slope reduction factor σ′ Effective stress (compression positive)
λ Slope of normal compression line σc Confining stress (compression positive)
λc Composite thermal conductivity θα

β Volumetric mass of component α in phase β

λdry Dry thermal conductivity τ Tortuosity coefficient
λsat Liquid saturated thermal conductivity ϑ Peng-Robinson acentric factor

(i) Balance equations

Mass balance equations

The mass balance equations are established following a compositional approach. In these
equations the volumetric mass of a component in a phase (e.g., methane in the liquid phase, θm

l )
is the product of the mass fraction of that component (ωm

l ) and the bulk density of the phase (ρl).

• Mass balance of mineral grains:
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The mineral grains coincide with the permanent solid phase and define the skeletal structure of
the porous medium. The mass conservation of this component can be written as:

∂

∂t

(
ρs(1− φp)

)
+∇(jgr

s ) = 0 (3)

where jgr
s is the flux of solid and can be expressed in terms of the solid velocity

(
∂u
∂t

)
as:

jgr
s = ρs(1− φp)

∂u
∂t

(4)

Applying the chain rule for all the derivatives, Equation (3) can be rewritten as:

(1− φp)
∂ρs

∂t
+ (1− φp)(

∂u
∂t
∇ρs)− ρs

∂φp

∂t
− ρs(

∂u
∂t
∇φp) + ρs(1− φp)∇

∂u
∂t

= 0 (5)

Neglecting the gradients of density and porosity convected by the solid phase and under the
assumption of small strain, Equation (5) can be rewritten as:

∂φp

∂t
=

1
ρs

(
(1− φp)

∂ρs

∂t

)
+ (1− φp)∇

∂u
∂t

(6)

where the term ∇ ∂u
∂t can be expressed in the form:

∇∂u
∂t

=
∂2ux

∂x∂t
+

∂2uy

∂y∂t
+

∂2uz

∂z∂t
=

∂

∂t
(εx + εy + εz) =

∂εv

∂t
(7)

and εx + εy + εz are Cartesian strains.
• Mass balance of methane:

Methane component is present in liquid, gas and hydrate phases, and its total mass balance is
expressed as:

∂

∂t

((
θm

l Sl + θm
g Sg

)
φa + θm

h Shφp

)
+∇(jm

l + jm
g + jm

h ) = f m (8)

where θm
l , θm

g and θm
h are the volumetric mass of methane in the liquid, gas and hydrate phases,

respectively. For a given temperature, pressure and salinity the term θm
l can be obtained according

to [42,43], θm
g is equal to one as the gas phase is considered mono-component and θm

h = 1
1+nh

assuming nh as 6.176.

The mass flux terms jm
l and jm

g are the relative motion of methane in the liquid and gas phases,
respectively, with respect to the solid phase. These terms are obtained as the sum of advective
and diffusive flux terms as follows:

jm
l = im

l + θm
l ql + φaSlθ

m
l

∂u
∂t

(9)

jm
g = im

g + θm
g qg + φaSgθm

g
∂u
∂t

(10)

The mass flux term jm
h denote the relative motion of methane in the hydrate phase with respect to

the solid phase as a result of the medium deformation:

jm
h = φpShθm

h
∂u
∂t

(11)
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The term fm is the external sink/source of methane per unit volume. Please note that because of
the compositional approach adopted in the formulation, this term do not include methane mass
changes from hydrate kinetics.

• Mass balance of water:

Water is present in liquid, ice and hydrate phases but it is neglected as vapour in the gas phase.
Thus, the water total mass balance of water is expressed as:

∂

∂t

(
θw

l Slφa +
(

θw
i Si(1− Sh) + θw

h Sh

)
φp

)
+∇(jw

l + jw
i + jw

h ) = f w (12)

where θw
l , θw

i and θw
h are the volumetric mass of water in the liquid, ice and hydrate phases,

respectively. The term θw
l depends on the concentration of salt and methane dissolved in the

liquid phase, θw
i is equal to one and θw

h = 1− θm
h .

The mass flux term of water in liquid (jw
l ) is computed similarly as in Equation (9), while the flux

terms in hydrate (jw
h ) and ice phases (jw

i ) are computed similarly as in Equation (11) for Sh and
Si, respectively .

The fw is an external sink/source of water per unit volume and do not include water mass changes
from hydrate kinetics.

• Mass balance of salt:

Salt is present as a dissolved component in the liquid phase, and it is not allowed to precipitate as
a solid phase. Its concentration modifies the liquid density, influences the solubility of methane
and can inhibit hydrate stability conditions. The total mass balance of salt is expressed as:

∂

∂t

(
θst

l Slφa

)
+∇jst

l = f st (13)

where θst
l is the volumetric mass of salt in the liquid phase. Changes in salt concentration due to

“freshening” of the pore water can be used as a tracer of ongoing hydrate dissociation and/or
ice melting.

The flux term of salt in the liquid phase (jst
l ) is the relative motion of salt in the liquid phase with

respect to the solid phase and is computed similarly as in Equation (9). Finally, the term fst is the
external sink/source term of salt.

Energy balance equation:

The equation for internal energy balance in the porous medium is established according to [37]
considering the internal energy in each phase of the system, so that:

∂

∂t

(
(ElρlSl + EgρgSg)φa +

(
EiρiSi(1− Sh) + EhρhSh

)
φp

)
+Esρs(1− φp) +∇(ic + jEl

+ jEg
+ jEi

+ jEh
+ jEs

) = f Q
(14)

where the energy flux of fluid phases include energy dispersion, advective transport by fluid mass
relative to the solid phase and that related to the soil velocity:

jEl
= iEl + jm

l Em
l + jw

l Ew
l + jst

l Est
l + ElρlφaSl

∂u
∂t

(15)

jEg
= iEg + jm

g Eg + EgρgφaSg
∂u
∂t

(16)

with
Elρl = θm

l Em
l + θw

l Ew
l + θst

l Est
l (17)
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Please note that Em
l and the dispersive terms (iEl and iEg ) have been neglected in our simulations.

The energy flux of solid phases only depend on the advective transport related to the soil velocity,
so that:

jEh
= EhρhφpSh

∂u
∂t

(18)

jEi
= Eiρiφp(1− Sh)Si

∂u
∂t

(19)

jEs
= Esρs(1− φp)

∂u
∂t

(20)

For which exothermic/endothermic changes caused by hydrate formation/dissociation and ice
formation/melting are considered through the latent heat of each phase transformation (Table 4) and
the term fQ is the external supply of energy per unit volume.

Table 4. Specific energy expression and representative values of specific and latent heat for each phase
of the system.

Phase Specific Energy Specific and Latent Heat

Gas (g) Eg = cg(T − T0) cg = 2500 J (Kg K)−1

Hydrate (h) Eh = Lh + ch(T − T0) ch = 2108 J (Kg K)−1 ; †Lh = 3.39 e5 J Kg−1

Ice (i) Ei = Li + ci(T − T0) ci = 3144 J (Kg K)−1 ; †Li = 3.34 e5 J Kg−1

Liquid (l) Ew
l = cw

l (T − T0) cw
l = 4184 J (Kg K)−1

Est
l = 1.42e5 + cst

l (T − T0) cst
l = 2200 J (Kg K)−1

Solid (s) Es = cs(T − T0) cs = 874 J (Kg K)−1

† Lh and Li are positive for hydrate dissociation and ice melting respectively.

Momentum balance equation:

The momentum balance equation for the bulk porous medium reduces to the equilibrium of total
stresses if the inertial terms are neglected:

∇σ + b = 0 (21)

Equation (21) is formulated based on the infinitesimal strain theory, uses an additive decomposition
of the total strain tensor and assumes a Biot’s coefficient αB = 1 for the fluid-solid coupling (Table 5).

The constitutive equations for MHBS allow rewriting Equation (21) in terms of the solid velocities,
gas and fluid pressure and temperature.

(ii) Constitutive equations and equilibrium constraints

A set of constitutive laws and equilibrium restrictions are used in the formulation to establish the
link between the primary (i.e., solid displacements, u; liquid pressure, Pl ; gas pressure, Pg; temperature,
T and salinity, S) and the dependent variables of the system (listed in Tables 5 and 6). These equations
allow capturing the coupling among the various physical phenomena considered in the system and
close the mathematical formulation.
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Table 5. Constitutive equations for MHBS system and dependent variables computed using each
constitutive law. Please note that values for the parameters used in the TH simulation are also given.

Constitutive Law Equation Dependent Variable

Advective fluid flow

Darcy’s law qβ = −
kkrβ

µβ
(∇Pβ − ρβg) β = l, g Advective fluid flow, ql and qg

Kozeny’s model k = k0
φ3

a
(1−φa)2

(1−φp)2

φ3
p

k0 = 1 × 10−13 m2

krl =
√

Se
(
1− (1− S1/m

e )m)2

krg = 1− krl

m‡ = 0.645
µβ = Aβexp(

Bβ

273.15+T )

Al = 2.1 × 10−12 MPa s ; Bl = 1808.5 K
Ag = 1.48 × 10−12 MPa s ; Bg = 119.4 K

Retention curve [46] Se =
Sl−Srl
Sls−Srl

=
(

1 + Pg−Pl
P0

1
1−m
)−m

Saturation of mobile phases, Sl and Sg

P‡
0 = 0.075 MPa

Liquid density [37] ρl = ρl0

(
1 + βt(Pl − Pl0) + A(T) + γωst

l

)
Liquid density, ρl

A(T) = (T+288.9414)(T−3.9863)2

50,8929.2(T+68.12963)
ρl0 = 1002.6 kg/m3

βt = 4.5× 10−4 MPa−1

Pl0 = 0.1 MPa
γ = 0.6923
ωst

l = 0

Gas density [42] Pg =
RgT
v−b −

a(T)
v(v+b)+b(v−b) Gas density, ρg

a(T) = 0.45724R2
gT2

c /Pc[1 + fw(1− T0.5
r )]2

fw = 0.37464 + 1.54226ϑ− 0.26992ϑ2

ϑ = 0.0015
b = 0.0778RTc/Pc
Rg = 8.3144598 J/mol K
Pc = 4.60 MPa
Tr = T/Tc, Tc = 190.4 K
ρg =

MgPg
RgT

Mg = 0.016042 Kg/mol

Non-advective fluid flow

Fick’s law iα
β = φaτρlSl Dα

l I∇ωα
l α = m, st Diffusive flux, im

l and ist
l

Dm
l = 5.9× 10−6 exp

( (273.15+T)2.3

Pg

)
Dst

l = 1.1× 10−4 exp
( −24530

Rg(273.15+T)

)
τ = 1

Fourier’s law ic = −λc∇T Conductive heat flow, ic
†λc = λsat

√
Sl + λdry(1−

√
Sl)

λsat = 2 W/mK, λdry = 2.18 W/mK

Stress-strain behavior

Effective stress [47] σ′ = σ − αBPpI Effective stress tensor, σ′

αB = 1

Hydrate-CASM [41] Subloading yield function Stress tensor, σ

f = ( q
Mp′ )

n + 1
ln(r) ln( p′

Rp′0h
)

dR = −ulnR|dεp|
Densification mechanism
eah = e− eh; eh = e(Sh + Si)
κh = κκr f
κr f = 0 if (Sh + Si) = 0
κr f = 3(Sh + (1− Sh)Si)

2 − 2.68(Sh + (Sh + (1− Sh)Si) + 0.9934
if 0 < (Sh + (1− Sh)Si) ≤ 0.42

p′0h = e
e(Sh+Si)

λ−κh p
′ λ−κ

λ−κh
0

† λc is not computed in terms of Sh or Si . This simplification valid for low saturations of ice [48]; ‡ m and ‡

P0 values correspond to those given in the benchmark problem analyzed in Section 3.1. [44]. The m value is
included within the range of values reported in the literature for gas hydrate numerical simulation studies
(e.g., [49,50]); Please note that eah, κh and p′0h recover the hydrate-free parameters e, κ and p′0 when (Sh + Si) =
0; The use of bold symbols denote vectors and tensors.
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Table 6. Equilibrium restrictions for MHBS system. The dependent variables computed using each of
the equilibrium restrictions are also included.

Equilibrium Restriction Equation Dependent Variable

Hydrate phase change

Hydrate phase boundary [43] ln(Peq) = −1.644866 × 103 − 0.1374178T + 5.4979866 ×
104/T + 2.64118188 × 102ln(T) + S

(
1.1178266 ×

104 + 7.67420344T − 4.515213 × 10−3T2 − 2.04872879 ×
105/T − 2.17246046 × 103ln(T)

)
+ S2(1.70484431 ×

102 + 0.118594073T − 7.0581304 × 10−5T2 − 3.0979619 ×
103/T − 33.2031996ln(T)

)

Equilibrium pressure, Peq

Methane solubility ln(KCH4)Pg = ln(KCH4)Peq

ln(KCH4
)0.1MPa

ln(KCH4
)Teq(Pg)

Dissolved methane
concentration, ωm

l
[43] ln(KCH4)Peq = −2.5640213 × 105 − 1.644805 × 102T + 9.1089042

× 10−2T2 + 4.90352929 × 106/T + 4.93009113 ×
104ln(T) + S[−5.1628513 × 102 − 0.33622376T + 1.8819904 ×
10−4T2 + 9.76525718 × 103/T + 99.523354ln(T)]

[51] ln(KCH4)0.1MPa = 1 × 10−9
[
− 417.5053 + 599.8626(100/T) +

380.3636ln(T/100)− 62.0764T/100 + S[−0.06423 +

0.03498(T/100)− 0.0052732(T/100)2]
]

ln(KCH4)Teq(Pg) = 1 ×

10−9
[
− 417.5053 + 599.8626(100/Teq(Pg)) +

380.3636ln(Teq(Pg)/100)− 62.0764Teq(Pg)/100 + S[−0.06423 +

0.03498(Teq(Pg)/100)− 0.0052732(Teq(Pg)/100)2
]

ωm
l = 1.604 × 10−2KCH4 Pg

Kg/Kg

Hydrate kinetic rate
[52,53]

Rh(T, Pg) = φpSh Ah

(
Kd〈Peq(T)− Pg〉 − K f 〈Pg − Peq(T)〉

)
Hydrate mass change, dmh

Ah = 0.375 µ/m
Kd = 124× 103exp(−9400/T(K)) mol/m2Pa s
K f = 0.5875× 10−11 mol/m2Pa s

†dmh = MhRh(T, Pg)
Mh = 0.018016nh + 0.016042 Kg/mol

Ice phase change

Freezing characteristic
function
[54]

1−† Si =

(
1 +

(
1−(1−ρi/ρl)Pl−ρi Li ln(T/273.15)

P0

) 1
1−m
))−m

Ice saturation, Si

ρi = 0.91 · ρl

† See Appendix A for the derivation of hydrate and ice mass conservation equations.

Stress - strain behavior of MHBS

Several experimental studies show that MHBS have a greater stiffness, strength, dilation,
and softening behaviors with increasing hydrate saturation (e.g., [55–61]). The increase in sediment
strength due to hydrate has been widely attributed to a physical bonding between the hydrate crystals
and the sediment grains. This bonding has been modeled using different strategies; (i) addition
of a cohesion constituent in the failure criteria [60,62–64], (ii) enlargment of the yield surface by
cohesion and dilation [65,66], (iii) partition of the stress between hydrate and matrix in a bonding
damage framework [65,67], (iv) attribution of physical bonding properties in discrete element methods
(DEM) [68] and (v) expansion of the failure envelope in a spatially mobilized plane (SMP) model [69].
Refs. [70,71] propose that kinematics might govern the increase in strength observed in hydrate-bearing
sands. Alternatively, [41] propose that the greater strength and dilatancy observed in MHBS can be
explained by densification and stiffening of the host sediment due to pore invasion by hydrate.



Energies 2019, 12, 2178 11 of 23

The constitutive model Hydrate-CASM [41] is integrated in our formulation to predict the
mechanical response of MHBS. This elastoplastic model extends the formulation of the CASM
model [72] by implementing the subloading surface model [73] and the densification mechanism.
The densification is a novel mechanism for MHBS that attributes hydrate-related changes in the void
ratio, the swelling line slope and the volumetric yield stress of the sediment to stress-strain changes
(Table 5). The performance of the Hydrate-CASM model has been tested over a range of hydrate
saturations and confining stress using experimental data from triaxial tests performed in synthetic
hydrate-bearing sands and validated against the outputs from other notable constitutive models for
MHBS that simulated the same experimental data (Figure 3).

Figure 3. Model comparison between Hydrate-CASM predictions and those obtain by [65,66,74]
models. The simulations are plotted against the experimental data from [58] for (a) pore-filling and
(b) cementing hydrate. Adapted from [41].

Hydrate and ice phase boundaries

The dominant parameters governing the stability field of methane hydrates in marine sediments
are pressure, temperature and salinity. Our formulation employs the empirical solution proposed
by [43] to define the P-T conditions that describe the equilibrium of methane hydrates in saline water
(Figure 4). Above the hydrate phase equilibrium curve (i.e., Pg > Peq, shaded area in Figure 4), hydrate
can form when the concentration of methane dissolved in the liquid phase is at or above saturation
value [75]. Our formulation computes methane solubility at dissociation pressure as a function of
salinity and temperature following the empirical proposal of [43] (Table 6). This function is combined
with the IUPAC recommendation at Pg = 0.1 MPa [51] to extend the calculation of methane solubility in
water at any other given pressure (Table 6). The resulting estimation of methane concentration in water
(ωm

l ) is key to model the upward transport of gas by means of diffusion and advection. It can also be
used to predict the resulting shape of sulfate profiles in pore water (e.g., [76,77]) and the volume and
distribution of hydrate formations in marine sediments (e.g., [78]).
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Figure 4. Pressure-Temperature equilibrium relationship (Peq − T) in the methane hydrate system at
different salinity. Please note that the presence of salt inhibits hydrate stability and shifts the hydrate
phase equilibrium curve towards higher pressure and lower temperature conditions.

At P-T conditions below the hydrate phase equilibrium curve (i.e., Pg < Peq, white area in
Figure 4), hydrate dissociates into its forming components. Our formulation assumes hydrate phase
change to be governed by first order kinetics as suggested by [52,53], in which the rate of phase change
is proportional to the product of the hydrate surface area and the driving force (i.e., pressure difference
between the phase equilibrium and gas pore pressure) (Table 6).

Water-to-ice transformation may also take place in MHBS during temperature dropping if
hydrate formation is restricted by insufficient methane gas, or due to endothermic cooling at fast
depressurization. Ice changes are computed using the freezing characteristic function proposed by [54]
(Table 6). This function is derived from the thermodynamic equilibrium between liquid and ice phases
in pores in frozen soils and employs van Genuchten’s (1980) model to relate the degree of unfrozen
water saturation to the thermodynamic properties of the sediment. As stated in Table 5 our formulation
consider changes in ice saturation to have the same mechanical effects that hydrate phase change.

2.4. Numerical Solution Strategy

The PDE’s (Partial Differential Equations) system presented is solved numerically following
the procedure established in [37]. The Galerkin finite element method (FEM) is adopted for the
spatial discretization, while finite differences are used for the temporal discretization via an implicit
scheme (backward Euler method) that incorporates an automatic sub-stepping procedure based on
error control [79]. Also, a mass conservative approach is adopted by directly discretizing the storage
terms [80,81], and the mechanical problem is solved using an implicit stress point algorithm (SPA) [82].

Once the formulation is discretized, this can be represented as a system of algebraic equations
that are linearized via the Newton-Raphson scheme. Then, LU decomposition and back-substitution
(non-symmetric matrix) or conjugate squared gradients are used to solve the system of equations
simultaneously (monolithic solution) in a fully coupled manner.

3. Results and Discussion

3.1. Thermo-Hydraulic Validation

In this section, we reproduce the benchmark problem P2 proposed in the NETL-USGS first
international gas hydrate code comparison study. The initial problem conditions, model parameters
and further specifications can be found in https://www.netl.doe.gov/node/7285. Problem P2 analyzes
a 20 m one-dimensional horizontal closed domain (no flow boundary conditions) initialized with
gradients in liquid and gas pressure, and temperature that yield aqueous saturated conditions on half

https://www.netl.doe.gov/node/7285
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of the domain and aqueous unsaturated conditions on the other half (Figure 5a). We have simulated
the problem in two-dimensions and have used a non-uniform mesh, with a higher concentration of
elements in the contact between the two domains, to represent better the problem solution.

Figure 5. (a) Initial conditions and mesh applied in the simulation. Simulated (b) gas pressure,
(c) temperature, (d) dissolved methane mass fraction and (e) hydrate saturation distributions along the
domain at 1, 100 and 1000 days of simulation.

The initial conditions of the problem P2 are designed to trigger complete dissociation of the
hydrate phase via the thermal capacitance of the right half of the domain. From these conditions,
the simulation proceeds to reach the equilibrium in temperature and pressure along the domain.
During the transition, the hydrate begins to dissociate at the contact between both domains and the
dissociation front (vertical dotted line Figure 5e) advances progressively to the left. After 10 days
of simulation hydrate dissociation occurs simultaneously with hydrate reformation. As shown in
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Figure 5e, hydrate saturation at 100 and 1.000 days of simulation increases with respect to the previous
value as we move away from the dissociation front towards the left side. The low temperature in
this side of the domain in combination with the endothermic nature of the dissociation reaction and
the increase in pore pressure due to the migration of free gas allows reaching the P-T conditions for
hydrate reformation.

The good matching observed between our results and those from the simulators involved in
the code comparison study (i.e., HydResSim, MH-21, CMG STARS, STOMP-HYD, TOUGH-FX and
Univ-Houston) allows validating the capacity of our formulation at capturing the dominant mass and
heat transfer phenomena during gas hydrate dissociation.

3.2. THM Modelling of Synthetic Experimental Tests

In this section, various synthetic triaxial tests are simulated to investigate the stress-strain and
volumetric deformation characteristics of MHBS during hydrate dissociation under strain controlled
shear. For the simulations, we assume two-dimensional axisymmetric jacketed sand specimens of
10 cm × 5 cm, of which a radial plane of 10 cm × 2.5 cm is used as computational domain (shaded
area in Figure 6). The right-hand side of the domain has a boundary condition of constant total stress
and the bottom is immobile. All the simulations are conducted under constant compression rate of
0.012%/min with drained conditions only at the top of the sample. The particular conditions employed
in each simulation are listed in Table 7.

Figure 6. (a) Initial test conditions. (b) Boundary conditions for thermal stimulation and depressurization
tests. The mechanical properties of the host sediment are adopted from calibrated values for pure Toyoura
sand in [41]. The monitoring location shows the location of the profiles in Figure 7.

We label as Hs_Temp and Hs_Dep the two simulations used to characterize the mechanical
response of the host sediment specimen (Sh = 0%) subjected to thermal stimulation (8→ 11.3 ◦C)
and depressurization (6 → 4.6 MPa). These simulations provide a reference behavior that allows
distinguishing the mechanical effects of temperature and pressure variations from those related to
hydrate dissociation in MHBS. For the dissociation tests, MHBS specimens (Sh 6= 0%) are sheared up
to an axial strain of approximately 16% (Mhbs_Temp1, Mhbs_Dep) and 40% (Mhbs_Temp2). Then,
depressurization and/or thermal stimulation are imposed over a period of 100 seconds and the final
liquid pressure (4.6 MPa) and temperature (11.3 ◦C) are kept constant thereafter.

Figure 7 shows the simulated evolution of the deviatoric stress, potential porosity, temperature,
liquid pressure and hydrate and gas saturation during the complete triaxial loading history for
each simulation.
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Table 7. Test conditions adopted in the simulations.

Test Conditions

Test Name Temperature Confining Pressure Liquid Pressure Hydrate Saturation Remarks
(◦C) (MPa) (MPa) (%)

Hs_Temp 8→ 11.3 8 6 0 Thermal stimulation at εa = 16%
Mhbs_Temp1 8→ 11.3 8 6 20 Thermal stimulation at εa = 16%
Mhbs_Temp2 8→ 11.3 8 6 20 Thermal stimulation at εa = 40%
Hs_Dep 8 8 6→ 4.6 0 Depressurization at εa = 16%
Mhbs_Dep 8 8 6→ 4.6 20 Depressurization at εa = 16%

Figure 7. Simulated evolution of the (a,b) deviatoric stress, (c,d) potential porosity, (e,f) temperature,
(g,h) liquid pressure and (i,j) hydrate and (j,k) gas saturation of the host and hydrate-bearing specimens
subjected to thermal stimulation and depressurization during shear. Dotted lines represent the behavior
of the host sediment specimens while solid lines refer to hydrate-bearing specimens. Please note that
variations in hydrate and gas saturation before and after dissociation respectively, are due to the
volumetric deformation of the specimen.
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The host specimen Hs_Temp, sheared under constant pore pressure and subjected to thermal
stimulation, is characterized by a peak in the deviatoric stress followed by softening (Figure 7a) and
dilatant response (Figure 7c). The specimens with hydrate (Mhbs_Temp1 and Mhbs_Temp2) show a
greater peak in the deviatoric stress and a more dilatant response than the corresponding host sediment
before dissociation is simulated. Then, dissociation via thermal stimulation leads to a drop in the
deviatoric stress (points 1 and 2 in Figure 7a) as well as to a reduction in the dilatant response (point 1
in Figure 7c) or a compressive behavior of the dissociated sediment (point 2 in Figure 7c).

The mechanical behavior of the host specimen Hs_Dep subjected to depressurization is highly
influenced by the increase in effective confining stress associated with it. Depressurization leads the
host sediment to shift from a softening to a hardening response and from a dilatant to a compressive
volumetric behavior (point 1 in Figure 7b,d). For the hydrate-bearing specimen Mhbs_Dep, the effects
on the effective stress induced by depressurization adds to the mechanical effect of hydrate dissociation.
Upon dissociation specimen Mhbs_Dep starts contracting under shear (point 2 in Figure 7d) rather
than reducing its dilatant behavior, as observed in the equivalent specimen subjected to thermal
stimulation (point 1 in Figure 7c).

These results capture two important features of the mechanical response of MHBS during hydrate
dissociation under strain controlled shear. Hydrate dissociation leads to a drop of the deviatoric stress
which is associated with the shrinking of the yield surface due to sediment mechanical weakening [41].
In consequence, the sediment shows a less dilatant behavior than the corresponding host sediment or
even a contractant response under shear. Our results also show that the volumetric deformation of the
sediment after dissociation strongly depends on the hydrate production method. Point 2 in Figure 7d
clearly shows that dissociation via depressurization leads the specimen contraction while dissociation
by thermal stimulation does not (point 1 in Figure 7c).

3.3. THM Modelling of the Experimental Tests of Li et al. (2018)

The multistage triaxial shear test conducted by [21] is used in this section to examine the
capabilities of our formulation at capturing the effect of hydrate dissociation via depressurization
in the mechanical response of synthetic MHBS. Figure 8 summarizes the mechanical properties and
the initial and boundary conditions considered in the simulation. The modeling is approached here
in two steps, firstly the mechanical behavior of the specimen with a constant hydrate saturation of
38.5% is calibrated based on the experimental deviatoric stress-axial strain and volumetric strain-axial
strain relationships obtained before depressurization is applied (black solid lines in Figure 9a,b).
Once the mechanical properties are calibrated, hydrate dissociation is simulated at approximately
2.5% of axial strain by depressurizing the specimen from a liquid pressure of 8 MPa to 3 MPa.
The depressurization is applied as a boundary condition on top of the specimen (blue line in Figure 8)
while this is subjected to a constant triaxial compression rate of 0.2%/min. Temperature is imposed on
the top, base and right-hand side of the computational domain to simulate the circulation of fluid at a
constant temperature around the specimen.

Results in Figure 9 show that once depressurization is induced, our formulation captures a subtle
drop in the deviatoric stress (point 1 in Figure 9a) as well as an increase in volumetric strain (points 2
to 3 in Figure 9b). However, the model overestimates the maximum deviatoric stress after dissociation
and slightly underestimates the volumetric strain at the end of the triaxial. For comparison purposes,
the evolution of hydrate saturation with the axial strain is plotted removing the change in Sh due to
sediment deformation (i.e., changes in hydrate saturation are related only to the chemical reaction).
Figure 9d shows that the model captures the rate of hydrate dissociation.
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Figure 8. (a) Initial test conditions. (b) Boundary conditions adopted for dissociation simulation.
The monitoring location shows the location of the profiles in Figure 9.

Figure 9. Experimental data and modeling results from drained triaxial tests performed on synthetic
MHBS subjected to dissociation via depressurization: (a) Deviatoric stress, (b) volumetric strain,
(c) liquid pressure, and (d) hydrate saturation relationships with axial strain. Experimental data
from [21].
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4. Conclusions

Hydrate dissociation has a significant effect on the THM properties of MHBS and may cause its
mechanical destabilization. Our formulation captures the mass and heat transfer phenomena during
hydrate dissociation in the porous medium. Particularly, the TH performance shows that the migration
of the dissociation front caused by thermal stimulation and depressurization and the volume of hydrate
that reforms due to gas migration are closely reproduced. Regarding the coupling with the mechanical
formulation, our synthetic results show that dissociation leads to a drop in the deviatoric stress and
to a less dilatant or even contracting behavior of the dissociated MHBS in comparison to the host
sediment. Particularly, it is observed that sediment may contract in cases when the deviatoric stress
drops below the failure envelope of the host sediment. Our synthetic results also suggest that the
deformation of MHBS strongly depends on the hydrate production method. They show that specimens
subjected to hydrate dissociation via depressurization are more likely to show contractant behavior
under shear than those subjected to thermal stimulation because of the increase in effective stress.
We finally illustrate that our formulation successfully reproduces the main THM features observed in
dissociation tests performed in real specimens.
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Appendix A. Development of Hydrate and Ice Mass Balance Equations

Mass balance of hydrate

The mass conservation of hydrate considers mass exchange due to phase transformations,
sediment volumetric deformation and porosity variations due to changes in the solid phase density,
so that:

∂

∂t

(
ρhφpSh

)
+∇

(
ρhφpSh

∂u
∂t

)
= dmh (A1)

where dmh is the mass change of hydrate caused by kinetics.
Neglecting the gradients of density and porosity convected by the solid phase and under the

assumption of small strain, Equation (A1) can be rewritten as:

∂(Sh)

∂t
=

dmh
ρhφp

+ Sh ε̇− Sh
φp

∂(φp)

∂t
− Sh

ρh

∂(ρh)

∂t
(A2)
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where ε̇ is the sediment volumetric strain rate (sign convention as in continuum mechanics, negative
compression):

ε̇ = − 1
(1− φp)

∂(φp)

∂t
+

(1− φp)

ρs

∂(ρs)

∂t
(A3)

Replacing Equation (A3), Equation (A2) can be rearranged as:

∂(Sh)

∂t
=

dmh
ρhφp

− Sh
φp

ε̇− Sh
ρh

∂(ρh)

∂t
(A4)

The first term in Equation (A4) expresses the effect of hydrate formation/dissociation reaction
in the computation of dSh, the second the effect of the volumetric deformation of the sediment and
the third one those associated with changes hydrate density variations with temperature. Since our
formulation defines Sh independently of the volume of ice and assumes that hydrate and ice phase
transformations do not occur simultaneously (see volumetric definitions in Table 2), Equation (A4)
disregards derivatives with respect to ice saturation.

Mass balance of ice

As with Equation (A4) variations in ice saturation can be written as:

∂(Si)

∂t
=

dmi
ρiφp(1− Sh)

− Si
φp

ε̇− Si
ρi

D(ρi)

Dt
+

Si
(1− Sh)

∂(Sh)

∂t
(A5)

where the term dmi
ρiφp(1−Sh)

corresponds to changes in ice saturation due to freezing and melting

(computed using the freezing characteristic function proposed by [54]), and the term ∂(Sh)
∂t does

only consider changes in hydrate saturation due to hydrate density variations.
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