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Existing estimates of sea surface temperatures (SSTs) indicate that, during the early 

twentieth century, the North Atlantic and Northeast Pacific oceans warmed by twice the 

global average, whereas the Northwest Pacific Ocean cooled by a magnitude equal to the 

global average1–4. Such a heterogeneous pattern suggests first-order contributions from 

regional variations in forcing or in ocean–atmosphere heat fluxes5,6. These older SST 

estimates are, however, derived from measurements of water temperatures in ship-board 

buckets, and must be corrected for substantial biases7–9. Here we show that correcting 

for offsets among groups of bucket measurements leads to SST variations that better 

correlate with nearby land temperatures and are more homogeneous in their pattern of 

warming. Offsets are identified by systematically comparing nearby proximal SST 

observations among different groups10. Correcting for offsets in German measurements 

decreases warming rates in the North Atlantic, whereas correcting for Japanese offsets 

leads to increased and more uniform warming in the North Pacific. Japanese offsets in 

the 1930s primarily result from records having been truncated to whole-degrees Celsius 

when digitized in the 1960s. These findings underscore the fact that historical SST 

records reflect both physical and social dimensions, and suggest that further 

opportunities exist for improving the accuracy of historical SST records9,11. 

According to recent estimates from the National Oceanic and Atmospheric 

Administration (NOAA)1, global average SST warmed by 0.43 °C between 1908 and 1941. 

Whereas the North Atlantic warmed by 0.82 °C, the North Pacific showed a bimodal structure, 
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with the Northwest Pacific cooling by −0.39 °C and the Northeast Pacific warming by 1.02 °C. 

Other gridded SST products give similarly disparate SST trends for the early twentieth century 

(Table 1 and Extended Data Fig. 1), and together these SST estimates suggest that internal 

modes of variability strongly contributed to early-twentieth-century climate change. 

Specifically, the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation have 

been suggested to account for regional variations as well as more than half of the global 

warming between 1908 and 1941 (refs 6,12). Model simulations of the atmospheric and oceanic 

response to prescribed radiative forcing do not, however, reproduce either the magnitude13,14 or 

the pattern5,15 of the early-twentieth-century warming seen in observations (Extended Data Fig. 

1e). Difficulty in reproducing observations has been suggested to arise from deficiencies in 

how radiative forcing is prescribed16 or from model limitations in representing internal climate 

variability17,18. 

Another possibility is that observational estimates of SST changes contain undetected 

biases, for which there are some precedents. Difficulty in simulating a slowdown in global 

warming between 1997 and 2012 was partly reconciled by revising SST estimates19, amongst 

other considerations20. In another study21, a jump in global temperature by 0.3 °C in 1945 was 

attributed to offsets between engine-room intake and bucket SST estimates.  

The four major SST products covering the early twentieth century each rely upon the 

International Comprehensive Ocean-Atmosphere Data Set (ICOADS)22, whose latest release is 

3.0. It is estimated that 94% of observations between 1908 and 1941 were from buckets (Fig. 

1). Bucket measurements of SST are biased by evaporative, sensible and solar heat fluxes that 

depend on a range of factors, including weather, ship deck height and bucket type7. For 

example, a canvas bucket left on deck for three minutes under typical wind and other weather 

conditions can give water temperatures that are approximately 0.5 °C cooler than a wooden 

bucket measured using the same protocol7,9.  

Foregoing corrections for bucket-measurement biases have involved assumptions that 

these biases change smoothly in space or time1,4. HadSST3, for example, represents transitions 

between wooden buckets and less-insulated canvas buckets by using globally uniform, linear 
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weights4. Another method assumes that differences between SST and night-time marine air 

temperatures remain similar to an average for 1971–2000 (ref. 1). Simple assumptions 

regarding bucket corrections are commensurate with the limited metadata available for 

determining observational characteristics2,4,7, but are questionable on the basis that ICOADS 

contains observations from a wide variety of ships that sailed for different purposes and 

sampled the ocean unevenly22. 

More comprehensive bucket corrections are made possible by calculating offsets 

between groups of SST measurements that are nearby in space and time10. Specifically, bucket 

SST measurements that come from distinct groups of ships within 300 km and 2 days of one 

another can be differenced, giving a data set of 6.1 × 106 SST comparisons between 1908 and 

1941. Groups are designated according to nations and ‘decks’, with the latter term inherited 

from the fact that marine observations were stored using decks of punch cards. SST differences 

are analysed using a linear-mixed-effects (LME) methodology after accounting for 

climatological effects associated with location, day of year, and hour of day10. Mean offsets 

between groups of SST measurements range from −0.3 °C to +0.6 °C (Supplementary Table 

1). Of the 46 nation–deck groups that contribute SST observations between 1908 and 1941, 21 

have significant offsets (P < 0.05), and 6 remain significant after applying a Bonferroni 

correction23 for multiple hypothesis testing (P < 0.05/n, n = 46; Fig. 2).  

The presence of systematic offsets between groups of measurements, combined with 

changes in the distribution of these groups over time (Fig. 1), is liable to introduce spurious 

SST trends. To diagnose these trends, we first construct a bucket SST data set that is corrected 

for biases common to all groups of bucket SSTs following the same approach used for 

HadSST3 (refs 4,7). This reference data set, ICOADSa, is then further corrected for offsets 

between groups of ships to obtain our best estimate of SST trends, ICOADSb (see Methods). 

Comparing the trends in ICOADSa (Fig. 3a) against the difference in trends between 

ICOADSa and ICOADSb between 1908 and 1941 (Fig. 3b) shows a spatial anticorrelation 

(Pearson’s r-value) of −0.50 ± 0.03. All uncertainties are reported with two standard deviations 

(s.d.) unless otherwise noted. Similar anticorrelations between our groupwise trend corrections 
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and baseline SST trends are found for each of four major SST products (Table 1), indicating 

that some of the structure in early-twentieth-century SST trends reflects offsets between 

nations and decks. 

The corrections included in ICOADSb result in a more homogeneous warming pattern 

(Extended Data Fig. 1f). North Pacific trends change from 0.31 ± 0.03 °C per 34 years in 

ICOADSa to 0.55 ± 0.11 °C per 34 years in ICOADSb, and North Atlantic trends from 

0.85 ± 0.03 °C per 34 years to 0.65 ± 0.11 °C per 34 years (Fig. 4). Results are also temporally 

more homogeneous, with ICOADSa and other SST estimates indicating a slight cooling 

between 1920 and 1941 in the North Pacific, but ICOADSb showing a continuous warming 

trend throughout the early twentieth century (Fig. 4a). Furthermore, whereas ICOADSa 

indicates that 6% of the 5° grid boxes for which SST trends are computed contain significant 

cooling (P < 0.05), ICOADSb indicates that only 2% of grid boxes contain significant cooling 

(Fig. 3). Our focus is on the 1908–1941 interval for consistency with a previous study12, but 

results are similar if neighbouring starting and ending years are chosen instead (Supplementary 

Table 2). 

The prominent revision to Pacific SST trends relates to a change in offsets identified in 

the Japanese Kobe Collection, where a mean offset of 0.07 ± 0.12 °C between 1908 and 1930 

drops to −0.28 ± 0.13 °C between 1935 and 1941 in the North Pacific (Extended Data Fig. 2c). 

One indication of why offsets change comes from considering the distribution of trailing digits 

in the Kobe Collection records, which are distributed across decks 118, 119 and 762. Before 

1932, Kobe Collection records come from deck 762, and the distribution of trailing digits in 

reported SSTs is consistent with measurements that were originally recorded in whole-degrees 

Fahrenheit, then converted to Celsius, and finally rounded to tenths-of-a-degree (Extended 

Data Fig. 3a). Such unit conversion and rounding increases noise but results in negligible 

systematic offsets24. Between 1933 and 1941, however, more than 99% of Kobe Collection 

records come from deck 118 and are archived in whole-degrees Celsius. Examination of the 

reference manual for deck 118 reveals that digitization of these observations involved 

truncation25 (Extended Data Fig. 3d). 
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If, before truncation, deck 118 contained the same distribution of trailing digits as 

found in deck 762, truncation would be expected to introduce a cold offset of −0.46 °C. We 

find an offset of −0.35 ± 0.07°C, with the smaller magnitude possibly reflecting the presence of 

additional offsets between decks. Cold offsets identified in the Kobe Collection during the 

1930s are robust to whether or not decks 762 and 118 are treated as distinct groups in our 

analysis, because these decks are well separated in time and our LME model allows offsets to 

vary temporally (see Extended Data Figs. 2d and 4 for a sensitivity analysis). Kobe Collection 

deck 119 is also truncated and found to have a cold offset, but there is little consequence for 

early-twentieth-century trends because deck 119 spans 1951 to 1961. The biases identified 

here are associated with data-management practices and are not addressed in physical models 

used for correcting bucket temperatures. Furthermore, truncation biases in SSTs could, in 

principle, be identified by comparing against night-time marine air temperatures, but in the 

case of decks 118 and 119 this other indicator of surface temperature was also truncated. 

North Atlantic warming in ICOADSb is revised downwards by −0.20 ± 0.11 °C 

between 1908 and 1941, primarily as a consequence of the revision of SSTs from deck 156 and 

German deck 192 (Fig. 4b and Extended Data Fig. 2b). Deck 156, a group without country 

information, is biased relatively cold by −0.22 ± 0.12 °C during 1908–1941 in the North 

Atlantic (Extended Data Fig. 2c). Deck 156 contributes 41% of North Atlantic observations 

between 1908 and 1912, but this contribution drops to less than 1% during World War I and 

returns only to 7% thereafter. Deck 156 corrections predominantly warm SST estimates earlier 

in the twentieth century, decreasing the warming trend by −0.05 ± 0.03 °C per 34 years. 

Another major correction involves making German deck 192 cooler by 0.33 ± 0.13 °C between 

1920 and 1941 (Extended Data Fig. 2c), thereby decreasing estimates of North Atlantic 

warming by −0.08 ± 0.03 °C per 34 years. A possible clue to the origins of this offset is that 

German deck 192 shows an increasing portion of SSTs that are reported in whole-degrees 

Celsius after the 1920s (Extended Data Fig. 3c), although no major modification of the data is 

indicated by available documentation. 
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A test of whether our groupwise SST corrections are skilful is made by comparing 

ICOADSa and ICOADSb against land-based air-temperature records. We compare SSTs from 

the Northwest Pacific and Northwest Atlantic against adjacent land temperatures from 

CRUTEM4 (ref. 26), because these regions show large corrections near a network of 

land-temperature stations. The Pearson cross-correlation for interannual temperature 

variability in the Northwest Pacific between 1908 and 1941 increases from 0.67 when using 

ICOADSa to 0.85 when using ICOADSb. Furthermore, the 1908–1941 trend increases from 

−0.06 ± 0.04 °C per 34 years in ICOADSa to 0.34 ± 0.11 °C per 34 years in ICOADSb, 

bringing it into agreement with the 0.33 °C per 34 years trend in CRUTEM4 (Table 1 and 

Extended Data Fig. 5). Improved agreement for the Northwest Atlantic is more modest. 

Northwest Atlantic correlation increases from 0.65 to 0.71 from ICOADSa to ICOADSb, and 

trends decrease from 0.91 ± 0.05 °C per 34 years to 0.64 ± 0.13 °C per 34 years, but this is still 

significantly higher than the CRUTEM4 trend of 0.32 °C per 34 years.  

The Pacific Decadal Oscillation18 (PDO) shifts towards an increasingly positive phase 

over 1908–1941 (ref. 27). The magnitude of the PDO trend is smaller in ICOADSb than in 

ICOADSa (Table 1), but both are consistent with trends found in North Pacific sea level 

pressure fields28 (Extended Data Fig. 6). 

Equally important to changed SST trends is the greater uncertainty estimated to 

accompany these trends (Extended Data Fig. 7). The global average SST trend in HadSST3 

between 1908 and 1941 has a reported 2 s.d. uncertainty of 0.03 °C per 34 years, whereas 

accounting for groupwise offsets in ICOADSb reveals an uncertainty of 0.10 °C per 34 years. 

Larger uncertainties in ICOADSb reflect the fact that averaging repeated observations within a 

group does not decrease systematic groupwise errors. One implication is that the expected 

correspondence between observed and simulated trends should be revised downwards. These 

results have implications for attribution of early-twentieth-century warming and extreme 

events5,27,29. Another implication is that the scope for further improvement of regional 

temperature estimates associated with better diagnosing and correcting for groupwise biases9 is 

greater than previously recognized. 
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Finally, we briefly explore the implications of our results for model–data mismatches 

during the early twentieth century. Differences in rates of warming in the North Atlantic and 

North Pacific reduce from 0.54 ± 0.03 °C per 34 years in ICOADSa to 0.10 ± 0.07 °C per 34 

years in ICOADSb. These revised interbasin trend differences are consistent with that of 

0.00 ± 0.40 °C per 34 years found in the early-twentieth-century simulations from the Fifth 

Climate Model Intercomparison Project30 (CMIP5; Extended Data Fig. 1e). But we note that 

the global-average rate of SST warming in ICOADSb is 0.56 ± 0.10 °C per 34 years, and that 

the same domain in the CMIP5 ensemble warms by only 0.19 ± 0.17 °C per 34 years—a 

discrepancy in warming rates noted previously for other SST estimates27. The model–data 

mismatch in rates of overall warming highlights the importance of continuing to investigate 

forcing, sensitivity and internal variability within model simulations along with corrections to 

historical SST estimates. 

Online content Any methods, additional references, Nature Research reporting summaries, source data, 

statements of data availability and associated accession codes are available at [DOI link]. 

Received 8 February 2018; accepted 17 May 2019. 

<jrn>1. Huang, B. et al. Extended reconstructed sea surface temperature, version 5 

(ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 

(2017).</jrn> 

<jrn>2. Hirahara, S., Ishii, M. & Fukuda, Y. Centennial-scale sea surface temperature analysis 

and its uncertainty. J. Clim. 30, 57–75 (2014).</jrn>  

<conf>3. Kennedy, J., Rayner, N., Saunby, M. & Millington, S. Bringing together 

measurements of sea surface temperature made in situ with retrievals from satellite 

instruments to create a globally complete analysis for 1850 onwards, HadISST2. In 

EGU General Assembly Conference Abstracts (2013).</conf>  

<jrn>4. Kennedy, J., Rayner, N., Smith, R., Parker, D. & Saunby, M. Reassessing biases and 

other uncertainties in sea surface temperature observations measured in situ since 

1850: 2. Biases and homogenization. J. Geophys. Res. D 116, D14104 (2011).</jrn> 



Publisher: NPG; Journal: Nature: Nature; Article Type: Physics letter 
 ms no: 2018-02-01918 

Page 8 of 29 

<jrn>5. Delworth, T. L. & Knutson, T. R. Simulation of early 20th century global warming. 

Science 287, 2246–2250 (2000).</jrn> 

<jrn>6. Tung, K.-K. & Zhou, J. Using data to attribute episodes of warming and cooling in 

instrumental records. Proc. Natl Acad. Sci. USA 110, 2058–2063 (2013).</jrn> 

<jrn>7. Folland, C. & Parker, D. Correction of instrumental biases in historical sea surface 

temperature data. Q. J. R. Meteorol. Soc. 121, 319–367 (1995).</jrn> 

<jrn>8. Smith, T. M. & Reynolds, R. W. Bias corrections for historical sea surface 

temperatures based on marine air temperatures. J. Clim. 15, 73–87 (2002).</jrn> 

<jrn>9. Kent, E. C. et al. A call for new approaches to quantifying biases in observations of sea 

surface temperature. Bull. Am. Meteorol. Soc. 98, 1601–1616 (2017).</jrn> 

<jrn>10.  Chan, D. & Huybers, P. Systematic differences in bucket sea surface temperature 

measurements amongst nations identified using a linear-mixed-effect method. J. Clim. 

https://doi.org/10.1175/JCLI-D-18-0562.1 (2019).</jrn>  

<jrn>11.  Davis, L. L., Thompson, D. W., Kennedy, J. J. & Kent, E. C. The importance of 

unresolved biases in 20th century sea-surface temperature observations. Bull. Am. 

Meteorol. Soc. 621–629 (2018).</jrn>  

<jrn>12.  Tokinaga, H., Xie, S.-P. & Mukougawa, H. Early 20th-century Arctic warming 

intensified by Pacific and Atlantic multidecadal variability. Proc. Natl Acad. Sci. USA 

114, 6227–6232 (2017).</jrn> 

<jrn>13.  Crook, J. A. & Forster, P. M. A balance between radiative forcing and climate 

feedback in the modeled 20th century temperature response. J. Geophys. Res. D 

Atmospheres 116, D17108 (2011).</jrn> 

<jrn>14.  Knutson, T. R., Zeng, F. & Wittenberg, A. T. Multimodel assessment of regional 

surface temperature trends: CMIP3 and CMIP5 twentieth-century simulations. J. 

Clim. 26, 8709–8743 (2013).</jrn> 



Publisher: NPG; Journal: Nature: Nature; Article Type: Physics letter 
 ms no: 2018-02-01918 

Page 9 of 29 

<jrn>15.  Stott, P. A. et al. External control of 20th century temperature by natural and 

anthropogenic forcings. Science 290, 2133–2137 (2000).</jrn> 

<jrn>16.  Myhre, G. et al. Anthropogenic and natural radiative forcing. Clim. Change 423, 

658–740 (2013).</jrn> 

<jrn>17.  Schlesinger, M. E. & Ramankutty, N. An oscillation in the global climate system 

of period 65–70 years. Nature 367, 723–726 (1994).</jrn> 

<jrn>18.  Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific 

interdecadal climate oscillation with impacts on salmon production. Bull. Am. 

Meteorol. Soc. 78, 1069–1079 (1997).</jrn> 

<jrn>19.  Karl, T. R. et al. Possible artifacts of data biases in the recent global surface 

warming hiatus. Science 348, 1469–1472 (2015).</jrn> 

<jrn>20.  Medhaug, I., Stolpe, M. B., Fischer, E. M. & Knutti, R. Reconciling controversies 

about the ‘global warming hiatus’. Nature 545, 41–47 (2017).</jrn> 

<jrn>21.  Thompson, D. W., Kennedy, J. J., Wallace, J. M. & Jones, P. D. A large 

discontinuity in the mid-Twentieth Century in observed global-mean surface 

temperature. Nature 453, 646–649 (2008).</jrn> 

<jrn>22.  Freeman, E. et al. ICOADS release 3.0: a major update to the historical marine 

climate record. Int. J. Climatol. 37, 2211–2232 (2017).</jrn> 

<jrn>23. Bonferroni, C. Teoria statistica delle classi e calcolo delle probabilita. Pubbl. R Ist. 

Sup. Sci. Econ. Commer. Fir. 8, 3–62 (1936).</jrn> 

<jrn>24.  Rhines, A., Tingley, M. P., McKinnon, K. A. & Huybers, P. Decoding the 

precision of historical temperature observations. Q. J. R. Meteorol. Soc. 141, 2923–

2933 (2015).</jrn> 

<jrn>25.  Wilkinson, C. et al. Recovery of logbooks and international marine data: the 

RECLAIM project. Int. J. Climatol. 31, 968–979 (2011).</jrn> 



Publisher: NPG; Journal: Nature: Nature; Article Type: Physics letter 
 ms no: 2018-02-01918 

Page 10 of 29 

<jrn>26.  Jones, P. et al. Hemispheric and large-scale land-surface air temperature 

variations: an extensive revision and an update to 2010. J. Geophys. Res. D 117, 

D05127 (2012).</jrn> 

<jrn>27.  Hegerl, G. C., Brönnimann, S., Schurer, A. & Cowan, T. The early 20th century 

warming: anomalies, causes, and consequences. Wiley Interdiscip. Rev. Clim. Change 

9, e522 (2018).</jrn> 

<jrn>28.  Compo, G. P. et al. The twentieth century reanalysis project. Q. J. R. Meteorol. 

Soc. 137, 1–28 (2011).</jrn> 

<jrn>29.  Seager, R. et al. Would advance knowledge of 1930s SSTs have allowed 

prediction of the Dust Bowl drought? J. Clim. 21, 3261–3281 (2008).</jrn> 

<jrn>30.  Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the 

experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).</jrn> 

Acknowledgements D.C. and P.H. were funded by the Harvard Global Institute and the US National Science 

Foundation (NSF) Award 1558939. E.C.K. and D.B. were funded by the UK Natural Environment Research 

Council (NERC) through grants NE/R015953/1 and NE/J020788/1. C. Wunsch (MIT, Harvard) and P.-W. Chan 

(Harvard) provided helpful feedback on an earlier draft. 

Author contributions D.C. and P.H. conceived and designed the study; D.C. performed the analyses; and all 

authors contributed to interpreting results and writing the paper. 

Competing interests: The authors declare no competing interests. 

Additional information 

Extended data is available for this paper at [DOI link]. 

Supplementary information is available for this paper at [DOI link]. 

Reprints and permissions information is available at www.nature.com/reprints. 

Correspondence and requests for materials should be addressed to P.H. 



Publisher: NPG; Journal: Nature: Nature; Article Type: Physics letter 
 ms no: 2018-02-01918 

Page 11 of 29 

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 

institutional affiliations. 

 

Fig. 1 | Groups of bucket SST measurements. a, Left-hand y-axis: number of bucket SST 

measurements from individual groups identified by country and deck information in 

ICOADS3.0. Country name abbreviations are: DE, Germany; GB, Great Britain; JP, Japan; 

NL, The Netherlands; RU, Russia; US, United States; and —, missing. Groups having fewer 

than 100,000 measurements are labelled as ‘other groups’. Decks 118 and 762 are combined 

into ‘JP DCK 118’ because they are both Japanese Kobe Collection decks. Right-hand y-axis: 

percentage of measurements that have come from buckets, showing that nearly all observations 

before 1935 are from buckets (black line). b–d, Maps indicating nations that contribute the 

most observations within 5° × 5° grids for the periods 1908–1918 (b), 1919–1928 (c) and 

1929–1941 (d). White grid boxes have fewer than three years of data.  
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Fig. 2 | Relative offsets between groups of bucket SSTs. Groups for which fixed effects 

differ significantly from zero are indicated by * (P < 0.05). The 46 out of 162 groups that 

contribute data between 1908 and 1941 are indicated in black, and those remaining significant 

after a Bonferroni correction (P < 0.05/46) are indicated by **. Shading indicates the sum of 

fixed and five-yearly effects (regional effects are not shown). Bar widths indicate the number 

of SST measurements contributed by each group for each year. Abbreviated country names 

correspond to those in Fig. 1 and are listed in Supplementary Table 1. 
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Fig. 3 | Maps of SST trends and corrections between 1908 and 1941. a, SST trends in 

ICOADSa are similar to patterns found in existing SST estimates (Extended Data Fig. 1). b, 

Trends associated with the corrections for groupwise offsets. Note that panel b is plotted on a 

different colour scale. c, SST trends in ICOADSb after applying groupwise corrections. Areas 

in grey are inadequately sampled for purposes of calculating trends (see Methods). Dots 

indicate significant trends (P < 0.05). In ICOADSb (c), 77% of boxes show statistically 

significant warming, whereas only 2% show significant cooling. By contrast, in ICOADSa (a), 

6% of boxes indicate significant cooling. 
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Fig. 4 | Diverging estimates of regional temperature variations. a, b, Annual SST 

anomalies from different datasets in the North Pacific (a) and North Atlantic (b) oceans. 

Anomalies are relative to the 1920–1929 mean of each SST estimate. ICOADSb shows greater 

warming in the North Pacific and less warming in the North Atlantic relative to previous 

estimates. Uncertainties associated with ICOADSb (blue shading, 2 s.d.) are for annual 

average SSTs for each sub-basin, and are an order of magnitude larger than those reported for 

HadSST3 (red shading). Note that those uncertainties included in HadSST3 are mostly 

removed when computing the anomaly. The discrepancy in annual average SST uncertainties 

is larger than the discrepancy for trends (Table 1).  
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Table 1 | Early-twentieth-century SST trends  

 ICOADSa ICOADSb ERSST5 COBESST2 HadISST2 HadSST3 

Global trend 0.51 ± 0.03 0.56 ± 0.10 0.43 0.48 0.44 ± 0.04 0.47 ± 0.03 

N Atlantic trend 0.85 ± 0.03 0.66 ± 0.11 0.82 0.79 0.74 ± 0.04 0.71 ± 0.03 

N Pacific trend 0.31 ± 0.03 0.56 ± 0.11 0.37 0.39 0.32 ± 0.04 0.37 ± 0.03 

NW Pacific trend −0.35 ± 0.04 −0.02 ± 0.11 −0.39 −0.14 −0.34 ± 0.06 −0.30 ± 0.04 

NE Pacific trend 0.86 ± 0.04 1.03 ± 0.12 1.02 0.85 0.85 ± 0.06 0.94 ± 0.04 

East Asia trend −0.06 ± 0.04 0.34 ± 0.11 −0.31 0.04 −0.09 ± 0.04 0.00 ± 0.04 

Eastern US trend 0.92 ± 0.05 0.65 ± 0.13 0.75 0.82 0.61 ± 0.05 0.56 ± 0.05 

PDO trend 1.82 ± 0.19 1.53 ± 0.20 2.03 ± 0.15 1.64 ± 0.11 2.02 ± 0.12 1.98 ± 0.18 

East Asia 

air-temperature 

correlation 

0.67 0.85 0.53 0.68 0.69 0.71 

Eastern US 

air-temperature 

correlation 

0.65 0.70 0.67 0.56 0.72 0.76 

Correction pattern 

correlation 
−0.49 −0.10 −0.49 −0.43 −0.45 −0.42 

Trends are averaged over non-grey areas as in Fig. 3a, with the North Atlantic and North Pacific defined 
as poleward of 20° N; the Northwest Pacific between 120° E and 180° E, and 25° N and 45° N; and the 
Northeast Pacific between 120° W and 160° W, and 20° N and 60° N. East Asia and Eastern US 
regions are shown in Extended Data Fig. 5c. All trends are between 1908 and 1941, and are in units of 
°C per 34 years, with uncertainties reported at the 2 s.d. level. Each reported SST trend uncertainty 
includes contributions from bucket corrections, but only ICOADSb also accounts for groupwise offsets. 
Cross-correlations (Pearson’s r) are reported between interannual air temperatures26 and SSTs from 
East Asia and the Eastern US between 1908 and 1941, and between the spatial patterns of trends in 
SSTs (Fig. 3a and Extended Data Fig. 1a–d) and groupwise corrections (Fig. 3b). 

METHODS 

Identification of bucket measurements 

To identify bucket measurements, we follow the same procedure used for HadSST3 (ref. 4), 

using World Meteorological Organization Report Number 47 (WMO47) and ICOADS 

metadata. Prior to 1941, all SST measurements are assumed to be from buckets unless 

explicitly recorded otherwise. Analysis of the amplitude of the diurnal cycle in SST before 

1941 supports unidentified records as being overwhelmingly from buckets31. From 1941 

onwards, if the method of measurement is missing in both WMO47 and ICOADS metadata, 
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SST measurements are assumed to come from buckets if the associated nations are reported to 

have at least 95% of their ships making bucket measurements in WMO47. 

The nationality corresponding to each bucket SST measurement is determined using 

ICOADS country-code information and WMO47. If these metadata are unavailable, the first 

three letters of the ICOADS identification code are matched with international call signs32, or 

the first two letters for decks 705, 706, and 707 (ref. 33). Decks that may include substantial 

amounts of engine-room-intake measurements (decks 740, 780 and 874) are discarded, but this 

has little influence because these decks together contribute only 249 measurements between 

1908 and 1941 out of a total of 20.5 million measurements. 

Bucket corrections 

The same methodology used for HadSST3 (ref. 4) is applied to ICOADSa and ICOADSb to 

correct for biases common to all groups (see Extended Data Fig. 8 for comparison and 

Supplementary Table 3 for details). Corrections common to all groups are made using wooden- 

and canvas-bucket models7 run at 5° × 5° for individual climatological months. Bucket models 

are driven by the 1973–2002 monthly climatology of SST, 10-m air temperature, wind speed 

and specific humidity from the National Oceanography Centre (NOC) version 2.0 surface flux 

and meteorological data set34 and an insolation climatology from ERA-interim reanalysis35. 

Additional corrections are applied to groups of bucket observations in ICOADSb that 

are determined using an LME model: 

  (1) 

The vector of temperature differences, δT, is determined from proximal pairs of bucket SST 

observations that come from ships within 300 km and 2 days of one another that are associated 

with different nationalities and deck assignments. All bucket SST data identified in 

ICOADS3.0 between 1850 and 2014 are analysed, yielding 17.8 million paired SST 

differences (Extended Data Fig. 9). The 1908–1941 period contains a subset of 6.1 million SST 

differences. SST differences are adjusted for climatological effects associated with location, 

day of year, and hour of day10. 

!T = Xα + Zyβy + Zrβr + βσ
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SST differences contained in δT are represented as a ‘fixed-effect’ term describing 

offsets between groups, α, and random effects describing temporal variations (five-year 

blocks), βy, and regional variations (17 sub-basin regions), βr. Matrices X, Zy and Zr specify, 

respectively, common pairs of groups, five-year blocks, and region. βσ is the residual, and 

estimates are derived using an expectation-maximization procedure36. Groupwise SST 

corrections are applied in ICOADSb by removing estimated offsets from each SST 

measurement according to group, year and region. 

Equation (1) is run at two levels, one for determining international offsets and one, a 

more detailed level, for determining interdeck offsets within nations. Each level of offsets is 

constrained to equal zero when summed across all paired measurements and all years. The 

groupwise corrections applied to ICOADSb thus adjust for offsets between groups but do not 

alter the average across all data. A detailed description of the LME design and implementation, 

along with the sensitivity of results to plausible variants, is available in a methods paper10. In 

an update to ref. 10, the analysis presented here uses international call signs for identifying 

nationality, thereby allowing us to increase the number of groups for which more than 5,000 

SSTs are compared from 96 to 162 (Extended Data Fig. 10). Only groups associated with at 

least 5,000 pairs of SST observations are retained. 

Trend estimates 

Regional trends are the average of local trend estimates resolved at 5° × 5°grid boxes at 

monthly resolution. Monthly errors are represented as the sum of four different components, 

. Terms represent the uncertainty due to errors associated with 

individual observations, σo; partial sampling of each grid box, σs; HadSST3-type 

bucket-adjustment errors, σb; and errors common to individual groups of SST measurements, 

σg. The first three terms are assumed to follow those reported for HadSST3 (ref. 4), and the last 

is inferred through the LME model. 

A 1,000-member ensemble of SST observations is generated to represent both the 

random and the systematic components of uncertainty in ICOADSb. In addition to 

( )2 2 2 2
o s b g~ N 0,e s s s s+ + +
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uncertainties that are equivalent to those in HadSST3 (ref. 37), groupwise bucket errors are 

included according to the results from our LME model. In particular, intergroup offset terms 

are drawn from a multivariate normal distribution that represents uncertainties associated with 

fixed group effects as well as random five-yearly and regional effects10. 

To compute trends, monthly anomalies are averaged to annual values, and years with 

fewer than three months of data are discarded. Empty monthly 5° grid boxes are infilled by 

averaging neighbouring grid boxes that are within 10°. Trends are reported only if SST 

estimates are present (or have been infilled) for both the first and the last five years, and data 

cover at least 26 of the years between 1908 and 1941. Trends are computed using standard 

linear least squares. The same procedure is followed for computing trends from the ensemble 

of realizations in order to estimate uncertainties. 

The average trend uncertainty between 1908 and 1941 across sampled grid boxes is 

0.12 °C per 34 years for , 0.01 °C per 34 years for σb, and 0.06 °C per 34 years for 

σg. When taking spatial averages, σo and σs are independent across boxes, whereas σb is 

globally systematic and σg is partially systematic. The contributions of uncorrelated terms to 

uncertainties in the global mean trend are essentially negligible for σo and σs, remain at 0.01 °C 

per 34 years for σb, and become 0.05 °C per 34 years for σb. Groupwise errors are thus expected 

to dominate the uncertainties associated with SST trends. 

Comparison with other data sets 

There are a number of notable differences between the SST data sets considered here. 

ICOADSa, ICOADSb, and ERSST5 (ref. 1) are based on ICOADS3.0 (ref. 22), whereas 

COBESST2 (ref. 2), HadISST2 (ref. 3) and HadSST3 (ref. 4) are based on ICOADS2.5 (ref. 38. 

ICOADSa and ICOADSb use only bucket SST measurements, which are estimated to account 

for 94% of all observations in ICOADS3.0 between 1908 and 1941. Other data sets also make 

use of engine-room intake, buoy and drifter observations, which become more common after 

1941. Finally, ERSST5, COBESST2 and HadISST2 infill monthly grid boxes without data, 

whereas ICOADSa, ICOADSb and HadSST3 leave these boxes unfilled. 

2 2
o ss s+
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Coastal near-surface air temperatures from CRUTEM4 (ref. 26) are used to check the 

validity of our groupwise corrections. We choose to compare ICOADS with CRUTEM4 near 

the east coasts of Asia and North America because these two regions experience the largest 

adjustments in trends and because of the availability of relatively dense station and bucket data. 

In each area, regional SST and land air temperature time series are computed using only those 

grid boxes that contain both types of measurement (Extended Data Fig. 5c). 

Pacific Decadal Oscillation 

An SST index for the Pacific Decadal Oscillation, SST-PDO, is obtained by projecting 

annual-average SSTs poleward of 20° N in the Pacific onto a normalized PDO pattern, where 

the PDO pattern is obtained by regressing SST onto a standard National Center for 

Environmental Information (NCEI) PDO index18 over the years 1948–2014 and is then 

normalized to have zero mean and a range of one over the North Pacific. The same method is 

applied to sea level pressure using the NOAA 20th Century Reanalysis28, yielding SLP-PDO. 

SST-PDO is regressed against SLP-PDO over the periods 1908–1941 and 1948–2010 for 

sensitivities in units of °C mb−1. Uncertainty in PDO trends is estimated by randomly 

perturbing PDO indices using error estimates of projections in individual years. When 

estimating the sensitivity of the SST-PDO index against the SLP-PDO index, the same random 

seeding is used to draw realizations of both indices for all SST products. 

Data availability 

All data sets used in this study are publicly available as follows: ICOADS3.0 

(https://rda.ucar.edu/datasets/ds548.0/), HadSST3 and a 100-member ensemble 

(https://www.metoffice.gov.uk/hadobs/hadsst3/data/download.html), HadISST2 and a 

10-member ensemble (https://www.metoffice.gov.uk/hadobs/hadisst/data/hadisst2/), 

COBESST2 (https://www.esrl.noaa.gov/psd/data/gridded/data.cobe2.html), and ERSST5 

(https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.v5.html). ICOADSa and 

ICOADSb, together with archived versions of all other data sets, are posted at 

https://doi.org/10.7910/DVN/DXJIGA. 
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Code availability 

Code allowing the full reproduction of our results is posted on Github at 

https://github.com/duochanatharvard/Homogeneous_early_20th_century_warming. 
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Extended Data Fig. 1 | 1908–1941 SST trends in major observational estimates and 

CMIP5 simulations. a–d, Maps of SST trends for: a, HadSST3 (ref. 4); b, HadISST2 (ref. 3); 

c, ERSST5 (ref. 1); and d, COBESST2 (ref. 2). Although different correction schemes were 

used to account for bucket biases in each observational estimate, panels a–d show similar 

early-twentieth-century trends. e, Averages from 88 CMIP5 historical experiment 

simulations30. Model results and observed trends are all regridded to a common 5°×5° 

resolution to facilitate intercomparison. f, Zonal variance in 1908–1941 SST trends. Shading 

indicates a range covering 80% of the 88 CMIP5 members, which come from 39 coupled 

climate models (see Supplementary Table 4). ICOADSb has a more uniform spatial pattern of 

early-twentieth-century warming than other SST estimates.  
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Extended Data Fig. 2 | Groupwise decomposition of SST corrections in ICOADSb. a, b, 

Contributions from individual groups over the North Pacific Ocean (NP; a) and the North 

Atlantic Ocean (NA; b). c, SST offsets for groups having major influences on 1908–1941 trend 

estimates. Groupwise corrections relate foremost to a growing cold bias amongst Japanese 

deck 118 (yellow) in the Pacific, a pre-World War I cold bias in deck 156 (grey), and a growing 

warm bias in Germany deck 192 (blue) in the Atlantic. Shading indicates 2 s.d. uncertainties, 

and the sizes of the markers indicate numbers of SST observations. d, As for c, but for an 

analysis in which the Japanese Kobe collection is divided into decks 762, 118 and 119. In this 

analysis, the mean offset over the North Pacific is 0.07 ± 0.14 °C (2 s.d.) for deck 762 from 

1908 to 1930, and −0.24 ± 0.16 °C for deck 118 from 1935 onward, consistent with the case 

when decks are not separated (c). In addition, the cold offset of the Japanese Kobe Collection 

and the warm offset of German deck 192 are robust even if SSTs from the two groups are not 

allowed to be directly paired in the intercomparison. 
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Extended Data Fig. 3 | Decimal distributions of SSTs. a, Deck 762 from the Japanese Kobe 

Collection. The near-absence of a 0.5 °C decimal is indicative of data being recorded in 

whole-degrees Fahrenheit and then converted into tenths-of-a-degree Celsius. The blue line 

shows the percentage of SSTs recorded in whole degrees. b, Temperatures reported in deck 

118 of the Japanese Kobe Collection are all truncated to whole-degrees Celsius and constitute 

more than 99% of the Kobe Collection measurements between 1933 and 1941. c, Germany 

deck 192 is a time-varying mix of data in whole-degrees Celsius and data in tenths-of-a-degree 

Celsius; most common in the latter are values of 0 and 5, and then even digits. The percentage 

of SSTs archived in whole-degrees Celsius increases from 29% in 1908 to 50% in 1941 (blue 

line). d, Image from the reference manual of Japanese Kobe Collection deck 118 (ref. 25), 

where the red box highlights that temperature measurements were digitized at whole-degrees 

Celsius and all decimals dropped (https://icoads.noaa.gov/reclaim/pdf/dck118.pdf). 

 

0

0.5

1 a

0

50

100

 

0
1
2
3

De
cim

al 
(o C)

0

0.5

1 b

0

50

100

Pe
rc

en
ta

ge
of

SS
Ts

at
wh

ole
de

gr
ee

s

Nu
m

be
r o

f m
ea

su
re

m
en

ts
(x

10
  )4

0

10

20

Year
1900 1910 1920 1930 1940
0

0.5

1 c

0

50

100

0

5

10

d



Publisher: NPG; Journal: Nature: Nature; Article Type: Physics letter 
 ms no: 2018-02-01918 

Page 24 of 29 

 

Extended Data Fig. 4 | Sensitivity of 1908–1941 SST trends. As for Fig. 3, but with Japanese 

Kobe Collection decks 118, 119 and 762 separated into distinct groups. a, SST trends in 

ICOADSa; b, trends associated with the corrections for groupwise offsets; c, SST trends in 

ICOADSb after applying groupwise corrections.  

 

Extended Data Fig. 5 | Comparison of SSTs with coastal air temperature estimates. a, b, 

Air temperatures are from CRUTEM4 (ref. 26) near the east coast of Asia (a) and the east coast 

of the US (b). These two regions are indicated by the shading in c and host the largest 

groupwise corrections. SSTs corrected for groupwise offsets (ICOADSb, blue line) better 
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correlate with CRUTEM4 air temperatures (black line) than do SSTs having only common 

bucket-bias corrections (ICOADSa, grey line), especially for Asia in the 1930s. See Table 1 for 

correlations associated with other major SST estimates. 

 

Extended Data Fig. 6 | Sea level pressure and the PDO. a, Spatial pattern of sea level 

pressure (SLP) associated with a 1σ increase in the PDO index18. b, 1908–1941 SLP trends 

from the NOAA’s 20th Century Reanalysis28. c–g, Regressions of SST-PDO indices against 

the SLP-PDO index for ICOADSb (c), ERSST5 (d), COBESST2 (e), HadISST2 (f) and 

HadSST3 (g). The SLP-PDO index is computed from the NOAA’s 20th Century Reanalysis, 

and the regression analysis is performed for 1908–1941 (red) and 1948–2010 (black). h, 

Regression coefficients for each data set over 1908–1941 (red) and 1948–2010 (black). Note 

that the y-axis starts from 0.25 °C mb−1. Error bars indicate 2 s.d. uncertainties. ICOADSb has 

a similar regression coefficient over 1908–1941 to that found using other SST data sets and 

other epochs. 
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Extended Data Fig. 7 | 1σ uncertainty estimates of 1908–1941 trends. a, Sampling and 

observational uncertainty inherent to all SST estimates, estimated using 1,000 members drawn 

from normal distributions that have a mean of zero and a variance of the sampling and 

observational uncertainty equal to that specified in ref. 37. b, Uncertainties associated with 

common bucket-bias corrections in HadSST3, which takes into account shifts between wooden 

and canvas buckets, exposure time, and ship speed, obtained from a 100-member ensemble4. c, 

Uncertainty of groupwise corrections in ICOADSb, estimated from 1,000 random correction 

members. d, Uncertainties quadratically combining those shown in a–c. Note that these 

uncertainties are for individual grid boxes, whereas Table 1 reports uncertainties for regional or 

global averages. 
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Extended Data Fig. 8 | Common bucket-bias corrections. a, Comparison of annual global 

mean common bucket-bias corrections reproduced in ICOADSa and from HadSST3 for 1850–

1941. b, As in a, but for monthly mean corrections from 1920 to 1929. Bucket corrections in 

ICOADSa are subsampled over HadSST3 grids before computing global means. c–f, 

Comparisons of spatial patterns of SST corrections for the period 1920 to 1930. Shown are our 

corrections for December, January and February (c) and June, July and August (e); and the 

HadSST3 corrections for December, January and February (d) and June July and August (f). 

The 1920-1930 period is assumed to contain only canvas buckets, and an average of 78% of 

SSTs from fast ships (7 m s−1) and 22% from slow ships (4 m s−1). g–j, As for c–f, but for 
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corrections over 1850 to 1860—a period assumed to contain only slow ships (4 m s−1), with 

36% of SST measurements from canvas buckets and 64% from wooden buckets. Discrepancies 

become apparent from the 1930s because of increasing contributions from warm-biased 

engine-room-intake measurements in HadSST3, whereas we focus only on bucket 

measurements. 

 

Extended Data Fig. 9 | Groups providing bucket SST measurements from 1850 to 2014. 

Left-hand y-axis: numbers of bucket SST measurements from individual groups, identified by 

country and deck information as colour coded, in ICOADS3.0. CA, Canada; BR, Brazil; DE, 

Germany; FR, France; GB, Great Britain; NL, Netherlands; JP, Japan; RU, Russia; US, United 

States; —, missing country information. Black text shows the 46 of 162 groups that contributed 

to the SST archive between 1908 and 1941. Groups with fewer than 2 × 105 measurements 

throughout 1850 to 2014 are labelled as ‘other groups’. Right-hand y-axis, percentage of 

measurements that are from buckets (black line). Bucket measurements constitute nearly all 

observations before the 1930s.  
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Extended Data Fig. 10 | Partitioning of random and systematic errors. Updating the 

methodology for identifying nationality allows more groups of SSTs to be compared, and leads 

to minor changes in estimated random and systematic errors. Shown are fits according to 

equation (6) in ref. 10, depending on random measurement error ( ), systematic ship-level 

error ( ), and the scaling relationship between the number of measurements and ships (x). 

Fits are performed using logarithms, and shading indicates 2 s.d. in logarithmic space.  

100 101 102 103 104 105

R
an

do
m

 a
nd

 s
hi

p-
le

ve
l e

rro
rs

 fo
r a

ve
ra

ge
d 

SS
T 

di
ffe

re
nc

es
 (

o C
2 )

10-4

10-3

10-2

10-1

100

101

Number of averaged measurements

σrnd
2  = 0.86  σshp

2  = 0.38  x = 0.57

σrnd
2  = 0.42  σshp

2  = 0.80  x = 0.65
Empirical estimates (ref.10)

Empirical estimates (This study)

2
rnds

2
shps


