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Abstract Relativistic electron microbursts are an important electron loss process from the radiation
belts into the atmosphere. These precipitation events have been shown to significantly impact the
radiation belt fluxes and atmospheric chemistry. In this study we address a lack of knowledge about the
relativistic microburst intensity using measurements of 21,746 microbursts from the Solar Anomalous
Magnetospheric Particle Explorer (SAMPEX). We find that the relativistic microburst intensity increases as
we move inward in L, with a higher proportion of low-intensity microbursts (<2,250 [MeV cm2 sr s]−1) in
the 03–11 magnetic local time region. The mean microburst intensity increases by a factor of 1.7 as the
geomagnetic activity level increases and the proportion of high-intensity relativistic microbursts
(>2,250 [MeV cm2 sr s]−1) in the 03–11 magnetic local time region increases as geomagnetic activity
increases, consistent with changes in the whistler mode chorus wave activity. Comparisons between
relativistic microburst properties and trapped fluxes suggest that the microburst intensities are not limited
by the trapped flux present alongside the scattering processes. However, microburst activity appears to
correspond to the changing trapped flux; more microbursts occur when the trapped fluxes are enhancing,
suggesting that microbursts are linked to processes causing the increased trapped fluxes. Finally, modeling
of the impact of a published microburst spectra on a flux tube shows that microbursts are capable of
depleting <500-keV electrons within 1 hr and depleting higher-energy electrons in 1–23 hr.

1. Introduction
It is widely accepted that the net electron flux in the radiation belts is “a delicate balance between electron
acceleration and loss processes” (Reeves et al., 2003). An important electron loss process from the radiation
belts into the atmosphere that has recently gained new attention are relativistic electron microbursts. These
intense precipitation events of >1-MeV electrons on timescales of <1 s have been widely studied (e.g., Blum
et al., 2015; Lorentzen et al., 2001; Nakamura et al., 1995; O'Brien et al., 2003) and estimates of their affect
on the radiation belt environment have been conducted. Lorentzen et al. (2001) estimated that relativistic
microbursts occurring during a single storm of 6-hr duration could empty the entire relativistic electron
population from the radiation belts. They used two different values for the relativistic microburst intensity
based on individual case studies; 275 (cm2 sr s)−1 and ∼2,000 (cm2 sr s)−1. Breneman et al. (2017) estimated
that microbursts could deplete an entire flux tube of 220-keV electrons within ∼10 hr and could deplete
the higher energies on even shorter timescales. Recently, Greeley et al. (2019) found that microburst activ-
ity is a significant contributor to the global electron decay observed in the recovery phase of coronal mass
ejection-driven geomagnetic storms.

There has also been an attempt at quantifying the atmospheric impact of relativistic microbursts. Seppälä
et al. (2018) used a statistically average microburst occurrence rate (three microbursts per minute) and inten-
sity (∼1,300 [cm2 sr s]−1) over a 6-hr storm and modeled the impact on HOx, NOx, and ozone. They found that
these statistically average microburst events caused a significant 10–20% loss of ozone in the upper strato-
sphere and lower mesosphere. This ozone loss was due to the production of both HOx and NOx (Seppälä
et al., 2018).

Based on these relatively new studies, Breneman et al. (2017), Greeley et al. (2019), and Seppälä et al. (2018),
we now know that relativistic microbursts are not only a significant loss process from the electron radiation
belts but also a significant driver of chemical changes and subsequently ozone loss in the atmosphere.
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With the launch of the microburst CubeSat, FIREBIRD II (Focused Investigations of Relativistic Electron
Burst Intensity, Range, and Dynamics), there has been a renewed interest in relativistic microbursts and
new developments in the field. Most notably, there have been some case study estimates of the relativis-
tic microburst spatial scale sizes (Anderson et al., 2017; Crew et al., 2016; Shumko et al., 2018) as well as a
one to one correspondence between microburst activity and whistler mode chorus wave activity (Breneman
et al., 2017). The spatial sizes of microbursts appear to be consistent with the spatial extent of a single chorus
element (e.g., Agapitov et al., 2017, Agapitov et al., 2018). In conjunction with other recent studies (Douma
et al., 2017; Douma et al., 2018) it has been suggested that relativistic microbursts are predominantly driven
by whistler mode chorus waves. For example, in Douma et al. (2017) a large statistical study of Solar Anoma-
lous Magnetospheric Particle Explorer (SAMPEX) observed relativistic electron microbursts was conducted,
producing the same statistical data set used in the current study. The authors contrasted the magnetic local
time (MLT) and L occurrence distributions of the microbursts, particularly the geomagnetically dependent
microburst occurrence distributions with those for whistler mode chorus and electromagnetic ion cyclotron
(EMIC) waves. In a later study by Douma et al. (2018) a series of case studies were undertaken, investigating
the occurrence of whistler mode chorus and EMIC waves in ground-based data when SAMPEX-reported
microbursts occurred nearby. Both these studies concluded that chorus was likely the dominant driver for
microbursts but could not rule out that some events might be EMIC driven. Whistler mode chorus waves
are typically described as discrete structures of wave elements with timescales of 100 ms and sweep rates
of 8 kHz/s (Santolik et al., 2008). Chorus wave elements lie in the frequency range from a few hundreds
of hertz to several kilohertz (see reviews by; Omura et al., 1991; Sazhin & Hayakawa, 1992, and references
therein). However, it is important to note that the Omura and Zhao (2013) proposed EMIC scattering pro-
cess should provide an additional mechanism capable of causing relativistic microbursts. Evidence for the
occurrence of this scattering mechanism was reported by Douma et al. (2018). They presented case study
evidence of EMIC waves occurring concurrently with relativistic microbursts, while there was no observed
whistler mode chorus wave activity occurring.

A significant property of relativistic microbursts that has not been well studied to date is the intensity of the
individual microbursts, that is, the quantity of electron flux that is being precipitated during these events.
The authors are only aware of two such studies: Blum et al. (2015) and Greeley et al. (2019). Blum et al.
(2015) found that relativistic microbursts occurring during high-speed stream-driven storms had no sig-
nificant magnitude variation over different storm phases and rather remained approximately constant at
103 (MeV cm2 sr s)−1. However, they did show a magnitude variation in the L range, L = 3–8 (Blum et al.,
2015). In contrast, Greeley et al. (2019) found average microburst intensities were higher in the afternoon
MLT region when compared to the morning MLT region.

In our study we address this lack of knowledge concerning relativistic microburst intensity. We use the SAM-
PEX Heavy Ion Large Telescope (HILT) instrument and apply the O'Brien et al. (2003) detection algorithm
to identify relativistic microbursts. We also use the Blum et al. (2015) extension to the detection algorithm to
describe the relativistic microburst intensity, producing a large database of events. We then investigate the
distribution of the relativistic microburst intensities over L and MLT and consider how these change with
changing geomagnetic activity levels. We also compare the relativistic microburst intensity and occurrence
to the level of trapped flux measured by HEO3 at the time of the microburst scattering process and consider
how this may affect the relativistic microburst properties. Finally, we estimate the impact of the relativistic
microburst activity on the electron population in a given flux tube.

2. Instrumentation
In this study we use the HILT instrument onboard the SAMPEX to study microbursts. SAMPEX observa-
tions have been widely used previously in relativistic microburst investigations (e.g., Nakamura et al., 1995;
Lorentzen et al., 2001; Greeley et al., 2019), and the O'Brien et al. (2003) detection algorithm (discussed in
the following section) was specifically developed for use with SAMPEX measurements, where there is a long
time series of measurements available. The HILT instrument is capable of measuring >1.05-MeV electrons
and >5-MeV protons (Klecker et al., 1993). We use Row 4 of the solid state detector array (SSD4), which has
a temporal resolution of 100 ms over the lifetime of the satellite. Detailed descriptions of the HILT instru-
ment and SAMPEX satellite are given in Klecker et al. (1993) and Baker et al. (1993) and summarized in
Douma et al. (2017).
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There are three caveats that should be accounted for when using SAMPEX data. (1) The HILT instrument
samples different pitch angles over different regions of the Earth (Dietrich et al., 2010). This caveat will be
addressed in the following section. (2) The HILT instrument responds to both electrons and protons. Thus,
to use the SAMPEX electron data, we must remove the proton contamination. This contamination occurs
during solar proton events and in the region of the South Atlantic Magnetic Anomaly, where inner belt pro-
tons can reach SAMPEX altitudes. (3) The SAMPEX HILT instrument saturates at ∼7,000 (MeV cm2 sr s)−1.
However, only 0.15% of the SAMPEX HILT SSD4 fluxes exceed the saturation level. We thus conclude that
the saturation of the SAMPEX HILT instrument will not impact our relativistic microburst intensity analysis.

In this study we also use spacecraft 1997-068 (also known as HEO3), which was launched in 1997 into a
highly elliptical orbit with an inclination of −62◦ (Blake et al., 1997; O'Brien et al., 2007; Ripoll et al., 2015).
The HEO3 satellite crosses the magnetic equator at L∼ 2, meaning the majority of the outer zone particle
data is taken far from the equator (O'Brien et al., 2007). The HEO3 orbits begin at perigee and are divided into
inbound, outbound, even, odd, high altitude, and low altitude. The satellite has variable temporal resolution
over its lifetime; however, the most common temporal resolution is 15 s. HEO3 carries dosimeters and an
electron-proton telescope that are capable of measuring >0.13-, >0.23-, >0.45-, >0.63-, >1.5-, and >3.0-MeV
electrons and >0.080-, >0.160-, >0.320-, >5-, 8.5–35-, 16- to 40-, and 27- to 45-MeV protons (O'Brien et al.,
2007; Ripoll et al., 2015). The electron data have been corrected for contamination by trapped and solar
protons (O'Brien et al., 2007).

3. Event Selection
We have used the O'Brien et al. (2003) relativistic microburst detection algorithm to identify relativistic
microbursts in the SAMPEX data. This algorithm has been discussed in detail in both O'Brien et al. (2003)
and Douma et al. (2017). It detects sharp spikes in the precipitating fluxes by comparing the 100-ms flux data
changes to 3-s smoothed baseline values. Any flux data changes 10 times greater than the baseline values
are defined as microbursts. Blum et al. (2015) undertook sensitivity tests on the O'Brien et al. (2003) algo-
rithm and found that the 10 times threshold picked up most microbursts while minimizing false detections.
Examples of detected microbursts from this algorithm have been published in Blum et al. (2015, Figure 2a),
Douma et al. (2017, Figure 1), and Douma et al. (2018, Figures 2–4).

In order to quantify the precipitating electron flux magnitude (hereafter referred to as intensity) of the rel-
ativistic microbursts, we have used the Blum et al. (2015) extension to the O'Brien et al. (2003) detection
algorithm. The Blum et al. (2015) extension is as follows:

M = N100 − B3000, (1)

where M is the magnitude of the microbursts (in counts), N100 is the number of counts in 100 ms (i.e., a
single data point), and B3000 is the baseline counts, defined as the 10th percentile in 3,000 ms (3 s) bins.

The removal of the baseline value in the calculation of the relativistic microburst intensity is thought to
account for the contribution of the trapped and drift loss cone electrons. However, upon closer inspec-
tion of the microburst intensities it is clear that the drift loss cone fluxes still lead to contamination in the
intensity calculation. As such, we have limited our analysis of the relativistic microburst intensities to the
North Atlantic Region where the SAMPEX HILT instrument is only measuring the bounce loss cone fluxes
(Dietrich et al., 2010).

We have defined the North Atlantic Region from 30–65◦N in latitude and 278–36◦E in longitude. The yel-
low shaded region in Figure 1 identifies this North Atlantic Region. The upper latitude limit increases with
increasing eastward longitude in the range 278–305◦E. Beyond 305◦E the upper latitude limit remains con-
stant at 65◦N. This definition of the North Atlantic Region follows the region outlined in Figure 3 of Dietrich
et al. (2010) where SAMPEX is only sampling the bounce loss cone. In the North Atlantic Region we detect
21,746 relativistic microbursts in the SAMPEX HILT data from 23 August 1996 to 11 August 2007. Beyond
2007 SAMPEX was in spin mode, during which results from the detection and magnitude algorithm are no
longer reliable.

4. Flux Magnitude Characteristics
We show the distribution of the relativistic microburst >1.05-MeV intensities in Figure 2. From these dis-
tributions it is clear that the majority of relativistic microbursts identified have intensities between 100
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Figure 1. The yellow shaded region identifies the North Atlantic Region used in our study. This is the region where
Solar Anomalous Particle Explorer samples the bounce loss cone, and the detection and magnitude algorithm is
reliable.

and 1,000 (MeV cm2 sr s)−1. The number of microbursts with intensities higher than 1,000 (MeV cm2 sr s)−1

falls off roughly exponentially. There are no relativistic microbursts detected with intensities below
30 (MeV cm2 sr s)−1. This lower limit on the relativistic microburst intensities is possibly due to the detec-
tion algorithm, which requires the flux “spike” to exceed a certain threshold in order to be identified as a
relativistic microburst. The high-intensity cutoff in the relativistic microburst intensities observed on the
log10 scale (Figure 2b) is likely due to the SAMPEX HILT instrument saturation. However, the very small
number of microburst events leading up to this high-intensity cutoff suggests that the missing high-intensity
relativistic microbursts are unlikely to affect the statistics presented in this paper.

4.1. L and MLT Distributions
In Figure 3 we present the McIlwain L and MLT distributions of the relativistic microburst intensity. We
have calculated the mean and associated 95% confidence interval for L and MLT values where ≥5 relativistic
microbursts are occurring to ensure our results are statistically representative of the relativistic microburst
intensity data set.

From Figure 3a we observe that the mean microburst intensity peaks at L = 4.5 with 1,554 (MeV cm2 sr s)−1.
The peak intensity is a factor of ∼3 larger than the mean intensities at L = 3 and L = 8.

Figure 3b shows that there is less variation in microburst intensities over MLT than is observed over L. There
is a statistically significant minimum in the relativistic microburst intensity at 07 MLT (denoted by the red
circle) with a value of 725 (MeV cm2 sr s)−1, a factor of ∼1.8 lower than the mean intensity over all MLT.
There is also a statistically significant peak in the microburst intensity at 2130 MLT (red circle) with a value
of 1,660 (MeV cm2 sr s)−1, a factor of ∼1.3 higher than the mean intensity over all MLT. The remainder of the

Figure 2. The distribution of relativistic microburst >1.05-MeV intensities on a (a) linear and (b) log10 scale.
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Figure 3. The (a) L and (b) MLT distributions of the mean relativistic microburst intensity and associated 95%
confidence interval on the mean intensity. The red circles identify the statistically significant MLT variation.
MLT = magnetic local time.

variation observed in Figure 3b is not statistically significant. The larger errors (95% confidence intervals)
in the afternoon MLT region (from 13–19 MLT) are due to the smaller number of microbursts occurring in
this MLT region.

In Figure 4 we present the combined L and MLT distribution of relativistic microburst median intensity at
0.5 L and 1-hr MLT resolution. As for the mean intensity, the median intensity is only calculated for L and
MLT bins where ≥5 microbursts occur to ensure the averages are statistically representative. Figure 4 shows
that the median intensity of relativistic microbursts increases (on average) with decreasing L shells. This
effect is most pronounced at 10 MLT but can also be clearly observed at 00, 01, 05, 11, and 22 MLT. The
median microburst intensity is low for the entire L range at 6 MLT and high for the entire L range at 21, 23,
and 00 MLT. On average the median microburst intensities are higher in the 19–01 MLT range (following a
counter clockwise rotation) and lower in the 03–12 MLT range.

Whistler mode chorus waves, which are thought to be the dominant driver of relativistic microbursts, have
larger amplitudes in the morning MLT region (Li et al., 2009; Meredith et al., 2012). Thus, Figure 4 appears
to suggest that the regions of highly active chorus waves drive (on average) lower-intensity microbursts.
However, upon closer inspection of the relativistic microburst intensity distributions in a range of MLT

Figure 4. The L and magnetic local time distribution of the median relativistic microburst intensity.
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Figure 5. (a) The difference between relativistic microburst intensity distributions in the 03–11 MLT region and the
19–03 MLT region. (b) The MLT distribution of the number of microbursts detected with intensities above (red) and
below (blue) 2,250 (MeV cm2 sr s)−1. MLT = magnetic local time.

regions (similar to those presented in Figure 2) we find this is not the case. Figure 5a presents the dif-
ference between the microburst intensity distributions in the 03–11 and the 19–03 MLT regions (again
following a counterclockwise rotation). To clarify, in making Figure 5a we have found the distribution
of microbursts with varying intensity in the 03–11 MLT range and subtracted it from the distribution of
microbursts with varying intensity in the 19–03 MLT range. We also classify microbursts as being low or
high intensity relative to a threshold value of 2,250 (MeV cm2 sr s)−1. This threshold is shown by the ver-
tical black line in the figure. From Figure 5a it is clear that high-intensity relativistic microbursts (i.e.,
those >2,250 [MeV cm2 sr s]−1 have similar occurrences in the two MLT regions, as the difference between
the number of bursts occurring in this range is very low. On the other hand, low-intensity microbursts
(<2,250 [MeV cm2 sr s]−1) occur more often in the 03–11 MLT region when compared with the 19–03
MLT region.

This is also demonstrated in Figure 5b, which shows the number of relativistic microbursts occurring over
MLT for the two different intensity ranges (high (red) and low (blue) intensities). From Figure 5b it is clear
that the number of microbursts occurring in the 11–19 MLT region is low, and therefore, this region will not
be discussed further. There is significantly less variation over MLT in the number of microbursts with inten-
sities greater than 2,250 (MeV cm2 sr s)−1 (red line) than the number of microbursts with intensities below
2,250 (MeV cm2 sr s)−1 (blue line). Both the high- and low-intensity microbursts show a drop in activity
around 06–07 MLT, consistent with the drop in the microburst intensity observed in this MLT region.

Thus, we find that in the 03–11 MLT region, which is where larger whistler mode chorus wave amplitudes
are known to be present, there is a much higher number of comparatively low-intensity microbursts. This
larger number of low-intensity microbursts results in the lower average intensity shown in Figure 4 for this
MLT region. We suggest that the highly active chorus region is driving a greater number of low-intensity
(intensities <2,250 [MeV cm2 sr s]−1) relativistic microbursts.

4.2. Plasmapause Location
We have also calculated how the mean intensity and duration of relativistic microbursts changes with var-
ious L distances from the plasmapause. We used the O'Brien and Moldwin (2003) AE model to find the
location of the plasmapause at the times of the relativistic microbursts. In Figure 6a we present the mean
microburst intensity, and in Figure 6b the mean microburst duration and their associated 95% confidence
intervals for microbursts occurring in 0.25 L bands from the plasmapause. The red lines in Figures 6a and
6b indicate the location of the plasmapause, negative L bands correspond to inside the plasmasphere, while
positive L bands correspond to the outside the plasmasphere. The black dashed lines in Figures 6a and 6b
identify the mean microburst intensity over all the L bands.

As we move outward from the plasmapause in Figure 6a we observe the largest mean intensity for the rela-
tivistic microbursts occurs at 1.25 L from the plasmapause with a mean intensity of 1,484 (MeV cm2 sr s)−1.
This L band is ∼1 L closer to the plasmapause than the L band with the most frequent microburst activity
(Douma et al., 2017). Moving inward from the plasmapause we note that the microburst intensity appears to
increase. However, the low number of microbursts occurring inside the plasmasphere (Douma et al., 2017)
results in the large confidence intervals observed in this region.

DOUMA ET AL. 6



Journal of Geophysical Research: Space Physics 10.1029/2019JA026757

Figure 6. (a) The mean relativistic microburst intensity and (b) the mean relativistic microburst duration and their
associated 95% confidence intervals at various distances from the plasmapause (red line). The black dashed line
identifies the mean intensity/duration over all distances from the plasmapause.

As whistler mode chorus waves generally occur outside the plasmapause, one possible conclusion that might
be drawn from Figure 6a is that the microbursts occurring outside the plasmapause are driven by whistler
mode chorus waves, while those microbursts occurring inside the plasmapause are driven by EMIC waves.
If this were the case we would expect different timescales of microburst precipitation inside and outside the
plasmapause due to the very different plasma wave drivers. However, Figure 6b shows there is no statistically
significant difference between the timescales of precipitation occurring inside and outside the plasmapause.
This lack of any statistically significant differences is likely due to the low number of microbursts occur-
ring inside the plasmapause. As such, it does not rule out EMIC waves as a potential driver of relativistic
microbursts occurring inside the plasmasphere. However, the evidence presented here is not strong evi-
dence in support of EMIC waves driving relativistic microbursts. Stronger evidence of this link was provided
in Douma et al. (2018) who presented case study evidence of relativistic microbursts that may have been
driven by EMIC waves.

4.3. Changes With Geomagnetic Activity
We now investigate how the mean intensity of relativistic microbursts changes under different levels of
geomagnetic activity. In order to remain consistent with earlier work (e.g., Li et al., 2009; Douma et al., 2017),
we have defined three levels of geomagnetic activity based on AE* (the mean of AE over the previous 1 hr);
quiet corresponds to AE*≤ 100 nT, disturbed corresponds to 100<AE*≤ 300 nT, and active corresponds to
AE*> 300 nT. However, our large relativistic microburst data set allows us to also extend these well used AE*
ranges to include higher geomagnetic activity; intense conditions correspond to AE*> 550 nT and extreme
conditions correspond to AE*> 750 nT.

In Figure 7a we present the mean microburst intensity and associated 95% confidence interval over the five
AE* ranges. In Figure 7b we present the number of relativistic microbursts occurring over each AE* range.
Note the y axis in Figure 7a begins at 700 (MeV cm2 sr s)−1 to magnify the confidence intervals. There is no
statistically significant difference between the mean microburst intensity during quiet and disturbed AE*
conditions, identified by the overlapping confidence intervals. The large confidence interval around the
mean intensity of quiet AE* microbursts is the result of the very small number of microbursts occurring in
this AE* range. However, there is a statistically significant increase in the mean microburst intensity from
disturbed to extreme AE* conditions, where there are greater numbers of microbursts occurring. The lowest
mean intensity (occurring during disturbed AE* conditions) is a factor of 1.7 lower than the highest mean
intensity (occurring during extreme AE* conditions). Thus, Figure 7a indicates that the mean relativistic
microburst intensity increases as the level of geomagnetic activity increases, but only by a factor of about 1.7.

To further investigate the changes in microburst intensity over geomagnetic activity, we consider the L and
MLT distributions of median microburst intensity over these AE* ranges: quiet, disturbed, active, intense,
and extreme AE*. These distributions are presented in Figure 8. In this figure we again use 0.5 L and 1 MLT
resolution and discuss all MLT ranges using a counterclockwise rotation. Note that this figure is on a linear
scale. Quiet AE* conditions (Figure 8a) do not contain enough microburst events to draw any conclusions
about the L and MLT distribution of the median microburst intensity. From Figures 8b–8e it is clear that the
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Figure 7. (a) The mean relativistic microburst intensity and associated 95% confidence interval for the mean intensity
over five different AE* ranges; quiet AE*≤ 100 nT, disturbed 100<AE*≤ 300 nT, active AE*> 300 nT, intense
AE*> 550 nT, and extreme AE*> 750 nT. (b) The number of relativistic microbursts occurring over the same five AE*
ranges.

overall median microburst intensity increases as the level of geomagnetic activity increases, although the
level of variation is quite small.

From Figure 8 it also appears that the highest median microburst intensity occurs in the premidnight MLT
region for disturbed AE* conditions (Figure 8b) and moves toward the morning sector as the level of geo-
magnetic activity increases. The highest median microburst intensity occurs in the 08–10 MLT region during
extreme AE* conditions (Figure 8e). We investigate this trend further (not shown) using the microburst
intensity distributions in the 03–11 and 19–03 MLT regions, as before. In the 03–11 MLT region the propor-
tion of low-intensity (<2,250 [MeV cm2 sr s]−1) microbursts decreases with increasing geomagnetic activity
while the proportion of high-intensity (>2,250 [MeV cm2 sr s]−1) microbursts increases. More specifically,

Figure 8. The L and magnetic local time distributions of the median relativistic microburst intensity during (a) quiet
AE*≤ 100 nT, (b) disturbed 100<AE*≤ 300 nT, (c) active AE*> 300 nT, (d) intense AE*> 550 nT, and (e) extreme AE*
conditions AE*> 750 nT.
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the proportion of high-intensity microbursts in the 03–11 MLT region increases from ∼20% to ∼65% with
increasing geomagnetic activity. In contrast, in the 19–03 MLT region the proportions of low-intensity and
high-intensity microbursts remain relatively constant over the various geomagnetic conditions. More specif-
ically, in the 19–03 MLT region 70–80% of the microbursts have low intensity and 20–30% have high intensity.
These results suggest that the movement of the highest median microburst intensity toward morning MLT as
geomagnetic activity levels increase is in fact evidence of a reducing proportion of low-intensity microbursts
driven in the 03–11 MLT region.

These changing distributions of relativistic microburst intensities with varying levels of geomagnetic activity
are suggestive of a change in the distribution of chorus wave power (thought to be the main driver of these
precipitation events) with changing geomagnetic conditions.

5. Comparison to Observed Trapped Fluxes
We have accounted for the effect of the HILT saturation in the above microburst intensity analysis; how-
ever, we now need to consider the effect of variations in the trapped electron flux. One possibility is that the
microburst intensity is limited by the magnitude or dynamics of the trapped flux present when the scatter-
ing process is occurring. In this study we use the HEO3 satellite to quantify the magnitude and temporal
variation of trapped flux present near the geomagnetic equator (where the whistler mode chorus waves are
generated and thought to interact with the relativistic electrons) at the time of the relativistic microbursts.

We use the high-altitude orbits of HEO3 as for these orbits the satellite spends significantly more time at
L> 4. The even orbits (and odd orbits) sample the same pitch angle ranges but different ranges of MLT
values. At energies >1 MeV we expect this MLT difference not to be significant, as the drift time is short.
Comparing the HEO3 >1.5-MeV fluxes to the GOES10 >2-MeV trapped fluxes around L = 6.6, we find the
best agreement between the two satellite trapped flux measurements occurs with the Even High Altitude
Orbits (EHAOs) of HEO3 and as such these orbits will be used for the remainder of this analysis.

We compare the daily median >1.5-MeV trapped flux measured by HEO3 EHAO from 4.4<L< 4.8 to
the daily median intensity of relativistic microbursts from 4.4<L< 4.8 for the year 2003, as presented in
Figure 9a. The daily median microburst intensity is calculated for days where ≥5 microbursts are occur-
ring to ensure the data set is statistically representative of the true microburst intensity. Our first glance at
Figure 9a demonstrates that the daily median trapped flux varies by several orders of magnitude throughout
2003. In contrast, the daily median microburst intensity varies by less than an order of magnitude throughout
2003. Note that we have investigated the trapped fluxes and microburst intensities over the years 1999–2006
and a range of L intervals (not shown) finding very similar patterns to those presented in Figure 9a.

To aid the viewing of Figure 9a, we have selected a representative subset of daily median microburst inten-
sities and categorized the magnitude and dynamics of the trapped flux associated with them by color-coded
vertical lines. The yellow lines identify periods of trapped flux recoveries (back to the average values)
after a dropout. The black lines identify periods of trapped flux recoveries (back to the average values)
after an enhancement in the trapped fluxes. The cyan lines identify periods of increasing trapped flux
values (above the average values). Lastly, the red lines identify dropouts of the trapped fluxes. We have
selected a range of median daily relativistic microburst intensities; high (>6,500 [MeV cm2 sr s]−1), midrange
(2,500–4,500 [MeV cm2 sr s]−1), and low (<1,000 [MeV cm2 sr s]−1).

The two periods with the highest daily median intensity microbursts (>6,500 [MeV cm2 sr s]−1) in Figure 9a
occur in January and November of 2003. The January high-intensity microburst is associated with a recovery
of the daily median trapped flux back to the average trapped flux, after a dropout occurred a few days pre-
viously (yellow). The November high-intensity microburst is associated with a recovery of the daily median
trapped flux back to the average trapped flux, after an increase in the trapped flux occurred in the previous
days (black).

The midrange subset of relativistic microburst intensities (2,500–4,500 [MeV cm2 sr s]−1) of Figure 9a occur
in August, September, and November. The August and November midrange microburst intensities are asso-
ciated with increases in the daily median trapped flux (cyan). The two September midrange microburst
intensities are associated with recoveries of the daily median trapped flux following increases in the daily
median trapped fluxes (black).

DOUMA ET AL. 9



Journal of Geophysical Research: Space Physics 10.1029/2019JA026757

Figure 9. The HEO3 Even High Altitude Orbit (EHAO) daily median >1.5-MeV electron flux (blue) and (a) the
median microburst intensity (green) with colored lines description given in the text and (b) the daily total number of
microbursts occurring (green). All measurements are taken in 2003 around L = 4.6.

The low subset of relativistic microburst intensities (<1,000 [MeV cm2 sr s]−1) of Figure 9a occur in Febru-
ary, March, April, May, June, July, August, September, November, and December. The March, May, and
September low-intensity microbursts are associated with increases in the daily median trapped fluxes (cyan).
The August and December low-intensity microbursts are associated with recoveries of the daily median
trapped fluxes following increases (black). The February, April, June, and July low-intensity microbursts
are associated with recoveries of the daily trapped fluxes following dropouts (yellow). One of the November
low-intensity microbursts is also associated with a recovery of the daily trapped flux following a dropout
(yellow). The other November low-intensity microburst is associated with a dropout in the daily median
trapped flux (red).

In Figure 9a we also identify a dropout in the daily median trapped fluxes occurring in June (red) associated
with neither a high nor a low daily median microburst intensity.

If the relativistic microburst intensities were limited by the magnitude of trapped fluxes present at the time
of the scattering process, we would expect to observe low median intensity microbursts associated with
trapped flux dropouts and high median intensity microbursts associated with increases in trapped fluxes.
However, during periods of low trapped fluxes (daily median <500 e/[cm2 s sr]) we do not solely observe
low-intensity microbursts and during periods of high trapped fluxes (daily median >80,000 e/[cm2 s sr]) we
do not solely observe high-intensity microbursts. Thus, we suggest that the microburst intensities are not
limited by the magnitude (and similarly the variation) of trapped flux present at the time of the microburst
scattering mechanism.

For completeness we also investigate whether the occurrence of relativistic microbursts is limited by the
magnitude or dynamics of the trapped fluxes present at the time of the scattering process. Figure 9b presents
the daily median >1.5-MeV trapped electron fluxes measured by HEO3 EHAO from 4.4<L< 4.8 (blue) and
the daily total number of detected relativistic microbursts from 4.4<L< 4.8 (green) for 2003. The lack of
relativistic microburst observations in May is due to a SAMPEX data outage.

In Figure 9b we observe increases in the number of detected microbursts associated with increases in the
>1.5-MeV trapped electron fluxes. This is particularly evident in early March, early April, early August, late
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September, mid-October, and mid-December. These increases in the number of detected microbursts appear
to be associated with the leading edge of the trapped flux increases. The majority of days with trapped fluxes
<8,000 e/(cm2 s sr) have very little observed microburst activity (most evident in the latter half of 2003).
In contrast, days with >70,000 e/(cm2 s sr) trapped fluxes have greater numbers of relativistic microbursts,
ranging from 20–100 microbursts detected daily.

We have investigated this relationship between the trapped fluxes and microburst activity over the years
1999–2006 and a range of L intervals (not shown) and find similar patterns to those presented in Figure 9b.
Thus, we suggest the number of relativistic microbursts observed is related more closely to the dynamics of
the trapped flux, with more microbursts occurring when the trapped population is enhancing. We further
suggest that the occurrence of relativistic microbursts may be linked to the processes causing the increas-
ing trapped fluxes. This would be consistent with the concept that whistler mode chorus waves both scatter
some electrons to produce microbursts and also accelerate some electrons, leading to increases in the trapped
relativistic fluxes. Kurita et al. (2016) also observed this phenomenon during their case study storm in
October 2012.

6. Conclusions
In this study we have addressed the lack of knowledge about the relativistic microburst intensity. We have
used the O'Brien et al. (2003) algorithm to identify relativistic microbursts in the SSD4 channel of the SAM-
PEX HILT instrument. We have also applied the Blum et al. (2015) extension to the detection algorithm to
obtain the intensity of the detected relativistic microbursts. Our analysis of the relativistic microburst inten-
sity is limited to the North Atlantic Region, where a total of 21,746 relativistic microbursts was observed
to occur.

The majority of the detected microbursts have intensities between 100 and 1,000 (MeV cm2 sr s)−1. The aver-
age microburst intensity peaks at L = 4.5 and 1.25 L beyond the plasmaspause. Considering the combined L
and MLT distributions of relativistic microburst intensity, we find the intensity increases as we move inward
in L. Additionally, the number of high-intensity microbursts (>2,250 [MeV cm2 sr s]−1) remains roughly
constant over all MLT regions, while the number of low-intensity microbursts (<2,250 [MeV cm2 sr s]−1) is
significantly higher in the 03–11 MLT region.

The mean microburst intensity increases by a factor of 1.7 as the geomagnetic activity level increases
(as measured by the AE* index). Additionally, the proportion of high-intensity relativistic microbursts
(>2,250 [MeV cm2 sr s]−1) in the 03–11 MLT region increases from ∼20% to ∼65% as geomagnetic activity
increases. In contrast, the proportion of high-intensity relativistic microbursts in the 19–03 MLT region
remains constant at ∼20–30% as geomagnetic activity increases. We suggest that these changing distribu-
tions of relativistic microburst intensities with geomagnetic activity are the result of a change in the whistler
mode chorus wave activity, which are thought to be the main driver of these precipitation events.

We have used the EHAO of the HEO3 satellite to estimate the quantity of trapped electrons (with energies
>1.5 MeV) at the time of the relativistic microbursts. A comparison to these trapped fluxes suggests that
the relativistic microburst intensities are not limited by the level of trapped flux present at the time of the
scattering processes. However, the number of relativistic microbursts occurring does appear to correspond to
the level of trapped flux, with more relativistic microbursts occurring when the trapped fluxes are enhancing,
suggesting that the microbursts are linked to the processes causing the increased trapped fluxes. This is
consistent with whistler mode chorus waves scattering some electrons (resulting in relativistic microbursts)
and accelerating some electrons (resulting in the enhanced trapped fluxes).

In the following appendix we have used the AE9 model to estimate the impact of relativistic microbursts
on a flux tube. We find a large difference between the loss timescales of the statistically average microburst
rate and spectra and the extreme microburst rate and spectra. However, given our finding potentially link-
ing microbursts to periods of electron acceleration, it is difficult to draw direct conclusions around loss
timescales when both processes are occurring.

Appendix A: Comparison to Modeled Trapped Fluxes
Previous studies (e.g., Breneman et al., 2017; Lorentzen et al., 2001; Millan et al., 2002) have investigated
the impact relativistic microbursts have on the electron populations contained within the radiation belts.
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Figure A1. The timescale of a reduction to 1% in the flux tube at a given energy due to a statistically average relativistic
microburst rate and intensity (blue), an extreme rate and statistically average intensity (red solid), and an extreme
microburst rate and intensity (red dashed).

However, most of these studies use a rough estimate of the total electron content in the radiation belts. In
contrast, the recent study by Breneman et al. (2017) estimates the total number of electrons present in a flux
tube using the Van Allen Probes data.

In this study we use the AE9 model (IRENE; Johnston et al., 2017) to estimate the total number of electrons
present in a flux tube with 1-cm2 area at 100-km altitude and L = 4.43 following the approach outlined in
Rodger et al. (2003). With the AE9 modeled trapped flux levels in a given flux tube we will be able to perform
a first order simplistic calculation of the time taken for microbursts to empty the flux tube. We apply the
statistically average microburst spectra presented in Seppälä et al. (2018), which is in close agreement with
the spectra published in Crew et al. (2016). These spectra are based on modeling work presented in Rodger
et al. (2007) and are valid from 100 keV to to 7 MeV. Using these spectra, we calculate how many microbursts
it would take to reduce the flux tube population of any given energy (in the range 100 keV to 7 MeV) to 1%. We
then apply the statistically average microburst occurrence rate of three microbursts per minute (discussed
in greater detail in Seppälä et al., 2018) and the extreme microburst occurrence rate of 50 microbursts per
minute (based on an extreme case that will be discussed in a future study) to estimate the time taken to
reduce the total flux tube population at any given energy down to 1%.

While we have made attempts to account for the sporadic occurrence and varying scale size of microbursts
(by applying statistically average microburst spectra and rate), our calculation will only give us a first-order,
simplistic estimate of the microburst loss timescales. In reality, the microburst loss will occur across a range
of MLT values (corresponding to the MLT range of active whistler mode chorus wave activity) on a given
drift shell, rather than being limited to a flux tube. As such the timescales of electron loss from the radiation
belts due to microbursts are likely to be longer than those we have calculated.

Presented in Figure A1 is the estimate of the microburst loss timescales, where the blue line corresponds to
the statistically average microburst rate and spectra, the solid red line corresponds to the extreme microburst
rate and the statistically average spectra, and the dashed red line corresponds to the extreme microburst
rate and spectra. Note we have increased the magnitude of the statistically average microburst spectra to
produce the extreme microburst spectra, which reflects the higher-intensity microbursts occurring during
the extreme case study period.

From Figure A1 we observe that trapped electrons with energies below ∼500 keV are removed from the
flux tube within 1 hr under all microburst rates and spectra. Using the statistically average microburst
rate and spectra, we note that trapped electrons with 1-MeV energies are removed from the flux tube on
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timescales of ∼7 hr, while 2-MeV electrons are lost from the flux tube on timescales of ∼23 hr. Using the
extreme microburst rate and statistically average intensity, we note that the losses from the flux tube occur
much faster. Under these conditions the 1-MeV electrons are lost within 1 hr and the 2-MeV electrons are
lost within 4 hr. The loss of the relativistic electrons (>1 MeV) is noticeably faster when using the extreme
microburst rate and spectra, with 2-MeV electrons being lost within 3 hr. These conditions correspond to the
fastest timescales of loss we expect from microburst activity. Overall, Figure A1 shows that microburst activ-
ity rate has a large impact on the loss timescales of electrons from a given flux tube in the radiation belts.
It further shows that the microburst spectra have a significant impact on the loss timescales of relativistic
(>1 MeV) from a given flux tube. We suggest that additional information on the spectra (and energy range)
of relativistic microbursts is required before conclusive studies can be made about the impact relativistic
microbursts (and lower-energy microbursts) have on the trapped fluxes in the radiation belts.

An additional caveat of this study is that the AE9 model does not account for any acceleration processes that
may be increasing the trapped population inside a flux tube. As we showed earlier it appears as though the
microbursts are occurring alongside increases in the trapped fluxes (Figure 9b), which likely result from the
acceleration of lower-energy electrons to megaelectron volt energies. This acceleration may be replenishing
the megaelectron volt electron content of the radiation belts and thus adding to the total flux tube popula-
tion. This would mask the microburst precipitation signal in the trapped fluxes and make it difficult to use
experimental trapped flux data to determine the exact timescale and extent of the relativistic microburst
electron loss from the radiation belts and their subsequent impact on the atmosphere.
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