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BACKGROUND: Debates over whether climate change could lead to the amplification of Lyme disease (LD) risk in the future have received much
attention. Although recent large-scale disease mapping studies project an overall increase in Lyme disease risk as the climate warms, such conclusions
are based on climate-driven models in which other drivers of change, such as land-use/cover and host population distribution, are less considered.
OBJECTIVES: The main objectives were to project the likely future ecological risk patterns of LD in Europe under different assumptions about future
socioeconomic and climate conditions and to explore similarity and uncertainty in the projected risks.
METHODS: An integrative, spatially explicit modeling study of the ecological risk patterns of LD in Europe was conducted by applying recent advan-
ces in process-based modeling of tick-borne diseases, species distribution mapping, and scenarios of land-use/cover change. We drove the model with
stakeholder-driven, integrated scenarios of plausible future socioeconomic and climate change [the Shared Socioeconomic Pathway (SSPs) combined
with the Representative Concentration Pathways (RCPs)].
RESULTS: The model projections suggest that future temperature increases may not always amplify LD risk: Low emissions scenarios (RCP2.6) com-
bined with a sustainability socioeconomic scenario (SSP1) resulted in reduced LD risk. The greatest increase in risk was projected under intermediate
(RCP4.5) rather than high-end (RCP8.5) climate change scenarios. Climate and land-use change were projected to have different roles in shaping the
future regional dynamics of risk, with climate warming being likely to cause risk expansion in northern Europe and conversion of forest to agriculture
being likely to limit risk in southern Europe.
CONCLUSIONS: Projected regional differences in LD risk resulted from mixed effects of temperature, land use, and host distributions, suggesting
region-specific and cross-sectoral foci for LD risk management policy. The integrated model provides an improved explanatory tool for the system
mechanisms of LD pathogen transmission and how pathogen transmission could respond to combined socioeconomic and climate changes. https://
doi.org/10.1289/EHP4615

Introduction
The demand for plausible future estimates and patterns of disease
risks under global environmental change is widespread given that
they are a useful aid in setting priorities for health research, pol-
icy, and training (Altizer et al. 2013; Kraemer et al. 2016;
Murray and Lopez 1997). Lyme disease (LD) is the most preva-
lent vector-borne disease in Europe and which is transmitted
mainly by the sheep tick Ixodes ricinus. The risk of LD for
human populations is linked to both tick abundance and infection
prevalence (Mysterud et al. 2016). Ticks are reported to have
recently experienced an increase in abundance (Gray et al. 2009)
and a shift in their geographical range toward higher elevations
and latitudes in northern Europe (Jore et al. 2014). With no vac-
cines on the market, the prevention of LD relies heavily on risk
communication, rapid diagnosis, and personal protection meas-
ures, ideally targeted at high-risk areas and effective intervention
points (Quine et al. 2011). Effective targeting and prioritization
(e.g., of LD over other public health threats) requires a good
understanding of the processes driving the spatial and temporal
changes in risk. This relies on our competency in integrating

multidisciplinary resources and data in projecting future risk
dynamics.

Transmission of LD pathogens between animals is the result of
a complex and multifactorial system. The spatial and temporal het-
erogeneous nature of the environmental parameters affects the bio-
logical processes of a broad range of host and pathogen species
involved (Hartemink et al. 2015; Randolph 2001). In addition,
human activities could alter the functions of ecosystems and
thereby the abundance and distribution of ticks and their hosts
(Lambin et al. 2010; Kilpatrick et al. 2017). The effect of changes
in these factors on tick abundance, distribution, and pathogen
transmission has been studied empirically and quantitatively, in a
varying degree of detail (Estrada-Peña et al. 2014; Kurtenbach et al.
2006; Pfäffle et al. 2013), providing increasingly firm empirical
grounds on which models can be elaborated. Yet model-based
studies for LD remain small in number, with those focusing on
future risk projections being solely temperature-driven and predict-
ing that the range of LD risk expands as the climate warms
(McPherson et al. 2017; Ostfeld and Brunner 2015). At present, no
comprehensive studies exist that incorporate changes in land cover
and host distribution with climate change when projecting future
risk patterns. It thus seems that advances in empirical investiga-
tions have far outpaced our ability to integrate these new findings
into a more complete modeling framework for LD transmission.
This has resulted in a bottleneck wherein tick biologists and health
professionals await development of the modeling tools needed to
better target awareness campaigns and mitigation measures to
where they will be most needed (Parham et al. 2015).

In this study, we conducted an integrative modeling exercise
to project potential future patterns of the ecological risk of LD in
Europe. By linking LD risk to the larger context of global envi-
ronmental change, our main objective was to explore similarity
and uncertainty in future disease risks emerging from comparing
projections under different assumptions about future socioeco-
nomic and climate conditions.
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Methods
Our approach applied agent-based modeling of LD dynamics (the
LYMERISK model) (Li et al. 2014, 2016) and ensemble model-
ing of host species distributions [using the BIOMOD platform (R

Development Core Team)] (Thuiller et al. 2009) to European sce-
narios of land-use/cover change [using the Impacts and Risks
from High-end Scenarios: Strategies for Innovative Solutions
(IMPRESSIONS) Integrated Assessment Platform2 (IAP2)]
(Harrison et al. 2019) under combined scenarios of plausible
socioeconomic and climate change (Harrison et al. 2019). Four
parameters or inputs of the LYMERISK model (i.e., tempera-
ture, forest land cover, deer population distribution, and patho-
gen transmission hosts) were selected as key drivers of future
LD risk (see theoretical framework in Figure 1; integrative
modeling strategies in Figure 2), based on expert knowledge,
literature-driven evidence (Medlock et al. 2013; Ostfeld and
Brunner 2015; Pfäffle et al. 2013; Kilpatrick et al. 2017), previ-
ous analyses on model sensitivity (Li et al. 2012a, 2016), and
data availability. These four parameters were chosen because a)
temperature influences activity, diapause, interstadial development,
fertility, and mortality of ticks as well as habitat suitability for their
hosts; b) forest land cover serves as the major habitat type for both
ticks and host animals, c) deer are considered to be the most im-
portant tick reproduction hosts in Europe, making the distribution
of the deer population an important consideration; and d) pathogen
transmission hosts can harbor the Borrelia burgdorferi sensu lato
complex of spirochete bacteria, the pathogenic agents of LD and
transmit them to ticks.

The LYMERISKModel for the Spatiotemporal Dynamics of
Lyme Disease Risk
The LYMERISK model is an upscaled and modified version of a
recent spatially explicit, agent-based model of the regional eco-
logical risks of LD (Li et al. 2012a, 2014, 2016). It has three
interactive agent layers (i.e., ticks, hosts, and habitat) that are

Figure 1. Theoretical framework and key drivers of Lyme disease risk dy-
namics. Climate change: (1) Climate influences tick phenology and distribu-
tion of ticks; (2) climate suitability influences distribution of tick hosts (e.g.,
deer, rodents, and birds); (3) climate influences growth of plant species and
profitability of land, driving land-use/cover change. Socioeconomic change:
(4) Socioeconomics influence the demand and preferences for how land is
used, which affects conversion between land cover types. Land cover
change: (5) Land cover influences host type and abundance as well as micro-
climate and, hence, (6) distribution of ticks. Host distribution change: (7)
Availability of hosts influences tick survival and pathogen transmission.

Figure 2. The integrative modeling strategy for Lyme disease risk projection. The LYMERISK model is an agent-based model for the ecological risk of Lyme
disease, with three interactive agent layers representing ticks, reproduction and transmission host animals, and habitats. BIOMOD is a platform for the ensem-
ble prediction of species’ distributions and is used to project future distribution patterns of key tick host species. The Integrated Assessment Platform for cli-
mate change impact assessment is a product of the IMPRESSIONS project and provides projections in habitats and climate conditions.
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programed to evolve in discrete time steps (monthly) following a
set of behavior rules. Behaviors are predefined rules that agents
use to update their attributes in the model, and they represent the
ecological processes and interactions of tick and host populations
and habitats. To ease the computational burden and to allow the
fundamental spatial dynamics and seasonality to be represented
at the pan-European level, a cell size of 100 (arc minutes) and a
time step of 1 month were adopted in the present model (which
also followed the resolution of input climate data produced by
the IMPRESSIONS project (Holman et al. 2015).

Tick population ecology and phenology. Four continuous I.
ricinus tick life stages were considered: egg, larval, nymph, and
adult. Tick population dynamics was driven by monthly, life
stage–specific interstadial developmental rates (temperature-
dependent), mortality rates (density- and habitat-dependent), and
feeding rates (density-dependent), which were recalculated at ev-
ery time step (Table 1). Developmental diapause was considered
by delaying the development of ticks who feed in late summer or
early fall (e.g., after August) until early summer of the next year.
Seasonal behavioral change was based on evidence that ticks that
molt in late summer may become reluctant to become active and
feed (Campbell 1948), which could be due to either behavioral
diapause or a form of temperature-controlled quiescence. Similar
patterns in questing tick phenology (early summer peak of tick
population, in particular, nymphs) have also been reported in many
European studies, including those in Belgium (Li et al. 2012b), the
UK (Randolph 2004), Switzerland (Pérez et al. 2012), Hungary
(Egyed et al. 2012), Norway (Qviller et al. 2014), and Spain
(Barandika et al. 2010). To represent this seasonal behavioral
change in the model, a suppression of tick questing activity from
mid-summer to winter (e.g., July–December) was considered and
assumed to affect nymphs and adults only, according to existing
evidence (Gray et al. 2016). A similar suppression was also
applied by Dobson et al. (2011) to model tick phenology in the
UK and Spain.

Impacts of temperature on ticks. Temperature was assumed
to influence the interstadial development and questing activity of
ticks. In addition to the temperature-dependent functions used by
Li et al. (2016), a few more temperature regulations were intro-
duced to regulate the ticks’ activity and survival at the northern
and southern range of the simulated tick distribution across
Europe. First, we assumed the onset of questing activity of
nymphs and adult ticks to occur at >2�C (monthly average daily
mean temperature) and that of larvae to occur at >4�C based on a
number of previous findings: Qviller et al. (2014) found ticks in
Norway were active at low densities at temperatures <5�C;
Perret et al. (2000) reported that ticks were not sampled in
Switzerland when daily average temperatures were <−1:2�C,
occasionally sampled at daily average temperatures of between
1.9°C and 3.8°C, and always sampled when daily average tem-
peratures were >5:2�C; and Randolph (2004) mentioned that
questing activity of larvae usually requires warmer conditions
compared with the questing activity of nymphs and adult ticks.
Second, it has been reported that extreme temperatures influ-
ence the population dynamics of ticks, with cold temperatures
being more harmful than warm temperatures (Ostfeld and
Brunner 2015). A short exposure to <−15�C can be lethal to
ticks (MacLeod 1935), whereas if temperatures are >15�C,
then a relative humidity of >70% is required for tick survival
(Macleod 1936; Milne 1949a, 1949b, 1950). However, these
studies also indicated that ticks are capable of seeking favor-
able microclimatic conditions by, for example, moving into the
forest litter when the air becomes too warm or dry. Therefore,
in this model, only the negative influence of cold temperatures
on tick survival was considered, and the effect was assumed to
be rational: survival rate would be decreased by 0–90% when
the average temperature dropped from −5�C to −15�C. Third,
the climate of origin can affect tick host-seeking behavior in
Europe (Gilbert et al. 2014). To account for such an influence,
we assumed that the effect of temperature on the rate of active

Table 1.Model parameters related to the population ecology and phenology of the Ixodes ricinus tick.

Symbol Parameter Value/equation

b Average eggs per adult (n) 2,000
m Mortality rates in forests (per month)

Questing larvae, nymphs and adults 0.12, 0.12, 0.08
Developing from
Engorged larvae into questing nymphs 0.12
Engorged nymphs into questing adults 0.04
Engorged adults into eggs 0.08
Eggs into questing larvae 0.08

Sf Scaling factors for m in forests, shrubs, and grassland 1, 1.5, 3
fq Temperature-dependent proportion of questing ticks See “Impacts of temperature on ticks” section.
mf Basal feeding mortality rates (per capita)

Larvae, nymphs, and adults on transmission hosts 0.65, 0.65, 0.55
Larvae, nymphs, and adults on reproduction hosts 0.6, 0.6, 0.5

fdðTÞ Interstadial development rate functions
Eggs developing into larvae −0:0003T2 + 0:06T− 0:57 (T> 5�C)
Larvae developing into nymphs 0:0009T2 + 0:0219T− 0:21 (T> 7�C)
Nymphs developing into adults −0:00024T2 + 0:057T− 0:48 (T> 7�C)
Adults producing eggs 0:003T2 + 0:3T− 1:86 (T> 7�C)

dp Proportion of ticks undergo diapause
Developmental diapause after August 0.9
Behavioral diapause after June for nymphs and adults 0.9, 0.6

fh Host-finding probability (per month)
Transmission host for questing larvae and nymphs 0:05R0:515

Transmission host for questing adults 0:005R0:515

Reproduction host for questing larvae and nymphs 0:22D0:515

Reproduction host for questing adults 0:45D0:515

C Maximum tick attachments on one host (per month)
Larvae, nymphs, and adults on one transmission host 400, 25, 0.4
Larvae, nymphs, and adults on one reproduction host 800, 800, 400

Note: D, reproduction host density per hectare; R, transmission hosts density (per hectare); T, temperature (°C).
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questing by ticks could be approximated by a logistic function
of monthly temperature T:fqðTÞ= L=ð1+ e−kðT − T0ÞÞ, where e is
the natural logarithm base, L is the maximum value of the rate
(assuming maximum 95% of the questing ticks are active in
natural environments), T0 is the temperature where the rate’s
midpoint (47.5%) is achieved, and k is the curve’s steepness.
When initializing the model with the monthly temperature
grids, T0 and k were estimated based on two known points on
the curve: a) at 5°C, an active rate of 0.05 was assumed for
all ticks, that is, f ðT =5Þ=0:05; and b) at 9°C, a linear regres-
sive function was used to estimate the active rate for each cell,
that is, f ðT =9Þ= − 0:0589×TMay + 1:1495 (R2 = 0:9953, built
based on the empirical data presented by Gilbert et al. (2014),
where TMay is the mean temperature in May of the cell. As a
result, a logistic function was built for every cell and was used
at each time step to estimate the rate based on its monthly mean
temperature.

Pathogen transmission. The systemic transmission and trans-
stadial transmission of B. burgdorferi s.l. were considered in this
model. Although other transmission routes have been reported as
possible (e.g., between co-feeding ticks or from females to eggs),
they were not modeled because recent debates have suggested
that their significance on the transmission of B. burgdorferi s.l.
remains unclear [see the review and discussion in the study by Li
et al. (2016)]. The susceptible–infectious functions developed
previously (Li et al. 2012a, 2016) were used for the systemic
pathogen transmission between the tick and transmission popula-
tions (with hHT =0:5 and hTH =0:8 being the host-to-tick and
tick-to-host transmission efficiencies, respectively). It was also
assumed that a low infection rate in questing larval ticks
(hLL =0:01) was due to interrupted contacts between larval ticks
and hosts. Moreover, the efficiency of transstadial transmission
was assumed to be 100%.

Host population and distribution. Populations of two host
types (transmission and tick reproduction hosts, which include a
range of common tick host species) were represented as host
agents in the model. Transmission hosts are those capable of har-
boring a pathogen and transmitting it to ticks. Common European
transmission hosts of B. burgdorferi include rodents, birds, and
lagomorphs, with rodent species being the most abundant. Tick
reproduction hosts do not transmit a pathogen to ticks but are im-
portant in maintaining tick populations by feeding large numbers
of adult ticks, which then reproduce. Deer are the most important
reproduction host for ticks in Europe and, hence, were considered
to represent all reproduction host species in the model. Habitat
suitability maps were used to approximate host population distri-
butions. Each cell was given a value between 0 and 1 to indicate
the capability of the cell to support the full carrying capacity,

which was estimated as a multiplication of species presence, cli-
mate suitability, and extent of suitable habitats, allowing more
hosts to be present in places with a greater extent of habitat and
better climate suitability. A number of species that are regarded
as major tick hosts in Europe were considered, and their common
habitat types are summarized in Table 2. Climate suitability for
each selected species was modeled using the BIOMOD platform,
which uses an ensemble of different species distribution modeling
approaches (Thuiller et al. 2009), with a set of climate variables
selected for non-bird species distribution modeling (Harrison et al.
2006), including growing degree days >5�C, absolute minimum
temperature expected over a 20-y period, annual maximum tem-
perature, accumulated annual soil water deficit, and accumulated
annual soil water surplus. These climate variables were calcu-
lated based on the IMPRESSIONS climate indices, following the
methods used previously (Harrison et al. 2006; Pearson et al.
2002). Parameters related to host dynamics and movements are
summarized in Table 3. The rodent population was assumed to
follow a seasonal pattern modeled by the functions used by Li
et al. (2016), which considered a 1-y periodic birth rate (bR), a
3-y periodic carrying capacity (KR), and a combined mortality
(mR). These functions were initially used to approximate
rodent population dynamics in hantavirus investigations
(Amirpour Haredasht et al. 2011; Sauvage et al. 2003, 2007).
In this model, they were modified to fit the monthly time step and
to take into account the potential impacts of habitat suitability by
applying it as a multiplier [SR 2 ð0,1Þ] to the carrying capacity
(KR). Common bird host species—including, blackbird (Turdus
merula), song thrush (Turdus philomelos), dunnock (Prunella
modularis), European robin (Erithacus rubecula) and great tit
(Cyanistes caeruleus)—are widely distributed across Europe.
However, although birds are less abundant than rodents and
their temporal population dynamics are similar to that of
rodents in that they breed from spring onward, their population
size increases over the summer and then is re-set to the breed-
ing population again in the next spring. As a result, the popula-
tion dynamics of birds was not modeled explicitly, and birds
were assumed to be present in forests throughout the study
region.

Host movement. Behavioral rules for host movement fol-
lowed the assumptions developed in previous studies (Li et al.
2014, 2016) but were modified to include the within-cell move-
ments of rodents between habitat types. Two movement phases
were considered, namely, the home-ranging and dispersal phases.
In practice, animals spend different proportions of time in differ-
ent habitat types and constantly migrate between habitat types to
establish home ranges. This home-ranging movement pattern was
modeled for both reproduction and transmission hosts and was

Table 2. Host species and their common habitat types considered in modeling Lyme disease risk.

Type Species Name

Use of land cover as habitat

Forests Shrubs Grass

Rodent Apodemus sylvaticus Wood mouse � � �
Rodent Apodemus flavicollis Yellow-necked field mouse � — —
Rodent Apodemus agrarius Black striped field mouse � — �
Rodent Clethrionomys glareolus / Myodes glareolus Bank vole � — —
Rodent Microtus arvalis Common vole — — �
Rodent Microtus agrestis Meadow vole/field vole � � �
Deer Capreolus capreolus Roe deer � � —
Deer Cervus elaphus Red deer � � —
Deer Dama dama Fallow deer � � —
Deer Alces alces Moose � — —
Note: The species listed in this table are the most common host species of Ixodes ricinus ticks in Europe. Rodent species are capable of harboring and transmitting Borrelia burgdorferi
sensu lato, the pathogenic agents of Lyme disease. Deer species do not transmit pathogens to ticks, but they can feed large numbers of adult ticks, which then reproduce. Habitats influ-
ence tick survival and host animal population and movement. They are classified into three groups (forests, shrubs, and grass). Possible extents of these habitats by the 2050s were pro-
jected and used to estimate future Lyme disease risks. —, not applicable.
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assumed to complete within each cell, given that the size of the
100 cell (1:1–2:8× 104 ha) is far larger than the common home
range sizes of both host types, for example, 0:1–0:2 ha for
rodents (Kikkawa 1964) and 40–100 ha for deer (Morellet et al.
2013). Although reproduction hosts were assumed to inhabit for-
ests and shrubs, they may venture for grazing onto grassland,
especially when food resources are limited. In the model, the rate
of reproduction host grazing (rpG >0) in a cell was estimated by
½D×HRD × ð1–rOvHRÞ− ðEF +ESÞ�=ðEF +ES +EGÞ, which is a
function of the numbers of reproduction hosts (D), the extent of
suitable reproduction host habitats [forest (EF) and open habitats
(ES)], the extent of grassland (EG), and a parameter indicating the
maximum overlapping rate of reproduction host home ranges
(rOvHR). Thus, grazing on grassland was triggered when deer pop-
ulations were so concentrated that the existing deer habitats were
unable to cover the minimum required home range for the popu-
lation. A relatively greater extent of grassland could also increase
the chance of grazing. Moreover, the home range of a reproduction
host has been found to be associated with a number of environ-
mental variables, among which the influence of elevation, annual
temperature, and latitude were included in the model. It was
assumed in the model that the reproduction host home range size
(HRD) was enlarged by 100 ha by each 200-m increase in eleva-
tion (Mysterud 1999). The increase in a cell’s annual temperature
and latitude was assumed to lead to changes of −1:79% and 1.6%
in deer home range size, respectively (Morellet et al. 2013). In the
dispersal phase, animals move over longer distances to new habi-
tats. For example, reproduction hosts were assumed to perform
seasonal uphill/downhill migration. Transmission host dispersal
was not modeled explicitly given the relatively low movement
capability of rodents at the spatial scale considered. The transition
rules for displacement of reproduction hosts used previously (Li
et al. 2014, 2016) were integrated in the present study.

Habitat. Habitat agents represent the composition of the habi-
tat types in a cell; thus the percentages of different types were
stored as states for each cell. Three generalized habitat types
were considered in the model, namely, forests, shrubs, and grass-
land. As described previously, in different habitat types, ticks
were assumed to have different survival rates and hosts were
assumed to perform different movement patterns within and
between cells. Tick reproduction hosts were assumed to inhabit
forests and shrubs and to occasionally venture into grassland for
grazing. Transmission hosts were assumed to inhabit all three
habitat types; however, their densities differed between habitat
classes, that is, they were more numerous in the forest and least
numerous in the grassland. Habitat agents were assumed to be
static throughout each simulation; thus no behaviors were speci-
fied for this agent type in this model, that is, habitats did not
move between cells or change in spatial distribution over time.

Projecting Baseline Risk Patterns
Climate condition. Climate data were retrieved from IMPRESSIONS
data products for both baseline (1981–2010, the WATCH-WFDEI
data) and future projections (Harrison et al. 2019).

Habitat distribution. Baseline habitat data were generated
by categorizing the CORINE 2012 land cover data [provided
by the Copernicus Land Monitoring Service (CLC)] into forests
(CLC311, broad-leaved forest; CLC312, coniferous forest;
CLC313, mixed forest), shrubs (CLC322, moors and heathland;
CLC323, sclerophyllous vegetation; CLC324, transitional woodland-
shrub), and grassland (CLC321, natural grasslands). The three hab-
itats were further associated with the IMPRESSIONS IAP2’s land-
use outputs of forests (both managed and unmanaged), unmanaged
land (with no woodland and productive purpose), and extensive
grassland (for sheep and rough grazing), respectively.

Host distribution. Climate suitability maps were produced for
each species using the BIOMOD platform. Observed species dis-
tributions were downloaded from the International Union for
Conservation of Nature and Natural Resources (IUCN) Red List of
Threatened Species™ (https://www.iucnredlist.org/). The model
was first trained with a 0:5� ×0:5�grid covering Europe and North
Africa taken from previous studies (Harrison et al. 2006; Pearson
et al. 2002) for each selected species and then applied for Europe
only for the climate suitability of the species on the 10

0
×10

0
grid

data used in the model. Baseline deer (cervidae) distributions (see
Table S1) were generated using a dasymetric approach developed
previously (Li et al. 2016) to disaggregate the species-specific deer
population estimates (Apollonio et al. 2010) into the 10

0
×10

0
grid

based on the observed range and habitat suitability (a function of
species presence, climate suitability, and extent of suitable habi-
tats). This involved calculating the generalized deer habitat suit-
ability for a cell of deer presence as the sum of habitat suitability
of the four deer species weighted by their country-level popula-
tions and re-scaled to [0,1]. Then, the cell-level deer population
was estimated as total deer population in the country × cell suit-
ability/suitability summed across all cells in the country. The gen-
eralized baseline habitat suitability for transmission hosts was
estimated by summing up the suitability of the selected species,
then dividing by six (the number of rodent species included in the
study). Transmission host population was then simulated using the
dynamic functions described in the “Host movement” section of
this paper.

Projecting Future Changes in Key Disease Risk Drivers
Climate change. Climate change projections produced in the
IMPRESSIONS project are based on the Intergovernmental Panel
on Climate Change (IPCC) representative concentration pathway
(RCP) emissions scenarios (RCP2.6, RCP4.5, and RCP8.5), cover-

Table 3.Model parameters related to host population dynamics and movement patterns.

Symbol Parameter Value/equation

bR Birth rate of transmission hosts per month (t) 7:5j20 sin ð2p=12− 0:15Þj+20 sin ð2pðt=12− 0:15ÞÞ
KR Carrying capacity of transmission hosts per month (t) ð6ð10+ ðcos ð2pðt=12+ 0:35ÞÞÞ=3Þ2−20 sin ð2pðt=12+ 0:35ÞÞÞSR
mR Mortality rate of transmission hosts per month (t) ð8+ 2=KRðtÞÞ=52
KD Carrying capacity of reproduction hosts (per kilometer squared) 300SD
MC Movement capacity (km=month)

Reproduction hosts in home ranging phase 2.2 (winter/spring); 1.5 (summer/fall)
Reproduction hosts in migration phases 8.5

pT Time spent in different habitat types (% of time step)
Home ranging transmission hosts in forests, shrubs, and grassland 60, 30, 10
Home ranging reproduction hosts in forests and shrubs 85, 15
Grazing reproduction hosts in grassland 35

rpG Proportion of reproduction hosts venture for grazing (%) See “Host movement” section
rpM Proportion of reproduction hosts in seasonal migration phase (%) 20 (summer, uphill); 10 (winter, downhill)

Note: SD, habitat suitability for reproduction hosts; SR, habitat suitability for transmission hosts.
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ing a range of radiative forcing values by 2,100 relative to prein-
dustrial levels (2.6, 4.5, and 8:5W=m2, respectively). Coupled
general circulation–regional climate (GCM-RCM) models were
used and projections were bias-adjusted (Madsen et al. 2016).
A number of climate indices (10 temperature-based and 10
precipitation-based) were calculated on the 10

0
×10

0
grid for the

whole of Europe, using the bias-adjusted daily projections.
Climate projections were made available for the three future time
slices (the 2020s, 2050s, and 2080s) for the integrated assessment
of climate change impacts within the IMPRESSIONS project.

Combined scenarios of climate and socioeconomic change.
The three RCPs considered were combined with four shared soci-
oeconomic pathways (SSPs) representing trends in economics,
demographics, lifestyles, technological development, gover-
nance, and other societal factors. The four SSPs are a) SSP1
(which describes a sustainable future with less inequality); b)
SSP3 (which depicts a fragmented future with a low-level of eco-
nomic growth and a seriously degraded environment); c) SSP4
(which portrays an unequal future of increased social, economic,
and political disparities); and d) SSP5 (which refers to an eco-
nomically driven future that is highly industrialized and fossil-
fuel based). Land manager decisions are heavily influenced by
socioeconomic factors, leading to potentially distinctive land-use
patterns under different SSPs. The following combinations of
RCPs and SSPs were considered in the IMPRESSIONS project,
according to consistency in their underlying assumptions about
energy use and associated emissions as explained in Madsen
et al. (2016): SSP1 × RCP4.5, SSP3 × RCP4.5, SSP4 ×
RCP4.5, SSP3 × RCP8.5, and SSP5 × RCP8.5. In addition, we
added the combination of SSP1 × RCP2.6 to cover lower-end
climate change consistent with the Paris Agreement. Moreover,
under each RCP, a number of coupled GCM-RCM models (see
Table S2) were selected and used (Harrison et al. 2019; Madsen
et al. 2016), leading to a total number of 20 model simulations
to project future risk patterns under the six combined scenarios
(see Table S3).

Land-use/cover change. Land-use/cover change is an impor-
tant component of the IAP2 developed by the IMPRESSIONS
project (Harrison et al. 2019; Holman et al. 2016) and which is
based on the CLIMSAVE IAP (Harrison et al. 2015, 2016).
The IMPRESSIONS IAP2 integrates a range of meta-models
(reduced-form models that emulate the performance of more
complex sectoral models, including agriculture, forests, biodi-
versity, urban development, water resources, and flooding) to
simulate the cross-sectoral effects of climate and socioeco-
nomic scenarios across Europe. The core function is provided
by the Silsoe Whole Farm Model (SFARMOD) meta-model
(Audsley et al. 2015), which allocates available rural land
based on profitability and constraints from urban land use, irri-
gation availability, flood frequency, and food and timber
demand. The productivity of different types of forests and crop/
grassland systems under different management regimes and cli-
mate/soil characteristics are estimated by meta-models of the
Growth Of Trees Is Limited by WAter model (GOTILWA+ )
(Gracia et al. 1999) and an agro-climatic simulation model
(ROIMPEL) (Audsley et al. 2006), respectively. Urban land-
use change is modeled by the Regional Urban Growth (RUG)
meta-model (Reginster and Rounsevell 2006), which explores
trends in urbanization as a function of population and gross
domestic product, residential preferences (proximity to amenities,
attractiveness of the coast), and strictness of the planning regula-
tions to limit sprawl. Water availability is simulated by the
WaterGAP (WGMM) meta-model (Wimmer et al. 2015) based on
average river discharge. Food and timber demand constraints are
associated with the socioeconomic scenarios. The two main factors

affecting the extent of forest land are a) expansion/shrinkage of ag-
ricultural land to meet demand for agricultural products, such as
cereals, white or red meat and bio-energy, taking into account
changes in agricultural productivity, agricultural land manage-
ment, food imports, population, and lifestyles (e.g., changes in
diets); and b) the general awareness toward the environment, for
example, the need for setting aside land for conservation. The
change in forest land is further modified by the CO2 concentration
assumed in the RCPs through a fertilization effect on forest
growth. For future projections, change rates in the three habitat
types estimated from the IMPRESSIONS IAP2 were applied to
the baseline habitat layer.

Host distribution change. The generalized suitability of deer
and transmission hosts was calculated using the same approach
that was applied for the baseline. Future changes in deer popula-
tion (generalized across the four species) were projected at the
cell-level by a linear regressive function of habitat suitability
developed based on the baseline deer population distribution (see
Figure S1). The population of transmission host (generalized
across the six species) was simulated using the functions intro-
duced previously.

Disease Risk Mapping Exercises
Risk of LD was taken as the density of active infected nymphal
ticks (DIN) at the cell level. As under each combined scenario,
three to four coupled GCM-RCM models were selected and used;
the final cell-level DIN was calculated by taking an average of the
DIN values projected under different GCM-RCMmodels. To facil-
itate comparison of results between different combined scenarios,
a fixed set of five risk levels were defined for comparing the
changes in the extent of risk areas. The five levels were distin-
guished with the four quartiles of projected mean annual value of
baseline DIN (per ha) at the cell level: null (DIN=0); negligible
(DIN<82); low (82≤DIN<698); moderate (698≤DIN<1,608);
and high (DIN≥1,608). Following the previous study (Li et al.
2016), all simulations were initialized with assumed initial den-
sities of 2× 105 and 5× 104per kilometer squared for the total and
infected active and host-seeking (or questing) nymphs, respec-
tively, in forests. All results were recorded after 600 time-steps
(50 y) to ensure potential dispersal of ticks to other suitable habi-
tats had been completed and stabilized yearly cycles of ticks had
been reached. The high-risk range during the peak season (PHR)
was mapped because it represents the most risky areas and time for
humans. The winter low-risk range (WLR) was of interest because
public awareness of disease risks over winter is limited and a mild
winter was found to be associated with greater tick infection preva-
lence in Europe (Estrada-Peña et al. 2011).

Evaluation of the Modeling Approach and Projections
Evaluations were conducted from two perspectives. Quantitatively,
the projected baseline (2010) spatial patterns were compared with
observational or estimated data from various sources to assess
whether the model could correctly reproduce the patterns. Data
used for comparison included tick distribution data and a B. burg-
dorferi s.l. prevalence map at the European level (Estrada-Peña
et al. 2013, 2011), tick distribution maps in northern Europe
(Jaenson et al. 2012; Jore et al. 2014; Laaksonen et al. 2017) and
data on country-specific infection prevalence of ticks (Rauter and
Hartung 2005). Qualitatively, a) the soundness of the structure of
LYMERISK model in explaining the LD transmission system and
b) the usefulness of our projections in representing the current risk
distributions and stimulating discussions on adapting to future cli-
mate change were evaluated through discussion and questionnaires
at several stakeholder workshops conducted between 2014 and
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2016 in Hungary and Scotland, for which finer-scale disease risk
modeling exercises were designed (Clarke et al. 2017).

Results

Model Uncertainty and Baseline Performances
In this study, the primary source of uncertainty arose from the
scenario settings due to the inherent uncertainty in future socioe-
conomic and climate conditions. These scenarios derived from
the IMPRESSIONS project, which has extensively explored their
effects on the outputs of the IAP2 model as discussed by
Harrison et al. (2019). A secondary source of uncertainty was
related to the LYMERISK model, which depends on the extent to
which model parameters influence the model outcomes. The
results of a sensitivity analysis of the LYMERISK model were
found to be identical to previous model sensitivity investigations
(Li et al. 2014, 2016), with developmental mortality rate from
engorged larvae into questing nymphs, efficiencies of systemic
transmission, mortality rate of questing nymphs, basal mortality
rate of feeding larvae, maximum attachment for larvae on trans-
mission hosts, and transmission host-finding probabilities for lar-
vae and nymphs being the most sensitive model parameters.

The model evaluation results suggest that model outputs are
within the bounds of biological plausibility and an overall ac-
ceptance of the modeling approach and its results by stakehold-
ers. Projected baseline (2010) seasonal variation of DIN (see
Figure S2) showed two distinctive activity periods of infected
ticks: low activity over the winter from December to January of
the next year and peak activity between May and June (see
Figure S3). Geographical limits are mainly driven by a) tempera-
ture (see Figure S4) in the north, with low temperature reducing
the survival and shortening the questing period, and b) suitable
habitat (forests) distribution (see Figure S5) in the south, which
consequently affected host distribution (see Figure S6 for deer
and Figure S7 for transmission host distribution). In the model,
these result from temperature-driven activity rates and the
season-dependent developmental and behavioral diapause. Such
projected seasonal characteristics correspond well with existing
knowledge (Gray et al. 2016; Kurtenbach et al. 2006).

Compared with the I. ricinus tick occurrence data set pro-
duced in Estrada-Peña et al. (2013), our model projected a wider
distribution of I. ricinus nymphs in the north (see Figure S8). It
should be noted that the area-without-occurrence records of
Estrada-Peña et al. (2013) may be understood as unknown rather
than tick absence due to the sparsity of biological records for this
taxa. Furthermore, our projections are in good agreement with a
number of other tick maps in Europe, including the tick distribu-
tion map of the European Centre for Disease Prevention and
Control (ECDC 2019) and the national distribution maps pro-
duced for north European countries, that is, Norway (Jore et al.
2011), Sweden (Jaenson et al. 2012), and Finland (Laaksonen
et al. 2017). Overall, the baseline model projection of tick distri-
bution agrees with existing evidence.

A risk map of the B. burgdorferi s.l. distribution in Europe is
available in the paper by Estrada-Peña et al. (2011). Our model
projected a smaller range of infected ticks in the UK and Ireland,
but a greater range in Spain (see Figure S9). For the UK, the pro-
jected distribution of DIN in Scotland is in good agreement with
the LD risk map produced previously (Li et al. 2016). For Spain,
our model may have overestimated the situation, or Estrada-Peña
et al. (2011) may have underestimated it given that when training
their model, they used only a limited data set from Spain (from
Barral et al. 2002) based on ticks in the Basque Country, Spain).
Moreover, the distribution of LD incidence in 2009 (Bonet
Alavés et al. 2016) suggested that there may be a wider

distribution of B. burgdorferi s.l. in Spain than Estrada-Peña et al.
(2011) projected, assuming a certain amount of tick bites took
place locally and close to the residence (Mulder et al. 2013). We
further compared the results with data provided in a literature
review of the Borrelia infection prevalence of nymphal and adult
ticks in European countries (Rauter and Hartung 2005) using vio-
lin charts (see Figure S10). The observed infection prevalence for
each country in general falls within the projected range, except
for Portugal, where a study reported an infection prevalence of
>70% in adults.

Projected Changes in Risk Drivers by the 2050s under
Combined Climate and Socioeconomic Scenarios
Taking averaged cell-level projections for each RCP, the pro-
jected overall increases in temperature by the 2050s across the
European countries considered were 0.8, 1.4, and 2.4°C under
RCP2.6, RCP4.5, and RCP8.5, respectively (Figure 3). Northern
Europe was projected to experience relatively greater increases in
temperature than other regions (see Table S4).

On average, projected increases in forest land were greatest
under SSP4 × RCP4.5 (by 22%) and decreases were projected
under SSP1 × RCP2.6 (by 7.4%) and SSP1 × RCP4.5 (by 7.0%)
(Figure 3). The increase in forest land under SSP4 was simu-
lated because this scenario favors further intensification of ag-
ricultural production due to improvements in crop breeding and
other agricultural technologies. This means that more food can
be produced per hectare. This, combined with a lower popula-
tion and increased food imports, would result in less land area
being needed for food production, which would release land
for forestry to expand. The decrease in forest land under the
two SSP1 scenarios relates to a projected increase in exten-
sively managed agriculture combined with decreases in food
imports and increases in bioenergy and set-aside. Overall, this
leads to more forest land being converted to agricultural areas
to meet food demand.

The projected changes in the overall host density in general fol-
lowed the changes in forest land. The greatest overall increase in
deer and transmission host densities was projected under SSP4 ×
RCP4.5 (by 79% and 87%) and decreases were projected under
SSP1 × RCP2.6 (by 7.4% and 26%) and SSP1 × RCP4.5 (by 7%
and 22%). However, because climate suitability varied spatially,
decreases in host densities were projected for southern Europe
under all scenarios, except for SSP4 × RCP4.5, under which an
increase in transmission host density (by 9.7%) was projected.

Projected Differences in Lyme Disease Risk between
European Countries by the 2050s
Projected country-level changes (by the 2050s) in the mean DIN
and extent of PHR (peak season high-risk range, representing the
time periods and areas of highest risk) across Europe (Figure 4)
differed considerably between regions and between combined
socioeconomic and climate scenarios. Even though all scenarios
assumed increases in temperature, other drivers of disease risk
such as forest land cover and host distribution were projected to
change along different trajectories, resulting in highly heteroge-
neous and uncertain future risk patterns.

Northern European countries, including Norway, Finland,
and Sweden, were projected to have increased infected tick
density and an extended high-risk range in the peak season
under all scenarios. Although the distribution of forest land
cover and host animals were projected to be relatively stable in
these northern areas, the change in disease risks resulted from a
projected overall increase in temperature, amplifying tick
questing activity and prolonging the duration of the tick activity
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season, thereby leading to an expanded risk area toward higher
altitudes and latitudes. In contrast, southern European coun-
tries, including Italy, Portugal, and Greece, were projected to
have reduced areas of high risk during the peak season under
all scenarios. In some scenarios, for example SSP1 × RCP2.6,
this can be directly explained by a projected decrease in for-
ested lands. In other scenarios with projected forest expansion,
such as SSP4 × RCP4.5, this was due to a projected decline in
climate suitability for hosts, leading to reduced host distribu-
tions and, hence, a reduced tick distribution.

Mapping the Risk Patterns: The Least and Most Risky
Scenarios

The least risky scenario combination was SSP1 × RCP2.6, under
which reductions in both infected tick density (mean DIN, Figure 4)
and distribution (WLR, Figure 5C; PHR, Figure 5D) were pro-
jected in comparison with the baseline projection. The projected
shrinkage in forest land cover (by −8:1%) played a major role
because it restricted the distribution of ticks and was projected to
lead to reductions in host density (by −7:4% and −26:4% for

Figure 3. Projected changes in disease risk drivers by the 2050s in Europe under the combined scenarios of plausible shared socioeconomic pathway (SSP)
and representative concentration pathway (RCP) changes. Projected changes in temperature, forest land cover, and densities of deer and transmission hosts
were summarized for each combined scenario by taking averaged values derived from different climate models under different combined scenarios.

Figure 4. Projected changes in Lyme disease risk by the 2050s in European countries. The extent of high disease risk area in peak season (%, lines in the figure) and
mean density of infected nymphal ticks (per ha, closed circles in the figure, with light/dark gray indicating projected decrease/increase) are summarized across com-
bined scenarios of the Shared Socioeconomic Pathway (SSP) and the Representative Concentration pathway (RCP) changes. The countries are classified into four
geographical divisions (north, east, west, and south). Country abbreviations: AT, Austria; BE, Belgium; BG, Bulgaria; CH, Switzerland; CZ, Czech Republic; DE,
Germany; DK, Denmark; EE, Estonia; ES, Spain; FI, Finland; FR, France; GR, Greece; HU, Hungary; IE, Ireland; IT, Italy; LI, Liechtenstein; LT, Lithuania; LU,
Luxembourg; LV, Latvia; NL, Netherlands; NO, Norway; PL, Poland; PT, Portugal; RO, Romania; SE, Sweden; SI, Slovenia; SK, Slovakia; UK, United Kingdom.
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both deer and transmission hosts. Examples of projected changes
in risk drivers using the MPI Earth System Model running on
low resolution grid (MPI-ESM-LR); the regional climate model
(REMO) (GCM/RCM) model are provided in panel B of Figures
S4–S7. In addition, in the SSP1 × RCP2.6 scenario combination,
the projected temperature increase was low (+ 0:8�C) and so its
effect on tick activity and the climate suitability of hosts was rel-
atively minor. Even though a warmer climate allowed more ticks
to be active in winter, the WLR was projected to reduce in gen-
eral, owing to reduced forest land cover and host populations.
Bulgaria was projected to have an increase in forest (by 5%) and
hence an increase in WLR (by 11.8%). Northern Europe and the
majority of the British Isles were projected to remain clear from

risk during winter. The greatest decreases in WLR were pro-
jected for Portugal, France, and Spain by −18:6%, −6:4%, and
−6:3% of their territories, respectively. Moreover, at the country
level, almost all countries were projected to have a reduced
WLR, except for three northern countries, Norway, Finland, and
Sweden, which had marginal increases (by 0.03–2.7%) and slight
expansions of WLR toward the north. This was due to the rela-
tively greater increases in temperature (by 1.0–1.4°C) projected
for these three countries. The greatest size reductions in WLR
were projected for Slovenia, Poland, and Lithuania, with −38:9%,
−38:1%, and −33:9% of their territories, respectively.

The most risky scenario combination was under SSP4 ×
RCP4.5, with projected increases in all mean DIN (Figure 3),

Figure 5. Projected baseline and future Lyme disease risk ranges under SSP1 × RCP2.6 and SSP4 × RCP4.5 scenarios. The projected distribution of risk indi-
cator, DIN (infected nymphal ticks per ha), at the baseline of 2010 in (A) winter and (B) peak season are classified into five levels: null (DIN=0), negligible
(DIN<82), low (82≤DIN<698), moderate (698≤DIN<1,608), and high (DIN≥1,608). Among the six combined scenarios considered, the SSP1 × RCP2.6
represents the least risky future in which the low emissions scenario (RCP2.6) is combined with a sustainability socioeconomic scenario (SSP1). Both the (C)
winter low-risk range and (D) peak season high-risk range were projected to likely decrease by the 2050s. The blue/red color gradients indicate agreement
among projections under different climate models, with darker meaning higher agreement. The patterned blue/red area refers to the baseline projections for
comparison. The SSP4 × RCP4.5 is the most risky future in which the intermediate emissions scenario (RCP4.5) is combined with an unequal future of
increased socioeconomic disparities (SSP4), under which an overall increase and geographical changes in both (E) winter low-risk range and (F) peak season
high-risk range by the 2050s were projected.
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WLR (Figure 4E), and PHR (Figure 4F), resulting from the pro-
jected increase in forest land (by 21.7%) and temperature (by
1.4°C). In addition, host densities were projected to increase dra-
matically (by 79% and 87% for deer and transmission hosts,
respectively), as a result of increased forest land, which out-
weighed the effect of a projected decrease in climate suitability in
some regions (especially in the south) under this intermediate cli-
mate change scenario. Projections of risk driver changes using
the Hadley Global Environment Model 2 - Earth System
(HadGEM2-ES); the Rossby Centre regional atmospheric model
(RAC4) (GCM/RCM) model are provided in panel C of Figures
S4–S7. Because more habitats and hosts were projected to be
available, and a warmer climate was projected to allow more
ticks to be active during winter, the risky area during winter (i.e.,
WLR) was projected to expand in general. Portugal was the only
exception; it had a decrease of 7.1% in the size of WLR due to
projected declines in climate suitability and losses of deer density
by 21.4%. Northern Europe and the majority of the British Isles
were projected to face a dramatic expansion of risk during winter,
with the greatest increases occurring in the Netherlands,
Hungary, and Denmark (by 51.4%, 50.3%, and 38.1% of their ter-
ritories, respectively). Furthermore, almost all countries consid-
ered were projected to have expanded PHR except for three
southern countries (Greece, Italy, and Portugal) and one eastern
country (Bulgaria), which had only marginal shrinkages in PHR
of between 1% and 3% due to more uneven distributions of host
animals in response to reduced climate suitability in some areas.
However, because the mean DIN was projected to increase in all
countries, people who frequently use forest habitats in these coun-
tries may face greater risks of being in contact with infected ticks.
The greatest increases in PHR were projected for Denmark (by
80.5% of its territory), the Netherlands (by 49.6%), and Lithuania
(by 48.9%).

Discussion
This study used an integrated modeling approach to explore possi-
ble future patterns of the DIN of I. ricinus ticks, the key ecological
risk indicator of LD. The approach was applied to several scenar-
ios of combined changes in climate, socioeconomics, and land use
that were codeveloped with stakeholders. The modeling approach
integrated multidisciplinary knowledge and was accepted by the
stakeholders engaged in the study for its usefulness in explaining
changing LD risk patterns and stimulating discussions on climate
change adaptation strategies.

Unlike other vector-borne diseases such as dengue, for which
most empirical studies have found that temperature plays a domi-
nating role in disease transmission (Messina et al. 2015), trans-
mission of tick-borne diseases in the natural environment is often
associated with a much broader range of factors than only tem-
perature, including, for instance, host populations (Estrada-Peña
and de la Fuente 2017) and habitats (Lambin et al. 2010).
However, existing studies on future LD risk patterns over Europe
have mostly adopted an associative approach by relating the eco-
logical risk (density of ticks) to climate variables only (Alkishe
et al. 2017; Williams et al. 2015). Similarly, studies projecting
the basic reproduction number (R0) of tick populations in Canada
were also temperature-driven (McPherson et al. 2017; Ogden
et al. 2014). By taking advantage of recent developments in
agent-based modeling of pathogen dynamics, continental-level
projections of land-use/cover change and climate suitability mod-
eling of host distributions, we were able to project complex inter-
actions between pathogens and ticks and their host animals over
heterogeneous landscapes.

The nymphal life stage was targeted because it causes the ma-
jority of human LD infections (LoGiudice et al. 2003). We

investigated how risk may be influenced by changes in a few key
disease drivers including temperature, forest land cover, and host
distribution. Even though tick questing activity and pathogen
transmission were projected to increase as the climate warms,
socioeconomic drivers that restricted the extent of habitats were
projected to play a regulating role in shaping the spatial patterns
of DIN. Because these disease risk drivers were projected to be
evolving toward different cardinal directions under different sce-
narios, the overall future geographical pattern of DIN in Europe
(up to the 2050s) was projected to be rather uncertain and may be
either reduced or extended, depending on the region of Europe
and the scenario combination in question.

Different roles of the disease drivers on DIN pattern were pro-
jected for different regions, implying different targets for regional
policies for health risk reduction. The northern limit of tick distri-
bution in Scandinavia was projected to expand under all scenarios
given the projected temperature rises and relatively stable pat-
terns of forests and host distributions. These findings are in line
with a number of empirical studies (Jaenson et al. 2012; Jore et al.
2014), emphasizing the direct impacts of climate change on tick
distribution in this region. In the Baltic region, where climate
change alone was not found to be able to offer a sufficient expla-
nation for the observed patterns of tick-borne encephalitis
(Sumilo et al. 2007), our projections suggest a highly uncertain
spatiotemporal pattern for LD risk due to large projected varia-
tions in land use under the different socioeconomic scenarios.
The projected reduction in DIN in many Mediterranean areas was
due to a projected decrease in forest land driven by the extensifi-
cation of agriculture in southern Europe under most scenarios.
Such extensification results from a loss in agricultural profitability
due to reduced crop productivity as the climate changes (associ-
ated with heat and drought stress and irrigation water availability),
based on both empirical evidence and model simulations (Holman
et al. 2017).

Although similarities were found between the results of our
study and relevant climate niche modeling studies (Alkishe et al.
2017; Williams et al. 2015)—such as an expansion of LD risk in
northern Europe and gradually decreased suitability in southern
Europe—there were several clear differences. First, the greatest
spatial expansion in risk was not found under the most high-end
climate scenario (RCP8.5) but, instead, under the intermediate
climate scenario (RCP4.5) when combined with a socioeconomic
scenario (SSP4) describing an unequal future of increased social,
economic, and political disparities. Second, LD risks were not
always projected to be amplified alongside a temperature increase
(i.e., RCPs 2.6, 4.5, and 8.5), and the risk could even be reduced
under the low-emission climate change scenario when associated
with a sustainable socioeconomic scenario (i.e., SSP1 × RCPs
2.6). Third, the reduction in LD risk in southern Europe was pro-
jected to be less uncertain in our study because of the likely
decrease in forest land as a consequence of agricultural extensifi-
cation, as explained earlier in this section.

Tackling climate change could offer significant global health
benefits because many mitigation and adaptation responses to cli-
mate change are directly linked to reductions of disease burden
(Watts et al. 2015). Hence, it has been recognized that an
improved understanding of the health risks of climate change and
projections of future health risk changes are important for policy
makers to take proactive actions to protect populations and com-
munities from the adverse effects of climate change (Hosking and
Campbell-Lendrum 2012; Tong et al. 2016). It is within this con-
text that our study provides a useful and comprehensive example
of how the health risks associated with socioeconomic and cli-
mate change could be assessed using scenario analysis. Model
projections further pinpoint the importance of understanding
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ecosystem service trade-offs (Shackleton et al. 2016) to reduce
maladaptation, especially for the Mediterranean areas where for-
est land were projected to decrease and lead to LD risk reduction.
Future forest-based adaptation strategies should be carefully
implemented based on a full evaluation across all the costs and
benefits provided by forest ecosystems.

Uncertainties and potential errors in our integrated modeling
approach arose from several aspects. For the LYMERISK model,
a number of simplifying assumptions, such as the generalization
of host and pathogen species and habitat types, were applied in
order to balance model complexity and payoff, following the
principles of the pattern-oriented modeling approach (Grimm
et al. 2005). The sensitivity and shortcomings of the model com-
ponents on pathogen transmission and strategies for host distribu-
tion mapping have already been discussed in detail by Li et al.
(2016). Future research is needed to improve understanding of
the key factors determining the success of pathogen transmission
(e.g., efficiencies of pathogen transmission, host-finding probabil-
ities) in natural environments as well as a more realistic represen-
tation of host population dynamics because these are highly
sensitive parameters where empirical information is the least reli-
able. In particular, an improved knowledge and representation of
habitat and host diversity and their relationships to B. burgdorferi
s.l. transmission is required to account for the possible spatial
impacts of forest fragmentation (and connectivity) and poor habi-
tat and reservoir-incompetent host species on disease risk at large
scales. Given the limited quantitative data on the effect of cold
temperature on tick mortality, we had to rely on the experimental
data (MacLeod 1935), and so the model assumed that I. ricinus
survival falls from almost 100% at −5�C to zero at −15�C. In
reality, it is likely that some ticks in their natural environment
may survive in refuges where they are more protected from very
low air temperatures. Field evidence on the direct role that cli-
mate plays on the desiccation effects on tick survival at the north-
ern and southern edges of existing I. ricinus distribution may
help improve the current projections and aid further application
of the LYMERISK model in North Africa. Moreover, studies that
focus on the inclusion of human behavior in LD risk modeling
approaches are also important because this determines exposure
in the ecosystem. Exposure is more sensitive to socioeconomic
changes because it is related to population distribution, migration,
and forest visitation patterns at various scales (Li et al. 2015,
2017). Addressing exposure risk over short time horizons with
finer time steps can therefore help in targeting people at risk and
raising awareness in a timely manner.

Because human exposure is an important determinant of the
public health outcome of B. burgdorferi s.l. circulation, details
of future land planning under various socioeconomic scenarios,
such as the SSPs used in this study, will be relevant to examine.
Previous research has highlighted the role of loose building in
fragmented forests (Linard et al. 2007), and more extensive knowl-
edge of the effect of various forms of land planning will be useful
but is largely lacking at this point. Furthermore, given the high
complexity of landscape decision-making and the multiple
demands on landscapes it is essential that any planning and policy
not be undertaken in silos but, rather, planning and policy should
take into account the interdependencies between sectors and how
they are affected by multiple pressures. The IMPRESSIONS IAP2
used here to project habitat change attempts to do this. Work with
stakeholders revealed three key ways in which people can help to
move toward a sustainable future: a) using integrated resource
management that takes account of the multifunctional nature of
our landscapes and aims to ensure both resource security and envi-
ronmental protection while moving toward self-sufficiency;
b) shifting toward sustainable lifestyles through education and

awareness raising; and c) using good governance with longer-
term visions based on sustainability, transparency, and partici-
pation. These recommendations consider the need to minimize
human exposure to LD as just one of many demands on policy
design.

In conclusion, this study projected several potential risk sce-
narios for LD in Europe by taking into account the potential
impacts of socioeconomic and climate changes. The models pro-
jected that the greatest increase in LD risk might not necessarily
always be under the most high-end climate change scenario and,
in the best case scenario, the risk could decrease. Projected re-
gional differences in LD risk resulted from mixed effects of tem-
perature, land use, and host distributions, suggesting region-
specific and cross-sectoral foci for LD risk management policy.
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