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Abstract During geomagnetic storms, some fraction of the solar wind energy is coupled via
reconnection at the dayside magnetopause, a process that requires a southward interplanetary magnetic
field Bz. Through a complex sequence of events, some of this energy ultimately drives the generation of
electromagnetic ion cyclotron (EMIC) waves, which can then scatter energetic electrons and ions from the
radiation belts. In the event described in this paper, the interplanetary magnetic field remained northward
throughout the event, a condition unfavorable for solar wind energy coupling through low-latitude
reconnection. While this resulted in SYM/H remaining positive throughout the event (so this may not be
considered a storm, in spite of the very high solar wind densities), pressure fluctuations were directly
transferred into and then propagated throughout the magnetosphere, generating EMIC waves on global
scales. The generation mechanism presumably involved the development of temperature anisotropies via
perpendicular pressure perturbations, as evidenced by strong correlations between the pressure variations
and the intensifications of the waves globally. Electron precipitation was recorded by the Balloon Array for
RBSP Relativistic Electron Losses balloons, although it did not have the same widespread signatures as the
waves and, in fact, appears to have been quite patchy in character. Observations from Van Allen Probe A
satellite (at postmidnight local time) showed clear butterfly distributions, and it may be possible that the
EMIC waves contributed to the development of these distribution functions. Ion precipitation was also
recorded by the Polar-orbiting Operational Environmental Satellite satellites, though tended to be confined
to the dawn-dusk meridians.

1. Introduction
Electromagnetic ion cyclotron (EMIC) waves are generated near the geomagnetic equator by anisotropic
(T⟂ > T||) energetic (∼10–100 kev) proton distributions (Cornwall et al., 1970; Horne & Thorne, 1993;
Kozyra et al., 1984; Remya et al., 2018). The waves have frequencies that depend on the background ion
populations, including effects from heavy ions, thus leading to a solar cycle dependence of wave frequencies
(Lessard et al., 2015), following variations in heavy ion densities that follow this trend.

The overlap between hot protons in the ring current and cooler plasmaspheric populations can lower the
threshold of generating EMIC waves. While it has been shown in some studies that this is a region where
EMIC waves can occur (e.g., see Summers et al., 1998), it is not a preferred location (Allen et al., 2015;
Fraser & Nguyen, 2001; Halford et al., 2015; Tetrick et al., 2017), and, in fact, observational studies using
satellites and ground instruments have shown that EMIC waves occur at all local times (Anderson et al.,
1992; Kuwashima et al., 1981; Usanova et al., 2012).

In addition, EMIC waves can be generated throughout the magnetosphere by velocity fluctuations in solar
wind that drive the requisite temperature anisotropies via pressure modulations (Anderson & Hamilton,
1993; Arnoldy et al., 2005; Usanova et al., 2010). Saikin et al. (2015) explored this connection statistically,
using data from the Van Allen Probes spanning a 22-month period. EMIC waves that occurred during
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this time interval were correlated with storm phases and, separately, with solar wind pressure. Separating
EMIC occurrences below and above 3 nPa, they show that the highest occurrence rates (greater than ∼35%)
occur at prenoon for solar wind pressures below 3 nPa. During times with higher pressures, although the
highest rates (near 50%) are concentrated at postnoon, EMIC occurrences are widespread throughout the
magnetosphere. Tetrick et al. (2017) found a similar dependence in several local time sectors.

In a detailed study of pressure-driven waves, Engebretson et al. (2015) describe an event that extended
over 8 hr in UT and over 12 hr in local time, driven by a 4-hr rise and subsequent sharp increases in solar
wind pressure, observed outside the plasmapause from late morning through local noon. Linearly polarized
hydrogen-band waves associated with this event were observed with magnitudes up to 25 nT p-p.

Cho et al. (2017) present observations of EMIC waves during two separate pressure enhancements. In the
first event, where the pressure reached ∼10 nPa, EMIC waves were observed by various spacecraft nearly
simultaneously from ∼5 to 8 MLT, though no waves were observed by GOES 13 at prenoon (no spacecraft
were positioned between noon, dusk, and midnight to ∼5 MLT). On the other hand, EMIC waves during
the second event were observed postnoon to postmidnight in response to a solar wind pressure that reached
20 nPa.

Dayside pressure-driven EMIC waves were also reported by Engebretson et al. (2018), which were observed
by the Magnetosphere Multiscale spacecraft, Van Allen Probe A, and GOES 13 and four ground stations,
all concentrated near noon. The solar wind initially provided a modest interplanetary shock, but that was
followed by a continued increase in solar wind dynamic pressure that gradually reached and exceeded
10 nPa.

These studies (as well as the event described in this paper) suggest that pressure-driven EMIC waves can
occur throughout the magnetosphere, in locations that may differ from occurrence distributions shown in
various statistical studies (e.g., described above). Given that radiation belt activity is highly correlated with
magnetic storms, high-speed streams, solar wind pressure pulses, and so forth, the implication is that EMIC
waves that occur during active times may play a more significant role in radiation belt dynamics than those
that fit quiet time occurrence distributions.

The specific role that EMIC waves play in radiation belt dynamics is not clear. EMIC waves are able to
pitch-angle scatter protons from the ring current into the loss cone, which can be seen as direct precipitation
or as detached proton auroral arcs, either on the ground or by satellites (Cornwall et al., 1971; Jordanova
et al., 2007; Sakaguchi et al., 2012; Spasojevic & Fuselier, 2009; Yahnin et al., 2009; Yuan et al., 2010, 2018).
There is also expected to be a correspondence between EMIC waves and relativistic electron precipitation
(Meredith et al., 2003; Summers & Thorne, 2003), which could lead to large-scale dropouts of radiation belt
electrons during the main phase of geomagnetic storms. However, not all electron dropouts can be explained
by EMIC waves (Morley et al., 2010), although there are a few experimental observations of EMIC-driven
relativistic electron precipitation (e.g., Blum et al. 2015; Hendry et al., 2016, 2017; Miyoshi et al. 2008; Rodger
et al., 2008, 2015; Usanova et al. 2014). Compression-driven EMIC waves and their effect on radiation belt
electrons, in particular, have been studied from both observations and simulations (McCollough et al., 2009,
2012; Usanova et al., 2008, 2010; Wang et al., 2014).

In the event described in this paper, EMIC wave generation occurred simultaneously throughout nearly all
local times, though most predominantly in the dusk and midnight regions. Energetic particle precipitation
was also observed on global scales.

2. Observations on 17 January 2013
Geomagnetic storms result from the interaction of the solar wind with Earth's magnetosphere, often with
the result that energized particles injected into the inner magnetosphere from the magnetotail enhance
currents and also the conditions leading to the growth of EMIC waves.

Satellite measurements have shown that the majority of EMIC waves seen during storms occur during the
main phase (Halford et al., 2010) when particle dynamics are at a peak but the majority of waves observed on
the ground during storms occur in the late recovery phase (Engebretson et al., 2008). The disconnect between
satellite and ground measurements is likely due to waves being unable to propagate through the ionosphere
during disturbed conditions (Bräysy et al., 1998). Using Van Allen Probe data, Wang et al. (2016) showed
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Figure 1. OMNI data showing solar wind parameters associated with this event. The top four panels show total
magnetic field strength, followed by Bx , By, and Bz. The next three panels show solar wind speed, density, and flow
pressure. The bottom two panels show the AE and SYM/H indices.
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that during storm main phases, EMIC waves occur primarily in the dusk sector, with peak occurrence rates
can approach 30%, while EMIC waves in the recovery phase are distributed more uniformly, with peak
occurrence rates near 20% in the dawn to noon sector.

In general, geomagnetic storms are identified by negative excursions in the global Dst or SYM/H indices,
either of which indicates an intensification of the ring current, which would be driven by coupling of the
enhanced solar wind at the dayside subsolar magnetopause. This coupling requires that the solar wind mag-
netic field includes a negative Bz component to enable the reconnection. On the other hand, when Bz is
positive, no notable reconnection takes place, although solar wind pressure perturbations are transferred to
the magnetosphere. In typical magnetic storms, the polarity of Bz often changes during the event, resulting
in a toggling between the two processes, and so the meaning of “storm” most often includes interpretation
of the integrated effects of the toggling.

In the event described in this paper, the solar wind density was very high (up to 58 particles per cubic cen-
timeter), but Bz remained positive throughout the event. With Bz remaining positive, reconnection did not
take place at the subsolar point, and the ring current appears to not have been intensified. That is, SYM/H did
not undergo a negative excursion in spite of the fact that the solar wind density was so high. In a strict sense,
this can be taken to mean that the event is not classified as a magnetic storm, though pressure perturbations
certainly were transferred to the magnetosphere.

Such pressure perturbations have been correlated with Dst previously (see Francia et al., 1999, and references
therein) and are thought to correspond to increases in the Chapman-Ferraro currents at the magnetopause.
In fact, Burton et al. (1975) had previously noted the importance of these currents on the Dst index and
developed an empirical model for predicting Dst that included the speed and density of the solar wind, as
well as Bz.

The event described here confirms and extends the results from an earlier paper by Engebretson et al. (2015),
who also focused on EMIC wave generation that was initiated by pressure perturbations, as opposed to the
often-cited overlap between plasmasphere and ring current populations.

On 17 January 2013, a high-density solar wind impacted the magnetosphere. Figure 1 shows the solar wind
conditions from 00:00 to 06:00 UT 17 January 2013 from the OMNIWeb database. Data from both the ACE
and Wind satellites were used to calculate the OMNI values, except for a brief data dropout around 0300 UT.
The top four panels show the magnetic field magnitude and components. Note that Bz is positive for the
entire interval, except for a brief and minor negative excursion near 03:30 UT. The fourth panel shows the
solar wind speed with values near 410 km/s, which is a typical speed.

The density (fifth panel) and flow pressure (sixth panel), however, show a marked increase starting at
00:00 UT and then reach a maximum of 58 particles per cubic centimeter and 20 nPa, respectively, just as
the data become unavailable at 02:47 UT. The AE index (eighth panel) shows low values throughout the
interval, implying the presence of ongoing substorms, which is surprising and not expected, given the lack
of negative Bz that would support the nightside reconnection generally thought to be required for substorm
development.

SYM/H (bottom panel) reaches a maximum value of 55 nT at 0301 UT. Of particular importance is the
fact that SYM/H tracks the flow pressure very closely, in an apparently linear fashion (i.e., they are clearly
correlated). This is, perhaps, indicative of the fact that energy was not transferred to the ring current via
reconnection at the magnetopause, but rather through the sort of direct driving by the solar wind quan-
tified by Kepko and Spence (2003) and Viall et al. (2009). The positive perturbation in SYM/H, in this
case, is not related to changes in the ring current, primarily, but to intensified magnetopause currents
(Burton et al., 1975)

2.1. EMIC Waves Observed on the Ground
Unlike typical occurrence distributions described in section 1, ground-based observations of EMIC waves
during this event were concentrated in the dusk and midnight regions and were excited globally and simul-
taneously, producing similar spectral signatures at virtually all ground stations. Figure 2 shows the locations
of the ground stations and satellites where EMIC waves were observed. Note that the gap between Magadan
(eastern Siberia) and Sodankylä (Finland) reflects in large part the lack of search coil coverage over much
of Siberia at the time of this event.
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Figure 2. This figure provides the approximate locations of ground-based
(red) and space-based (blue) platforms where electromagnetic ion cyclotron
waves were observed. The sketch shows coordinates in L and MLT,
although signatures at the ground observations are modified by ionospheric
ducting. The ducting means that signals will reach the ground stations
almost regardless of the latitude at which they were injected into the
ionosphere. Thus, assigning an L shell to the stations maybe not be realistic.

Figure 3 shows dynamic spectra of magnetic fluctuations from various
stations around the world. The top panel shows data from Halley Station
in Antarctica. Other panels show data from Finland, Russia, and Canada,
with the order of the plots progressive from east to west in terms of MLT.

An important aspect of the interpretation of ground observations of these
waves is that the signals are ducted in the ionosphere. Greifinger (1972;
see also Fraser, 1975, and Kim et al., 2011) show that waves at these fre-
quencies can enter the ionosphere and couple energy to compressional
waves that are then ducted horizontally in a region centered around
the Alfvén speed minimum (i.e., an electron density maximum near
∼400 km). This results in wave events being observed over a large lati-
tudinal extent (local time spread is also possible but latitudinal spread is
more efficient) which, unfortunately, also means that determination of
the L shell of the wave injection into the ionosphere is not possible from
these data alone.

Panels 4 to 7 show EMIC waves observed on the ground at Canadian
Array for Realtime Investigations of Magnetic Activity sites extend-
ing from Dawson City, Yukon (magnetic midnight at 10.4 UT) to Fort
Churchill, Manitoba (magnetic midnight at 6.6 UT). At Dawson, the
waves were observed approximately from 00:45 to 04:10 UT (14.4 to 17.8
MLT). At Fort Churchill, waves were observed approximately from 00:00
to 03:10 UT (17.4 to 20.8 MLT). Data from Ministik Lake and Pinawa,
located at lower latitude than Dawson and Fort Churchill, show the same
basic signature as those sites.

Plots in the second and third panels are from Finland and Russia, both of which show weaker signatures but
that are consistent with observations from Canadian Array for Realtime Investigations of Magnetic Activity.
Note that all of the Finnish stations (from L = 5.9 down to 4.5) observed very similar spectra, though are
not shown here.

In the Southern Hemisphere, the induction coil magnetometer at Halley Station (magnetic midnight at
2.7 UT) shows waves occurring from approximately 02:00 to 04:30 UT, or across a region from 23.3 to
01.26 MLT. Again, the bursts of wave power are nearly simultaneous (in universal time) with those in the
Northern Hemisphere. Taken together, these observations imply that EMIC waves were excited more or less
simultaneously over a broad region, extending from near noon MLT (at Magadan), throughout the dusk and
midnight regions and extending to dawn MLT (at Sodankylä).

2.2. EMIC Waves Observed in Space
GOES 13 and 15 overlap with the Canadian sites and observe a region from approximately 16 to 22.5 in
magnetic local time at geosynchronous orbit, with GOES 13 being the eastern spacecraft. Figure 4 shows
spectra from both satellites. The white traces in that figure show the equatorial gyrofrequency for He+ and
O+, based on in situ magnetometer data. Waves at GOES 13 are in both the hydrogen and helium bands,
while those at GOES 15 are primarily in the helium band.

In the right panel in that figure, GOES 15 shows EMIC bursts that roughly coincide with observations on
the ground, in particular a burst beginning near 02:00 UT, a stronger one centered near 03:00 UT, and a
weaker burst at 03:35 UT. In the left panel of the figure, GOES 13 shows weaker wave bursts that coincide
with those from GOES 15, as well as a brief but stronger signature centered near 01:20 UT.

Important observations are presented in Figure 5, showing Van Allen Probe “A” data from 00:00 to 06:00 UT.
The top panel again shows Sym/H. The black trace in the second panel again shows the OMNI dynamic
pressure; the red trace shows the pressure calculated from Van Allen Probe A plasma observations, with a
pressure baseline subtracted to show perturbations (the pressure from the previous orbit, in this case, which
was undisturbed). The correspondence between these pressure variations (and SYM/H) is clear, supporting
the idea that pressure perturbations are directly transmitted from the solar wind to the magnetosphere, even
throughout the nightside.
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Figure 3. Ground observations from various sites shown in Figure 2, from 00:00 to 06:00 UT, with the order of the plots
progressing from east to west in terms of MLT. The simultaneity in electromagnetic ion cyclotron occurrences across all
sites is clear in this figure.
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Figure 4. Spectral signatures of electromagnetic ion cyclotron waves from GOES 13 (left) and GOES 15 (right). The white traces in that figure show the
equatorial gyrofrequency lines for He+ and O+, based on in situ magnetometer data. Waves at GOES 13 are in both the hydrogen and helium bands, while
those at GOES 15 are primarily in the helium band.

In that figure, pressure is calculated using data from the Helium, Oxygen, Proton, and Electron instrument
(Funsten et al., 2013), with density integrated from 100 eV up to the highest energy channel of 50 keV. A
full pressure calculation would also include data from the Radiation Belt Storm Probes Ion Composition
Experiment instrument (with a range of 20 keV to 1 MeV), but for EMIC waves the energy ranges of the
Helium, Oxygen, Proton, and Electron instrument span the most important range for anisotropy estimates.

The bottom panel in that figure also shows low and uniform densities that are characteristic of the spacecraft
having exited the plasmapause. The implication is that the wave generation could not have been due to an
interaction of the ring current and the plasmapause, as is often thought to be the case.

We note that the broad pressure enhancements extending throughout the period are well correlated with
the observed EMIC activity in general, although coincidentally the spacecraft reached apogee at the same
time as the peak in pressure. It is near this region in L, in fact, where EMIC waves are generally driven.
Still, the broad pressure “peaks” near 02:00 and 03:00 UT are very well correlated with intensifications
of EMIC waves observed, for example, at various ground stations (see Figure 3). We conclude from these
observations that the solar wind pressure intensifications drove corresponding perturbations within the
magnetosphere and subsequently excited the EMIC waves. It is not clear why the waves were excited near the
premidnight region.

On Van Allen Probe A, EMIC signatures are observed by the Electric and Magnetic Field Instrument and
Integrated Science experiment (Kletzing et al., 2013), occurring from 02:00 until just after 04:00 UT. A rea-
sonable question is whether these bursts of wave activity can be related to specific enhancements in T⟂∕T||,
the temperature anisotropy. The fourth panel in that figure shows pressure anisotropy, which is a proxy for
temperature anisotropy if the density is constant. Again, the bottom panel in the figure shows that this is
the case throughout that interval. The lack of correspondence between the small-scale pressure perturba-
tions and EMIC wave generation may imply that the waves were generated away from the region where
they are observed.

2.3. Particle Precipitation
Several theoretical studies investigating the dynamics of EMIC waves on the ring current have shown that
EMIC waves can scatter protons with tens of kiloelectron volts into the loss cone over time scales of hours
(Lyons & Thorne, 1972; Xiao et al., 2011). Observationally, proton precipitation and EMIC waves have been
correlated using satellite particle fluxes (Yahnina et al., 2000), the IMAGE-FUV SI12 detecting proton flashes
(Popova et al., 2010), and stable aurora red arcs (Cornwall et al., 1971; Lundblad & Soraas, 1978). The EMIC
waves here are observed both by spacecraft as well as on the ground when close in magnetic local time to
the proton precipitation.

LESSARD ET AL. 4498
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Figure 5. Data from Van Allen Probe A. In each panel, we show the SYM/H index, the OMNI solar wind pressure in black and the pressure at the satellite
location in red, calculated from the measured fluxes. The third panel shows magnetic field dynamic spectra, with electromagnetic ion cyclotron (EMIC) wave
bursts thoughout the higher L shells. The fourth panel shows the calculated pressure anisotropy, which is a proxy for the temperature anisotropy if the density
is constant, which is shown to be the case in the bottom panel. The plot on the left shows the entire 00:00–06:00 UT interval; the plot on the right provides a
closer look, intended to show that although a one-to-one correspondence does not exist between EMIC occurrences and fluctuations in the temperature
anisotropy, the temporal variations are similar.

In a study using ground-based observations of EMIC waves and correlating these with low altitude satellite
observations of precipitating protons in the 30- to 80-keV range, Engebretson et al. (2008) found that waves
were associated with precipitation during storm recovery phases and, conversely, the lack of waves during
onset and main phase corresponded to an absence of precipitation.

EMIC waves can also resonantly interact with radiation belt electrons. This has been shown to be true for
electrons with energies greater than ∼1 MeV (Lyons & Thorne, 1972) although Meredith et al. (2003), using
quasi-linear theory, showed it is possible to get sub-megaelectronvolt interaction energies (also see Chen
et al., 2016, and Lee et al., 2018). Theoretical calculations suggest that intense (1−10 nT) storm time EMIC
waves can rapidly scatter radiation belt electrons, a process that may significantly contribute to outer electron
belt depletion, often seen at the onset of geomagnetic storms (Summers & Thorne, 2003).
2.3.1. POES Observations
Here we are building on the work of Sandanger et al. (2007) and Carson et al. (2013), who used the fact that
both ions and relativistic electrons can be precipitated by EMIC waves to develop a proxy for EMIC-driven
precipitation. The technique examines precipitation signatures in POES MEPED data and assumes that
the presence of short-lived precipitation spikes in the POES 30- to 80-keV proton and >800-keV electron
loss cone is indicative of EMIC-driven precipitation. This has been developed into an automatic algorithm
(described by Carson et al., 2013). Validation of this technique is provided via a conjunction, where a
POES-reported precipitation trigger occurred within seconds of Van Allen Probe A observing the start of an
EMIC wave event, with the POES NOAA-15 satellite located very near the base of the field line that passed
through Van Allen Probe A (Rodger et al., 2015).

LESSARD ET AL. 4499
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Figure 6. NOAA POES data. The top panel (P1) shows the 30- to 80-keV proton data, with 0◦ pitch angle data (blue), 90◦ data (brown), and a running average
of the 0◦ data (amber). The second panel (P6) shows relativistic electron precipitation. The horizontal axis gives the L shell of the POES spacecraft. The black
stars in both of these panels indicate the “trigger” time, where the peak was manually detected in P6. The green line at the bottom is actually a succession of
green stars and indicates the spacecraft was passing through the zone where the particle fluxes are affected by the South American Magnetic Anomaly, shown
by the gray shaded box in the map at the bottom. The star at the bottom right of the map is the location of the POES satellite footprint at the time of the event
trigger, which was in fact quite close to Halley.

Recent work combining the POES algorithm-detected EMIC precipitation and ground-based magnetometer
observations has also lent strong support to the validity of the technique (Hendry et al., 2016). The automatic
detection technique necessarily underestimates the role of EMIC waves in the scattering process, since there
may be cases where only ions are scattered, or when the scattered electrons are outside the effective energy
range of the POES spacecraft. We also note that there are some cases where proton precipitation is not
observed because the scattered protons are out of the energy range of the POES measurements (Wang et al.,
2014; Yuan et al., 2018).

POES satellite coverage in terms of MLT for this event is fairly good. In general, the POES spacecraft coverage
is not uniform, with three of the spacecraft being in the same magnetic local time plane and with no coverage
at 0, 6, 12, or 18 MLT (see Engebretson et al., 2018). Still, during the interval from 00:00 to 06:00 UT for
this event, six POES spacecraft completed a total of 21 (∼3.5 per s/c) orbits to provide coverage at several
magnetic local times.

LESSARD ET AL. 4500
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Table 1
Proton Precipitation Observed by NOAA Satellites, Ordered by the Universal Time of
the Observations

Time L shell MLT Latitude Longitude
NOAA-19 00:10:46 7.0 18.4 −77.97 235.69
NOAA-15 01:35:58 6.1 13.8 66.13 209.46
NOAA-19 01:56:08 7.5 16.9 −67.85 193.47
NOAA-15 02:27:52 5.6 0.6 −72.04 14.88
NOAA-17 03:06:52 7.9 15.4 67.88 216.75
NOAA-17 03:07:18 8.7 15.2 69.23 215.10
NOAA-16 03:23:48 6.4 18.1 59.76 246.09
NOAA-16 03:24:36 7.7 17.9 62.30 244.15
NOAA-16 03:37:10 6.5 9.9 71.50 104.53
NOAA-19 03:40:52 7.4 15.4 −59.27 162.05
NOAA-18 04:01:10 6.7 17.6 −62.93 181.77
NOAA-16 04:16:38 7.1 4.5 −66.43 52.81
NOAA-19 04:30:36 6.1 3.3 64.42 332.92
NOAA-18 04:49:58 8.2 5.5 70.74 358.98
METOP-02 05:24:54 6.8 5.6 −67.44 46.72

The POES autodetection algorithm searches the POES MEPED data for approximately simultaneous sud-
den, short-lived enhancements in the P1 (52-keV differential proton flux channel) and P6 (larger than about
800-keV electron channel) 0◦ (loss cone) detectors. In the algorithm, “simultaneity” is taken to be a P6 peak
(or “trigger”) occurring within± ∼8 s of a P1 peak. A detailed description of this algorithm is given in Carson
et al. (2013).

With the P6 (electron contaminated) channel, there is usually little difficulty in detecting the precipitation
spikes, as there is generally little flux activity in the channel (outside of solar proton events, which can be
identified from the P5 channel). The P1 channel, however, typically has large levels of flux activity, which
can make differentiating between EMIC-related precipitation spikes and general flux “noise” in the channel
difficult, or impossible. The algorithm takes a safe approach and requires a very clear, large spike in the P1
channel, at the expense of missing some events. Lowering this threshold would risk more false positives,
which is to be avoided.

POES data for the interval from 00:00-06:00 UT on 17 January 2013 were examined using this algorithm,
with no simultaneous electron and ion precipitation events being detected. A manual examination of the
data identified a single event that was missed by the algorithm due to the P1 noise issues explained above.
This event, as recorded by NOAA-16 between 02:41:19 and 03:32:21 UT, is presented in Figure 6, where the
top panel (P1) shows the 30- 80-keV proton data, with 0◦ pitch angle data (blue), 90◦ data (brown), and a
running average of the 0◦ data (amber). The second panel (P6) shows relativistic electron precipitation. The
horizontal axis gives the L shell of the POES spacecraft. The black stars in both of these panels indicate
the “trigger” time, where the peak was manually detected in P6. The green line at the bottom is actually a
succession of green stars and indicates the spacecraft was passing through the zone where the particle fluxes
are affected by the South American Magnetic Anomaly, shown by the gray shaded box in the map at the
bottom. The star at the bottom right of the map is the location of the POES satellite footprint at the time of
the event trigger, which was in fact quite close to Halley.

The Carson et al. (2013) algorithm was run for the same period, with the requirement for a simultaneous
peak in P6 removed (i.e., only peaks in P1 were considered). The resulting list of proton precipitation events is
listed by their occurrence in universal time in Table 1, as well as their L shell and MLT positions. While there
is no direct correspondence between these events and the EMIC waves described above, the preponderance
of both throughout the interval implies a strong correlation between them. Note that 9 of the 16 events
occurred in the range of 13.8 to 18.4 MLT and that these appeared in the earlier part of the window. Five of the
events, which occurred later in the window, were located between 3.3 and 9.9 MLT. The lack of POES satellite

LESSARD ET AL. 4501



Journal of Geophysical Research: Space Physics 10.1029/2019JA026477

Figure 7. Map of Antarctica, showing the locations of the Balloon Array for RBSP Relativistic Electron Losses balloons
(1C, 1D, 1G, 1I, 1 K, and 1O), Halley Station, the footprints of GOES 13 and 15, and the footprint of the Van Allen
Probe A satellites.

coverage in the midnight MLT region for this event leaves somewhat of an untold story in the interpretation
of these data.

The general lack of electron precipitation signatures in the POES data shows that, in spite of the widespread
EMIC activity, relativistic electron precipitation appears to have been absent or confined spatially. This is
discussed further in the next section. Proton precipitation was more evident, though relating these data
directly to the EMIC observations may not be reasonable, other than to see that both were persistent and
widespread throughout the interval.
2.3.2. Balloon Array for RBSP Relativistic Electron Losses Observations
During the time of this event, the BARREL (Balloon Array for RBSP Relativistic Electron Losses) campaign
was operating in its first season. During this campaign, a total of 20 small (∼20 kg) balloon payloads were
launched to an altitude of 30–35 km with the goal of maintaining an array of five to eight operational pay-
loads at any given time, spreading across L shells from ∼3 to 8. Each balloon carried a NaI scintillator to
measure bremsstrahlung X-rays produced by precipitating energetic electrons as they collide with neutrals
in Earth's atmosphere. The energies of the X-rays provide a measure of the relativistic precipitating electron
energies and provide a measure of relativistic electron precipitation from 20 keV to 10 MeV.

Three different data products are derived from the instruments are provided, including fast spectra, medium
spectra, and slow spectra, all with trade-offs in sample rates and energy resolution. The data provided in
this paper include slow spectra, with energies from 25 keV to 10 MeV in 256 energy channels and a time
resolution of 32 s (Woodger et al., 2015). Fast spectra is also used, which has four energy channels (<180 keV,
180–550 keV, 550–840 keV, and 840 keV to 1.5 MeV), at a time resolution of 50 ms.
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Figure 8. Observations of X-ray counts by each balloon used in this study,
from 00:00 to 06:00 UT. The data presented are “Slow Spectra” (SSPC),
which includes energies from 25 keV to10 MeV in 256 energy channels with
a time resolution of 32 s. See text for description of precipitation signatures.

Figure 7 shows the Antarctic continent, with the locations of various bal-
loons, as well as Halley Station and the magnetic footprints of GOES-13,
GOES-15, and the Van Allen Probes. The GOES satellites are geosyn-
chronous, so their footprints remain quasi-stationary. X-ray signatures
were detected by 1G and 1I at various times during the 00:00–06:00 UT
interval, with the most intense signatures near geosynchronous orbit (at
balloon 1G). Balloon 1C shows a data gap during the event detected by
1G, which may have prevented a similar observation. Balloons 1D, 1 K,
and 1O did not detect any notable activity.

Data from the balloons are shown in Figure 8. All three balloons mapped
reasonably closely to the magnetic locations of GOES 15, GOES 13, and
Halley. Again, the widespread observations of EMIC waves suggest that
these waves were more or less being generated globally, though perhaps
not uniformly. Weak X-ray fluxes were observed in the lowest energy
channels (e.g., 100–200 keV) by the 1G and 1I balloons from the very
beginning of this interval and persisted more or less throughout the dura-
tion. By far, the most intense count rates are detected by the 1G balloon,
peaking near 02:58 UT, with a total duration of ∼15 min. The peak of the
magnetospheric compression occurs right around this time, which also
corresponds to the peak in the SYM-H index, again suggesting that the
waves and the associated precipitation were driven by compressions of
the magnetosphere (see Figure 1).

Li et al. (2014) provide a thorough analysis of the BARREL 1G signatures, modeling the pitch angle scattering
of electrons by EMIC waves as observed by GOES 13 during this time and then also modeling the expected
BARREL signatures of X-rays from this precipitation. They conclude that the X-ray signatures indicate the
precipitation of electrons having energies with highest fluxes near 1.2 MeV and that these electrons were

Figure 9. Composite figure showing simultaneous occurrences of X-ray bursts observed by the 1G balloon in the first
panel. Other panels show electromagnetic ion cyclotron signatures from GOES 13, at Halley Station and by Van Allen
Probe A. The equatorial gyrofrequency lines for He+ and O+ are plotted in white. BARREL = Balloon Array for RBSP
Relativistic Electron Losses.
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scattered by EMIC waves. In addition, Shprits et al. (2016) also attributed the loss of 4.2=-MeV electrons to
EMIC waves several hours later on the same day.

This burst occurs when EMIC waves are observed by GOES 13, at Halley Station and by the Van Allen
Probe A satelllite, as shown in Figure 9. At the time of this event, these observing platforms bracketed the 1G
and 1C balloons in magnetic local time. While the 1G observed a strong signature, the 1C balloon recorded
no enhancement at all. A second burst of precipitation was recorded by the 1I balloon from 04:40 to 05:00 UT.
This burst coincides with the onset of lower-frequency EMIC waves at Ministik Lake, Dawson, and GOES
15. It appears that the electron precipitation was also related to the EMIC waves, given the relatively close
proximity of all of these observing platforms.

While the general correlations would suggest that the precipitation must have been driven by the EMIC
waves, which were clearly very widespread during this time, the lack of signatures at 1C and the isolated
bursts at 1G and 1I suggest that the process may be intermittent or patchy. One hypothesis would be that
the appropriate electron populations were simply absent from the region where waves developed and thus
relativistic electrons were not available to be scattered by the waves.

On the other hand, Woodger et al. (2018) studied this same event and emphasize that although EMIC waves
may be widespread; their ability to scatter energetic electrons depends on the value of the local magnetic
field strength. Building on the work of Li et al. (2014), they use a quasi-linear diffusion model to study
observations at the 1I balloon and show that as the balloon drifts in local time to regions mapping to lower
equatorial magnetic field strength, precipitating electrons have fluxes that are peaked at lower energy.

For this particular time period, the radiation belts were largely depleted of higher-energy relativistic
electrons, which means only the waves that can effectively scatter lower-energy electrons will produce mea-
surable precipitation. Woodger et al. (2018) explain that these conditions were met only when the 1I balloon
drifted to later magnetic local times.
2.3.3. Van Allen Probe Magnetic Electron Ion Spectrometer observations
Figure 10 shows data from the Magnetic Electron Ion Spectrometer sensor of the RBSP-ECT instrument
suite (Spence et al., 2013), which uses magnetic focusing and pulse height analysis to provide energetic
electron measurements over the energy range of 30 keV to 4 MeV (Blake et al., 2013). The plot shows electron
distributions as a function of pitch angle from 80 keV to nearly ∼1 MeV, plotted versus time.

As shown on the right-hand side of Figure 5, EMIC waves occurred in a bursty fashion in the vicinity of the
satellite, more or less continuously throughout its apogee pass. During this period, which extends from 01:56
to 04:09 UT, the spacecraft drifted from L = 5.6, out to its apogee of L = 6.2 (not shown), and then back to
L = 5.6. An obvious question is whether these waves contribute to the modification of electron distributions
and/or to the scattering into the loss cone.

The Magnetic Electron Ion Spectrometer data show typical butterfly distributions throughout the interval,
that is, reductions in differential fluxes near 90◦ pitch angles. This narrowing of pitch angles to become more
field aligned can be seen faintly in all channels, but much more strongly in the 730-keV and 1.0-MeV chan-
nels. The formation of butterfly distributions has been shown to result from drift shell splitting, a process
that drives lower pitch-angle particles to lower L shells and higher pitch-angle particles to higher L shells as
they drift in a nondipolar field. Note that there is mounting evidence that butterfly distributions might also
be generated through magnetosonic waves (Li et al., 2016; Xiao et al., 2015).

Sibeck et al. (1987) examined Active Magnetospheric Particle Tracer Explorer; Charge Composition
Explorer (AMPTE CCE) data and showed that substorm-injected particles with 90◦ pitch angles drifting
around to the dayside can undergo drift shell splitting, with higher-energy electrons drifting nearly to the
open-closed boundary. This effect was confirmed in a case study by Lessard et al. (2009), who showed that
substorm-injected electrons precipitated to the ground in this region. Min et al. (2010) proposed that chorus
waves, associated with the drift shell splitting, were likely responsible for ultimately scattering the electrons
into the loss cone for that event.

Sibeck et al. (1987) also pointed out that magnetospheric compressions from storms can likewise intensify
drift shell splitting due to the increased distortion of Earth's field, an idea that had previously been described
by Wilken et al. (1986). These authors used data from geosynchronous satellites to show that an SSC-driven
nonadiabatic compression intensified the drift shell splitting and resulted in field-aligned populations near
the midnight region.
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Figure 10. Magnetic Electron Ion Spectrometer data from the Van Allen Probe A satellite. The plot shows electron
pitch angle distribution functions from 80-keV to ∼1-MeV electrons, plotted versus time. As shown on the right-hand
side of Figure 5, electromagnetic ion cyclotron waves occurred in a bursty fashion in the vicinity of the satellite, more
or less continuously throughout its apogee pass. During this period, which extends from 01:56 to 04:09 UT, the
spacecraft moved in its orbit from L = 5.6, out to its apogee of L = 6.2 (not shown) and then back to L = 5.6.

Recently, Xiao et al. (2015) reported Van Allen Probe observations of a butterfly distribution of relativistic
electrons well inside geostationary orbit during a magnetic storm (at lower L shells than where such popu-
lations are normally observed). Based on their simulation results, they conclude that the distributions were
driven by chorus and magnetosonic waves and emphasize the possibility that waves may contribute to the
formation of butterfly distributions. Rodger et al. (2015) also noted butterfly distributions in Van Allen Probe
observations, spanning wide energy ranges and coincident with the onset of EMIC waves.

The butterfly distributions in Figure 10 are also well within geosynchronous orbit and occurred concurrently
with EMIC wave activity in the vicinity. On the other hand, the patchy character of EMIC wave occurrences
contrasts with the smooth evolution of the butterfly distributions as the spacecraft crosses L shells, perhaps
suggesting that the waves had no observable effect on the particles.

Finally, the question of whether energetic electrons precipitated into the loss cone in this MLT is best
answered by the examination of POES MEPED data, as described above. There were approximately five
close encounters during this interval, with NOAA-17 crossing the Van Allen Probe A orbit near 03:57 UT. A
closer look at the MEPED data was completed but showed no evidence of strong precipitation, nor anything
that looks like the expected EMIC preciptation signature.

3. Summary and Conclusions
In this paper, we present data from a magnetospheric compression that occurred on 17 January 2013. Several
ground-, balloon- and space-based observing platforms contribute data to this study, which focuses (1) on
the widespread generation of EMIC waves during the event and (2) ion and electron precipitation during
the event. The event was unusual in that the IMF was northward for the entire period that was examined,
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aside from a brief and weak excursion. Still, SYM/H reached a maximum value of 55 nT, and radiation belt
precipitation was observed. We are led to the following conclusions:

1. With Bz remaining positive for the entire time, reconnection at the dayside subsolar magnetopause was
absent or weak, at best. As a result, pressure fluctuations in the solar wind appear to have been directly
transferred to the magnetosphere and then propagated throughout the magnetosphere. This conclusion is
supported by the strong correlations between temporal variations in the solar wind dynamic pressure, the
SYM/H index, and pressure variations recorded by Van Allen Probe A. We also conclude that the positive
excursion in SYM/H resulted from the intensification of magnetopause currents and, perhaps, had little
or nothing to do with the ring current.

2. The global pressure perturbation appears to have been responsible for the temperature anisotropy needed
to generate EMIC waves. Waves with very similar spectral signatures and temporal variations were
recorded clearly throughout the dusk to postmidnight sector, with weaker signatures observed near dawn
and also near noon. The intensifications of these waves closely tracked SYM/H and also the solar wind
pressure, again pointing to the pressure perturbation as the driver for these waves.

3. Electron precipitation was recorded by the BARREL balloons, although it did not have the same
widespread signatures as the waves. In fact, the electron precipitation appears to have been quite patchy
in character, perhaps corresponding to the presence of localized resonance conditions as explained by
Woodger et al. (2018). Observations from Van Allen Probe A (postmidnight) showed clear butterfly distri-
butions, and it may be possible that the EMIC waves contributed to the development of these distribution
functions, though no precipitating electrons were recorded by a NOAA satellite that flew very close to the
footprint of Van Allen Probe A. Ion precipitation was also recorded by the fleet of POES satellites (which
include the NOAA satellites), though tended to be confined to the dawn-dusk meridians.
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