
Observations and models to support the first Marine Ecosystem Assessment 1 

for the Southern Ocean (MEASO)  2 

 3 

M.J. Brasier 1* 4 

A. Constable 1,2 5 

J. Melbourne-Thomas 1,2 6 

R. Trebilco 1 7 

H. Griffiths 3 8 

A. Van de Putte 4 9 

M. Sumner 2 10 

 11 

1 Antarctic Climate and Ecosystems Cooperative Research Centre, 20 Castray Esplanade, Hobart, 12 

Australia.  13 

2 Australian Antarctic Division, 203 Channel Highway, Kingston, Australia.  14 

3 British Antarctic Survey, High Cross, Madingley Road, Cambridhe, CB3 0ET 15 

4 Department of Biology, KU Leuven, Charles Deberiotstraat 32, Leuven, Belgium.  16 

 17 

*madeleine.brasier@utas.edu.au  18 



Abstract  19 

Assessments of the status and trends of habitats, species and ecosystems are needed for effective 20 

ecosystem-based management in marine ecosystems.  Knowledge on imminent ecosystem 21 

changes (climate change impacts) set in train by existing climate forcings are needed for adapting 22 

management practices to achieve conservation and sustainabililty targets into the future.  Here, we 23 

describe a process for enabling a marine ecosystem assessment (MEA) by the broader scientific 24 

community to support managers in this way, using a MEA for the Southern Ocean (MEASO) as an 25 

example.  We develop a framework and undertake an audit to support a MEASO, involving three 26 

parts.  First, we review available syntheses and assessments of the Southern Ocean ecosystem 27 

and its parts, paying special attention to building on the SCAR Antarctic Climate Change and 28 

Environment report and the SCAR Biogeographic Atlas of the Southern Ocean.  Second, we audit 29 

available field observations of habitats and densities and/or abundances of taxa, using the literature 30 

as well as a survey of scientists as to their current and recent activities.  Third, we audit available 31 

system models that can form a nested ensemble for making, with available data, circumpolar 32 

assessments of habitats, species and food webs.  We conclude that there is sufficient data and 33 

models to undertake, at least, a circumpolar assessment of the krill-based system.  The auditing 34 

framework provides the basis for the first MEASO but also provides a repository 35 

(www.SOKI.aq/display/MEASO) for easily amending the audit for future MEASOs.  We note that an 36 

important outcome of the first MEASO will not only be the assessment but also to advise on 37 

priorities in observations and models for improving subsequent MEASOs. 38 

http://www.soki.aq/display/MEASO
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 41 

Highlights  42 

• An audit of the survey data and models available to assess the status of Southern Ocean 43 

biota 44 

• This audit will inform the first Marine Ecosystem Assessment for the Southern Ocean 45 

(MEASO) 46 

• An ensemble of models can be used for circumpolar assessments of krill based system 47 

• MEASO-1 will identify risks of climate change impacts and needs for management 48 
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1. Introduction 52 

Assessments of the state of marine ecosystems and the causes of change in these systems are 53 

becoming very important for marine nations and internationally (e.g. Nymand-Larsen et al. 2014; 54 

Constable et al. 2017).  They will enable managers to understand how change in habitats, species, 55 

communities, and foodwebs (hereafter referred to collectively as ‘ecosystem changes’) may give 56 

rise to change in marine ecosystem services.  Moreover, managers need to consider the potential 57 

for multiple causes of change from different societal uses (sectors) of marine ecosystems; there is 58 

an increasing need to develop multi-sectoral management systems that can appropriately adjust 59 

those sectors causing change.  An imminent and pressing challenge is to develop management 60 

systems that will facilitate the adaptation of sectors to expected future changes, such as those 61 

caused by climate change and ocean acidification.  62 

At present, marine ecosystem assessments are mostly undertaken on a case-by-case basis when 63 

managing individual, or a small set of, ‘activities’ such as fisheries, pollution, and coastal 64 

engineering.  They are generally based on empirical assessments from field 65 

observations.  Typically, the combined effects across all activities are not directly assessed and 66 

managed, nor are the potential effects of climate change and ocean acidification included in these 67 

assessments individually or collectively.  The latter effects are more often considered separately 68 

and heuristically based on reviews of disparate results in the existing peer-reviewed scientific 69 

literature, which we term ‘derivative assessments’.  The most comprehensive derivative 70 

assessments for the marine environment are those by the Intergovernmental Panel on Climate 71 

Change (IPCC) and the United Nations World Ocean Assessment.  72 

A scientific process is needed that directly assesses the potential for combined and cumulative 73 

effects and, particularly, can examine how those effects might continue in the short-to medium term 74 

future.  The reason for assessing the future is that many effects may not be evident at the time of 75 

the assessment, although the drivers may have set them in train and made them unavoidable in the 76 

future.  In the case of climate change and ocean acidification and based on the Earth system 77 



changes wrought by the ozone hole and its recovery, these changes may be two to three decades 78 

hence (IPCC, 2014).   79 

Several important issues arise when attempting to consider and manage multiple drivers of effects, 80 

and the resulting cascading changes in ecosystems.  Firstly, climate change and ocean acidification 81 

are not solely ‘bottom up’ drivers impacting on productivity of marine ecosystems.  Species other 82 

than primary producers may be affected by changes in the physical and chemical systems.  As a 83 

result, there may be ‘top down’ drivers that cause shifts in the structure and function of ecosystems 84 

as well (e.g. Johnson et al. 2011).  Secondly, some parts of the ecosystem will be better studied 85 

than others because science tends to be more focussed on species or processes of direct interest 86 

to specific activities, such as fisheries.  Lastly, future trajectories of the ecosystem may be difficult to 87 

foresee due to short time series of data or insufficient data to make empirical projections under 88 

climate change scenarios. 89 

Ecosystems models provide a means to overcome these issues, they can be used in conjunction 90 

with time series data to validate and improve future predictions. In addition, they enable the 91 

integration of disparate datasets and knowledge of processes in order to examine the interactions of 92 

effects from different activities and from climate change and ocean acidification (Melbourne-Thomas 93 

et al. 2017).  While there is an ongoing need to reduce uncertainty in our understanding of 94 

ecosystem function and to better incorporate this understanding into management-oriented models, 95 

these models will be central to developing realistic scenarios for the future (Constable et al. 2017).   96 

1.1. What is a marine ecosystem assessment? 97 

A marine ecosystem assessment (MEA) aims to bring together available data and knowledge from 98 

the scientific literature and different management bodies to, with the aid of models where possible, 99 

assess ecosystem status and change.  Where possible, the relative importance of different 100 

stressors in causing that change will be assessed.  Assessments of change will include historical 101 

change to the present, as well as providing realistic projections of change into the short-to-medium 102 

term future.  The results are envisaged to directly support end-users, particularly policy makers, in 103 



adapting their work to ecosystem changes that may not be readily apparent in their jurisdiction but 104 

could impact on their objectives.  Thus, a MEA aims to provide an overarching and integrated 105 

assessment, which has the flexibility and coverage enabling it to be adapted and useful to the 106 

needs of individual end-users, as well as providing context for derivative assessments and fisheries 107 

stock assessments (Figure 1). 108 

 109 

 110 

Figure 1. Comparison of the types of assessments undertaken for marine ecosystems, including the roles 111 
of observations and models within the workflows of the different assessments.  Marine 112 
Ecosystem Assessments provide context for derivative and stock assessments (sideways 113 
arrows). In this example we use Antarctica as a region of interest.  114 

 115 

Here, we use the Southern Ocean as a case study to illustrate the information that would be 116 

compiled and the methods used to develop an integrated, overarching assessment – a Marine 117 

Ecosystem Assessment for the Southern Ocean (MEASO).  The need for regular assessments of 118 

change of marine ecosystems around Antarctica and in the Southern Ocean (ASO ecosystems) has 119 

been identified by the Antarctic Treaty Consultive Meeting (ATCM) (ATCM, 2015), the Commission 120 



for the Conservation of Antarctic Marine Living Resources (CCAMLR) (CCAMLR, 2015; SC-121 

CCAMLR 2011), the Scientific Committee on Antarctic Research (SCAR) (Kennicutt et al. 2014; 122 

Turner et al. 2009; Turner et al. 2014) and in the work of the IPCC (IPCC 2014; Nymand-Larson et 123 

al. 2014).  A MEASO is intended to be a consensus report on status and trends in Southern Ocean 124 

habitats, species and foodwebs, drawing on the experience, results and methods of the broader 125 

ASO research community.  Figure 2 illustrates how a regular MEASO process is intended to interact 126 

with policy makers.  The MEASO cycle would operate similar to an IPCC cycle, over 5-10 years.  127 

The work would be expected to benefit from published syntheses and collaborations amongst 128 

researchers across the spectrum of existing research activities, as well as from observations from 129 

long-term monitoring programs, e.g. the Southern Ocean Observing Sytem (SOOS).  Where 130 

possible, statistical and dynamic modelling would be used to assess the status and trends of 131 

habitats, species and food webs.  The synthesis report would then provide summaries for use by 132 

policy-makers and other end-users.In addition, the synthesis would identify important priorities for 133 

advancing future assessments.  134 



 135 

Figure 2. The processes and work flow in a Marine Ecosystem Assessment (MEA) using the Marine 136 
Ecosystem Assessment for the Southern Ocean (MEASO) regarding the management region 137 
around Antarctica as an example. The dashed box in the lower right corner indicates the starting 138 
point of the first MEASO, to which this paper contributes by providing an audit of available 139 
knowledge, data, syntheses and models. Future audits might include identifying new or advanced 140 
data sets, assessment methods and models, and any assessments that may have been 141 
undertaken since the previous MEASO. The dashed box in top left corner demonstrates the 142 
potential interaction of MEAs with policy-makers. MEASO is envisaged to be an ongoing process, 143 
where each MEASO will advise on priorities for future research and monitoring to improve 144 
subsequent MEASOs.  145 

 146 
The first MEASO begins half way through the cycle and aims, through implementation of a first 147 

assessment, to establish processes and priorities for more comprehensive MEASOs in future.  In 148 

this paper, we provide an ‘audit’ of the materials and methods available for the first MEASO. While 149 

this audit is comprehensive it is not intended to be exhaustive; our focus is on establishing a 150 

framework (using the Southern Ocean Knowledge and Information Wiki, www.soki.aq, as a 151 

repository) that can easily be amended and updated for future assessments.  152 

Specifically, we start by summarising existing syntheses and derivative assessments on status and 153 

trends of habitats, species and food webs, including establishing spatial and temporal scales of 154 

reporting.  Secondly, we document the types of observations available for assessing status and 155 

analysing trends, as well as the types of information that can be assembled for better understanding 156 

http://www.soki.aq/


the pressures on different taxa in the ecosystem.  In this section, we consulted researchers to better 157 

understand the data available and the scope of species-specific and assemblage-level assessments 158 

that may be undertaken.  Thirdly, we summarise the status of models that could be used in a 159 

MEASO.  Lastly, we identify the scope of the analyses that might be undertaken now, without 160 

substantially more research effort, to assess the status and trends in Southern Ocean ecosystems 161 

in a MEASO. Thus the primary purpose of this manuscript is to assess the information and data we 162 

have available to produce the first MEASO. In this instance we do not aim to undertake a detailed 163 

gap analysis or to provide a comprehensive set of reccomendations for improving data collection 164 

and coverage for future MEASOs, as these will be key activities later in the MEASO process, 165 

outlined in the future directions section of this manuscript.    166 

2. Syntheses of ecosystem status and trends 167 

2.1. SCAR Antarctic Climate Change and the Environment report 168 

The Scientific Committee on Antarctic Research (SCAR) has supported a number of efforts to 169 

provide syntheses on Antarctic and Southern Ocean science for policy makers.  The Antarctic 170 

Environments Portal is one such initiative (https://www.environments.aq), where smaller syntheses 171 

may be found.  A substantial synthesis on the effects of climate change on ASO systems – Antarctic 172 

Climate Change and the Environment (ACCE) - was undertaken by SCAR as part of the 2007-2009 173 

International Polar Year (IPY) (Turner et al. 2009). The aim of ACCE was to describe how the 174 

physical climate system of Antarctica has varied over geological time and how environmental 175 

change during the instrumental period may affect biota (Convey et al. 2009). The 2009 report was 176 

largely focused on the West  Antarctic Peninsula and how changes in sea-ice and primary 177 

production may affect ice-dependent species such as penguins and krill, as well the the sensitivity 178 

of biota in other habitats, including benthos. Each year SCAR prepares updates of the ACCE report 179 

that highlight the new advances in our knowledge relevant to different sections of the report and 180 

provide some direction on priorities for future research; updates are presented at the Antarctic 181 

https://www.environments.aq/


Treaty Consultative Meeting and published online (see  https://www.scar.org/policy/acce-updates/ 182 

for all ACCE updates).   183 

2.2. Scientific Committee for the Conservation of Antarctic Marine Living Resources 184 

The Scientific Committee for the Conservation of Antarctic Marine Living Resources (SC-CAMLR) 185 

has undertaken ecosystem syntheses on two occasions.  In 2004, it held a Workshop on Plausible 186 

Ecosystem Models for testing approaches to krill management (SC-CAMLR, 2004).  In 2008, it held 187 

a joint workshop with the Scientific Committee of the International Whaling Commission on Input 188 

Data for Antarctic Marine Ecosystem Models (SC-CAMLR, 2008).  Expert groups provided 189 

syntheses on different taxa for publication in CCAMLR Science in 2012, including on phytoplankton 190 

(Strutton et al. 2012), zooplankton (Atkinson et al. 2012a), krill (Atkinson et al. 2012b), fish as 191 

predators of krill (Kock et al. 2012), ice-breeding seals (Southwell et al. 2012), and penguins 192 

(Ratcliffe and Trathan, 2012). 193 

2.3. SCAR Biogeographic Atlas of the Southern Ocean 194 

The SCAR Biogeographic Atlas of the Southern Ocean (De Broyer et al. 2014) was produced using 195 

data collected during the Census of Antarctic Marine Life (CAML) voyages in the IPY 2007-2009 196 

(content and data avaliable at http://data.biodiversity.aq/).  It is one of the major contributors to our 197 

current knowledge of the biodiversity and biogeography of Southern Ocean biota. The Atlas collates 198 

1.07 million occurrence records of 9064 validated species from ~434,000 distinct sampling stations; 199 

these are fundamental data in providing the necessary geospatial framework for marine biodiversity 200 

knowledge and understanding, and for assessing its gaps (De Boyer et al. 2014). The Atlas is now 201 

regarded as a milestone product of 21st Century Antarctic Science (De Broyer and Koubbi 2015), it 202 

has been cited in 95 publications between 2015-2018 according to Google Scholar.  It has 203 

contributed to major publications reviewing knowledge of climate change impacts on Antarctic 204 

ecosystems (e.g. Constable et al. 2014a; Chown et al. 2015) and potential ecological change under 205 

future conditions (Griffiths et al. 2017). In addition it has been used to advise future monitoring, 206 

management and conservation of ASO ecosystems (e.g. Gutt et al. 2017; Koubbi et al. 2017; 207 

https://www.scar.org/policy/acce-updates/
http://data.biodiversity.aq/


Cavanagh et al. 2016; Constable et al. 2016; Xavier et al. 2016) including contributing to supporting 208 

scientific information for spatial management measures in CCAMLR (Teschke et al. 2014).   209 

Table 1 summarises how the Atlas may be updated with more recent information.  Trends in new 210 

research across taxa within the ASO include taxonomic, biogeographic, ecological and physiological 211 

studies.  Information provided by the Atlas editorial team, many of the original lead authors of the 212 

chapters of the Atlas, along with literature reviews that we undertook was summarised into 7 sub-213 

topics  in the table. Not surprisingly, the advances in genetic technologies have resulted in many of 214 

the taxonomic groups undergoing revision, as well as enabling better understanding of spatial 215 

populations structures and food web linkages in the region.  The Atlas team are in the process of 216 

creating an online version of the Atlas, which will display the original content of the Atlas but with 217 

integrated R code (in Bookdown, https://bookdown.org/yihui/bookdown/) to map the most recent 218 

records.  219 



Table 1. Expected research findings by taxa achieved since the publication of the SCAR Biogeographic 220 
Atlas of the Southern Ocean (de Broyer et al. 2014). Shaded cells indicate new research 221 
available. Columns show how new research could be used to update the relevant chapters: 222 
Taxonomic re-evaluation (previous taxonomic classifications have been altered); species 223 
discovery (previously undescribed morphological or cryptic species); invasive species (species 224 
previously considered non-Antarctic have now been recorded within the Southern Ocean); 225 
species shift (evidence of species shifts within the ASO e.g. the poleward movement); sample 226 
coverage (additional samples are now available from previously un-sampled locations or un-227 
sorted material increasing spatial coverage within the ASO); ecological (improved understanding 228 
of ecological traits, e.g. diet, habitat, reproduction, which may change distribution of taxa now or 229 
in the future); physiological (insights into physiological traits, e.g. acclimation or adaptation to 230 
changing temperature or acidity, which might influence distributions). Taxonomic experts who 231 
provided information for this table are acknowledged at the end of this manuscript.  232 



Taxa 
 

Taxonomic re-
evaluation 

Species 
discovery 

Species 
shift 

Sample 
Coverage 

Ecological 
 

Physiological 
 

Polychaetes       

Bryozoa       

Ascidian        

Benthic Hydroids        

Stylasteridae        

Antarctic Hexacorals       

Harpacticoid copepods       

Pycnogonida       

Benthic Ostracoda       

Benthic Amphipods       

Isopoda       

Cumacea       

Crabs and Lobsters       

Shrimps       

Pelagic Copepods       

Halocyprid Ostracods       

Hyperiidea amphipods       

Euphausiids       

Lysianassoidea 
amphipods       

Tanaidacea       

Asteroidea       

Crionoids       

Echinoids       

Fish       

Benthic foraminifera       

Gastropoda       

Bivalvia       

Octopuses       

Pteropods       

Squid       

Marine nematodes       

Porifera       

Gelatinous 
zooplankton       

Near Surface 
zooplankton       

Tintinnid ciliates       

Macroalgae       

Sea-ice Metazoans       

 233 
  234 



2.4. Other Reports 235 

A number of bodies under the auspices of the United Nations have developed syntheses on ASO 236 

ecosystems.  These include the IPCC and Regular Process for Global Reporting and Assessment of 237 

the State of the Marine Environment (World Ocean Assessment).  The most recent regional reports 238 

from each are those by IPCC Working Group II on Polar Regions in 2014 (Nymand-Larson et al. 239 

2014) and by the World Ocean Assessment in 2016 on high-latitude ice and the biodiversity 240 

dependent upon it (Rice and Marschoff, 2016).  An IPCC Special Report on the Oceans and 241 

Cryosphere in a Changing Climate has a Polar Regions chapter examining the effects of climate 242 

change on polar regions, including ecosystems due for release in 2020. Similar works have been 243 

conducted for the Arctic; the Conservation of Artic Flora and Fauna State of the Arctic Marine 244 

Biodiversity Report has also investigated detectable changes and gaps in our ability to assess 245 

status and trends in Arctic marine ecosystems under changing conditions.  246 

Several major research projects have also resulted in dedicated journal issues with specific 247 

publications on different taxa and processes (e.g. Brant and Ebbe 2007, Hofmann et al. 2011) whilst 248 

others have focused on the physical environmental changes and how these may affect biota now 249 

(e.g. Rogers et al. 2012; Murphy et al. 2013; Constable et al. 2014a; Chown et al. 2015) and under 250 

future conditions (Griffiths et al. 2017). Some papers have developed syntheses along with advice 251 

for future monitoring, management and conservation of ASO ecosystems (e.g. Xavier et al. 2015; 252 

Cavanagh et al. 2016; Constable et al. 2016; Gutt et al. 2017; Koubbi et al. 2017). 253 

3. Observations to support MEASO 254 

3.1. Field Programmes 255 

Scientific observations within the ASO commenced in the late 1800s with the first Challenger 256 

expedition, shortly followed by the initiatives of the first International Polar Year and the Belgica and 257 

Discovery expeditions (Figure 3). These early expeditions formed the foundation for benthic and 258 

pelagic species records in the Southern Ocean (Griffiths, 2010). In 1981 the first large-scale 259 



international research project, BIOMASS (Biological Investigations of Marine Antarctic Systems and 260 

Stocks) took place (El-Sayed et al. 1994). In 1978 satellite technologies were implemented to 261 

observe the variability and trends in Antarctic sea ice (Cavalieri and Parkinson, 2008). Since then 262 

satellites have also been used to monitor sea surface temperature, ocean topography and ocean 263 

colour (a proxy for chlorophyll concentration, Johnson et al. 2013).  These combined with ongoing 264 

oceanographic research assist in characterising the changing pelagic habitats of the ASO. 265 

Many ASO research programmes have targeted Antarctic krill and krill-dependent predators, 266 

especially whales.  For example, the BROKE and BROKE-West expeditions were designed to 267 

improve our understanding of krill dynamics within east Antarctica (Nicol et al. 2000a; 2010) whilst 268 

the CCAMLR-2000 Survey (also CCAMLR-2000 Krill Synoptic Survey) was initiated to improved 269 

estimates of krill biomass in the Atlantic sector of the Southern Ocean (Trathan et al. 2001). The 270 

outcomes of these programs were used by CCAMLR to set precautionary catch limits for the krill 271 

fishery (Hewitt et al. 2004).  CCAMLR has established an ecosystem monitoring program (CEMP) 272 

for monitoring krill-dependent species, which at present focusses on land-based predators (Agnew, 273 

1997).  It also provides for regular assessments of the status of fish stocks based on tagging and 274 

groundfish surveys (see Fishery Reports - https://www.ccamlr.org/en/publications/fishery-reports).  275 

The CEMP was established in 1987 with national research agencies contributing data, as available, 276 

to the CCAMLR Secretariat. CEMP uses standardised methods to monitor 8 indicator species 277 

considered dependent on Antarctic krill. These species include the adélie penguin 278 

(Pygoscelis adeliae), chinstrap penguin (P. antarctica), gentoo penguin (P. papua), macaroni 279 

penguin (Eudyptes chrysolophus), black-browed albatross (Thallasarche melanophrys), Antarctic 280 

petrel (Thalassoica antarctica), cape petrel (Daption capense) and the Antarctic fur seal 281 

(Arctocephalus gazella). CEMP is developed from national contributions to individual programs.  282 

General coordination is provided through the CCAMLR Working Group on Ecosystem Monitoring 283 

and Management.   284 

Ecosystem-oriented research programs and monitoring have been of increasing importance over 285 

the last few decades.  Many are focussed on biogeochemistry or krill-based food webs . Long term 286 

https://www.ccamlr.org/en/publications/fishery-reports


observation programmes such as the Palmer Long Term Ecological Research 287 

(LTER, http://pal.lternet.edu/) and the Rothera Time Series (RaTS, 288 

https://www.bas.ac.uk/project/rats/) collect sustained observations within the vicinity of national 289 

research stations.  These programmes collect oceanographic, biochemical and biological data to 290 

investigate inter-annual variation and climate change impacts on the Antarctic ecosystem. Other 291 

programmes are more fisheries oriented such as for the UK at South Georgia (krill, toothfish, 292 

icefish), Australia at Heard Island and McDonald Islands (toothfish, icefish) and Macquarie Island 293 

(toothfish), France at Kerguelen Islands (toothfish, icefish) and Crozet Islands (toothfish), South 294 

Africa at Prince Edward & Marion Islands (toothfish), and New Zealand, UK and Norway in the Ross 295 

Sea (toothfish).  Land-based predators are extensively monitored on many subantarctic islands, 296 

including South Georgia, Crozet, and Kerguelen.   297 

http://pal.lternet.edu/
https://www.bas.ac.uk/project/rats/


 298 

Figure 3. Timeline including often-cited examples of the major scientific observations within the Antarctic 299 
Southern Ocean ecosystem from early scientific observations and modern survey and sampling 300 



programmes. Including Scientific Committee for Antarctic Research (SCAR) lead programmes: 301 
BIOMASS - Biological Investigations of Marine Antarctic Systems and Stocks (1981-1991), SO-302 
CPR – Souther Ocean Continuous Plankton Recorder (1991 onwards), EASIZ - Ecology of the 303 
Antarctic Sea Ice Zone (1994-2004), APIS - The International Antarctic Pack Ice Seals 304 
Programme. Commission for the Conservation of Antarctic Living resources (CCAMLR) 305 
programmes: CEMP - CCAMLR Ecosystem Monitoring Programme, BROKE - Baseline 306 
Research on Oceanography, Krill and the Environment. International Polar Year (IPY) 307 
programmes and the Census of Antarctic Marine Life (CAML) (2005-2010). International Whaling 308 
Commission (IWC) programmes: SOWER - Southern Ocean Whale and Ecosystems Research 309 
Programme (1978-2009), SORP - Southern Ocean Research Partnership. Regional working 310 
groups: SO-GLOBEC - Southern Ocean Global Ocean Ecosystems Dynamics, ICED - Integrating 311 
Climate and Ecosystem Dynamics in the Southern Ocean, SOOS - Southern Ocean Observing 312 
System. National long-term observation examples including: LTER - Long-term Ecological 313 
Research Programme, AMLR - Antarctic Marine Living Resources, RATS - Rothera Antarctic 314 
Time Series, SOCCOM - Southern Ocean Carbon and Climate Observations and Modelling 315 
project. Details of additional CEMP sites and ongoing monitoring see  316 
https://www.ccamlr.org/en/science/cemp-sites.  317 

Many of the field programmes shown in Figure 3 were international research efforts consisting of 318 

multiple expeditions within different regions of the ASO. The CAML, which ran from 2005-2010, 319 

coordinated 18 major research voyages to the Antarctic and the Southern Ocean during the 2007-320 

2009 International Polar Year (Schiaparelli et al. 2013), many of which targeted unsampled regions, 321 

for example the deep-sea benthos within the Amundsen and Bellingshausen Seas (Linse et al. 322 

2013). Overall the CAML voyages sampled about 350 sites within the ASO collecting pelagic, 323 

demersal and benthic fauna using a variety of sampling gears (Stoddart, 2010). The species data 324 

collected during CAML voyages were deposited in SCAR-MarBIN (Scientific Committee on Antarctic 325 

Research Marine Biodiversity Network, now  biodiversity.aq) data portal, containing data for over 14 326 

000 species.  327 

Since BIOMASS, Southern Ocean GLOBEC provided the impetus to develop internationally co-328 

ordinated, integrated studies of the krill-based food web (Hofmann et al. 2011).  In 2008, it morphed 329 

into the IMBER and SCAR program, Integrating Climate and Ecosystem Dynamics in the Southern 330 

Ocean (ICED) (Murphy et al. 2008), with a continued focus on process studies, as well as a new 331 

emphasis in developing ecosystem models (Murphy et al. 2012).   332 

The SOOS was established as a partnership between SCAR and the Scientific Committee on 333 

Oceanic Research to develop sustained observing of essential physical, chemical and biological 334 

variables to underpin research and monitoring of the region (Rintoul et al. 2011; Meredith et al. 335 

2013; Constable et al. 2016; Newman et al. accepted).  Although in its infancy, SOOS is beginning 336 

https://www.ccamlr.org/en/science/cemp-sites


to provide mechanisms for retrieving data for the purposes of a MEASO.  Its development of 337 

regional working groups (Newman et al. accepted) will enable further implementation of co-338 

ordinated field observations identified as important to MEASO in the future.  339 

3.2. Taxon-level assesments 340 

In its simplest form, an assessment of the status and trends of a species can be derived from 341 

abundance data of taxa over time (Constable et al. 2014b). Using the defined assessment 342 

components in Table 2, we review the relative spatial coverage of and, in the case of pelagic taxa, 343 

the observed trends in taxa-specific assessments within the published literature (Table 3, Table 4). 344 

This is an important part of the MEASO process in order to establish an understanding of studies 345 

and data available to assess status and trends across the ASO and over time. At this stage, we did 346 

not review the utility of the assessments for the purposes of MEASO; while our review here is not 347 

exhaustive, the number of assessments indicated for each taxonomic group indicate the relative 348 

attention given to each group.  The published assessments varied in the amount of data included.  349 

Some were derived from long-term data sets that may help identify trends in species 350 

abundance/density over time.  Others were “snapshots” of a species that may be used as an 351 

indicator of status but not trends. Our results highlight the real differences in coverage between taxa 352 

and between sectors. Ideally a MEASO would be based on circumpolar assessments of abundance 353 

or density but, at present, this only exists for a limited number of species (Klekociuk and Wienecke 354 

2016).  Only few locations/regions are well sampled across the spectrum of taxa. Some types of 355 

areas, such as the deep-sea benthos, are only poorly sampled (Brandt et al. 2014).  356 



Table 2. Definitions and categories of the assessed components in Table 3 and Table 4.  357 

Assessed 
component  

Definition 
 

Categories/criteria 

Status 
assessments  

The number of assessments of status (abundance, 
density) that we found publicly available per taxa 

within the Antarctic Southern Ocean.* 

 

Relative spatial 
coverage 

The relative number of published assessments of 
status within each sector (or circumpolar) per taxa.* 

Atlantic 
Indian 

West Pacific 
East Pacific  
Circumpolar  

Relative depth 
coverage  

(benthic only) 

The relative number of published assessments of 
status across depth categories.* 

Shelf <1000 m 
Shelf-slope = 0-3000 m 

Shelf-slope-basin = 0- >3000 m 
Basin >3000 m 

Trend 
assessments 

(pelagic only) 

The total number of status assessments over time 
within the Antarctic Southern Ocean.* 

 

Earliest data An indication of the earliest abundance, density or 
biomass data.  

 

Observed trends 

(pelagic only) 

An indication of the observed trends in the 
abundance, density or biomass of a taxa over time 

from the literature*  
  
 

Increase (↑) = all published trends indicate 
an increase in abundance/density 

Decrease (↓) = all published trends indicate a 
decrease in abundance/density 

No change (-) = all published trends indicate 
no change in abundance/density 

Interannual variation (~) = all published 
trends indicate interannual variation in 

abundance/density 
Contrasting trends (?) = published trends 

vary within species, between species or with 
location 

No published trends (x) = no trends within 
the published literature for that taxa. 

* For exact number and links to references see supplementary information. 358 

 359 

Some of the earliest species-level studies within the ASO focused on krill and marine mammals, 360 

dating back to the early 20th Century during the sealing and whaling eras. This was followed by a 361 

rise in scientific estimates of krill abundance between 1930 and 1980 (Pauley et al. 2000; Nicol et 362 

al. 2000b) and an interest in their potential relationship between krill abundance and large-scale 363 

oceanographic processes (for a review of early works see Priddle et al. (1988) and for the earliest 364 

fisheries data see Fedulov et al. (1996)). For birds and marine mammal’s quantitative abundance 365 

data was scarce until the 1970s and close to non-existent prior to the 1950s (Croxall et al. 1992). 366 

Crude estimates of seal and whale populations are suggested in Laws et al. (1977). In many early 367 

works the methodologies are unpublished or at are unreliable. 368 

Species-level abundance or density data have been compiled in recent decades for a number of 369 

species, including zooplankton (from SO-CPR surveys; https://www.scar.org/science/cpr/home/), 370 

Antarctic krill (raw data iin KRILLBASE; https://www.bas.ac.uk/project/krillbase/#data), Adelie 371 

https://www.scar.org/science/cpr/home/
https://www.bas.ac.uk/project/krillbase/#data


penguins (colongy counts; http://www.penguinmap.com/), whales (assessments; 372 

https://iwc.int/status), albatross (assessments; https://acap.aq/acap-species?lang=en), species with 373 

conservation assessments (IUCN red list; https://www.iucn.org/resources/conservation-tools/iucn-374 

red-list-threatened-species), and in CCAMLR fishery reports by CCAMLR management area 375 

(https://www.ccamlr.org/en/publications/fishery-reports and supplementary information).  Additional 376 

individual assessments have been submitted to the CCAMLR Working Group for Ecosystems 377 

Monitoring and Management. These can be found online and available on request; for example 378 

reports, submitted for the Predator Survey Workshop in 2008 include reports of fur seal, flying bird 379 

and penguins abundance (https://www.ccamlr.org/en/wg-emm-psw-08).  380 

These sources have varying degrees of quality-control.  For some datasets, limited repeat 381 

observations may make trends difficult to estimate.  Attention may need to be given to interannual 382 

variation associated with El Niño–Southern Oscillation (Trathan et al. 2003; Meredith et al. 2005; 383 

Fielding et al. 2014).  Importantly, inconsistencies between surveys and/or sampling biases of 384 

different survey methods may need to be accounted for through standardisation procedures.  These 385 

issues have been important to resolve in existing datasets, including standardisation across 386 

sampling methods and spatial and temporal coverage for Antarctic krill (in KRILLBASE; Loeb & 387 

Santora 2015; Cox et al. 2018), Adelie penguins (Adelie penguin census repositiories; Southwell et 388 

al. 2013) and ice-breeding seals (APIS repositories; Southwell et al. 2012).   389 

 390 

http://www.penguinmap.com/
https://iwc.int/status
http://acap.aq/en/acap-species)
http://acap.aq/en/acap-species)
https://www.iucn.org/resources/conservation-tools/iucn-red-list-threatened-species
https://www.iucn.org/resources/conservation-tools/iucn-red-list-threatened-species
https://www.ccamlr.org/en/publications/fishery-reports
https://www.ccamlr.org/en/wg-emm-psw-08


Table 3.    Review of the spatial coverage and observed trends of taxon-specific assessments for plankton, 391 
krill, fish and air breathing species in the Antarctic Southern Ocean. The definitions of each 392 
assessed component is outlined in Table 2. For  relative spatial coverage; dark blue = Atlantic 393 
sector, light blue = Indian Sector, dark green = West Pacific sector, light green = East Pacific and 394 
yellow = circumpolar. A full list of references used to assess the relative spatial coverage and 395 
determine observed trends is available in the supplementary information. 396 

 397 



Data on Antarctic benthic communities has been assembled since the 1960s, recorded mostly from 398 

trawl, dredge, corer and camera data (Gutt et al. 2013). However, the density of taxa has often not 399 

been recorded (Downey et al. 2012); the difficulties in collecting quantitative benthic samples mean 400 

that many studies are only semi-quantiative (Clarke, 2008). Some equipment including the 401 

epibenthic sledge and camera technologies are able to generate quantitative abundance data for 402 

macro and megafauna species respectively (Gutt and Starmans, 2003; Brandt et al. 2007a; Post et 403 

al. 2017). Studies that assess trends over time are rare, usually in shallow water habitats close to 404 

research stations (E.g. Conlan et al. 2004; Stark et al. 2014). Table 3 summarises the coverage of 405 

benthic assessments by depth and sector.  To date the greatest number of benthic studies have 406 

been conducted in the Weddell Sea, around the West Antarctic Peninsula and Ross Sea (Gutt et al. 407 

2013)  408 



Table 4.  Review of the spatial and depth coverage of taxon-specific assessments for major benthic 409 
invertebrate taxanomic groups in the Antarctic Southern Ocean. The definitions of each assessed 410 
component is outlined in Table 2. For  relative spatial coverage; dark blue = Atlantic sector, light 411 
blue = Indian Sector, dark green = West Pacific sector, light green = East Pacific and yellow = 412 
circumpolar. A full list of references used to assess the relative spatial and depth coverage is 413 
available in the supplementary information. 414 

 415 

3.3. Consultation on research activities on density or abundance 416 

In addition to the review of the literature and online sources, we consulted 92 scientists from 18 417 

different countries for information on assessments of density/abundance of ASO taxa. The aim of 418 

this consultation was to determine the spatio-temporal coverage of research programs estimating 419 

abundance (or relative density) of taxa within the Southern Ocean in each decade from 1980 to the 420 

present. A total of 14 broad taxonomic groups sub-divided into 49 monitoring groups were listed 421 

within the consultative document over 13 different sites within the ASO (full instructions, taxonomic 422 

groups and data are provided in supplementary material).  423 



Completed responses were received from 30 individuals from 13 of the targeted countries including 424 

(number of responses): Argentina (1), Australia (5), Canada (1), Chile (2), France (1), Germany (5), 425 

India (1), Italy (4), Japan (1), Russia (1), South Africa (2), United Kingdom (3) and the USA (3). 426 

Additional information was also provided by New Zealand, Australia and the USA. Others indicated 427 

that they were not able to contribute or had already contributed to previous responses for their 428 

nation. These data are available on SOKI and contributors acknowledged at the end of this 429 

manuscript.  430 

The greatest survey coverage, indicated by the highest number of research surveys or programmes, 431 

over time and taxa was recorded for the West Antarctic Peninsula, one of the most accessible 432 

regions of the ASO, whilst the main spatial gaps (fewer surveys or programmes) appear to be the 433 

Amundsen Sea, Bellingshausen Sea and Macquarie Ridge (Figure 4). The number of surveys 434 

generally increased with time in most regions reflecting the increase in Antarctic research capacity 435 

with time. Across taxa, flying birds were mostly covered at locations near to coastal research 436 

stations, and benthic taxa were not well represented. Such spatial biases, inherent when studying 437 

the Southern Ocean, are discussed in Griffiths et al. (2014). In previous research, the most intense 438 

sampling tends to be at the more easily accessible locations, e.g. close to research stations, or the 439 

WAP, and depths less than 1000 m. Taxonomic biases are somewhat easier to overcome; there 440 

was a surge in species data recorded in online databases during the SCAR Biogeographic Atlas 441 

project (Griffiths et al. 2011, 2014). However, we still lack abundance data for many groups. These 442 

differences could reflect both the nature of scientific programmes or, the relative success of the 443 

community-based survey approach.   444 



 445 



Figure 4. Complied community survey responses by taxa, location and region over time. Colour 446 
scheme for the relative number of national research programs measuring species 447 
abundance: yellow (low 1-5 surveys/programmes), orange (medium 6-15 448 
surveys/programmes); green (high >15 surverys/programmes). Grey shading indicates 449 
additional data available from other circumpolar studies and databases including SO-450 
GLOBEC (phytoplankton and pelagos) and IWC (toothed and baleen whales). Blue 451 
shading indicates data within CCAMLR sources including fishery assesments 452 
(bathypelagic and ground-fish) and from CEMP monitoring sites (penguins and fur 453 
seals). The four cells within each taxon indicate time by decade from 1980 to 2010. 454 
Further details of the survey are available in the supplementary information. 455 

4. Models to support MEASO 456 

Models underpin the scientific method (Peters 1991).  The term ‘model’ is used in many 457 

ways (see Melbourne-Thomas et al. 2017), ranging from (i) heuristic discussions on a 458 

system and/or hypotheses of various complexities, to (ii) statistical models aimed at 459 

predicting the magnitude of one or more dependent variables based on a series of 460 

independent and related variables, to (iii) formal system-level structures linking objects 461 

(nodes – physical and chemical variables, species, human uses) by processes (edges – 462 

trophic interactions, physiological responses, competitive interactions), the behaviour of 463 

which are forced by system drivers (variables – seasonality, ENSO, climate change, 464 

fisheries).  Hereafter, the latter system-level models are termed ‘system models’.  In this 465 

section, we focus on the system models, regarding that statistical models, which include 466 

species distribution models, underpin the species-specific analyses.  System models are 467 

those that help identify causes and effects and consequent changes when the forcing 468 

variables change. 469 

System models can be used to test outstanding hypotheses on the effects of change, 470 

develop plausible scenarios of current and future change given the data, and for undertaking 471 

more precise assessments of the status and trends of the ecosystem (and its likelihood) 472 

using estimation procedures (Murphy et al. 2012; Melbourne-Thomas 2017). Ranging in 473 

complexity from single species to whole ecosystems (Table 5), system models provide 474 

scientists with a method for linking disparate studies on status of some important species 475 

with many other studies on processes and ecosystem interactions, thereby enabling 476 



complex system studies even though not all components of the system have been observed 477 

simultaneously.  Thus, system models, couched in observations, can be used to explore the 478 

outcomes from multiple ecosystem interactions and perturbations and reporting the 479 

consequences to decision makers (Watters et al. 2013; Klein et al. 2018). With the rise of 480 

ecosystem-based management practices, which are supported by CCAMLR (Constable 481 

2004, 2011; Kock et al. 2007), the development of ecosystem models to investigate future 482 

climate, fishing and conservation scenarios are increasingly important (Gurney et al. 2014).  483 

The main ecological and modelling challenges in the development of system models is 484 

summarised in Murphy et al. (2012).  Some of the first ecological modelling applications 485 

within the Southern Ocean were based on Antarctic krill because of its importance to whales 486 

as well as its emerging importance as a target commercial species (see references in Hill et 487 

al. 2006). Antarctic krill is a relatively well studied species, with much information on its 488 

growth rate, transport, and population dynamics which can be incorporated into models 489 

(Siegel 2016), however it will be important to ensure that future modelling approaches are 490 

flexible enough to allow representation of potential shifts to non-krill dominated ecosystem 491 

states (McCormack et al. in review ; Trebilco et al. in review) 492 

Early modelling studies investigated the interaction between krill aggregations and 493 

harvesting operations in attempt to utilise the krill catch rate as a proxy for abundance 494 

(Mangel, 1988; Butterworth 1988) whilst conceptual models provided qualitative descriptions 495 

of the food-web and model multi-species interactions (for references see Hill et al. 2006). 496 

Qualitative network models have since been used to examine directional responses of 497 

ecosystem components to perturbations, including the mechanisms behind observed 498 

changes and the impacts of model complexity on results (Melbourne-Thomas et al. 2012, 499 

2013). This approach provides a quick yet substantial insight into system functioning (Levins 500 

1996). 501 

Quantitative food web and ecosystem models have also been developed to simulate 502 

responses to ecosystem perturbations including fishing (Fulton 2010). These include the 503 



widely used Ecopath with Ecosim, a mass balance model with a time dynamic simulation 504 

based on the functional groups within an ecosystem (Christensen and Walters 2004, see 505 

https://ecopath.org for model and software details). Pinkerton et al. (2010) used a similar 506 

framework to Ecopath but included key non-trophic transfers (e.g. seasonal release of 507 

material from sea-ice, vertical detrital flux) to investigate the ecosystem impacts of fishing in 508 

the Ross Sea.  509 

More recently, end-to-end, or whole-ecosystem models, attempt to include all major relevant 510 

processes within the ecosystem, such as nutrient cycling, climate forcing, environmental 511 

variability and harvesting as well as representations of biological species/functional groups 512 

that include ecological processes such as feeding, growth, reproduction and 513 

dispersal (Fulton 2010; Murphy et al. 2012). An end-to-end modelling framework, Atlantis 514 

(Fulton et al. 2010, 2011) is currently under development for implementation in East 515 

Antarctica. This model will enable development of climate change scenarios for the regional 516 

ecosystem as well as evaluating different management and adaptation options for fisheries 517 

and other activities.  518 

https://ecopath.org/


Table 5.  Different modelling approaches used within Antarctic and Southern Ocean (ASO) ecosystems from physical and biogeochemical to whole 519 
ecosystem models, anticipated utility within the MEASO project, current ASO coverage and example references.  520 

 521 

Model type Description Examples Anticipated utility Implementation ASO Coverage Example references  

Qualitative 
models 

 

 
 

Framework to examine 
ecosystem responses to 

press perturbation. 

Qualiative 
network models 

 

Understand 
linkages and 

feedback 
mechanisms. 

West Antarctic 
Peninsula and 

aspatial. 

 

Melbourne-Thomas et 
al. 2013; 

Goedegebuure et al. 
2017. 

 
Earth System 

 
 

 

Simulation of physical, 
chemical and biological 

processes within the earth 
system. Can incorporate 
global climate models. 

Coupled Model 
Intercomparison 
Project (CMIP5) 

models 

Provides forcings 
for regional models 

Global with 
circum-Antarctic 

detail.  Note, 
southern 

boundary may 
not be to the 

coast 
 

Reviewed in 
Cavanagh et al. 2017 

 
Regional 
Physical 

 

Simulation of physical 
conditions within the Southern 
Ocean such as temperature, 

salinity and currents. 

Ocean General 
Circulation 

Models (OGCM) 
Regional Ocean 

Modelling 
System (ROMS) 
Southern Ocean 
State Estiamte 

(SOSE) 
 

Provides regional 
physical forcing for 
ecosystem models. 

Ross Sea,  
West Antarctic 

Peninsula 
Indian sector 

 

Dinnimen et al. 2011; 
Corney et al. in 

review; 
Mazloff et al. 2010 

 
Regional 

Biogeochemical 
 

Simulation of biogeochemistry 
in the Southern Ocean e.g. 

nutrient cycling, carbon 
uptake, productivity 

Nutrient, 
phytoplankton, 

zooplankton and 
detritus (NPZD) 

 

Understand 
different drivers that 

control the base 
ASO productivity. 

All sectors, 
including pelagic 

and in sea ice 

 

Pasquer et al. 2005; 
Saenz and Arrigo 

2014; Vancoppenolle 
et al. 2010; 

Melbourne-Thomas et 
al. 2015; Priester et 

al. 2017 



 
Single Species 

 

Simulation to understand the 
ecology of a single species 
based on current biological 

knowledge and environmental 
setting. 

Krill examples: 
Advection, 

recruitment, 
relationship with 
physical drivers 
e.g. sea ice and 
climatic variation 

etc 
 

Filling gaps in 
space and time, 
where we have 

patchy abundance 
data. 

Mostly 
commercially 

exploited 
species (krill, 

seals, whales); 
Scotia Arc, 

South Georgia, 
West Antarctic 

Peninsula, Ross 
Sea, Indian 

Sector 

 

Hofmann et al. 1998; 
Murphy et al. 2004; 
Thorpe et al. 2007; 
Wiedenmann et al. 

2008; Jenouvrier et al. 
2014. 

Foodweb 
models 

 
 

Simulation of the trophic 
interactions within an 

ecosystem from primary 
producers to higher predators. 

Used to investigate the 
impacts of changes in primary 
production, fishing effort and 

species loss. 
 

Mass balance 
Ecopath with 

Ecosim.  
Size spectrum 

models 
 

Representation of 
food entire food 
web to explore 

relative importance 
of trophic linkages 

and the relative 
impact of different 
climate and fishing 

scenarios. 

Ross Sea, 
Scotia Arc, 

South Georgia, 
West Antarctic 

Peninsula, 
Indian Sector 

 

Mori and Butterworth 
2004, 2005, 2006; 

Pinkerton et al. 2010; 
Hill et al. 2012; 

Ballerini et al. 2014; 
Gurney et al. 2014; 
McCormack et al. in 
prep.; Subramaniam 

et al. in prep  

Benthic models  

 

Simulation of habitat 
complexity that shapes 

biological communities in 
benthic ecosystems, and 
roles in benthic-pelagic 

coupling 

 Explore dynamics 
of benthic 

assemblages in 
relation to iceberg 

scour, 
environmental 
change and 

fisheries 

Weddell Sea, 
Scotia Sea 

Indian sector 

 

Johst et al. 2006; 
Pothoff et al. 2006a, 

2006b 
 

Specific 
interaction 

models 

Dynamic models of the 
interactions between selected 
species within the ecosystem. 

Can provide quantitative 
information on ecosystem 

performance for use in 
management of human 

activities including fishing. 

Foosa (a krill 
predatory-fishery 

model)  
Spatial 

Multispecies 
Operating Model 

(SMOM)  
Ecosystem 
Productivtiy 

Ocean Climate 
(EPOC) 

Subset a food web 
to specific primary 

interactions for 
exploring effects of 

environmental 
change or fisheries 

scenarios. 

Mostly krill and 
krill predators 

(penguins, 
whales). Scotia 

Sea, circum-
Antarctic  

Constable 2005, 
2008; Watters et al. 

2013; Plaganyi & 
Butterworth 2015; 
Klein et al. 2018; 

Tulloch et al. 2018 



 

Socio-
ecological 

  
 

Framework used to 
understand the interactions 

between societal, 
environmental and 

governmental factors. 

 To investigate 
policy-relevant 

scenarios that may 
contribute to 

adaptive 
conservation and 
management of 
marine social—

ecological systems 

Yet to be 
implemented in 

Antarctica.  

  

End to end 
models 

 
 
 
 

 

 

These models include 
submodels on physics, 

chemistry, biology, human 
uses, economics and 

management.  They are 
spatially structured and can 

resolve small time-steps 
(minutes) if needed.  They 
enable exploration of direct 

and indirect effects of change 
in one or more components 
on the other elements of the 
system.  Components can be 
modelled at different levels of 

complexity from pools to 
complex populations with 

behaviours.   

Atlantis 
 

Enable exploration 
of system-level 

scenarios of 
change as well as 

having methods for 
evaluating how well 
management and 

adaptation 
measures may 

work under various 
scenarios.  

Currently being 
implemented for 
East Antarctica. 

 

Melbourne-Thomas et 
al. In Prep; 

 

 
 

 522 



Figure 5 illustrates how the different system models described in Table 5 might fit together in 523 

a nested, ensemble of models.  While not all the available models described in Table 5 will 524 

be used in the initial MEASO, the aim will be to utilise scenarios of environmental change 525 

from Earth System models (Cavanagh et al. 2017), along with time-series of observations of 526 

physics, chemistry and biology, to drive regional food web and/or species models.  These 527 

latter models can then be used to investigate the consequences, and their likelihoods, of the 528 

different scenarios on different parts of the ecosystem (see, for example, Klein et al. 2018).   529 

How might this work in practice? 530 

Qualitative models are a useful means for developing a suitable, plausible network of 531 

interactions expected in an ecosystem model, linking physical, chemical and biological 532 

components.  Once formed, a qualitative model can then be used to generate possible 533 

directions of change in different species/functional groups arising from press perturbations in 534 

different parts of the network, particularly in the physical and chemical components.  For 535 

example, possible changes in the krill-based food web have been explored for the West 536 

Antarctic Peninsula (Melbourne-Thomas et al. 2013; Trebilco et al. in review).  Overall, this 537 

process can be used to simplify food web models in order to achieve computational 538 

efficiencies, in preparation for using the nested ensemble of models. 539 

Earth System models can provide the state of habitat variables and primary producers 540 

across the Southern Ocean, although sea ice may not be well described at present 541 

(Cavanagh et al. 2017).  The ability for these models to represent the actual state of the 542 

Southern Ocean can be assessed as to their fit to time series of ocean observations; the 543 

relative ability for representing reality is termed ‘model skill’.  Environmental scenarios from 544 

models with high skill will establish the base conditions for driving the regional food web 545 

and/or species models.  The results for the different scenarios can be immediately used for 546 

looking at potential shifts in suitable habitats for different species under the different 547 

scenarios (e.g. krill eggs - Kawaguchi et al. 2013; krill larvae in sea ice – Melbourne-Thomas 548 

et al. 2016; krill growth potential – Hill et al. 2013). 549 



Time series of observations of physics, chemistry and biology can be used to establish the 550 

starting conditions for model assessments of projected changes under different scenarios. 551 

While end-to-end models take account of the interactions between physics, chemistry and 552 

biology when undertaking projections, singles species and food web assessments can be 553 

undertaken using a hierarchical approach to the models.  For example, biogeochemical 554 

models can help bound the production in a region based on time-series (observations or 555 

model data) of the physical environment.  The time-series of production can then be used as 556 

inputs to species-specific models or to underpin the productivity in a food web.  Models such 557 

as Ecopath with Ecosim, can help ensure the starting conditions of the relative biomasses of 558 

species or functional groups are appropriate given the observed relative abundances 559 

amongst a subset of taxa.  Thus, projections into the future will have plausibility given these 560 

initial calculations.  For some regions and species, time-series of observations will enable 561 

species and food web models to be fit to the data, enabling a test of the plausibility of the 562 

models given the precision in the estimation of parameters. 563 

Given the development of models to date, it will be possible to at least examine biological 564 

scenarios under different future environmental scenarios from Earth System models for 565 

Antarctic krill and krill-based food webs (e.g. some recent models available are Constable 566 

and Kawaguchi 2017; Murphy et al. 2017). 567 

Uncertainties in the outcomes of the projections arise from parametric uncertainty, natural 568 

variation and the role of extreme events in altering trajectories of different taxa.  In addition, 569 

uncertainties can arise from different views of how the ecosystems work – structural 570 

uncertainty.  Estimating the uncertainty in the consequences of the different scenarios will be 571 

an important part of the assessment (Constable 2004; Fulton, 2010; Link et al. 2012).  A 572 

further step in reducing uncertainties using this hierarchical, ensemble of models, combined 573 

with existing time-series of data, will be to evaluate how an observing system for Southern 574 

Ocean ecosystems might be improved to better contribute in the future to a subsequent 575 

MEASO (Constable et al. 2016).   576 



 577 

 578 

Figure 5. Single and integrated model approaches that could be used in marine ecosystem 579 
assessments. The generic Southern Ocean food web shown here represents different 580 
energy pathways and the most commonly studied species and interactions in model 581 
analyses.  582 

5. Summary and future directions 583 

Southern Ocean ecosystems cover a range of different physical and chemical 584 

environments with four different meridional sectors (ocean scale) and subantarctic and 585 

polar zonal divisions within sectors.  The best studied sector is the East Pacific (West 586 

Antarctic Peninsula) followed by the Atlantic sector, both of which have had emphases 587 

on the Antarctic krill-based pelagic systems.  Nevertheless, a nested ensemble of 588 

models with sufficient time series of observations are available to undertake circumpolar 589 

assessments of, at least, the Antarctic krill-based system.  This can be achieved by 590 

applying available knowledge and general principles of interactions between physical, 591 

chemical and biological components of food webs. 592 



We provide here a framework for auditing available data, syntheses and system models 593 

(incorporating knowledge of autecological and ecosystem processes) for a MEASO.  594 

This framework provides a means of easily collating works and information not yet 595 

included in our audit in order to make them available for future assessments.  While we 596 

have had an emphasis on the scientific literature, it will be possible to use the auditing 597 

process in future to collate and make available data and models not yet or not able to be 598 

established in the literature. 599 

An important task for MEASO will be to evaluate the degree to which future assessments 600 

may benefit from programs to fill in taxonomic gaps in data within each of the main 601 

sectors.  Here, it will be important to consider how advice to end users, such as different 602 

management bodies, may be improved by filling in those gaps.  As described in the use 603 

of the system models, it will be possible to evaluate how the ecosystem parts of the 604 

SOOS could be improved by increasing spatial and/or temporal coverage of 605 

observations of particular taxa (Meredith et al. 2013; Constable et al. 2016) and 606 

important components of their habitats (Trebilco et al. in review).  A major gap that can 607 

be identified by our audit here is the need to have greater coverage of observations and 608 

modelling of benthic systems, particularly as they may pertain to managing the 609 

interactions of fisheries with benthic habitats as well as the role of benthic habitats in the 610 

carbon cycle (e.g. Barnes et al. 2018). 611 

Technological advances have greatly increased our efficiency to obtain ecological data in 612 

the Southern Ocean. These advances include the use of genetics to identify species, 613 

study diversity, population connectivity and phylogeography (e.g. Grant et al. 2011; 614 

Cluas et al. 2014), stable isotopes analysing diet for foodweb studies (Raymond et al. 615 

2011); acoustics, automated cameras and satellites in locating species and monitoring 616 

populations and habitats (e.g. Fretwell et al. 2012; Southwell et al. 2013; Trebilco et al. in 617 

review) and autonomous and remotely operated vehicles to survey the most remote and 618 

ice-covered regions (Gutt et al. 2017). Our temporal coverage has also increased with a 619 



number of moored and remote observing systems, providing continuous and sustained 620 

data collection. The development of a network of long-term biological monitoring stations 621 

and survey transects within ASO ecosystems has been suggested and may be feasible 622 

with these technological advances (Griffiths et al. 2010; Constable et al. 2014, 623 

2016).  Importantly, the development of improved observing in the region is coordinated 624 

by the SOOS (www.soos.aq) (Newman et al. accepted).  625 

In addition to advancing technologies, capacity building and knowledge sharing has been 626 

highlighted as a strategic goal in preserving Antarctica’s biodiversity (Chown et al. 2017). 627 

International research committees and networks such as SCAR and SOOS help to 628 

coordinate activities between their member countries with Antarctic programs at different 629 

stages of developlemt (Summerhayes, 2008; Newman, accepted). In its lifetime SCAR 630 

has expanded from 12 to 44 member countries including 14 initial stage programmes 631 

and 12 associate members. Colombia, an associate member of SCAR, is an example of 632 

a developing nation, which in the last 40 has progressed from sending their first scientist 633 

to Antarctica on an international programme to the development of 37 researhc projects 634 

and leading their third international science expedition in 2016-2017 (Diaz, 2017). From 635 

the start MEASO has reflected SCAR’s capacity building ethos, encouraging 636 

collaboration between Antarctic nations and involvement of early career sceintists as 637 

demonstrated at the MEASO conference in 2018 with 23 participating countries and 57 638 

early career scientists out of the 173 attendees.  639 

Biological assessments in the ASO began with the BIOMASS program of the Scientific 640 

Committee on Antarctic Research in the 1980s, followed by a series of assessments and 641 

the CAML project in the International Polar Year leading to the SCAR Biogeographic 642 

Atlas of the Southern Ocean and the report on the Antarctic Climate Change and 643 

Environment.  The Marine Ecosystem Assessment for the Southern Ocean is a further 644 

step in these assessments aiming to provide needed scientific advice to support the 645 

sustainable management and conservation of the region long in to the future.   646 

http://www.soos.aq/
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