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Hard rocks, including crystalline igneous, metamor-
phic and strongly cemented sedimentary and carbon-
ate rocks, cover about 50%of the Earth’s land surface
(Singhal & Gupta 2010). Globally, the volume of
groundwater contained in hard rock aquifers is not
well constrained (Comte et al. 2012) but locally
they can be important aquifers (MacDonald et al.
2012), albeit with low groundwater storage and
poor primary porosity and permeability. Groundwa-
ter flow in these hard rocks is commonly observed to
be associated with water-bearing discontinuities,
such as fractures, joints and faults (Mazurek 2000;
Berkowitz 2002; Font-Capo et al. 2012), and in the
weathered regolith (Wright 1992; Chilton & Foster
1995; Deyassa et al. 2014). Structural elements
such as fault zones also strongly govern the behav-
iour of these systems (Forster & Evans 1991;
López & Smith 1995; Bense et al. 2013). The nature,
abundance, orientation and connectivity of these
water-bearing features are largely governed by the
history and nature of structural deformation of the
bedrock, and commonly impose strong anisotropic
flow and transport parameters on these bedrock aqui-
fers (Hsieh et al. 1985; Bour &Davy 1997;Mortimer
et al. 2011). Weathering processes furthermore lead
to an alteration of bedrock composition and associ-
ated aquifer properties resulting in enhanced fracture
connectivity and an overall vertical stratification/
zonation of bulk aquifer properties, ranging from

highly altered shallow regolith horizons to more
competent sparsely fractured bedrock at depth (Dew-
andel et al. 2006; Krásný & Sharp 2007; Lachas-
sagne et al. 2011).

Aquifer parameters governing flow and transport
behaviour in these complex bedrock aquifers exhibit
specific depth-dependencies (Davis & Turk 1964;
Snow 1968; Marechal 2012; Comte et al. 2012;
Sanford 2017) linked to weathering processes and
the nature, orientation and connectivity of water-
bearing discontinuities with depth. Uplift processes
commonly impose additional subhorizontal stress-
relief joints, leading to higher degrees of connectiv-
ity between more steeply dipping fractures and thus
increasing the degree of storage and water circula-
tion at shallow depths (Raven 1977; Cruchet 1985;
Martel 2017).

Characterizing the flow regime and hydrogeolog-
ical parameters for these fractured bedrock aquifers
poses particular challenges due to their heteroge-
neous and anisotropic nature across varying scales
of observation (Clauser 1992; Bonnet et al. 2001;
Oxtobee & Novakowski 2002). A variety of charac-
terization and monitoring techniques find their appli-
cation in fractured bedrock environments, ranging
from traditional hydrogeological techniques, such
as well hydrograph monitoring and time-series anal-
ysis (Molénat et al. 1999; Chae et al. 2010; Jimenez-
Martinez et al. 2013), hydraulic well testing
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(Marechal et al. 2004; Neuman 2005), active tracer
experiments (Gelhar et al. 1992; McKenna et al.
2001; Maldaner et al. 2018), and hydrochemical/
geochemical and environmental isotope studies
(Ofterdinger et al. 2004; Ayraud et al. 2008), to mul-
tiscale geophysical surveying techniques, such as
well logging, ground-based and airborne geophysi-
cal surveys (Rubin & Hubbard 2005; Vereecken
et al. 2006; Cassidy et al. 2014; Binley et al.
2015), and other air- and satellite-borne remote sens-
ing techniques (Becker 2006; Meijerink et al. 2007).

Various conceptual approaches have been devel-
oped in the past decades to describe and model the
groundwater flow through fractured rock masses
(NRC 1996), ranging from equivalent continuum
models (Carrera et al. 1990; Bear 1993; Hadgu
et al. 2017) to discrete fracture network simulation
models (Dverstorp & Andersson 1989; Cacas et al.
1990a, b, c; Davy et al. 2006; Makedonska et al.
2015). Numerical simulations have been employed
to investigate flow and transport processes from the
local to the field and catchment scale (MacQuarrie
& Mayer 2005; Jaunat et al. 2016; Janos et al.
2018), reconciling scale-specific monitoring data or
aiming to integrate multiscale surveying data.
Numerous case studies have been performed in frac-
tured crystalline rock in the framework of the safety
assessments for nuclear waste repositories (Herbert
et al. 1991; Neretnieks 1993; Joyce et al. 2014),
investigating flow and transport phenomena on the
small scale and on a regional scale (Voborny et al.
1991, 1994). Observations in subsurface galleries
have been used to investigate groundwater-flow sys-
tems within fractured crystalline rocks on a regional
scale (Kitterod et al. 2000; Marechal & Etcheverry
2003; Walton-Day & Poeter 2009; Marechal 2012).
Over recent years, modelling efforts have focused
on developing robust thermal–hydrodynamic–
mechanical models to characterize more comprehen-
sively the behaviour of fractured bedrock environ-
ments at depth: for example, in the context of
geothermal installations, and carbon capture and stor-
age (CCS) schemes (Hudson et al. 2001; Rutqvist
et al. 2014; Bandilla et al. 2015; Kolditz et al. 2016).

Despite the commonly encountered low yields of
these fractured bedrock aquifers, these complex bed-
rock aquifers play an important role in water
resource management and are key to understanding
the potential impacts from the competing demands
for the use of the deeper subsurface. At shallow to
intermediate depth, fractured bedrock aquifers help
to sustain surface-water base flows (Whiteman
et al. 2017) and groundwater-dependent ecosystems,
provide local groundwater supplies, and impact on
contaminant transfers on a catchment scale. At
greater depths, understanding the properties and
groundwater-flow regimes in these complex bedrock
environments can be crucial for the successful

installation of subsurface energy and storage sys-
tems, such as deep geothermal or aquifer thermal
energy storage systems and natural gas or CO2 stor-
age facilities (Bricker et al. 2012), and for the siting
of nuclear waste repositories, as well as for the
exploration of natural resources such as conven-
tional/unconventional hydrocarbons. In many sce-
narios, a robust understanding of fractured bedrock
environments is required to assess the nature and
extent of connectivity between such installations
and/or explorations at depth and overlying receptors
in the shallow subsurface or above ground. Figure 1
illustrates some of the key hydrogeological contexts
of fractured bedrock environments.

To this end, fractured bedrock environments have
seen continued interest by researchers and practition-
ers, albeit with varying focus over the decades. An
ontology-based search of the bibliographical index-
ing service Web of Science (WoS: Levine-Clark &
Gil 2008; Chavarro et al. 2018) indicates the shift-
ing focus and interest of research in fractured bed-
rock environments. The WoS index was reviewed
for publications published between 1990 and 2017,
and matching specific search terms. Retrieved results
were aggregated into 2-yearly publication num-
bers (e.g. 1990–91, 1992–93,…, 2016–17). Figure 2
illustrates the increasing research interest in fractured
bedrock environments, and the shifting background
rationale for fractured bedrock studies and investiga-
tion methods applied.

In general, publication rates in relation to frac-
tured bedrock environments have steadily increased
since the early 1990s, with a marked rate increase
from the late 2000s. Publications on groundwater
studies in fractured bedrock environments over the
past three decades have seen an approximate
10-fold increase (Fig. 2a). With regard to groundwa-
ter studies, water-supply- and water-quality-related
publications have seen a steady increase over the
past decades, with publications related to water
resources showing more steeply increasing numbers
from the late 2000s onwards (Fig. 2b). Fractured
hydrogeology studies related to geothermal, nuclear
waste repositories, hydrocarbons and CCS have all
risen over the decades (Fig. 2c), with geothermal
and hydrocarbon studies showing a dramatic
increase since 2008. The major sector contributing
to publications in the area of fractured bedrock envi-
ronments are the geothermal and the oil and gas sec-
tors (Fig. 2c). Publication rates for the latter sector
show three distinct segments over the past three
decades, with steady low increasing publication
numbers from the early 1990s to the mid-2000s, a
steeper rise in publication numbers between 2004–
05 and 2010–11, and an even steeper increase
since then. Bi-annual publication numbers for this
sector have increased four-fold since 2010–11,
most likely to be associated with the increased
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Fig. 1. Typical hydrogeological contexts of fractured bedrock environments.
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research activity around the exploration of uncon-
ventional hydrocarbons.

With regard to methods commonly applied in the
investigation of fractured bedrock environments, as
reflected in published papers over the past three
decades, publication numbers have seen some varia-
tions over the years (Fig. 2d). Traditional hydrogeo-
logical methods, such as tracer tests and hydraulic/
well tests, have seen an increase in publication num-
bers over the decades. While publication numbers in
relation to tracer tests increased during the 1990s,
publication numbers in relation to this field method
seem to have plateaued since. Publication numbers
in relation to hydraulic/well testing have increased
steadily at higher rates since the 1990s, with a dis-
tinct increase in publication rates from the late
2000s onwards (Fig. 2d). This may be related to
the requirements for well testing in the context of
increased geothermal applications and unconven-
tional hydrocarbon exploration (Fig. 2c). The appli-
cation of geophysical methods for the study of
fractured bedrock environments has produced a
steadily increasing number of publications from a
low base in the early 1990s. Similarly, numerical
groundwater modelling studies for fractured bedrock
environments have produced steadily rising numbers
of publications over the decades. Recognizing the
limitations of an ontology-based review of publica-
tion numbers, the above nonetheless illustrates the

continuing and rising interest in the research area
of fractured bedrock environments over the past
three decades, and provides some insights into the
changing focus of research activity in this area.

Responding to the continued interest in fractured
bedrock environments, Queen’s University Belfast
hosted a one-day conference on the 10 June 2016
entitled ‘Groundwater in Fractured Bedrock Envi-
ronments: Managing Catchment and Subsurface
Resources’ as part of the Geological Society’s
‘2016 Year of Water’. Sixteen talks and 11 posters
were presented at the event from national and inter-
national authors to an audience of 80 delegates.
The event was co-sponsored by the Hydrogeology
Group of the Geological Society, the UK and Irish
chapters of the International Association of Hydro-
geologists (IAH), the Institute of Geologists of Ire-
land (IGI), the Geological Survey of Ireland (GSI),
and the Geological Survey of Northern Ireland
(GSNI). In the same year, the 43rd Annual Congress
of the International Association of Hydrogeologists
(IAH) in Montpellier, France hosted a specific ses-
sion on the hydrogeology of fractured hard rock
aquifers. This Special Publication reflects contribu-
tions made as part of these two events to the field
of modern groundwater studies in fractured bedrock
environments.

Hard rock aquifers play a dominant role in
groundwater supplies in Sub-Saharan Africa

(b)(a)

(d)(c)

Fig. 2. (a)–(d) Two-yearly publication numbers for the period 1990–2017 as recorded by the Web of Science Index
(Clarivate 2018) for various combinations of topical search terms.
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(MacDonald &Davies 2000). In their contribution to
this Special Publication, Adekile & Carter (2018)
pay tribute to Robin Hazell, who devoted most of
his extensive professional career to the development
of groundwater in the hard rock aquifer systems of
Sub-Saharan Africa, in particular across Nigeria.
Robin presented at the Belfast Geological Society
Conference in 2016 and passed away in March
2017. In a further contribution to this publication,
Fouché et al. (2018) explore the typology of ground-
water encountered in a granitic aquifer system in
Ivory Coast, investigating geochemical facies as
indicators for connectivity across saprolite and sap-
rock units. MacDonald & Davies (2018) provide
insights into the permeability distribution in Creta-
ceous shales of West Africa affected by dolerite
intrusions. Traditional hydraulic well testing in
highly tectonized Mediterranean hard rocks is
employed by Baiocchi et al. (2018) to evaluate sus-
tainable well yields.Newton (2019) applies dye trac-
ing field experiments to investigate the dependence
of conduit flow on groundwater levels in the karsti-
fied Carboniferous Limestone of the eastern Mendip
Hills (UK).Kennel & Parker (2018) investigate the
use of acoustic borehole televiewer amplitude data to
derive bulk porosity values for a dolostone aquifer,
and benchmark these against porosity values derived
from traditional gamma-gamma and neutron log
data. The effects of weathering processes on hard
rock aquifers are investigated by Belle et al. (2018)
and Vasseur & Lachassagne (2018). Belle et al.
(2018) employ electrical resistivity tomography
(ERT) to characterize the weathering profile, while
Vasseur & Lachassagne (2018) explore the thermal
processes associated with the physicochemical
weathering of hard rocks. ERT together with mag-
netic resonance sounding (MRS) is employed by
Comte et al. (2018) to derive flow and storage prop-
erties for a metamorphic aquifer in NW Ireland at rel-
evant scales for the integration into numerical
groundwater-flow models. MRS-derived transmis-
sivity data, alongside more traditional hydrological
monitoring data, are used by Dickson et al. (2018)
in developing basin-scale numerical groundwater
flow multi-model analyses for metamorphic base-
ments units in Benin. Model evaluations in this
study aim to improve the conceptualization of the
weathered zone within these low-productivity units
and to assess their role for rural water supplies.

Contaminant transport through fractured hard
rock aquifers presents complex challenges due to
the combined processes of fracture flow and matrix
diffusion. The transport of non-aqueous phase liquids
(NAPLs) in this context poses additional challenges
in terms of density-dependent flow components.
Across two contributions, Parker et al. (2018a, b)
provide insights into the fracture network connectiv-
ity in a DNAPL-contaminated shale bedrock system

using multiple lines of field evidence (Parker et al.
2018b), and present the results of a long-term inves-
tigation of DNAPL migration and high-resolution
source zone characterization in a fractured dolostone
aquifer (Parker et al. 2018a).

The competing demands for the exploration of
subsurface energy resources v. the protection of
water resources provide ongoing scientific and soci-
etal challenges. The rise in unconventional hydrocar-
bon exploration over recent years and observed
environmental impacts from these activities adds to
these challenges. However, at the same time, facing
these challenges provides an opportunity for new
proposed exploration projects to establish suitable
monitoring programmes ahead of the start of explora-
tion activities in order to minimize impacts on water
resources. In this context, Stroebel et al. (2018) pre-
sent an approach to comprehensive groundwater
baseline monitoring across the Eastern Karoo Basin
in the context of proposed shale gas extraction in
the region.

Increasing our understanding of the behaviour of
fractured bedrock environments continues to be a
research challenge demanding multidisciplinary
approaches, in particular in the context of the com-
peting demands for the use of the subsurface for
engineered interventions and exploration activities,
on the one side, and the need for protecting ground-
water resources, on the other. This Special Publica-
tion aims to make a contribution towards meeting
this challenge.
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