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Abstract

The Madden-Julian Oscillation (MJO) is a quasi-periodic (∼30-90 days) eastward-

moving atmospheric mode which primarily modifies rainfall patterns in the equa-

torial regions from Africa to the Pacific Ocean. It has been proposed that its

signature is detectable within the intensity variations of the Schumann Reso-

nances (SR) due to changes in the location and magnitude of the major lightning

centres. Using six years of induction coil data recorded at the Eskdalemuir Ob-

servatory in the UK, we investigate whether the MJO is detectable in the first

three Schumann Resonances. We extract the frequency and intensity values

from each resonance every 10 minutes, averaged to a daily value and compare

them to the Realtime Multivariate MJO (RMM) index. We use Empirical Mode

Decomposition (EMD) to determine if certain modes correlate between the SR

and RMM curves. We find that the EMD 30 to 70 day modes of the SR and

RMM index occasionally beat in-phase during the La Niña periods of the El

Niño Southern Oscillation (ENSO) but not El Niño periods. However, the re-

lationship is not wholly consistent, implying that robust and reliable detection

of the MJO in SR data remains challenging.
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1. Introduction

Since their theoretical prediction by Schumann (1952) and experimentally

detection by Balser & Wagner (1960), the Schumann Resonances (SR) have been

widely studied. Schumann Resonances are electromagnetic (EM) oscillations

with wavelengths approximately divisible by the Earth’s circumference that are5

trapped within the Earth-ionosphere cavity. They are excited by the near-

continuous global lightning discharge forming the EM background. The SR

are observed below 50 Hz in the Extremely Low Frequency (ELF) band of

the electromagnetic spectrum and the first five resonances are usually found

at approximately 7.8, 13.9, 20.1, 26.5 and 32.4 Hz (e.g. Füllekrug, 1995; Price,10

2016) though with a low Q-factor, typically less than 4 (e.g. Nickolaenko &

Hayakawa, 2002; Sentman, 1995).

In the past five decades, research has revealed information about the manner

of their propogration within the Earth-ionosphere cavity, their response to the

solar cycle and their use as a monitor (or proxy) for other geophysical systems15

and atmospheric modes (e.g. Anyamba et al., 2000; De et al., 2010; Greenberg

& Price, 2007; Ku lak et al., 2003; Nickolaenko et al., 2015; Ondrás̆ková et al.,

2011; Satori et al., 1996; Williams, 1992). The SR have been used as a proxy

for global lightning activity; the correlation between lightning activity and the

diurnal variation in the SR frequencies and intensity is well established (e.g.20

Will, 2005; Nieckarz et al., 2009). Most lightning activity occurs around the

equatorial regions, created by large convective clouds formed in the local after-

noon. Diurnal variations are easily seen in the SR spectral parameters (that

is, amplitude/intensity, peak frequency, Q-factor) and have three main peaks in

intensity at 0800, 1400 and 2000 UT correlated with the crossing of the sub-25

solar point over the main continental regions of Asia, Africa and America (e.g.

Greenberg & Price, 2007; Ondrás̆ková et al., 2007; Sátori, 1996).

The amplitude of SR are influenced by the source intensity and source-

observer distance as well as the properties of the cavity through which the

EM waves propagate. Williams & Sátori (2007) noted the variations of the30
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SR waveguide height over a range of timescales including diurnal, 27-day solar

rotation cycle, annual and the 11-year solar cycle. The diurnal and seasonal

variations in peak frequency of the first four SR modes (i.e. 7.8, 13.9, 20.1

and 26.5 Hz) for the electric (Ez) field component were analysed by Ondrás̆ková

et al. (2007) and were ascribed to changes in the position of the lightning sources35

as well as changes in the ionosphere height-conductivity profile. Füllekrug &

Fraser-Smith (1996) analysed the amplitudes of the first two SR modes and

found 20-30 day variations that they related to the solar rotation cycle (based

on comparisons with the sunspot number).

Zieger & Sátori (1999) compared long-term periodic variations in SR with40

solar wind speed and geomagnetic indices (Kp and Dst). Their study found a

number of periodicities including 9-10, 13.5, 20, 27, 47, 73 and 108 days with the

most significant finding relating to the correlation of half solar-rotation period

(13.5 day variation) within the SR. While looking into monitoring global thun-

derstorm activity, Nickolaenko et al. (2015) compared 10 years (2002 – 2012) of45

average daily frequency and intensity data of the first SR mode measured at the

Antarctic station in Vernadsky with corresponding solar activity (intensity of

solar radiation at the 10.7 cm wavelength and the Wolf’s number). The results

show that the SR parameters follow the overall 11-year solar cycle trend. Sim-

ilarly, analysis of the solar-related variation by Sátori et al. (2005) and Ku lak50

et al. (2003) found that the Earth-ionosphere cavity undergoes long-term vari-

ation during the 11-year solar cycle due to changes in the conductivity from

enhanced X-ray emissions.

On ENSO (El Niño Southern Oscillation) timescales, a north-south shift of

global lightning was identified by Sátori & Zieger (1999) based on SR frequency55

variations and semiannual intensity changes at Nagycenk, in Hungary. The

global lightning shifts southward in the warmer El Niñao period and migrates

northward in cooler La Niña episode by around 5◦ in latitude. Redistribution

of global lightning on the ENSO time scale was confirmed by independent light-

ning observations by OTD/LIS satellites (Sátori et al., 2009). Global lightning60

activity over land increases slightly, mainly in South-East Asia in El Niño pe-
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riods, while the lightning activity in the Pacific region significantly decreases;

although it is only a minor contributor to the total lightning. Conversely, in La

Niña periods Pacific lightning intensity rises.

Intensity variations of the SR were analysed by Anyamba et al. (2000) who65

suggested that changes in the intensity over 30-90 day periods were controlled

by meteorological variability in the troposphere, rather than the 27-day solar

rotation cycle. To prove their hypothesis, Anyamba et al. (2000) compared

their SR periodicities to the modulation of the global deep convection known as

the Madden-Julian oscillation (MJO). The MJO is the dominant mode of the70

tropical atmospheric intraseasonal variability associated with large scale changes

in the upper and lower level winds, sea surface temperature, vertical motion and

atmospheric moisture content (Zhang, 2005).

Anyamba et al. (2000) suggested that global variations in SR intensities

on these periods are modified by the changes in deep convection due to MJO75

due to the movement of the locations of the lightning centres. However, they

based their findings on short (four month) segments of data from Antarctica

chosen from seven years of incomplete SR meaurements. They analysed a single

frequency (10 Hz) from four universal times per day: 0200, 0800, 1400 and 2000

UT and made a somewhat subjective and qualitative comparison to their own80

Convective Index parameter. This parameter was derived from the analysis of

outgoing longwave radiation (OLR) measurements, created as a proxy for the

MJO. Their study is commonly cited as proving the SR-MJO relationship, but,

to our knowledge, there have been no further repeat studies in the literature to

confirm these findings.85

In 2012, two horizontal induction coil magnetometers were installed at a

geophysical observatory in Eskdalemuir (Scottish Borders, UK) by the British

Geological Survey (BGS). The coils have been recording magnetic field vari-

ations over an effective frequency range of 0.1 – 50 Hz since September 2012

(Beggan & Musur, 2018). Having collected around six years of induction coil90

data, the main focus of this study is to re-assess the effects of the MJO in SR,

in order to provide a repeat study of the work in Anyamba et al. (2000), us-

4



ing a larger, more complete dataset and harnessing the greater contemporary

computing resources available.

In Section 2 we describe the instrumentation at Eskdalemuir, the manner of95

data collection and the methodology used in the study. In Section 3 we analyse

the long-term signals in our data. In Section 4, we focus on looking for the rela-

tionship between the MJO signals within the SR data as described by Anyamba

et al. (2000), analysing the periodicities using the Lomb-Scargle transform and

empirical Empirical Mode Decomposition. The results are discussed in Section100

5.

2. Instrumentation

The BGS Eskdalemuir Geophysical Observatory is sited in a magnetically

quiet valley in the Scottish Borders, UK [55.3◦N, -3.2◦E]. The geomagnetic

latitude of the observatory (in quasi-dipole coordinates) at 2018.0 was 57.5◦N105

(L-shell = 3.46).

In June 2012 two refurbished CM11E high-frequency induction coil magne-

tometers were installed on site. The horizontal coils were installed on levelled

gravel beds, set perpendicular to each other, orientated to geographic north-

south and east-west (within ±2◦). They are covered by a wooden frame to pro-110

tect them from the weather, and sited at the edge of the observatory grounds

in the middle of an open field to reduce anthropogenic interference.

The induction coils measure small and very rapid magnetic field variations

in the Extremely Low Frequency (ELF) band range of 0.1 – 50 Hz. The analog

voltage output signal is converted by a 24-bit Guralp digitizer for wired trans-115

mission to a logger placed inside a secure vault around 150 m away. The data are

sampled at 100 Hz by a local computer where they are recorded; each second is

time-stamped using GPS. Every 5 minutes, the data are automatically collected

and permanently stored on the BGS computer network in Edinburgh. In total,

between September 2012 and September 2018 there were around 120 days of120

data missing due to computer issues or component failure (∼95% availability).
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The analysis of the raw data is initially made in the frequency domain using

Welch periodograms (Welch, 1967). Dynamic spectrograms are created for each

day of data from local midnight (00:00 UT) to midnight the following day. To

do this, we use a Butterworth five-pole filter with a 3 – 40 Hz bandpass applied125

to the raw digitizer data. One hundred seconds (10 000 points) are selected from

which a series of fast Fourier transforms are computed using the Welch method

(with 100 s of filtered data) to produce 864 1-D spectra plots per day. A Han-

ning window is applied (overlap of 100 points between windows) to taper the

data prior to applying a 4,096-point Fourier transform. Individual periodograms130

are converted to SI units using the known calibrated instrument response (∼50

mV/nT between 0.1 and 100 Hz for the analog coils), and digitizer calibra-

tion values. The digitizer has a fixed conversion factor of 3.491 µV/count for

the north–south channel (CH1) and 3.475 µV/count for the east–west channel

(CH2). This gives a digitization level of around 0.07 pT/count in both coils for135

short-period signals.

Figure 1 shows example spectrograms from January and August 2018 from

each coil. The Schumann resonances are visible as diffuse vertical bands at

around 8, 14, 20, 26, 32 and 38 Hz. The strong thin line at 25 Hz is a sub-

harmonic of the UK electrical power system. Horizontal lines are due to missing140

data or regional lightning strikes (typically within 1000 km) which raises the

average power in that particular 100 s time window. The spectrograms are

fixed to the same color scale, allowing the differences in intensity between winter

and summer periods to be noted. Although the intensity changes are readily

observed, there are also subtle variations in the peak frequency value of each145

resonance over time.

3. Time-Universal Time analysis of seasonal signals

Though daily and seasonal variations are visible in the spectrograms in Fig-

ure 1, to find changes on inter-seasonal time periods a different approach is

required. We extract intensity and frequency deviations using the methodology150
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Figure 1: Example spectrograms from the North-South (CH1) and East-West (CH2) orien-

tated coils at Eskdalemuir showing the Schumann Resonances. Note the data are band-pass

filtered between 3 and 40 Hz. (a,b) winter:19-Jan-2018 (c,d) summer:19-Aug-2018.

7



of Nickolaenko et al. (2015). In reducing the voluminous dataset down to a

more compact form, we note there is a trade off between time resolution of the

signals, robustness to noise and ease of computation. The study of Anyamba

et al. (2000) chose a single frequency at four time points each day due to the

limited bandwidth and computing resources available at the time. With larger155

amounts of computing capacity now available, it is possible to examine the entire

SR dataset in more detail.

We examined the intensity and peak frequency properties of the first three

resonances using a frequency-domain averaging approach. Following Nicko-

laenko et al. (2015), the time-domain data for each day were divided into 10-160

minute intervals and Fast Fourier Transformed to give 144 spectra which were

converted to SI units using the calibration values noted in Section 2.

We then computed the average intensities and peak frequencies for each SR

mode. The peak frequencies (f) for the first SR mode in both coils (fNS
SR1(ti)

andfEW
SR1(ti) ) were calculated as a weighted average using the following equation,165

for every 10-minute interval ti:

fNS,EW
SR1 (ti) =

f0+∆f∫
f0−∆f

f · SNS,EW (f, ti)df

f0+∆f∫
f0−∆f

SNS,EW (f, ti)df

, (1)

where SNS,EW (f, ti) are power spectra calculated for the separate north-south

(NS) and east-west (EW) channels. The first SR central frequency used by

Nickolaenko et al. (2015) was set to f0 = 8.0 Hz with ∆f = 1.5 Hz, giving a

range of 6.5 Hz – 9.5 Hz. For the second and third SR, the central frequencies170

were set at 14 and 21 Hz, respectively, with the same ∆f = 1.5 Hz.

The SR intensity (I) was calculated from the amplitude of spectral power

at the peak frequency:

INS,EW
SR1 (ti) = SNS,EW (fNS,EW

SR1 , ti). (2)

The data can be visualized in a time-Universal Time (UT) plot for an entire

year, with the days of the year on the y-axis and universal time on the x-axis.175
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We can further reduce the noise by averaging several years of time-UT plots

together. Figure 2 shows the annual-average Time-Universal Time plots using

six years of data. The top row (a) shows the intensity of the first Schumann

Resonance (SR1) from the north-south coil (left) and the east-west coil (right),

while the bottom row (b) shows the peak frequency.180

The intensity plot for the north-south coil shows the magnitude increasing

around local midday, particularly in summer, as thunderstorm activity begins

in India, while the east-west channel has a maximum magnitude around 16:00

related to the African centre. The magnitude of the resonance is greatest in

northern hemisphere summer. The sunrise terminator line is faintly visible185

in these plots, though the sunset line is not as clear (Melnikov et al., 2004;

Ondrás̆ková et al., 2007).

The frequency plot for the north-south coil (Fig. 2(b)) illustrates the source-

receiver distance phenomenon where the highest frequencies (around 8 Hz) occur

at 06:00 and 20:00, particularly in winter time when the thunderstorm centres190

are further away from Eskdalemuir. The path length travelled by EM waves to

the east-west coil varies throughout the year, being closest in summer (when

the Sun reaches the tropic of Cancer) and furthest at the winter solstice. The

sunrise terminator is also clearest in this plot.

The intensity and frequency plots for the other resonances show various sub-195

tleties related to the source receiver distance and orientation (see Supplementary

Information). Individual plots for each year are noisier but show similar sea-

sonal patterns. To examine short time-scale variations, the mean annual Time-

UT plots were subtracted from the individual years. However, it was difficult

to discern if there were any shorter non-periodic signals within the data, due200

to the background noise. Finally, we note the same method was applied to one

year of induction coil data from the Conrad Observatory in Austria and yielded

similar seasonal variation patterns in the first three Schumann Resonances (not

shown).
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Figure 2: Annual average of six years Time-Universal Time plots of the intensity and the

peak frequency of the first Schumann Resonance (SR1) from the north-south coil (a,b) and

the east-west coil (c,d). Note the sunrise terminator line is visible in the east-west plots.10



4. Searching for the Madden-Julian Oscillation205

The Madden-Julian Oscillation was originally detected as a weak periodicity

in the zonal winds recorded at tropical latitudes (Madden & Julian, 1971).

Further analysis revealed it was also detectable in rainfall patterns at the equator

and in the outgoing longwave radation (OLR) measurable at satellite altitude.

The quasi-periodic oscillation consists of large-scale patterns of atmospheric210

circulation (upwelling and downwelling) which propagate eastward at a speed

of ∼5 m s−1. The oscillation begins over continental Africa and drifts toward

the Pacific over the course of one to three months. The triggering conditions

are still poorly understood and the oscillation remains difficult to convincingly

capture in global general circulations models (see Zhang, 2005, and references215

therein).

4.1. The Real-time Multivariate MJO (RMM) index

As it strongly influences rainfall patterns in the tropics, monitoring the MJO

is of great interest for medium to long-term weather forecasting. The Bureau of

Meteorology (BoM) in Australia have developed a measure called the Real-time220

Multivariate MJO (RMM) index which captures the phase and amplitude of

each MJO cycle. The RMM index is a daily bivariate time-series created from

principal component analysis of a number of physical parameters such as OLR

and zonal wind data at various altitudes (Wheeler & Hendon, 2004). The two

index variables (known as RMM1 and RMM2) provide a consistent measure of225

strength and location of the MJO. The MJO phase, which is a proxy for its

location, and amplitude of each cycle can be derived from RMM1 and RMM2.

The pattern of the MJO is itself affected by other longer term phenomenon,

primarily the El Niño Southern Oscillation (ENSO). In the warmer (El Niño)

phase the location of maximum rainfall moves eastward toward the Pacific,230

while during the cooler (La Niña) phase, the MJO initiates predominantly over

continental Africa (Slingo et al., 1999; Zhang, 2005).

Figure 3 shows two time-longitude plots of equatorial rainfall from the Global

Precipitation and Climatological Project (GPCP) V1.3 Daily Analysis Product

11



of Huffman et al. (2001). The color plots are the average rainfall each day (in235

mm/day) within the equatorial latitude band ±10◦, shown over the calendar

year from January-December. The two panels to the right of the color plots

show the RMM phase and amplitudes and the RMM1 and RMM2 indices from

the Australian BoM. Note, the RMM phase is a discrete value between 1 and 8

indicating the location of the MJO; on the graph it has been divided by 3 for240

plotting purposes.

In Figure 3(a), rainfall data for 2013, a La Niña year, are shown. The

thin white arrows indicate some of the MJO patterns, moving eastwards over

time. The pattern is repeated throughout the year. The thicker white lines

indicate the start of an MJO. These coincide with the minimum of the RMM245

phase line (by definition, as RMM phase is 1 for the beginning of the cycle)

and (often) a minimum in the amplitude. However, the direct link with rainfall

occurrence and RMM1/RMM2 is more complicated - the start of each MJO is

not necessarily coincident with a minimum in either index (Wheeler & Hendon,

2004).250

The time-longitude rainfall plot for 2015, an El Niño year, is shown in Figure

3(b). The most intense rainfall locations have moved eastward to around 170◦E.

The white dotted lines aligned to these events show that the amplitude of the

MJO is low but that the phase has not returned to its minimum value, thus

indicating a very weak MJO cycle. (Note, the more numerous westward prop-255

agating patterns are Rossby waves, as described in Zhang (2005)). In terms of

our analysis, the movement of the rainfall and lightning centres away from the

African continent during El Niño will lead to a change in the average distance

and direction of the travel path to Eskdalemuir. There may also be a fall in

intensity in Europe as noted by authors such as Sátori & Zieger (1999), Sátori260

et al. (2009) and Nieckarz et al. (2009).

4.2. Periodic Analysis: Lomb-Scargle periodograms

A direct comparison of the periodograms of the intensity and frequency of

the Schumann Resonances with the RMM index is possible using the Lomb-
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the RMM1 and RMM2 indices. Dashed white lines show the initiation of MJO cycles. White
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Scargle periodogram. This method can account for missing data and hence is265

superior to an FFT, though with the inevitable loss of some accuracy (Lomb,

1976). Intensity and frequency values from the first resonance (SR1) consists

of data from a total of 2221 days covering September 2012 to September 2018.

We also analyzed the (complete) index values for RMM1 and RMM2 using

Lomb-Scargle.270

Figure 4 (a) plots the power spectra, analysed using Lomb-Scargle peri-

odograms, of the RMM index on a log-log scale, showing a broad range of

maximum power between 30 to 90 days, as well as an annual peak. Figure

4 (b) and (c) show the periodograms for the intensity and frequency of SR1

for both induction coils. The strongest peaks are at 1 day and one year with275

little obvious correlation between the RMM and SR1 datasets, thus implying

the MJO does not have a strong periodic influence in the SR data. There are

also no obvious peaks around solar rotation periods (27 days) or shorter term

components.

4.3. Quasi-periodic Analysis: Empirical Mode Decomposition280

Empirical Mode Decomposition (EMD) is a technique for identifying non-

stationary, quasi-periodic signals in time-series data. It is part of the Hilbert–Huang

transform (Huang et al., 1998) and consists of a sifting process which iteratively

fits a spline through the minimum and maximum of the data to compute a

running mean value. This mean is subtracted from the data to form the first285

Intrinsic Mode Function (IMF). This process is repeated until the residual be-

comes smaller than a predefined threshold value or contains no further minima

or maxima. The technique has been applied to a large number of geophysical

problems. In geomagnetism, for example, Jackson & Mound (2010) examined

400 years of declination measurements from Paris and London to identify long290

period signals (∼80 years) indicative of unknown core processes.

The EMD technique requires a complete dataset and so is sensitive to missing

data values. It also tends to fail at the end points of the time-series. As the

induction coil dataset is around only 95% complete, an interpolation strategy

14
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was required to fill the gaps. We also reduced the data cadence from 10-minute295

data points to a daily value. For each day, the 144 10-minute SR amplitude and

frequency data were down-sampled to a single daily value using a finite impulse

response function (rather than a simple daily average). Next, large spikes were

removed from the dataset using a manually-set threshold value. Finally, linear

interpolation was used to fill in the missing data to form a complete dataset.300

The largest gap is around 30 days due to a hardware failure, though most are

less than 5 days.

We use a modified version of the EMD method from Flandrin et al. (2004)

called the ensemble EMD to decompose the Schumann resonance intensity and

frequency time-series. The ensemble EMD technique involves adding a small305

amount of random noise to each input data point in the time-series before

decomposing it into the IMFs (Wu & Huang, 2009). We used 16 ensembles

and averaged the IMF outputs from each member to give a final set of IMFs for

each SR parameter. This improves the robustness of the results compared to

a single EMD. We also decomposed the RMM indices (RMM1, RMM2, Phase310

and Amplitude).

The EMD method generates up to 8 IMFs for each time series. Each IMF

time-series is then passed through a peak-finding algorithm to identify the inter-

peak time difference. This average time difference is then ascribed to the par-

ticular IMF. IMFs with inter-peak times of less than 30 days or greater than 90315

days are ignored in this analysis as being outside the range of the MJO. Using

the IMFs which have periods between 30 and 90 days allows us to compare

the SR1 intensity and frequency from each channel to the RMM indices in the

period range that the MJO typically occupies.

Figure 5(a) shows the variation in SR1 intensity in both coil channels over320

the six years studied. In Figure 5(b) and (c), the relevant IMFs from the

decomposition of the SR1 intensity time-series are shown (red and blue curves).

The matching IMFs from the decomposition of the RMM phase curve are shown

as gray lines. All curves have been normalized to their maximum absolute value

to allow for easier comparison. For most of the time-series there is little direct325
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correlation between the RMM IMF and the SR1 IMF. Time periods where the

curves beat in phase are highlighted in pink and occur in 2013/14 and 2016 in

panel (b) and 2013/14 in panel (c), primarily for the NS-orientated coil (blue

curve).

The SR1 intensity IMFs are also compared to the IMFs from the decom-330

postion of RMM1 in panels (d) and (e). The SR1 IMFs in panel (d) correlate

best in the highlighted time periods, matching panels (b) and (c), but there are

no obvious periods of correlation in panel (e). Finally, the Southern Oscillation

Index (SOI) is plotted in panel (f). Positive values indicate a La Niña event

while negative values are the El Niño phase. A strong El Niño occurred between335

2014.5 and 2016.5. The highlighted regions of panels (b), (c) and (d) tend to

occur in the La Niña phases.

The SR1 frequency data are plotted in Figure 6(a). The same analysis as

Figure 5 is applied to the frequency time-series. The RMM phase IMFs with

the most similar periods are shown in panels (b) and (c). The in-phase times340

(primarily with the NS orientated coil) are highlighted in pink. In panels (d) and

(e) there are no apparent periods where the RMM1 IMFs and SR1 frequency

IMFs coincide. Panel (f) shows the SOI with the highlighted regions from panels

(b) and (c). Again, they occur around 2013/14 and 2017/18, coinciding with

La Niña phases.345

In addition to SR1, we examined the intensity and frequency IMFs decom-

posed from SR2 and SR3, as well as the intensity derived from the 10 Hz line in

the induction coil spectrograms. Overall, there was little consistency between

the RMM IMFs for RMM1 and RMM2 or Amplitude and Phase, except for the

SR2 Intensity with RMM1 which occasionally beats in-phase during La Niña350

phases. These plots for RMM1 and RMM phase are given in the Supplementary

Information for reference.

17



2013 2014 2015 2016 2017 2018
0

0.5

1

1.5
SR1 Intensity

2013 2014 2015 2016 2017 2018
-2
-1
0
1

Southern Oscillation Index

N
or

m
al

is
ed

 m
od

es
N

or
m

al
is

ed
 m

od
es

In
te

ns
ity

 (A
.U

.)
SO

I

-0.5
0

0.5
1

SR1 Intensity vs RMM Phase IMFs ~60 days

-1
-0.5

0
0.5

1
SR1 Intensity vs RMM1 IMFs ~30 days

-0.5
0

0.5
1

SR1 Intensity vs RMM1 IMFs ~60 days

-1
-0.5

0
0.5

SR1 Intensity vs RMM Phase IMFs ~30 days

(a)

(b)

(c)

(d)

(e)

(f )

Figure 5: Comparison of the Intrinsic Mode Functions (IMF) from the decomposition of the

first Schumann Resonance (SR1) intensity and the RMM phase time-series. (a) SR1 intensity

in the north-south coil (blue) and east-west coil (red). (b,c) IMF curves for SR1 intensity

(blue, red) and RMM phase (gray). (d,e) IMF curves for SR1 intensity (blue, red) and

RMM1 (gray). (f) Southern Oscillation index; negative values indicate El Niño periods. Pink

highlighted regions indicate times when the IMFs beat in-phase.
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Figure 6: Comparison of the Intrinsic Mode Functions (IMF) from the decomposition of

the first Schumann Resonance (SR1) frequency and the RMM phase time-series. (a) SR1

frequency in the north-south coil (blue) and east-west coil (red). (b,c) IMF curves for SR1

frequency (blue, red) and RMM phase (gray). (d,e) IMF curves for SR1 frequency (blue, red)

and RMM1 (gray). (f) Southern Oscillation index; negative values indicate El Niño periods.

Pink highlighted regions indicate times when the IMFs beat in-phase.
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5. Discussion

We have examined the intensity and frequency variations of the first three

Schumann Resonances as detected in two orthogonal horizontal magnetic in-355

duction coils at Eskdalemuir in the UK. The site is magnetically quiet and the

six year dataset offers a reasonable record length to investigate seasonal and

inter-annual signals. In general, the north-south coil measures larger intensity

than the east-west coil but the response depends on the direction of the elec-

tromagnetic wave arrivals with respect to the source regions. Figure 1 shows360

that during winter the east-west coil (panel b) is slightly more energetic than

the north coil for much of the day. In the summer, the opposite occurs as the

north-south coil (panel c) measures higher amplitude intensities throughout the

day.

We choose to search for the Madden-Julian Oscillation as a challenging sig-365

nal that previous research suggests is present. Following standard practise, we

extracted the time-series into ten minute blocks and computed the Welch pe-

riodogram. We then sought the intensity and peak frequency of the first three

Schumann Resonances around the 8, 14 and 21 Hz lines. We examined these

data in a series of Time-Universal Time plots, looking at the average variation370

over each year and the deviation away from the average. Although we noted the

influence of the seasonal variation due to the change in the location and inten-

sity of the lightning centres, there was no evidence for coherent inter-seasonal

signals, suggesting they are subtle.

In Figure 2 (b), we noted that the SR1 intensity from the east-west orientated375

coil responds most strongly to the local afternoon (1600 UT) signals, which arise

from lightning activity approximately south of the UK (i.e. the African lightning

centre), while the north-south intensity (panel a) responds to lightning from

India/Indonesia at around 09:00 and America later around 20:00. The intensity

plots peak at the mid-summer season which coincides with the closest approach380

of the lightning centres. Conversely, the frequency plots show their minima at

these times, illustrating the effect of the source-receiver distance on the different
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parameters (e.g. Nickolaenko & Hayakawa, 2002).

As a proxy for the MJO, we chose the RMM index, a bivariate variable which

uses the zonal wind and cloudiness measurements. The RMM phase correlates385

well with the initiation of rainfall onset in the African region from the equatorial

rainfall maps. We also note that during El Niño phases of ENSO rainfall tends

to form in locations further east from the African continent (Figure 3). From

Figure 4, a comparison of Lomb periodograms of the intensity and frequency of

SR1 with RMM1 and RMM2 showed few strong periodic features, other than390

the daily and yearly signals. The same analysis for the RMM index found a

broad peak around 30-90 days which is consistent with the period range of the

MJO. We conclude that, globally, the SR1 is not strongly influenced by the

MJO on the 30-90 day periods.

As the MJO is quasi-periodic, we analysed the time-series data using Em-395

pirical Mode Decomposition to extract the modes (IMFs) which capture similar

periods. Figures 5 and 6 indicate that there are time periods where correlation

occurs between the SR1 intensity and the SR1 frequency and the RMM Phase

IMFs. These ‘beating’ periods tend to coincide with La Niña phases. The cor-

relation between SR1 and RMM phase is mainly for the north-south orientated400

coil for the IMF covering approximately 40-60 day periods. The correlation is

also generally poorer for the east-west orientated coil and for the comparisons

with the RMM1 variable.

The pioneering work of Anyamba et al. (2000) sought evidence for the influ-

ence of the Madden-Julian Oscillation within the variation of Schumann Reso-405

nances at their station in Arrival Heights, Antarctica (around 78◦S, 166◦E, i.e.

almost antipodal to Eskdalemuir). Their conclusions rest on the correlation of

the variation of the intensity of the 10 Hz line with a self-derived convective

index (CI). Within their paper, there are some arbitrary choices made with re-

gards to how the correlation between the the 10 Hz and the CI are determined.410

Due to limited data available at the time, the authors could only examine cer-

tain years. They note, in their Section 3, that the best match between the CI

and the SR was winter 1989/90, which was a La Niña phase. It is noteworthy
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that no other papers, to our knowledge, have provided further evidence of the

influence of the MJO on the SR; which implies it is difficult to find.415

Sátori et al. (2009) noted the unexpected reduction of the mean daily inten-

sity of the SR at Nagycenk during El Niño conditions compared to La Niña.

This is consistent with the observations at Eskdalemuir too. Satori et al. argue

that the decrease during El Niño relates to the fall in the number of lightning

strikes in the Pacific Ocean as well as the relative motion of the location of420

the lightning centres by around 500 km between ENSO phases. Thus, it may

be argued that the source-receiver effect in conjunction with decrease in light-

ning activity in the Pacific during El Niño controls the variation of intensity

of the Schumann Resonances at Eskdalemuir. During an El Niño phase the

lightning activity centres move eastward and lightning in the Pacific decreases.425

Conversely, during La Niña phases, global lightning intensity falls (though not

in the Pacific) but the activity centres move westward. The MJO also initiates

in different locations depending on the ENSO phase. Hence, MJO-related mod-

ulation in the SR parameters in the Eskdalemuir may be easier to distinguish

when the lightning centres are closer to it during La Niña than under El Niño430

conditions.

We note there are a number of limitations in this study which include the

relatively short length of the dataset (six years) and the effect of noise and

partial or missing data (around 5%) on the overall analysis. The gaps affect the

robustness of the EMD, in particular, though the use of the ensemble does reduce435

their influence. However, from the Time-UT plots, we do find the expected

seasonal and annual variations in the dataset indicating the coils are sensitive to

these changes. Finally, we cannot reject the null hypothesis i.e. the correlations

between the MJO and the periodic variations found by the EMD are purely

coincidental.440

We suggest that the analysis of other long term induction coil datasets at

high latitude at different longitudes around the globe (e.g. Canada, Japan, New

Zealand or Antarctica) could reveal whether the reliable detection of the MJO is

indeed related to the source-receiver distance or perhaps dependent on judicious
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placement of the receiver relative to the motion of the lightning centres.445

6. Conclusion

Using six years of high-quality induction coil data from Eskdalemuir Geo-

physical Observatory, we examine the frequency and intensity variations of the

first three Schumann Resonances to search for the influence of the Madden-

Julian Oscillation, an equatorial atmospheric phenomenon with a period of 30-450

90 days.

We compare the frequency and intensity variations of the Schumann Reso-

nances to the RMM index, a proxy for the MJO. Direct comparison between the

RMM index values and the SR using Lomb periodograms reveals no common

periodic signals in the 30 to 90 day frequency range. We used Empirical Mode455

Decomposition to extract quasi-periodic modes from each of the SR intensity

and frequency, and RMM index time-series. We find that the modes of the

RMM phase index and the SR intensity and frequency correlate occasionally

during the cooler La Niña phases of the ENSO but not in the warmer El Niño

phases. We suggest this is primarily due to the relative change in the source-460

receiver distance between Eskdalemuir and the motion of the main lightning

centres during ENSO.
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nance frequencies and changes in the effective lightning areas toward the solar

cycle minimum of 2008-2009. Journal of Atmospheric and Solar-Terrestrial ,550

73 , 534–543. doi:10.1016/j.jastp.2010.11.013.

Price, C. (2016). ELF electromagnetic waves from lightning: the Schumann

resonances. Atmosphere, 7 , 116. doi:10.3390/atmos7090116.

26

http://dx.doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
http://dx.doi.org/10.1016/j.jastp.2005.05.014
http://dx.doi.org/10.1016/j.jastp.2005.05.014
http://dx.doi.org/10.1016/j.jastp.2005.05.014
http://newserver.stil.bas.bg/SUNGEO//00SGArhiv/SG_v10_No1_2015-pp-39-49.pdf
http://newserver.stil.bas.bg/SUNGEO//00SGArhiv/SG_v10_No1_2015-pp-39-49.pdf
http://newserver.stil.bas.bg/SUNGEO//00SGArhiv/SG_v10_No1_2015-pp-39-49.pdf
http://dx.doi.org/10.1175/2009MWR2920.1
http://dx.doi.org/10.1175/2009MWR2920.1
http://dx.doi.org/10.1175/2009MWR2920.1
http://dx.doi.org/10.1029/2006RS003478
http://dx.doi.org/10.1016/j.jastp.2010.11.013
http://dx.doi.org/10.3390/atmos7090116


Sátori, G. (1996). Monitoring Schumann resonances - II. Daily and seasonal

frequency variations. Journal of Atmospheric and Terrestrial Physics, 58 ,555

1483 – 1488. doi:10.1016/0021-9169(95)00146-8.
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