

Impacts on Groundwater Quality from Abandoned Hydrocarbon Wells - Final Report

Groundwater Science Programme Commissioned Report CR/18/061

BRITISH GEOLOGICAL SURVEY

GROUNDWATER SCIENCE PROGRAMME COMMISSIONED REPORT CR/18/061

Impacts on Groundwater Quality from Abandoned Hydrocarbon Wells - Final Report

RA Bell, JM Bearcock, MJ Bowes, CJ Milne, JM Scheidegger, D White, H Taylor, T R Lister, PL Smedley, RS Ward

The National Grid and other Ordnance Survey data © Crown Copyright and database rights 2018. Ordnance Survey Licence No. 100021290 EUL.

Keywords

Groundwater, hydrocarbons, aquifer

Front cover Borehole sampling

Bibliographical reference

RA Bell, JM Bearcock, MJ Bowes, CJ Milne, JM Scheidegger, D White, H Taylor, PL Smedley, RS Ward. 2018. Impacts on Groundwater Quality from Abandoned Hydrocarbon Wells - Final Report. *British Geological Survey Commissioned Report*, CR/18/061. 113 pp.

Copyright in materials derived from the British Geological Survey's work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail ipr@bgs.ac.uk. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract.

Maps and diagrams in this book use topography based on Ordnance Survey mapping.

© NERC 2018. All rights reserved

Keyworth, Nottingham British Geological Survey 2018

BRITISH GEOLOGICAL SURVEY

The full range of our publications is available from BGS shops at Nottingham, Edinburgh, London and Cardiff (Welsh publications only) see contact details below or shop online at www.geologyshop.com

The London Information Office also maintains a reference collection of BGS publications, including maps, for consultation.

We publish an annual catalogue of our maps and other publications; this catalogue is available online or from any of the BGS shops.

The British Geological Survey carries out the geological survey of Great Britain and Northern Ireland (the latter as an agency service for the government of Northern Ireland), and of the surrounding continental shelf, as well as basic research projects. It also undertakes programmes of technical aid in geology in developing countries.

The British Geological Survey is a component body of the Natural Environment Research Council.

British Geological Survey offices

BGS Central Enquiries Desk

Tel 0115 936 3143	Fa
email enquiries@bgs.ac.uk	

Fax 0115 936 3276

Environmental Science Centre, Keyworth, Nottingham NG12 5GG

Tel 0115 936 3241	Fax 0115 936 3488
email sales@bgs.ac.uk	

The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP

Tel 0131 667 1000	Fax 0131 668 2683
email scotsales@bgs.ac.uk	

Natural History Museum, Cromwell Road, London SW7 5BD

Tel 020 7589 4090	Fax 020 7584 8270
Tel 020 7942 5344/45	email
bgslondon@bgs.ac.uk	

Columbus House, Greenmeadow Springs,

Tongwynlais, Cardiff CF15 7NE

Tel 029 2052 1962 Fax 029 2052 1963

Maclean Building, Crowmarsh Gifford, Wallingford OX10 8BB

Tel 01491 838800 Fax 01491 692345

Geological Survey of Northern Ireland, Department of Enterprise, Trade & Investment, Dundonald House, Upper Newtownards Road, Ballymiscaw, Belfast, BT4 3SB

Tel 028 9038 8462

Fax 028 9038 8461

www.bgs.ac.uk/gsni/

Parent Body

Natural Environment Research Council, Polaris House, North Star Avenue, Swindon SN2 1EU Tel 01793 411500 Fax 01793 411501 www.nerc.ac.uk

Website www.bgs.ac.uk Shop online at <u>www.geologyshop.com</u>

Contents

Cor	ntents		i
Ack	nowl	edgements	iv
Sun	nmary	y	v
1	Intro	oduction	1
	1.1	Site selection	
2	Field	lwork campaigns	6
	2.1	Logistics	6
	2.2	Field Area Details	6
	2.3	Sampling and analysis	14
3	Sum	mary results	16
	3.1	Organic chemistry	16
	3.2	Inorganic chemistry	24
	3.3	Dissolved gases	24
4	Furt	her reconnaissance	28
	4.1	Broughton	28
	4.2	Calow	30
	4.3	Eskdale	32
	4.4	Everton	34
	4.5	Ironville	36
	4.6	Outcome of reconnaissance	38
5	Soil	Gas Survey	39
	5.1	Introduction	39
	5.2	Monitoring site selection and supporting information	39
	5.3	Monitoring data and processing activities	39
	5.4	Results and discussion	39
	5.5	Soil gas summary	47
6	Conc	clusions	48
Ref	erenc	es	49
Арј	pendix	x 1 Hydrocarbon field factsheets	50

FIGURES

Figure 1. The location of selected abandoned fields	2
Figure 2. Geology, licensed areas and abandoned wells in the Nooks Farm study area	7
Figure 3. Potential sampling sites around Nooks Farm.	7
Figure 4. Sites sampled around Nooks Farm.	8
Figure 5. Geology and abandoned wells in the Ashdown study area.	9
Figure 6. Potential sampling sites around the Ashdown study area	9
Figure 7. Sites sampled around Ashdown	10
Figure 8. Geology, licensed areas and abandoned wells in the Hemswell study area	11
Figure 9. Potential sampling sites around the Hemswell study area	11
Figure 10. Sites sampled around Hemswell	12
Figure 11. Geology, licensed areas and abandoned wells in the Lomer study area	13
Figure 12. Potential sampling sites around the Lomer study area.	13
Figure 13. Sites sampled around Lomer	14
Figure 14. Piper diagram showing major-ion chemistry of the four study areas	25
Figure 15. Geology, licensed areas and abandoned wells around the Broughton oil field	29
Figure 16. Potential sampling sites around the Broughton oil field	29
Figure 17. Sites considered during a reconnaissance of the area around the Broughton oil field	30
Figure 18. Geology, licensed areas and abandoned wells around the Calow gas field	31
Figure 19. Potential sampling sites around the Calow gas field	31
Figure 20. Sites considered during a reconnaissance of the area around the Calow gas field	32
Figure 21. Geology, licensed areas and abandoned wells around the Eskdale gas field	33
Figure 22. Potential sampling sites around the Eskdale gas field.	33
Figure 23. Sites considered during a reconnaissance of the area around the Eskdale gas field	34
Figure 24. Geology, licensed areas and abandoned wells around the Everton gas field	35
Figure 25. Potential sampling sites around the Everton gas field	35
Figure 26. Sites considered during a reconnaissance of the area around the Everton gas field	36
Figure 27. Geology, licensed areas and abandoned wells around the Ironville gas field	37
Figure 28. Potential sampling sites around the Ironville gas field	37
Figure 29. Sites considered during a reconnaissance of the area around the Ironville gas field	38
Figure 30. Ashdown 1 soil gas survey area showing the location of the Ashdown 1 well (A), adjac lane (B) and neighbouring equestrian jumps (C) course to the west	
Figure 31. Ashdown 1 open path CO ₂ laser, CO ₂ flux and CO ₂ in soil gas	41
Figure 32. Ashdown 1 CO ₂ and O ₂ ratios in soil gas collected in January 2018 and November 201	7.42
Figure 33. Bolney 1 soil gas survey area and reported location of the Bolney 1 well	43
Figure 34. Figure 4. Open path CO ₂ laser surveying at Bolney 1	44
Figure 35. Bolney 1 open path CO ₂ laser, CO ₂ flux, and CO ₂ and CH ₄ in soil gas	45

Figure 36. Bolney 1 CO ₂ and O ₂ ratios in soil gas collected in January 2018 (black points) and	
November 2017 (blue points)	46

TABLES

Table 1. Assessment criteria for abandoned wells, Phase 2 highlighted in red	1
Table 2. Phase 2 assessment of the 27 HC fields in the study	3
Table 3. Sample analysis suite	15
Table 4. Round 1 organic chemistry summary for Nooks Farm	16
Table 5. Round 1 GC-MS and LC-MS summary for Nooks Farm	16
Table 6. Round 1 organic chemistry summary for Ashdown	17
Table 7. Round 1 GC-MS and LC-MS summary for Ashdown	17
Table 8. Round 1 organic chemistry summary for Hemswell	17
Table 9. Round 1 GC-MS and LC-MS summary for Hemswell	
Table 10. Round 1 organic chemistry summary for Lomer	
Table 11. Round 1 GC-MS and LC-MS summary for Lomer	19
Table 12. Round 2 organic chemistry summary for Nooks Farm	
Table 13. Round 2 GC-MS and LC-MS summary for Nooks Farm	
Table 14. Round 2 organic chemistry summary for Ashdown	
Table 15. Round 2 GC-MS and LC-MS summary for Ashdown	
Table 16 Round 2 organic chemistry summary for Hemswell	
Table 17. Round 2 GC-MS and LC-MS summary for Hemswell	
Table 18. Round 2 organic chemistry summary for Lomer	
Table 19. Round 2 GC-MS and LC-MS summary for Lomer	
Table 20. Summary of CH ₄ data	
Table 21. Round 1 inorganic chemistry selected results	
Table 22. Round 2 inorganic chemistry selected results	
Table 23. Desk study summary of potential sites within 5km of field	
Table 24. Summary of reconnaissance visits	

Acknowledgements

The authors would like to thank Sian Loveless and Ian Mounteney for their assistance during the two rounds of groundwater fieldwork; Karen Kirk and Dave Jones for their assistance during the soil gas fieldwork; and Chris Rochelle and Andrew Kilpatrick (all BGS) for their input on the hand-held laser. The staff at the BGS Analytical Geochemistry Laboratories, Jones Environmental Laboratory and Alcontrol laboratories are thanked for inorganic and organic analysis of groundwater samples. Ian Davy, Sarah Scott, Andy Oliver and Katya Manamsa (Environment Agency) are thanked for their inputs.

Anglian Water, United Utilities and all the private landowners are thanked for providing access to their boreholes and land, and providing assistance to the sampling team.

Summary

This report details a reconnaissance investigation carried out between 2016 and 2018 from a British Geological Survey (BGS)–Environment Agency (EA) collaboration on the impacts of abandoned hydrocarbon (HC) wells on groundwater quality in England. The investigation involved collation of a database of HC wells that were identified from records provided by DECC (Department of Energy & Climate Change; now BEIS: Business, Energy & Industrial Strategy) as being abandoned (as opposed to operational or unspecified), categorising according to factors such as oil or gas designation, depth of HC resource, time since abandonment, productive life, absence of active wells nearby, and occurrence and type of overlying aquifer(s). From this categorisation, a subset of 27 sites were shortlisted for further investigation and fact sheets were produced for each outlining regional geology, hydrogeology and potential groundwater monitoring points in the area. Using these factsheets, four study areas were assessed as being most suitable for further field investigation. These comprised two gas fields: Nooks Farm (Staffordshire), and Ashdown (Sussex), and two oil fields: Hemswell (Lincolnshire) and Lomer (Hampshire).

Groundwater sampling campaigns were conducted in 2016–2017 in the four study areas, with potential sampling points identified within a 5 km buffer zone around (downstream of) the HC well or HC field. In several areas, the number of sampling points was very limited as locations of HC wells do not necessarily have any relationship with locations of overlying aquifers. In others, large numbers of sites were deemed unsuitable for sampling, for reasons including disuse, decommissioning, safety or lack of access. This made representative sampling of groundwater a severe challenge. Suitable sites from the four study areas were sampled twice during the project, with a total of 48 groundwater samples being collected over the two campaigns.

Results from both sampling rounds have shown that the presence of hydrocarbons in the groundwater is limited. In the first sampling round, a maximum dissolved methane (CH₄) concentration of 407 μ g/L was recorded. However, this relatively high value was not repeated when the site was visited during the second round of groundwater sampling. The value was below the threshold required for $\delta^{13}C_{CH4}$ isotopic analysis. Some groundwater samples showed detectable quantities of organic compounds including VOCs (volatile organic compounds) and PAHs (polycyclic aromatic hydrocarbons) as well as pesticides, herbicides, fungicides, surfactants, analgesics and veterinary compounds. These were, however, almost invariably present in low concentrations, none could be linked unequivocally to the presence of abandoned HC wells and many were clearly due to other anthropogenic activities.

As a result of the difficulties finding representative and suitable groundwater sampling sites, a further reconnaissance was undertaken in May 2017 to identify potential alternative gas and oil fields. This confirmed further the difficulties in finding suitable areas for investigating groundwater quality and further groundwater sampling was therefore not attempted. An alternative approach was used to investigate two abandoned HC well areas: Ashdown, one of the original study areas, and a new location at Bolney (also Sussex). A soil gas survey was completed at each of these locations in order to investigate whether soil gas proximal to the former well location contained any evidence of HC leakage. Due to poor ground conditions at the time of sampling, the results are ambiguous, but do show elevated concentrations of both CO_2 and CH_4 . Further work in dry ground conditions would be required to say with certainty that these concentrations are linked directly to the presence of the gas wells.

1 Introduction

This investigation made use of a database of hydrocarbon (HC) wells/fields, available from DECC (now BEIS), who hold the HC borehole logs and any additional geochemistry or logging information. The database lists some 1500 HC wells across England & Wales, from which a shortlist of 27 abandoned HC wells was selected across the country. These were shortlisted and prioritised in two Phases: in Phase 1 on HC well criteria including oil/gas prospectivity, depth, length of time since abandonment, absence of proximal active wells, and in Phase 2 on aquifer status and type, pre-existing HC and water data availability and sampling practicality (Table 1). For Phase 2, information on the aquifer type was collated from BGS and EA reports and geological data from BGS datasets. Where available, geological cross sections were included in the assessment.

Groundwater sampling practicalities involved an assessment of the EA's Groundwater Quality and Groundwater Level monitoring networks, the EA's National Abstraction Licence Database, and the BGS's Wellmaster database.

Order			Priority		
			Gas	1	
	1	HC type	Oil	2	
			Coalbed methane (CBM)	0	
	2	UC well bistomy	Producing	1	
	2	HC well history	Non-producing	0	
	3	Reason for abandonment	Economic	1	
	3	Reason for adamuonment	Unproductive	0	
			< 20 years	1	
PHASE 1	4	Time since abandonment	20–50 years	2	
			> 50 years	2	
			< 500 m	0	
	5	HC well depth (or depth to offset)	500–750 m	1	
	5		750–1500 m	2	
			> 1500 m	2	
		Due inside de la indiana	0–5 km	3	
	6	Proximity to existing wells	5–10 km	2	
	wells		> 10 km	1	
Assess number of water wells					
			Unconfined	1	
	7	Aquifer type	Confined	1	
PHASE 2			Unproductive	0	
		Data anailabilita fa UC	Well completion	1	
	8	Data availability for HC wells	Monitoring data	2	
		WCIIS	Abandonment/decommissioning	2	
	0	Due et a eliter	Accessibility	2	
	9	Practicality	Availability of monitoring well	1	

Table 1. Assessment criteria for abandoned wells with agreed priority (3: highest)

The collated information was tabulated into a series of 'factsheets' for each of the 27 HC wells/fields. These included maps of potential sampling sites, stratigraphic logs and any hydrogeological information (e.g. groundwater level, flow directions). The 27 factsheets are included in Appendix 1.

1.1 SITE SELECTION

The location of the 27 shortlisted locations is shown in Figure 1. The factsheets were used to inform the selection of the four areas most suitable for further study. It was anticipated that a mixture of aquifer types, physical location and HC field type (oil/gas) would be valuable for comparison.

Each field was assessed according to the aquifer type, number of potential sampling sites and the HC resource present. This information was tabulated, with inputs from the EA and BGS, and colour coded to aid decision making (Table 2).

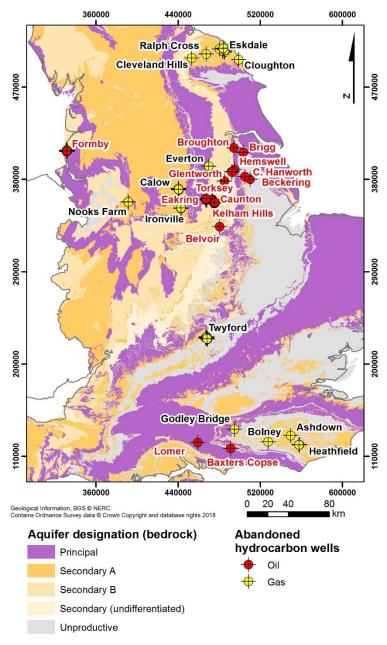


Figure 1. The location of selected abandoned fields

Table 2. Phase 2 assessment of the 27 HC fields in the study

Site	Location	Depth	Shows	Bedrock aquifer		We	Wellmaster			Commer	nts
				Bedrock aquiter	Superficial aquifer	Field	1km		Environm	ent Agency	BGS
GAS											
			241-253 m 0.7 m3/ day; 262 -288 m 1.3 m3/							Appears	Deep and shallow hydrocarbon
			day; 327-336 m 17.3 m3/ day; 896-904 m 90.9							reasonable	source
Ashdown	East Sussex	1383m	m3/day	Ashdown Fm			1	4		Teasonable	Source
											Similar location/hydrogeology to
				Tunbridge Wells Sand					Insufficient mpts		Ashdown, but Ashdown has better
Bolney	West Sussex	2440m	@ ~132m, Purbeck, oil @ ~293m & ~400m	secondary A			1	1			potential for sampling
· · ·			oil seepage 322 – 628 m. Gas 148-154 m 78.6								
			m3/day; 220-230 m 572.8 m3/day; 220-241 m								Majority of potential sampling
			2455 m3/day; 293-298 m 818 m3/day; 312-319								points are Well Master boreholes - aquifer is coal measures, likely to
			m 264 m3/day; 312-341 m 168 m3/day. No gas	Lower Coal measures,							have elevated CH4
Calow	Derbyshire	1130m	from 421-910m	Secondary A			2	5			
				Ravenscar Group						Water quality	
			Gas seen at 1300, 1330, 1520 m bgl. At 1517	(Cloughton Fm),					Insufficient mpts	issues	limited monitoring points
Cleveland Hills	N Yorks	1915m	m bgl yielded 682 m3/day of gas	Secondary A			0	0			
			Gas show. Little gas recovered from							Water quality	Production and the second second
Claughtan	N Yorks	3078m	Carboniferous sandstone or Magnesian Limestone	Ravenscar Group,			0	0	Insufficient mpts	issues	limited monitoring points
Cloughton	IN TOIKS	30760	Limesione	Secondary A			0	0			
										Water quality	Limited spread of groundwater monitoring points in the buffer
E al stata	NI Marilia	4540-	One found at and halow 1000 m	Ravenscar Group,	TH Oseandary A		0	40		issues	zone.
Eskdale	N Yorks	1540m	Gas found at and below 1300 m	Secondary A	Till, Secondary A		6	12			2016.
											CBM target not met, but deeper oil
											target was. Limited monitoring
									Insufficient mpts	Target not reached	points but principal aquifer with
				Sherwood Sandstone,	Peat, Secondary A,						potentially enough samples for this project.
Everton	N Notts	1660m	abandoned without reaching target formation	Principal aquifer	unproductive		0	1			project.
			Gas analysis for CH4, C2H6, C3H8, C4H10 in								Poor aguifer and limited monitoring
			log. Just CH4 until 823 m. Highest	Weald Clay Formation,					Insufficient mpts		points in the aquifer of interest
Godley Bridge	Sussex	2584m	concentrations of all gasses 1873 m	Secondary A	Alluvium		0	0			points in the addition of interest
									Gas source is		
			Well 4 produced 68200 m3/day enough to						within the formation		Only shallow gas has been proven,
			provide natural gas to a small number of	Ashdown Formation,					to be monitored		not a deeper reservoir.
Heathfield	Sussex	115m	houses.	Secondary A			4	6			
			Oil show 180 to 190m, 240m, 370m, 408m,								Majority of potential sampling
			615m, 660m, 710m and 830m. Oil and gas								points are Well Master boreholes -
			shows 515 to 530m, 585m, 680m. Tested	Lower Coal Measures.							aquifer is coal measures, likely to
Ironville	Derbyshire	836m	~235m 0.3 m3/day water and trace gas. 36 to 60 m3/day gas between 510-535 m	Secondary A			3	10			have elevated CH4
	Dorbysnine	00011	os molady gas between o to ooo m	occondary A			0	10			Status of the field is in flux.
											currently all wells are abandoned,
											but 7 Star are planning on re-
				Millstone Grit Group,							instating a drill site for further
Nooks Farm	Staffs	625m	Good gas production.	Secondary A	Till, Secondary Undiff	f	15	40			exploration.
		1001		Jurassic Ravenscar					Insufficient mpts		Limited monitoring points
Ralph Cross	N Yorks	1631m	Methane noted in log in 'considerable' amounts.	Group, Secondary A			0	0			
To a famil	Duraliza	454	No gas until 126 m then gas and water to 144	Oxford Clay,						Bedrock	Unproductive bedrock aquifer
Twyford	Bucks	154m	m.	unproductive	1	1	8	14		unproductive	

Suitable

Has potential

Others are preferable

Not suitable

Site	Location	Depth	Hows Bedrock aguifer Wellm		ellmaster	Comments				
				Bedrock aquifer	Superficial aquifer	Field	1km	Environm	ent Agency	BGS
DIL										
			Some CH4, C2H6, C3H8, C4H10 seen during					Insufficient close	Bedrock	
			drilling, details on log. Borehole produced 150	Gault Formation,					unproductive	Unproductive bedrock aquifer
Baxters Copse	West Sussex	2365m	BFPD (25% was 37o API oil, light crude oil).	unproductive			0	₆ mpts	unproductive	
					Glaciofluvial					
					deposits - sands			In a set of the state of the set of the	Bedrock	Limited monitoring points and poor
				Ampthill Clay,	and gravels.			Insufficient mpts	unproductive	aquifer
Beckering	Lincs	1699m	No details	unproductive	Secondary A		0	D		
			Presence of oil seen in the core description	Lias Group/ (Charmouth						
			from about 560 m to 590m, 700 m, 860 m to	Mudstone Fm),				Insufficient mpts	Bedrock	Limited monitoring points and poor
Belvoir	Leics	960m	920 m	Secondary Undiff	Secondary Undiff		0	D	undifferentiated	aquifer
			Oil shows from 1650 m to 1750 m and 1880 m	Ampthill Clay (Ancholme	Breighton Sand Fm,					
Brigg	Lincs	1937m	to bottom of hole	Clay), unproductive	Secondary Undiff		1	4		Poor aquifer
33			Westphalian A and Upper Namurian moderate							
			to good hydrocarbon shows but only Peniston					Insufficient close		Multiple oil fields in buffer zone, not
			Flags produced oil (40 bopd), others formations	Lincolnshire Limestone				mpts		many sampling points close to
Broughton	Lincs	1920m	water and traces of oil and gas	Formation, Principal	None		0	3		field.
g				Mercia Mudstone,	Unproductive /			Insufficient	Secondary B	Limited monitoring points and poor
Caunton	Notts	699m	Oil shows below 672 m	Secondary B	Secondary A		23 2	B hydrocarbon?	bedrock	aquifer
oddintorr		000111	Possibly but some of the information has been	eccondary 2	e e e e e e e e e e e e e e e e e e e		20 2	- Injurocal 2011		
			obscured. Oil staining, hydrocarbon odour and	West Walton Fm,					Bedrock	Limited monitoring points and poor
Cold Hanworth	Lincs	1760m	fluorescence tests noted in sample descriptions	unproductive	Secondary		1	2	unproductive	aquifer
Cold Harlworth	LINGS	1700111	indorescence tests noted in sample descriptions	anproductive	Occondary		-	Poor aguifer and		
			Core samples show a little oil. Oil in borehole at	Mercia Mudstone Group.				not clear how much	Secondary B	Poor aquifer, large numbers of
Eakring	Notts	819m	596 m, 632 m, 677 m	Secondary B	None		70 17	4 hvdrocarbon	bedrock	abandoned wells in field
Laking	NOUS	01911	350 m, 032 m, 077 m	Secondary B	NULLE		70 17	Near surface peat		
								may produce gas		Complicated area with shallow oil
			Free oil and oil staining 30 to 55 m; 104 – 113	Mercia Mudstone.	Peat, Unproductive			and confuse the		seeps.
Formby	Merseyside	2340m	m. Gas odour 711-712 m.	Secondary A	superficial aquifer		16 2	5 monitoring		зеерз.
onnoy	Merseyside	2340111		Charnmouth Mudstone	Superneiaraquiler		10 2.	Indrindring		
				Fm. Lower Lias.						Limited monitoring points and poor
Glentworth	Lincs	1666m	Traces, no production	Secondary Undiff	Till, Secondary Undiff		1	5		aquifer
Gleritworth	LINCS	1000111	naces, no production	Secondary Oridin	Thi, Secondary Origin		· ·		Appears good; gw	
									thought to flow east	
			Oil ~1390 to 1410 m 1530 m and 1570 m. Gas	Lincolnshire Limestone				Potential but few	where are appear	Principal aquiter, monitoring points
			shows throughout Coal Measures and Millstone	Fm, Inferior Oolite Group.				close mpts	to be a good	along the flow path.
Hemswell	Lincs	1669m	Grit.	Principal	None		1	7	number of wells	
lemsweii	LINCS	100311	Gin.	Filicipal	NULLE		-	Potential but poor	Humber Of Wells	
				Mercia Mudstone Group.				near-surface	Secondary B	Poor aquifer
Kelham Hills	Notts	768m	Oil 458m. 465 m. 476 m	Secondary B	None		21 7	aquifer conditions?	bedrock	
	110113	700111	011 +00111, +00 111, +7 0 111	Occortuary D	NONG		21 /	Potential but not		
				Seaford Chalk (White				clear how much		Principal aquifer, plenty of
			Oil shows from 1360 m to 1390 m. Intermittent	Chalk Subgroup),				hydrobarbon	Appears very good	
Lomer	Hants		gas shows, 872 m to end	Principal	None		3 1	present		as licensed oil fields.
Loniel	1 101115		yas shows, 072 1110 enu	глиора	Holme Pierrepont		5 1	present		
				Sounthorno Mudatana	Sand and Gravel					Well penetrates the Lower Lias, all
			1260 1420 m 0.00 m2/day Cao 1410 1420 m	Scunthorpe Mudstone		1				monitoring points are in the SSG to
Tarkaav	Lines	1 407**	1360-1430 m 0.09 m3/day Gas 1410 – 1430 m		Member. Secondary	1	2	4		the west.
Torksey	Lincs	1427m	0.23 m3/day Gas and a trace of oil	Secondary A	A		4	+		

Suitable

.

Has potential Others are preferable

Not suitable

The criteria specified in Table 1 inform the selection of sites, as demonstrated in Table 2. For example Godley Bridge, Ralph Cross and Beckering were ruled out because of insufficient monitoring points, while Twyford and Baxters Copse were not chosen because the bedrock was unproductive. Formby had been a site of interest but was ruled out at this stage because the system was considered to be too complicated: it was thought that shallow oil seeps/peat could produce gas and confuse the monitoring results.

Ashdown and Everton were selected as the most suitable gas fields, while Hemswell and Lomer were considered the most suitable oil fields for further study. Once this decision had been made, however, concerns were raised about the Everton gas field. Although there were potential sampling points in the unconfined Sherwood Sandstone around Everton, the groundwater flow direction is towards the east, where it is confined by the Mercia Mudstone, and where there are limited groundwater abstractions downgradient of the abandoned well. Nooks Farm was selected as an alternative gas field. This is a large gas field with a large number of potential sampling points. The wells are currently being reinstated and put back into production, which presents a potential complication. Nonetheless, it was agreed that this should not preclude selection of the site and Nooks Farm was therefore selected as the fourth choice.

The aim of this project was to reconnoitre a selection of abandoned wells in different environmental settings to identify any impact on groundwater quality that is being caused by the well completions. As such, the selection of two gas and two oil fields was seen as a suitable way to assess the potential impacts of different types of HC fields and all four study areas are in locations underlain by different aquifers (Chalk, Millstone Grit, Sherwood Sandstone and Wealden Group) for comparison.

2 Fieldwork campaigns

2.1 LOGISTICS

The first round of sampling was planned to take place during September 2016, with subsequent sampling rounds due to take place at quarterly intervals. The aim was to secure ten sampling sites in each study area, and revisit these in order to obtain time-series data throughout a year. Potential groundwater sampling sites were identified using the EA monitoring network (which includes the Groundwater Quality Monitoring Network and Level Network), the EA National Abstraction Licence Database and the BGS Wellmaster database. Boreholes were identified as being of primary importance, with springs secondary due to additional complications with sampling for dissolved gases. Permissions letters were sent out to ca. 25 landowners in each area (100 in total). Discussions were also held with Alkane, the company currently operating at the Nooks Farm HC sites.

During this first fieldwork campaign, a total of 20 samples was collected; six samples were from Hemswell, five from Nooks Farm, seven from Lomer and two from Ashdown. These were lower numbers than had been anticipated, but were due to difficulties finding suitable boreholes to sample.

The second round of sampling took place during January 2017. Effort was made to find additional sites within each area. A total of 11 new groundwater sites were sampled. However, four could not be resampled, meaning that only 27 samples were collected across the four areas.

The challenges finding suitable sites were slightly different in each of the study areas, which will be discussed in more detail below.

2.2 FIELD AREA DETAILS

2.2.1 Nooks Farm

Nooks Farm is a large gas field in Staffordshire, underlain by the Carboniferous Millstone Grit Group and the Coal Measures (Figure 2). The Millstone Grit is classed as a Secondary A aquifer, with groundwater flow dominated by fractures. The location of the field and abandoned wells are shown in Figure 2, along with the UK Petroleum Exploration and Development Licences (PED Licences). There were a number of potential sampling sites within a 5 km buffer. Figure 3 shows these sites along with buffer zones at 1, 2, and 5 km around the Nooks Farm site.

Five samples were collected from this area during the September 2016 fieldwork, but 15 additional sites were visited as part of the visit. Many locations in the BGS Wellmaster groundwater database are springs, which were not sampled as part of this first round. Eleven sites were sampled during the second round of sampling. These included wells, springs, and a sample taken from a storage tank because of the lack of more suitable sites. The locations of these sites are shown in Figure 4.

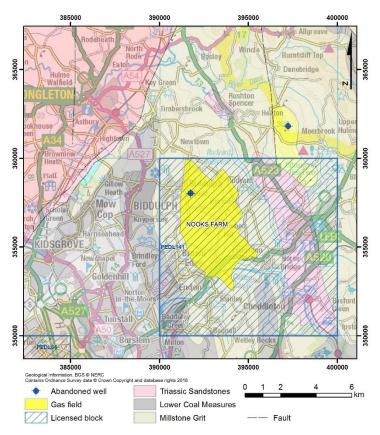


Figure 2. Geology, licensed areas and abandoned wells in the Nooks Farm study area.

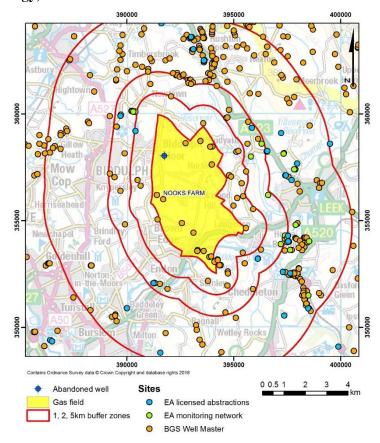


Figure 3. Potential sampling sites around Nooks Farm.

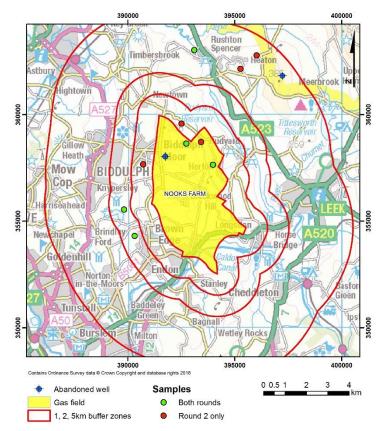


Figure 4. Sites sampled around Nooks Farm.

2.2.2 Ashdown

Ashdown is a small gas field in East Sussex, underlain by the Cretaceous Ashdown Formation, which is part of the Wealdon Group. The Wealdon Group is classified as a Secondary A aquifer. This aquifer is faulted and complex, with discontinuous layers. No current PED Licence is present in the area (Figure 5). The potential sample sites are shown in Figure 6 along with the 1, 2, and 5 km buffer zones around the Ashdown gas field.

Two samples were collected from this area during the September 2016 fieldwork, but a total of 17 sites was visited. Obtaining sample sites proved difficult as many boreholes had been built on or sealed; some sites were springs. During the second round of sampling (January 2017), three new sites were sampled. However, one of the sites from the first round could not be repeated as the flow from the borehole was intermittent. This meant a total of four samples was taken on the second sampling round. A further five sites were investigated but were considered unsuitable for reasons including broken pumps, disuse, and springs without visible upwellings. The locations of the sites sampled are shown in Figure 7.

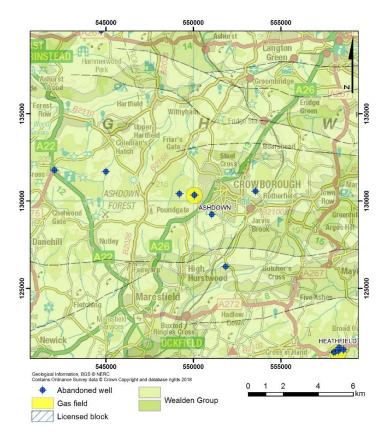


Figure 5. Geology and abandoned wells in the Ashdown study area.

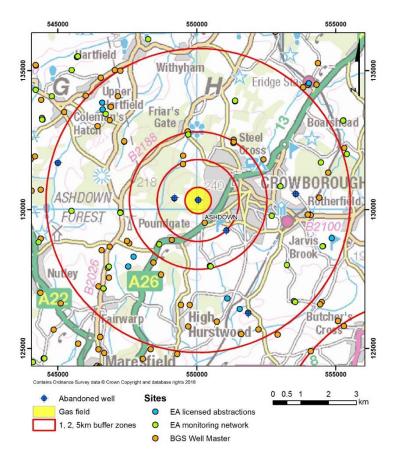


Figure 6. Potential sampling sites around the Ashdown study area.

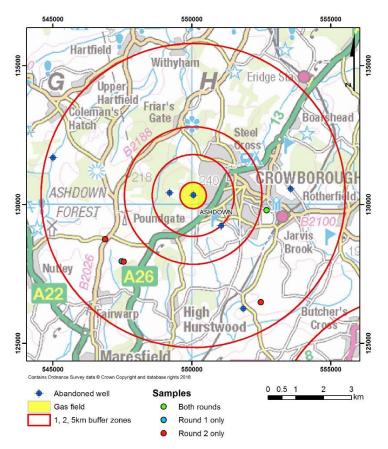


Figure 7. Sites sampled around Ashdown

2.2.3 Hemswell

Hemswell is a small oil field in Lincolnshire, underlain by the Lincolnshire Limestone Formation, which is part of the Jurassic Inferior Oolite Group and designated as a Principal aquifer (Figure 8). The field is in a current PED Licensed area and there are an additional four HC fields in close proximity. Groundwater flow is eastwards and dominated by fracture flow; the Lincolnshire Limestone is confined by the Lias Group. The potential sample sites are presented in Figure 9. While there are many potential sites within the 5 km buffer zone, they are mostly towards the east.

Six samples were collected from this area during the September 2016 fieldwork, but 25 sites were visited. Many locations in the Wellmaster database had been capped or abandoned so were not available for sampling. During the second sampling round (January 2017) four samples were collected. Two of the sites visited previously could not be sampled because of lower groundwater levels. The locations of sample sites are shown in Figure 10.

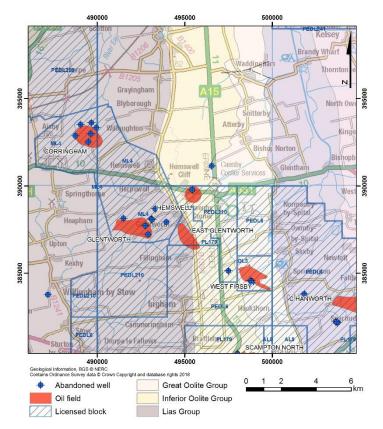


Figure 8. Geology, licensed areas and abandoned wells in the Hemswell study area

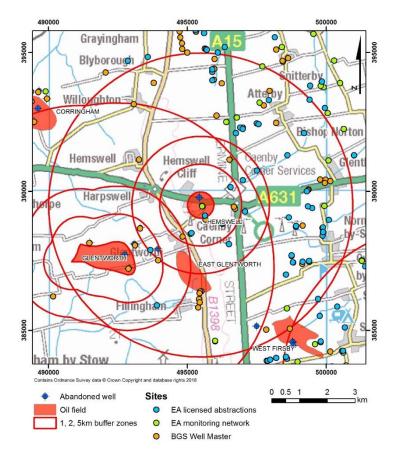


Figure 9. Potential sampling sites around the Hemswell study area

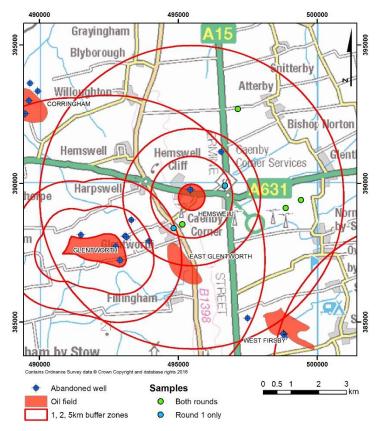


Figure 10. Sites sampled around Hemswell

2.2.4 Lomer

Lomer is a small oil field in Hampshire, underlain by the Seaford Chalk, which is part of the Chalk Group, a Principal aquifer. The field is located within 10 km of a currently producing oil field, but is not itself in a PED Licence area. Groundwater flow is predominately through fractures in the complex structure of the Hampshire Basin (Figure 11). Figure 12 shows the potential sample sites within a 5 km buffer zone.

Seven samples were collected from this area during the September 2016 fieldwork, although 22 sites were visited. A number of boreholes were not suitable for sampling due to water levels being below 50 m below ground level, which is outside the capability of the submersible pumps used by the field teams. Others were deemed unsuitable because of inline pressure vessels and/or water-treatment apparatus. During the second round of fieldwork (January 2017) two new sites were sampled. However one of the original sites could not be sampled. A total of 8 sites were sampled on round 2. All the sample sites are presented in Figure 13. An additional six sites were visited but deemed unsuitable for reasons including lack of landowner permission, landowners not knowing borehole locations, and the presence of storage tanks.

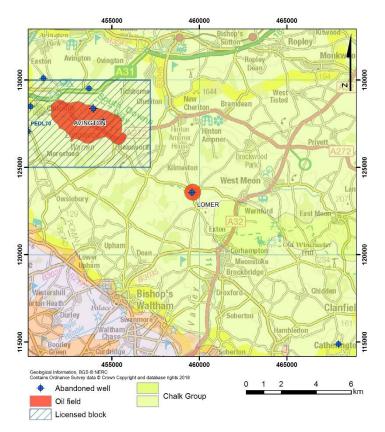


Figure 11. Geology, licensed areas and abandoned wells in the Lomer study area.

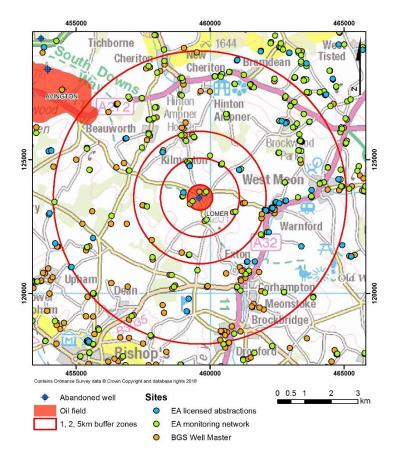


Figure 12. Potential sampling sites around the Lomer study area.

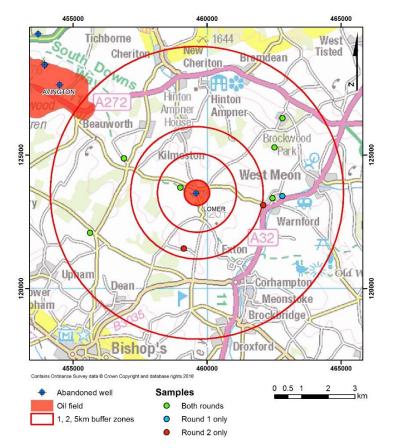


Figure 13. Sites sampled around Lomer

2.3 SAMPLING AND ANALYSIS

A range of samples were taken for inorganic and organic chemical analysis, and the analysis of dissolved gases. The suite analysed was specific to each site, but the full suite is listed in Table 3. The methods used to take the samples are described below.

Efforts were made to sample the groundwater from pumped boreholes where possible. It quickly became apparent that in order to obtain more sample sites, compromises would have to be made. Samples have been taken from springs and in a few cases downstream from storage tanks. These are not ideal samples as dissolved gases and volatile compounds can escape, physico-chemical parameters can change, and solutes can precipitate from solution.

At each site, measurements were made of temperature, specific electrical conductance (SEC), alkalinity (by titration against H_2SO_4), pH, dissolved oxygen (DO), and redox potential (Eh). Where possible, the latter three parameters were measured in a flow cell in order to prevent contact with the atmosphere and retain anaerobic conditions where relevant. Readings were taken until the parameters stabilised and then sampling took place. Where the use of a flow cell was not possible, parameters were measured rapidly in a bucket and sampling condition was recorded.

At each site, groundwater samples were taken for laboratory analysis. Samples for major- and traceelement analysis were collected in pre-rinsed polyethylene bottles and filtered to <0.2 μ m. Samples required for cation analysis were acidified to 1% (v/v) HNO₃ and 0.5% (v/v) HCl to prevent metal precipitation and minimise sorption to container walls.

Samples for dissolved organic carbon (DOC) analysis were filtered through a 0.45 µm silverimpregnated filter and collected in a glass vial pre-cleaned in chromic acid. Samples for various organic compounds (Total petroleum hydrocarbons: TPH CWG, VOC, SVOC, PAH, and others by gas and liquid chromatography mass spectrometry: GC-MS and LC-MS) were collected as unfiltered water in a variety of pre-rinsed glass bottles and vials.

Inorganic	Organic
Inductively-coupled plasma mass spectrometry (ICP-MS)	Non-purgeable organic carbon (NPOC)
Ion chromatography (IC)	Total petroleum hydrocarbons (TPH) (CWG)
Wellhead parameters (pH, electrical conductance, dissolved oxygen, redox potential, temperature)	Semi-volatile organic compounds (SVOCs)
	Volatile organic compounds (VOCs)
	Polyaromatic hydrocarbons (PAHs)
	Gas chromatography mass spectrometry (GC-MS)
	Liquid chromatography mass spectrometry (LC-MS)
	Dissolved gases

Table 3. Sample analysis suite

Samples for dissolved gases could only be collected where pumped water could be sampled before contact with the atmosphere. Where possible, a gas-tight hose was attached directly to the borehole wellhead for an installed pump, or directly to the outlet of a portable pump. If the hose could not be attached to the wellhead, the nearest access point (prior to storage tanks, treatments or pressure vessels) was used. The samples were collected at pump pressure into double-valved steel cylinders of known volume.

Analysis of inorganic samples was carried out at the BGS laboratories in Keyworth, major- and traceelements by inductively-coupled plasma mass spectrometry (ICP-MS), and anions by ion chromatography (IC). Dissolved organic carbon was also analysed at the BGS as non-purgeable organic carbon (NPOC) by TOC analyser. Dissolved gas samples were analysed at the BGS Wallingford laboratory by gas chromatography using a headspace method.

The remaining organic samples were sent to a variety of external laboratories for analysis. Samples for TPH (CWG) were sent to Alcontrol after the first sampling round, and Jones' Laboratories after the second round. The SVOC samples were analysed at Jones Laboratories for both rounds. The VOC samples, GC-MS and LC-MS samples were analysed at the EA's National Laboratory Service (NLS).

3 Summary results

3.1 ORGANIC CHEMISTRY

The organic-chemistry results from the first round of sampling (September 2016) is summarised in Table 4 to Table 11. These consist of a table identifying the number of samples within each area that have positive detects, and a second table for each area summarising the types of compounds present in the GC-MS and LC-MS screens.

The organic-chemistry results from the second round of sampling (January 2017) is summarised in Table 12 to Table 19. The format of the tables is the same as for the first round.

3.1.1 Round 1 summary

Туре	Number of samples	Number of samples with positive detects	notes	
TPH CWG	5	0	-	
SVOC	4	0	-	
РАН	5	0	-	
VOC	4	0	-	
GC-MS	5	3	Q., T.1.1. 5	
LC-MS	5	3	See Table 5	

Table 4. Round 1 organic chemistry summary for Nooks Farm

Table 5. Round 1 GC-MS and LC-MS summary for Nooks	Farm
Tuble 5. Round 1 GC 115 und LC 115 Summary for 1000ks	L 41 III

Sample ID	Number GC-MS compounds present	Summary	Number LC-MS compounds present	Summary
AW01-07	0	N/A	0	N/A
AW01-08	7	Ketone, plasticiser, herbicide	2	Herbicide, analgesic
AW01-09	1	Insecticide	0	N/A
AW01-10	5	PAHs, UV filter	8	Pesticide, herbicide, veterinary drug, artificial sweetener
AW01-11	0	N/A	3	Pesticide, herbicide, insecticide

Туре	Number of samples	Number of samples with positive detects	notes	
TPH CWG	2	0	-	
SVOC	2	0	-	
РАН	2	0	-	
VOC	2	1	0.55 µg/L Chloroform	
GC-MS	2	2	Saa Tabla 7	
LC-MS	2	2	See Table 7	

Table 6. Round 1 organic chemistry summary for Ashdown

Table 7. Round 1 GC-MS and LC-MS summary for Ashdown

Sample ID	Number GC-MS compounds present	Summary	Number LC-MS compounds present	Summary
AW01-28	2	Not present in database	1	Pesticide
AW01-29	4	PAHs	21	Pesticide/ herbicide and metabolite, veterinary drug, insecticide, fungicide, artificial sweetener, flame retardant, surfactant

Table 8. Round 1 organic chemistry summary for Hemswell

Туре	Number of samples	Number of samples with positive detects	notes	
TPH CWG	6	0	-	
SVOC	5	0	-	
РАН	6	0	-	
VOC	6	1	0.32 µg/L cis-1,2-Dichloroethylene	
GC-MS	6	5	- See Table 9	
LC-MS	6	6		

Sample ID	Number GC-MS compounds present	Summary	Number LC-MS compounds present	Summary
AW01-01	5	Ketone, pesticide related, plasticisers, additives for plastics	19	Pesticides, herbicides, fungicides, flame retardant, veterinary drugs, analgesic, surfactant
AW01-02	5	Ketone, plasticiser, insecticide	2	surfactant, pesticide/fungicide
AW01-03	0	N/A	10	pesticides, herbicides, pharmaceuticals, surfactants
AW01-04	10	Ketone, surfactant, additive for plastics, herbicide, plasticiser, PAHs	22	pesticides, herbicides, fungicides, veterinary drugs, artificial sweetener, analgesic
AW01-05	3	Fungicides, herbicides	15	pesticides, herbicides, veterinary drugs, fungicides, artificial sweeteners, surfactants
AW01-06	5	Ketone, plasticiser,	4	pesticide, herbicide, analgesic, surfactant

Table 9. Round 1 GC-MS and LC-MS summary for Hemswell

Table 10. Round 1 organic chemistry summary for Lomer

Туре	Number of samples	Number of samples with positive detects	notes	
TPH CWG	5	0	-	
SVOC	4	1	 7.3 μg/L Benzo(a)anthracene, 8.5 μg/L Chrysene, 23 μg/L Benzo(bk)fluoranthene, 6 μg/L Benzo(a)pyrene, 2 μg/L Indeno(123cd)pyrene, 1.8 μg/L Dibenzo(ah)anthracene, 3.1 μg/L Benzo(ghi)perylene 	
РАН	5	0	-	
VOC	4	1	0.94 µg/L Carbon Disulphide	
GC-MS	5	2	- See Table 11	
LC-MS	5	5		

Sample ID	Number GC-MS compounds present	Summary	Number LC-MS compounds present	Summary
AW01-22	7	Pharmaceuticals, compound used in vulcanisation process, insecticide	2	Pesticide/herbicide, veterinary drug
AW01-23	0	N/A	9	Pesticide/-herbicide and metabolite, veterinary drug, insecticide
AW01-24	0	N/A	20	Pesticide/herbicide and metabolite, veterinary drugs
AW01-26	0	N/A	19	Pesticide/herbicide and metabolite, veterinary drugs, insecticide
AW01-27	2	Herbicide and metabolite	16	Pesticide/ herbicide and metabolite, veterinary drugs, insecticide

Table 11. Round 1 GC-MS and LC-MS summary for Lomer

There have been few detections of organic compounds in the groundwater at any of the sites sampled during the first round of sampling, and where they have been detected they are at concentrations very close to detection limits. Limited conclusions can be made about the impact of hydrocarbons on groundwater quality.

There were no detects in any samples of TPH. Only one sample in round one contained any SVOCs. This was taken from the Lomer area, and contained 7 SVOCs at concentrations up to 23 μ g/L (see Table 10). At three sites, VOCs were detected. Chloroform (0.55 μ g/L) was detected in one of the Ashdown sites, cis-1,2-dichloroethylene (0.32 μ g/L) in one of the Hemswell sites, and carbon disulphide (0.94 μ g/L) in one of the Lomer sites.

The GC-MS/LC-MS chromatograms for all the study areas show that the groundwater has been impacted by contaminants including pesticides, herbicides, veterinary and equine drugs, surfactants, and flame retardants, none of which are unusual in groundwater. As part of these analyses, PAHs were detected at one site in each of the Nooks Farm, Ashdown, and Hemswell study areas. However they were not apparent in the specific PAH analyses as they were all <0.01 μ g/L, which is the method reporting value.

3.1.2 Round 2 summary

Туре	Number of samples	Number of samples with positive detects	notes	
TPH CWG	11	0	-	
SVOC	11	0	-	
РАН	11	0	-	
VOC	11	0	-	
GC-MS	11	8	See Table 12	
LC-MS	11	9	See Table 13	

Table 12. Round 2 organic chemistry summary for Nooks Farm

Table 13. Round 2 GC-MS and LC-MS summary for Nooks Farm

Sample ID	Number GC-MS compounds present	Summary	Number LC-MS compounds present	Summary
AW02-05	9	Dye, pesticide, antifungal preservative, additive for plastics, plasticiser	3	Pesticide, veterinary drugs, analgesic
AW02-06	0	N/A	0	N/A
AW02-07	3	Polymer monomer	2	Pesticide, insecticide
AW02-08	0	N/A	3	Pesticide, herbicide
AW02-09	2	Crosslinking agent	1	Pesticide, insecticide
AW02-10	0	N/A	2	Pesticide, veterinary drugs
AW02-11	1	Not present in database	3	Pesticide, herbicide, veterinary drugs, insecticide
AW02-12	1	Contact allergen	1	Artificial sweeteners
AW02-13	3	Contact allergen, DEET	8	Pesticide/ herbicide and metabolites, veterinary drugs, artificial sweeteners, analgesic
AW02-14	1	Pharmaceutical, fragrance additive	0	N/A
AW02-15	2	Plasticiser, herbicide	4	Pesticide/ herbicide and metabolites

Туре	Number of samples	Number of samples with positive detects	notes	
TPH CWG	3	0	-	
SVOC	3	0	-	
РАН	4	0	-	
VOC	3	1	0.41 µg/L Chloroform	
GC-MS	4	3	See Table 15	
LC-MS	4	4		

Table 14. Round 2 organic chemistry summary for Ashdown

Table 15. Round 2 GC-MS and LC-MS summary for Ashdown

Sample ID	Number GC-MS compounds present	Summary	Number LC-MS compounds present	Summary
AW02-36	4	Flavouring, additive for plastics, DEET, fixative, plasticiser	2	Surfactants
AW02-37	0	N/A	21	Herbicide/pesticide and metabolites, pesticides, veterinary drugs, insecticide, antibiotic, analgesic, surfactant, artificial sweetener
AW02-38	6	Acid, herbicide	11	Veterinary drugs, herbicide/pesticide and metabolites, fungicide, surfactant
AW02-39	10	Intermediate of dye and pesticide, additive for plastics, antioxidant additive, used in insecticide and industrial uses, fungicide, fixative, plasticiser, PAHs	3	Pesticide, acaricide, insecticide, surfactant

Table 16. Round 2 organic chemistry summary for Hemswell

Туре	Number of samples	Number of samples with positive detects	notes
TPH CWG	4	0	-
SVOC	4	0	-
РАН	4	0	
VOC	4	2	0.12 μg/L MTBE, 0.29 μg/L cis-1,2-Dichloroethylene
GC-MS	4	4	See Table 17
LC-MS	4	4	

Sample ID	Number GC-MS compounds present	Summary	Number LC-MS compounds present	Summary				
AW02-01	8	Molluscicide, dye and pesticides, crosslinking agents, plasticiser	17	Pesticide, fungicide, herbicide, veterinary drugs, analgesic, artificial sweetener				
AW02-02	1		12	Pesticide, herbicide, veterinary drugs, analgesic, surfactant, artificial sweeteners				
AW02-03	8	Ketone, dye and pesticides, plasticiser, insecticide	10	Pesticide, herbicide, veterinary drugs, analgesic, surfactant, artificial sweeteners				
AW02-04	6	Dye and pesticides, plasticiser	22	Pesticide/ herbicide and metabolite, fungicide, veterinary dugs, insecticide, surfactant				

Table 17. Round 2 GC-MS and LC-MS summary for Hemswell

Table 18. Round 2 organic chemistry summary for Lomer

Туре	Number of samples	Number of samples with positive detects	notes					
TPH CWG	7	0	-					
SVOC	7	0	-					
РАН	7	0						
VOC	7	2	0.12 μg/L Bromodichloromethane 0.14 μg/L Carbon tetrachloride 1.04 μg/L Chloroform 0.15 μg/L Chloroform					
GC-MS	7	6	G T .11. 10					
LC-MS	7	6	See Table 19					

Sample ID	Number GC-MS compounds present	Summary	Number LC-MS compounds present	Summary					
AW02-02S	5	Flavouring, fixative, herbicide and metabolite	13	Herbicide/pesticide and metabolite, equine drug, veterinary drug					
AW02-03S	3	Flavouring, plasticiser	12	Herbicide/pesticide and metabolite, veterinary drug					
AW02-04S	10	Volatile solvent, additives for plastics, used in fragrance and pharmaceuticals, antioxidants, DEET, fixative, plasticiser, used in manufacturer of polyurethane	6	Herbicide/pesticide and metabolite, veterinary drug, insecticide					
AW02-05S	1	Not present in database	0	N/A					
AW02-06S	0	N/A	8	Herbicide/pesticide and metabolite, veterinary drug, fungicide					
AW02-07S	2	Antioxidant, used in manufacture of epoxy resins and polycarbonates	21	Anticonvulsant, herbicide/pesticide and metabolite, veterinary drug, fungicide, analgesic, artificial sweetener					
AW02-08S	2	Additives for plastics, plasticiser	22	Herbicide/pesticide and metabolite, fungicide, veterinary drugs, antibiotic, analgesic, insecticide, surfactant, artificial sweetener					

Table 19. Round 2 GC-MS and LC-MS summary for Lome	r
--	---

Like the first sampling round there have been few detections of organic compounds in the groundwater at any of the sites sampled during the second round of sampling, again, only occurring at low concentrations. Detects do not show any distinct trends, and there are too few sampling rounds to draw any time-series conclusions.

There were no detects in any samples of TPH (CWG) or SVOCs. VOCs were detected at five sites sampled in the second sampling round. Like the previous round chloroform was detected at one Ashdown site, this time at 0.41 μ g/L. At a Hemswell site cis-1,2-dichloroethylene was detected again (0.29 μ g/L), and additionally in round two another Hemswell site contained 0.12 μ g/L MTBE. Two of the Lomer sites had detectable VOCs, one of which contained 0.15 μ g/L chloroform, while the other contained 1.04 μ g/L chloroform, 0.12 μ g/L bromodichloromethane, and 0.14 μ g/L carbon tetrachloride.

Similar to round one, the GC-MS/LC-MS chromatograms for all the study areas show that most of the groundwater samples contain contaminants such as pesticides, herbicides, fungicides, veterinary and equine drugs, surfactants, plasticisers and artificial sweeteners. During both sampling rounds

pesticides (herbicides, fungicides, insecticides) dominated the numbers of compounds present. This time, no PAHs were detected in the analyses.

3.2 INORGANIC CHEMISTRY

Summary tables of inorganic data are presented in Table 21 and Table 22. There are insufficient data available to make any time-series conclusions.

A Piper diagram summarises the major-ion chemistry of each of the four study areas (Figure 14). The Lomer samples are Ca-HCO₃ type, and contain little variation. This distribution is generally expected in groundwaters hosted by the Chalk, which is predominantly CaCO₃. The Hemswell samples are also generally Ca-HCO₃ type, but there is more variation between samples in this area, as Ca and HCO₃ do not dominate. The limestones and subordinate sandstones and mudstones that make up the Inferior Oolite Group contain more variation owing to the presence of sandy beds and are in parts ferruginous. The Nooks Farm samples are the most varied, having no dominant type. The linear nature of the Nooks Farm compositions in the diagram suggests that the samples may represent mixing between two end members. There is a large variation in the Ashdown samples too, but as there are so few samples it is difficult to comment further on these waters.

3.3 DISSOLVED GASES

Methane (CH₄) samples were collected from all the sites suitable for the analysis. There are insufficient samples to give meaningful summary statistics, so a table of number of samples collected and ranges is presented (Table 20). Although CH₄ concentration is elevated in three samples (407, 237, 182 µg/L), there is insufficient CH₄ present to allow for stable C/H isotopic analysis. At the time of writing, a minimum concentration of around 1 mg/L CH₄ is required for investigation of δ^{13} C in a commercial laboratory. It is interesting to note that there were no elevated concentrations in the samples collected during the second round of sampling.

	Number of samples Round 1	Range round 1 (µg/L)	Number of samples Round 2	Range round 2 (µg/L)
Nooks Farm	2	0.5-182	6	<0.5-7.6
Ashdown	1	237	2	0.5-0.6
Hemswell	5	0.8-407	3	0.6-3.9
Lomer	3	0.5-70.9	5	<0.5-2.4

Table 20. Summary of CH₄ data

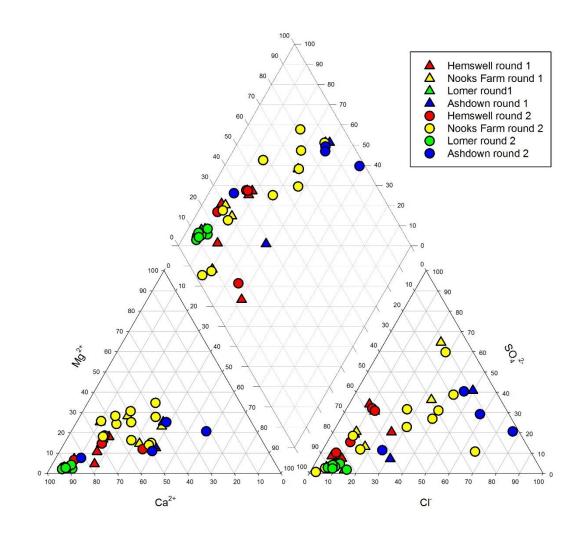


Figure 14. Piper diagram showing major-ion chemistry of the four study areas

Sample Code	Area	Т	pН	HCO ₃	SEC	Ca	Mg	Na	Κ	Cl	SO_4	NO ₃	Br⁻	NO ₂ ⁻	F	NPOC	Si	Ва	Sr	Mn	Fe	Al	Cu	Zn	As	U
		°C		mg/L	$\mu S/cm$	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L
AW01-0007	Nooks Farm	10.5	6.7	159	426	54.5	8.22	12.1	3.85	23.2	23.7	21.4	< 0.05	< 0.025	< 0.025	0.93	4.92	143	104	0.6	3	<1	5.2	6.6	0.63	0.303
AW01-0008	Nooks Farm	10.2	5.11	7	157	10.0	3.58	5.6	9.03	8.35	30.3	16.2	0.037	< 0.005	0.066	4.94	4.97	43.7	38.4	62.3	86	62	1.4	17.9	0.07	0.007
AW01-0009	Nooks Farm	12.4	6.86	309	517	55.8	18.7	22.4	4.91	11.7	8.29	< 0.3	< 0.1	$<\!0.05$	0.241	1.39	8.56	616	295	280	1590	<1	2.5	3.6	0.05	0.049
AW01-0010	Nooks Farm	10.0	5.71	26	191	18.1	3.03	10.6	3.36	17.6	25.4	17.5	0.054	$<\!0.005$	0.067	1.83	2.48	48.2	56.0	10.4	2	37	1.3	6.3	0.18	0.064
AW01-0011	Nooks Farm	10.1	6.56	123	316	41.7	9.90	6.3	1.92	10.2	28.5	20.3	< 0.05	< 0.025	0.054	< 0.5	5.46	130	92.0	4.3	1	2	< 0.4	2.2	0.20	0.116
AW01-0028	Ashdown	13.7	6.06	64	179	7.3	2.97	7.7	0.88	18.8	5.81	< 0.2	0.056	< 0.025	0.108	2.88	4.44	27.7	36.7	880	17100	<1	1.3	53.5	0.37	< 0.005
AW01-0029	Ashdown	12.9	5.49	12	290	21.2	3.67	17.9	3.83	36.0	40.1	23.0	0.099	< 0.005	0.012	1.07	2.31	40.0	67.3	36.2	41	35	2.8	19.1	0.14	0.018
AW01-0001	Hemswell	12.4	7.05	392	1021	145	24.7	43.5	2.94	35.3	185	4.03	0.105	$<\!0.05$	0.349	5.20	3.66	37.2	1695	29.7	40	<1	0.8	6.8	0.14	1.57
AW01-0002	Hemswell	11.9	7.04	411	771	123	10.9	29.0	3.30	30.2	28.8	< 0.3	< 0.1	$<\!0.05$	0.255	1.50	8.01	20.2	450	25.4	1430	10	0.5	3.6	1.58	0.005
AW01-0003	Hemswell	12.5	7.1	359	953	143	18.3	35.9	2.26	47.2	152	0.467	0.1	$<\!0.05$	$<\!\!0.05$	4.62	4.61	31.3	933	9.9	247	<1	0.9	1.9	0.10	1.29
AW01-0004	Hemswell	11	6.75	334	858	150	7.61	15.8	0.95	27.3	71.4	68.4	< 0.1	$<\!0.05$	$<\!\!0.05$	2.04	3.31	24.8	215	1.3	5	<1	0.7	2.7	0.13	0.426
AW01-0005	Hemswell	11.1	6.97	345	1054	168	6.02	41.1	6.44	92.2	101	44.0	< 0.1	$<\!0.05$	$<\!\!0.05$	1.07	4.62	31.9	238	1.5	5	<1	2.4	6.1	0.10	0.948
AW01-0006	Hemswell	10.3	7.12	465	806	80.2	12.8	76.9	2.72	17.4	36.2	0.663	< 0.1	< 0.05	< 0.05	1.68	7.98	15.7	574	18.0	760	35	< 0.4	2.7	0.19	0.005
AW01-0021	Lomer	12.4	7.12	277	554	99.3	1.71	8.6	0.51	18.3	11.8	22.7	$<\!\!0.05$	< 0.025	< 0.025	1.13	5.17	9.8	209	0.5	4	1	49.1	15.6	0.22	0.195
AW01-0022	Lomer	15.9	7.14	260	676	111	1.72	9.5	1.27	25.6	3.95	90.1	< 0.1	$<\!0.05$	$<\!\!0.05$	0.81	5.01	11.5	265	0.5	2	1	7.2	34.6	0.25	0.368
AW01-0023	Lomer	12.5	7.05	372	765	137	1.85	8.5	2.37	23.3	16.6	57.8	< 0.1	$<\!0.05$	< 0.05	1.44	6.34	18.1	210	0.7	8	2	5.1	33.8	0.18	0.161
AW01-0024	Lomer	12.0	7.01	311	605	106	2.03	7.5	0.90	17.1	11.3	32.2	< 0.05	< 0.025	< 0.025	1.56	4.97	13.3	174	0.4	2	<1	2.7	8.0	0.16	0.159
AW01-0025	Lomer	n/a	7.64	279	n/a	98.6	1.64	7.2	0.90	16.6	10.9	26.3	0.055	0.009	0.052	0.79	4.51	16.2	244	0.2	1	<1	1.9	3.6	0.18	0.194
AW01-0026	Lomer	13.2	7.04	329	620	110	1.94	8.0	0.81	17.3	8.07	25.2	< 0.1	< 0.05	< 0.05	0.56	4.71	14.2	189	1.8	13	3	4.4	21.9	0.13	0.185
AW01-0027	Lomer	10.6	7.01	308	584	105	1.88	6.9	0.75	15.2	7.50	24.0	< 0.05	< 0.025	< 0.025	1.69	5.10	16.8	214	< 0.2	<1	<1	1.0	1.9	0.16	0.200

 Table 21. Round 1 inorganic chemistry selected results

Sample	Area	Т	pН	HCO ₃	SEC	Ca	Mg	Na	Κ	Cl	\mathbf{SO}_4	NO_3	Br	NO_2	F	NPOC	Si	Ba	Sr	Mn	Fe	Al	Cu	Zn	As	U
		°C		mg/L	$\mu S/c$	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
AW02-01	Hemswell	10.6	7.05	363	1033	150	25.6	38.3	2.76	40.9	160	14.1	0.120	0.101	0.392	1.79	4.11	35.1	1617	9.8	26	<1	1.4	5.4	0.15	1.576
AW02-02	Hemswell	10.4	7.07	352	988	154	19.8	39.7	2.43	46.4	152	1.23	0.113	< 0.025	0.230	1.58	4.82	32.2	940	9.4	253	<1	1.2	3.4	0.10	1.275
AW02-03	Hemswell	10.39	7.12	429	837	98.5	13.3	72.4	3.01	19.6	41.1	13.5	0.053	< 0.025	0.156	1.05	7.44	17.4	541	18.7	652	15	1.0	2.8	0.20	0.113
AW02-04	Hemswell	10.7	7.09	339	880	156	7.27	17.0	0.84	26.3	55.0	92.2	0.082	< 0.025	0.029	1.49	3.36	23.1	216	0.6	7	<1	0.8	2.0	0.12	0.415
AW02-05	Nooks Farm	9.9	5.01	5	126	10.1	1.91	5.1	6.55	7.05	20.0	12.7	0.034	$<\!\!0.005$	0.038	1.78	4.34	46.0	29.4	88.1	17	76	2.5	20.2	0.15	0.005
AW02-06	Nooks Farm	3.8	7.05	299	527	56.7	21.5	24.0	5.30	10.7	6.44	< 0.3	< 0.1	$<\!\!0.05$	0.279	1.55	9.28	634	305	309	1980	1	9.2	8.1	0.05	0.020
AW02-07	Nooks Farm	5.1	7.29	393	629	80.0	20.3	22.6	8.45	6.16	1.99	0.16	$<\!\!0.05$	< 0.025	0.171	0.57	11.6	890	886	23.3	388	<1	< 0.4	4.1	0.04	0.003
AW02-08	Nooks Farm	6.7	6.05	65	382	39.1	11.8	9.2	4.60	23.2	37.9	51.1	0.054	< 0.025	0.028	1.23	4.51	148	104	5.3	6	3	4.1	11.9	0.42	0.056
AW02-09	Nooks Farm	7.2	5.8	37	315	23.2	13.5	19.5	2.99	59.6	13.1	< 0.1	0.066	< 0.025	0.122	1.76	9.68	279	118	711	1050	4	1.7	8.1	0.04	0.004
AW02-10	Nooks Farm	8.5	5.25	15	290	25.1	7.45	11.0	3.56	19.1	23.7	60.1	< 0.1	$<\!0.05$	0.064	1.26	5.99	59.7	119	409	85	202	1.6	23.9	0.22	0.052
AW02-11	Nooks Farm	4.7	6.11	49	230	23.1	4.10	12.2	1.77	18.4	18.7	9.79	$<\!0.05$	< 0.025	0.184	1.58	3.78	123	90.7	654	85	188	7.3	115	0.37	0.026
AW02-12	Nooks Farm	10.2	6.81	166	448	60.6	9.93	12.9	4.31	21.4	21.3	19.9	$<\!0.05$	< 0.025	0.062	0.61	5.52	155	117	1.0	6	<1	9.9	3.9	0.74	0.385
AW02-13	Nooks Farm	9.6	5.89	29	209	18.9	3.23	13.9	3.64	19.8	18.3	15.0	$<\!\!0.05$	< 0.025	0.054	1.98	2.45	44.0	56.6	20.7	23	37	2.0	8.2	0.21	0.070
AW02-14	Nooks Farm	6.4	6.64	127	333	44.3	10.8	6.9	2.12	9.83	25.6	19.2	$<\!\!0.05$	< 0.025	0.055	0.94	5.91	130	92.0	2.2	3	2	< 0.4	3.9	0.23	0.108
AW02-15	Nooks Farm	5.3	5.97	45	347	24.9	10.6	21.7	2.92	35.6	37.5	19.6	0.052	< 0.025	< 0.025	0.48	4.45	57.7	103	323	6	1	1.1	5.5	0.04	0.136
AW02-01	Lomer		7.24	264	550	104	1.61	11.7	2.30	19.7	11.6	21.3	$<\!\!0.05$	< 0.025	0.054	n/a	10.7	18.8	132	1.4	2	<1	17.4	824	0.18	0.368
AW02-02	Lomer	10.6	7.05	293	544	114	2.08	8.0	0.82	14.3	6.25	22.8	$<\!\!0.05$	< 0.025	0.057	1.04	5.53	17.6	226	< 0.2	1	<1	11.4	30.2	0.17	0.213
AW02-03	Lomer	10.2	5.98	314	622	124	2.32	8.2	0.75	15.3	9.27	30.2	$<\!0.05$	< 0.025	0.037	0.62	5.32	15.5	202	< 0.2	1	<1	8.7	8.2	0.20	0.191
AW02-04	Lomer	10.9	7.12	276	559	108	1.81	9.6	0.49	17.6	8.00	20.0	$<\!\!0.05$	< 0.025	0.046	1.07	5.34	9.3	214	0.3	<1	<1	35.2	21.6	0.19	0.196
AW02-05	Lomer	10.1	6.83	255	730	130	3.71	13.6	0.93	27.3	4.22	104	0.064	< 0.025	0.118	0.90	6.35	19.1	641	0.3	2	<1	8.2	5.1	0.41	0.923
AW02-06	Lomer	10.4	6.9	361	778	117	2.31	8.6	1.00	15.4	8.68	26.8	< 0.05	< 0.025	0.048	0.96	5.39	13.6	184	< 0.2	3	<1	4.4	13.7	0.14	0.180
AW02-07	Lomer	11.7	6.93	373	609	154	2.05	9.2	1.91	19.8	13.7	54.6	0.056	< 0.025	0.034	1.22	7.07	17.4	225	0.3	1	<1	6.6	7.4	0.17	0.173
AW02-08	Lomer	10.2	6.92	318	634	116	2.06	9.2	0.84	18.5	6.52	25.2	0.055	< 0.025	0.036	0.66	5.23	15.8	191	1.0	17	<1	5.3	18.3	0.14	0.196
AW02-36	Ashdown	10.2	4.46	11	221	13.7	5.76	14.5	3.54	29.9	20.2	16.5	0.102	< 0.01	0.056	1.46	3.08	47.1	49.3	41.2	2	77	12.4	54.4	0.13	0.018
AW02-37	Ashdown	11.8	5.44	17	289	25.3	3.38	20.8	3.89	32.7	38.9	21.1	0.074	< 0.01	0.038	0.91	2.18	33.5	71.5	5.0	6	19	11.8	16.5	0.22	0.019
AW02-38	Ashdown	5.1	6.51	115	373	58.9	3.29	8.4	0.85	27.3	16.4	19.8	0.043	0.221	0.044	1.92	1.45	18.0	112	80.7	72	6	4.5	5.5	0.18	0.194
AW02-39	Ashdown	10.1	4.34	2	195	6.6	3.83	19.7	0.91	34.6	12.6	13.3	0.077	< 0.01	0.083	1.39	3.13	46.8	39.9	604	9	369	14.8	85.7	0.32	0.052

NPOC: non-purgeable organic carbon

4 Further reconnaissance

In May 2017, a further reconnaissance was undertaken in order to establish whether other HC well/wellfields could prove to be more appropriate for the Abandoned Wells study. This involved a desk study, followed by visits to potential groundwater sites to assess the logistics of sampling (proximity to HC well, ease of access, suitability of site for representative sampling).

In the first instance, five possible new sites were selected. A desk study was performed to assess whether the sites were suitable for investigation. The sites chosen are presented in Table 23, which shows how many sites were identified from each database within 5 km of each HC field. It should be noted that there is some overlap of BGS WellMaster sites with EA databases ('NALD', Monitoring Network), so this table does not represent a total of unique sites. The WellMaster database includes any borehole reported to BGS where water has been struck. It can therefore include exploratory boreholes drilled during construction projects, sites not deemed suitable for water abstraction, and sites that have been disused. Therefore, the number of sites that is suitable for sampling is often far fewer than the total number of records. While there are fewer sites in the EA databases, these are generally more reliable for identifying suitable sampling sites. However, sometimes an abstraction licence can exist, but the borehole is no longer used, the owners can be unaware of the presence of a borehole, or indeed unwilling to allow sampling. More details for each site are provided below.

Site	Field type	EA NALD Groundwater sources	EA Monitoring Network	BGS WellMaster
Broughton	oil	24	8	156
Calow	gas	5	0	84
Eskdale	gas	10	3	24
Everton	gas	24	30	71
Ironville	gas	2	1	85

Table 22 Deals stud		of	notontial	ait on	ithin	5	Irma	offold
Table 23. Desk stud	y summary	01	potentiai	sites	wiuiiii	3	KIII (or nera

For each area, the initial desk study was undertaken in order to select the best potential sites available. Prior to the field reconnaissance, potential sites were checked on maps and aerial photographs to see if they likely still existed. A shortlist of potential sites was produced and during May 2017 the sites on the shortlist were visited to establish suitability for sampling. The background investigation and subsequent reconnaissance are discussed below for each of the fields named in Table 23.

4.1 BROUGHTON

Broughton is an oil field near Scunthorpe in Lincolnshire. Figure 15 presents the geology, licensed areas and abandoned wells around the Broughton oil field. The field is underlain by the Inferior Oolite Group and in a current PED licensed area. There is another oilfield within 5 km. The area is covered in numerous licensed blocks.

Figure 16 shows the locations of the potential sites, with the 1, 2, and 5 km buffers. There are fewer sites in the south-west of the area, in particular the EA licensed abstractions are found in clusters. However, there are possible sample sites throughout the area.

Figure 17 shows the locations of sites visited during the reconnaissance. The sites with most promise were all located in the area of greatest density, but only one site was considered to be suitable.

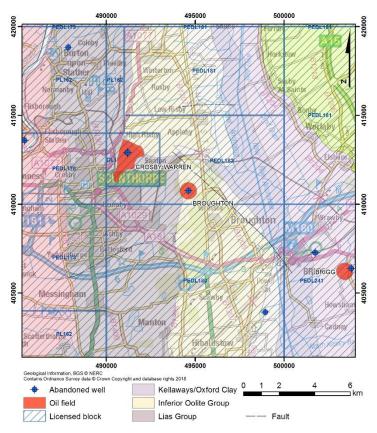


Figure 15. Geology, licensed areas and abandoned wells around the Broughton oil field

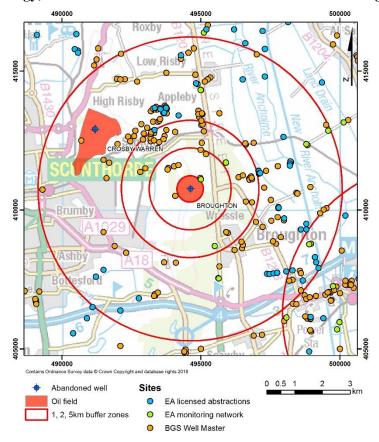


Figure 16. Potential sampling sites around the Broughton oil field

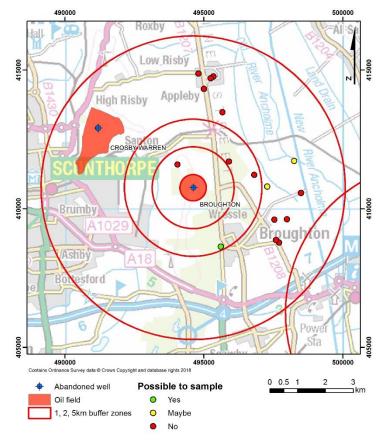


Figure 17. Sites considered during a reconnaissance of the area around the Broughton oil field

4.2 CALOW

Calow is a gas field near Chesterfield in Derbyshire. Figure 18 presents the geology, licensed areas and abandoned wells around the Calow gas field. The field is underlain by Lower and Middle Coal Measures and is situated within a current PED licensed area.

Figure 19 shows the locations of the potential sites, with the 1, 2, and 5 km buffers. There is a relatively even distribution around the gas field. However, the sites with most potential (EA databases) are mostly located in the south west of the region.

Only four identified sites were found to be suitable around Calow, and these were all clustered to the east of the area (Figure 20). The sites denoted 'maybe' were boreholes associated with mine workings owned by a third party, for which permission had been gained in theory, but the sites had not been assessed for sampling practicality.

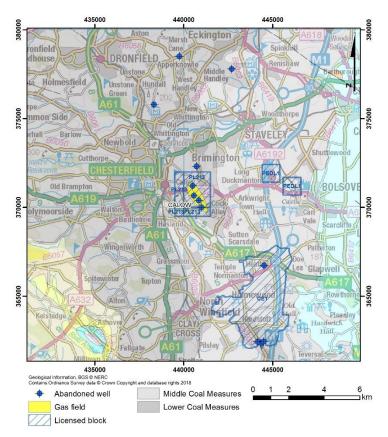


Figure 18. Geology, licensed areas and abandoned wells around the Calow gas field

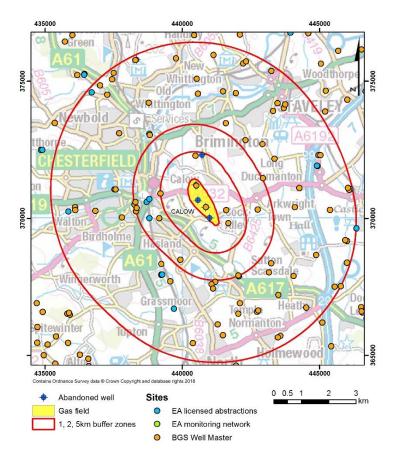


Figure 19. Potential sampling sites around the Calow gas field

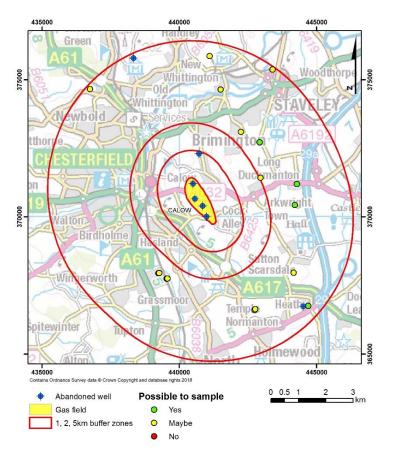


Figure 20. Sites considered during a reconnaissance of the area around the Calow gas field

4.3 ESKDALE

Eskdale is a gas field near Whitby in North Yorkshire. Figure 21 presents the geology, licensed areas and abandoned wells around the Eskdale gas field. The field is underlain by the Ravenscar and Lias Groups. There are no licensed blocks within 5_km of the field.

Figure 22 shows the locations of the potential sites, with the 1, 2, and 5 km buffers. There is a lack of sites in the west and the south-east of the region. While eleven sites were considered suitable, these were all located in the south and south-east of the region (Figure 23).

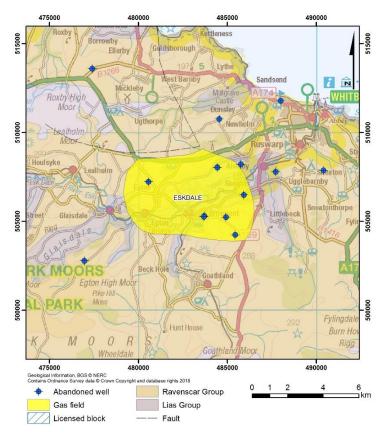


Figure 21. Geology, licensed areas and abandoned wells around the Eskdale gas field

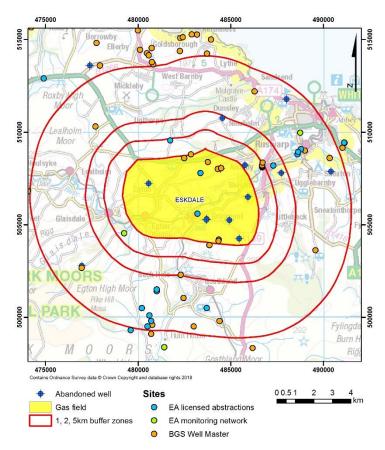


Figure 22. Potential sampling sites around the Eskdale gas field.

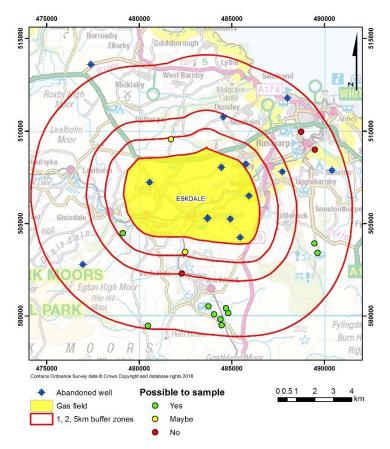


Figure 23. Sites considered during a reconnaissance of the area around the Eskdale gas field

4.4 EVERTON

Everton is a gas field near Bawtry in South Yorkshire. Figure 24 presents the geology, licensed areas and abandoned wells around the Everton gas field. The field is underlain by Triassic sandstones and mudstones, and the whole area is situated within current PED licensed areas.

Figure 25 shows the locations of the potential sites, with the 1, 2, and 5 km buffers. There is a relatively even distribution around the gas field. Ten sites were considered suitable for future sampling, but they were all clustered around the north-west of the region (Figure 26). The sites denoted 'maybe' were boreholes associated with mine workings owned by a third party for which permission had been gained in theory, but the sites had not been assessed for their sampling practicality.

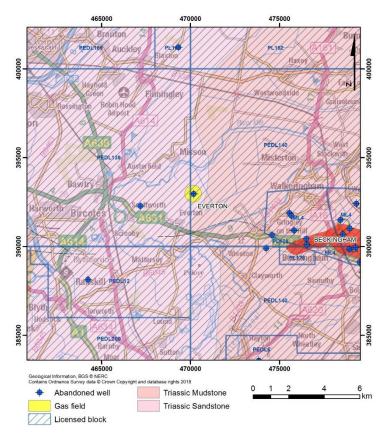


Figure 24. Geology, licensed areas and abandoned wells around the Everton gas field

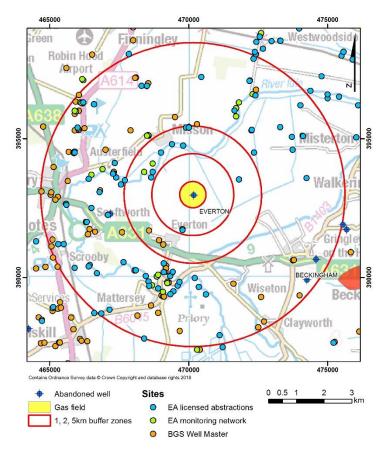


Figure 25. Potential sampling sites around the Everton gas field

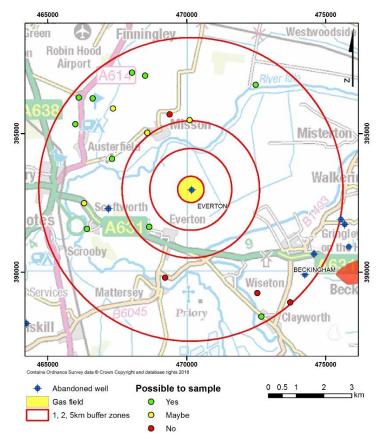


Figure 26. Sites considered during a reconnaissance of the area around the Everton gas field

4.5 IRONVILLE

Ironville is a gas field near Ripley in Derbyshire. Figure 27 presents the geology, licensed areas and abandoned wells around the Ironville gas field. There are no licensed blocks within 5 km of the gas field.

Figure 28 shows the locations of the potential sites, with the 1, 2, and 5 km buffers. There is a relatively even distribution around the gas field. However, the sites with most potential (EA databases) are generally clustered around the north of the area. Only one site was suitable for future sampling (Figure 29). The sites denoted 'maybe' were boreholes associated with mine workings boreholes associated with mine workings owned by a third party, for which permission had been gained in theory, but the sites had not been assessed in person for sampling practicality.

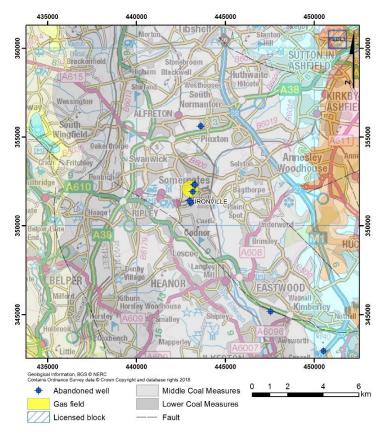


Figure 27. Geology, licensed areas and abandoned wells around the Ironville gas field

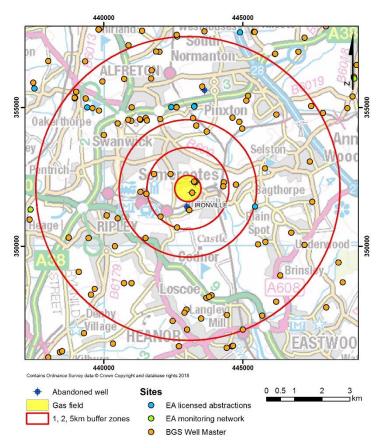


Figure 28. Potential sampling sites around the Ironville gas field

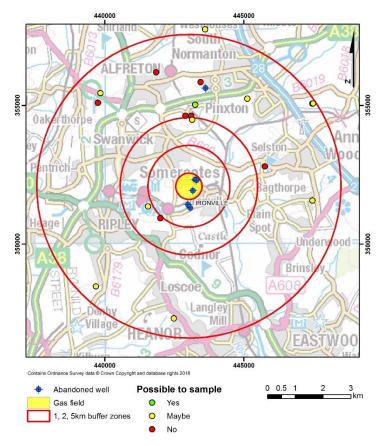


Figure 29. Sites considered during a reconnaissance of the area around the Ironville gas field

4.6 OUTCOME OF RECONNAISSANCE

Table 24 presents a summary of the results of this fieldwork. Of the five areas, only Eskdale and Everton had sufficient suitable sites. However, when the distribution of these sites is taken into consideration, it can be seen that they were not evenly distributed, and were therefore not ideally located.

Further groundwater sampling was therefore deemed not useful and it was concluded instead that a soil gas study may be more appropriate. Soil gas surveys can be carried out wherever representative sites can be found, so the main constraint was landowner permission. The survey can take the form of a grid and so does not have the same constraints associated with lack of suitable groundwater boreholes.

 Table 24. Summary of reconnaissance visits

Site	Field type	Sites visited	Suitable sites
Broughton	oil	18	1
Calow	gas	15	4
Eskdale	gas	18	11
Everton	gas	18	10
Ironville	gas	16	1

5 Soil Gas Survey

5.1 INTRODUCTION

After the difficulties in locating suitable groundwater sampling points and discussions between the BGS and the EA, it was agreed that a soil gas survey would be carried out as an alternative approach. Two gas wells considered in the initial stages of the project were identified as being suitable for a soil gas survey based on location and geology. These were Bolney and Ashdown, each in Sussex. A combination of wide-area survey and point measurements of soil gas concentration and CO_2 and CH_4 flux were applied to the study areas.

5.2 MONITORING SITE SELECTION AND SUPPORTING INFORMATION

The soil gas survey focussed on two abandoned hydrocarbon (gas) wells in East and West Sussex. Ashdown 1 is located at Crowborough Warren in West Sussex on the Ashdown Formation, an interbedded sandstone and siltstone of the Wealden Group.

The Bolney 1 well is located to the north-east of Bolney village, primarily on Upper Tunbridge Wells Sand, an interbedded sandstone and siltstone of the Tunbridge Wells Sand Formation. The northern boundary of the survey site includes a small strip of the field located on the Wadhurst Clay Formation, a mudstone of the Wealden Group.

Reconnaissance for soil gas surveys around the Ashdown 1 and Bolney 1 wells was carried out in September 2017, with a second reconnaissance to assess ground conditions undertaken in November 2017. Access directly to the abandoned well was feasible at both sites, and access permissions (site operations permitting) were granted by landowners/estate managers as needed, including for the use of a quad bike provided this could be scheduled around livestock and other site activities.

5.3 MONITORING DATA AND PROCESSING ACTIVITIES

The soil gas surveys were completed in January 2018. Mobile mode was used for rapid wide-area screening of near-surface CO_2 flux. Given the relatively small areas concerned, this was easily achieved using a handheld mobile open path CO_2 laser system, which avoided the need to take an all-terrain vehicle with mounted laser probes into restricted spaces with potentially soft terrain.

Point measurements of soil gases CH₄, CO₂, O₂, H₂S and H₂ were made by driving a hollow steel push probe 0.5-1 m into the ground. The extracted soil gas was measured immediately using field instruments, or samples were collected into evacuated glass exetainer vials for subsequent laboratory analysis, primarily for stable isotopes of carbon.

In addition, gas flux (CO_2 and CH_4) point measurements were made at the soil surface using a non-invasive chamber-based field instrument.

5.4 RESULTS AND DISCUSSION

In general, soil gas surveys would not normally be attempted in winter in the UK. Soil gas surveys are ideally undertaken in dry conditions when the movement of gas is unimpeded. Waterlogging or frozen ground inhibits or completely eliminates the free movement of gas between the soil and the atmosphere, and can trap gas to form lenses or pools in the subsurface that would otherwise be more mobile and freely dispersed.

As expected, ground conditions at the time of survey were non-optimal at either the Ashdown 1 or Bolney 1 site. The sites were variously wet under foot and occasionally waterlogged between the surface and the full sampling depth of the soil gas push probe (<1 m). Nonetheless, mobile laser data, CO_2 and CH_4 flux, soil gas data and samples for stable carbon isotopes were collected where possible from both the Ashdown 1 and Bolney 1 sites.

5.4.1 Ashdown 1

Although permission to access the field containing what was believed to be the remaining surface expression of the abandoned well at Ashdown was not granted in advance, it was possible to access the lane immediately adjacent to the west of the well (Figure 30, B) that ran south from the road. The field to the west of the lane (Figure 30, C) was also accessible.

Figure 30. Ashdown 1 soil gas survey area showing the location of the Ashdown 1 well (A), adjacent lane (B) and neighbouring equestrian jumps (C) course to the west

$5.4.1.1 \hspace{0.1 cm} \text{ASHDOWN} \hspace{0.1 cm} 1 - \text{MOBILE} \hspace{0.1 cm} CO_2 \hspace{0.1 cm} \text{Laser}$

Mobile CO_2 laser data for Ashdown 1 are shown in Figure 31. Near-surface anomalies detected by laser often manifest as rapid changes in absolute CO_2 concentration over a short distance, which can be detected using a moving average approach. The five-point moving average (Figure 31, upper right panel) indicates a small number of changes in CO_2 concentration close to the well. These are supported by regions of elevated absolute CO_2 concentrations (Figure 31, upper left panel) along the eastern boundary of the field and the lane, close to the reported location of the well. However, it is unclear whether this is a true anomaly or an artefact of the survey, given that the adverse ground conditions may have had an impact on achieving a steady survey pace.

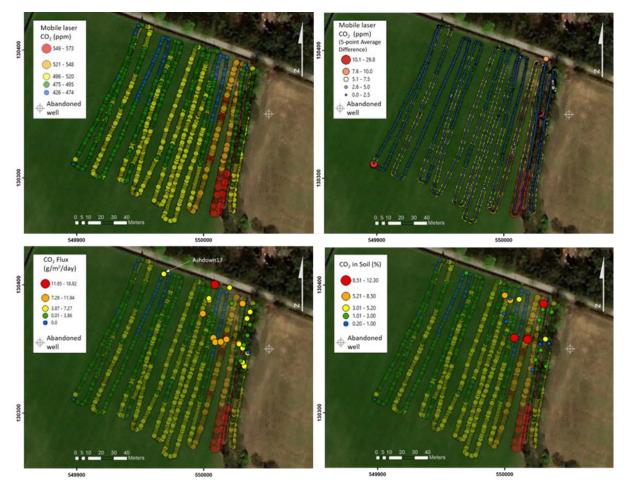


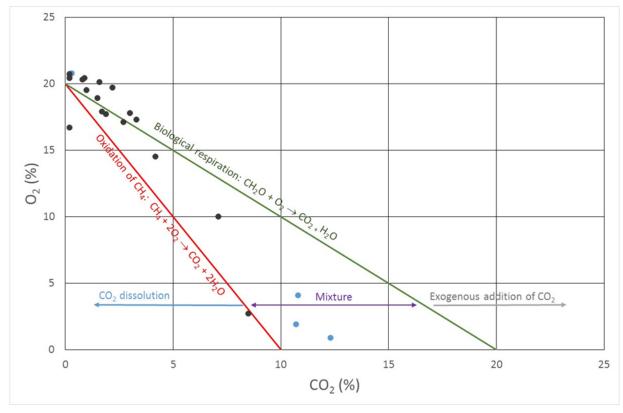
Figure 31. Ashdown 1 open path CO_2 laser, CO_2 flux and CO_2 in soil gas. Laser CO_2 concentrations (upper left panel), overlaid with moving five-point average (upper right panel), CO_2 flux (lower left panel) and CO_2 concentration (lower right panel). Note that the accuracy of the location of the abandoned well, based on well records, is ± 10 metres. Map data sources: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

5.4.1.2 Ashdown $1-CO_2$ and $CH_4\,\mbox{Flux}$

A limitation of the mobile laser survey is that sensitivity is relatively poor because of the dilution of soil CO_2 in air, so it is typically combined with a more sensitive point measurement approach. A total of 25 flux measurements were collected from the adjacent lane and field to the west of the Ashdown 1 well (Figure 31, lower left panel). This includes five measurements collected during a reconnaissance visit in November 2017, since CO_2 fluxes were reasonably consistent with measurements taken during the survey in January 2018. A 'background' measurement was also collected at sufficient distance from the well to be considered unaffected. The background CO_2 flux was 7.27 g m²/day. For the remaining measurement points, CO_2 flux ranged between 0.62 and 12.91 g/m²/day with the highest CO_2 flux recorded along the field boundary with Warren Road. Flux measurements taken closest to the well, i.e. along the north-south lane on the eastern extent of the survey area, were close to background. Moderate flux was detected along a transect due west of the well, from the lane into the neighbouring field.

There was no detectable CH₄ flux at any of the Ashdown 1 measurement points at the time of survey.

$5.4.1.3 \hspace{0.1in} \text{ASHDOWN} \hspace{0.1in} 1 - Soil \hspace{0.1in} \text{Gas}$


Single point measurements provide relatively high sensitivity, since the gas is extracted from the soil, or soil surface, where concentrations are highest. A sufficient number of analyses over a site provide a good indication of the range of conditions. The soil gas study included field measurements of CH₄, CO₂ which can be produced from methane oxidation or be present in reservoir gas, and O₂ which is useful in determining the source of CH₄ and CO₂. The trace gases H₂S and H₂ were also included in this survey.

Soil gas measurements were made at 22 locations across a grid pattern covering the lane and field to the west of the Ashdown 1 well. In addition, high sensitivity methane measurements were taken at all gas

sampling points plus two further points, where gas flow was insufficient for concomitant measurement of other soil gases.

Methane concentrations ranged from 0 to 2.8 ppm, i.e. consistent with atmospheric methane, although peaks of 3.3 and 3.7 ppm were observed at sample points in the lane close to the well. Hydrogen sulphide was not detected at any of the Ashdown 1 measurement points. Diatomic hydrogen was detected at ppm levels at all but one site; the highest H_2 concentration (47 ppm) was found at the northern end of the lane.

The concentrations of CO_2 are shown with the mobile laser CO_2 measurements in the lower right panel in Figure 31. This includes five measurements taken during the reconnaissance visit in November 2017. These include the three highest CO_2 concentrations (10.7, 10.8 and 12.3%), the highest being found in the north-eastern corner of the field. In January 2018, the highest CO_2 concentrations (7.1 and 8.5%) were again found alongside the northern field boundary. Moderate CO_2 flux was detected in the same area (Figure 31, lower left panel). Given the extremely wet surface conditions, the high CO_2 concentrations could be the result of gaseous CO_2 becoming trapped under a layer of water below the soil surface.

Figure 32. Ashdown 1 CO₂ and O₂ ratios in soil gas collected in January 2018 (black points) and November 2017 (blue points)

Gas compositions (CO₂ to O₂ ratios) can, by comparison with soil gas trends for the common background processes of biological respiration and methane oxidation, provide insight into the sources of soil gases. Gas compositions plotting to the left of the CH₄ oxidation (red) line in Figure 32 suggest dissolution of CO₂ and reaction with carbonate in the soil. Those plotting to the right of the biological respiration (green) line indicate CO₂ added from an exogenous source e.g. CO₂ leaking into the vadose zone from depth (Romanak, Bennett et al. 2012). Ashdown 1 soil gas compositions at first appeared to lie along the CH₄ oxidation line, but with more data the relationship became more ambiguous and, if anything, appears more consistent with biological respiration combined with dissolution. Without further measurements in more favourable, i.e. drier, conditions it is not possible to distinguish between these processes.

$5.4.1.4 \hspace{0.1in} ASHDOWN \hspace{0.1in} 1-STABLE \hspace{0.1in} CARBON \hspace{0.1in} ISOTOPES \hspace{0.1in} IN \hspace{0.1in} CO_2$

Carbon isotope analysis (δ^{13} C) of CO₂ samples collected at nine soil gas measurement points along the lane and field to the west of the abandoned well ranged between δ^{13} C VPDB -28.29 and -23.13 ‰, and are consistent with a biogenic source of CO₂ (Ekblad and Hogberg 2000, Beaubien, Jones et al. 2013). Hydrocarbons related to the Ashdown 1 well are expected to be biogenic in origin, so the value of further stable isotope analysis of CO_2 in source attribution at Ashdown 1 should be considered carefully in any future surveys.

5.4.2 Bolney 1

At Bolney 1 there is no obvious surface expression of the well, although there was a moderate-sized surface depression (aerial view inset in Figure 33) where the landowner reported the location of the Bolney 1 abandoned well to be. The survey focussed on high-resolution coverage in an approximate north-south and east-west grid transecting the well, with a broader laser survey (Figure 34) extending towards the southern and eastern extents of the survey area.

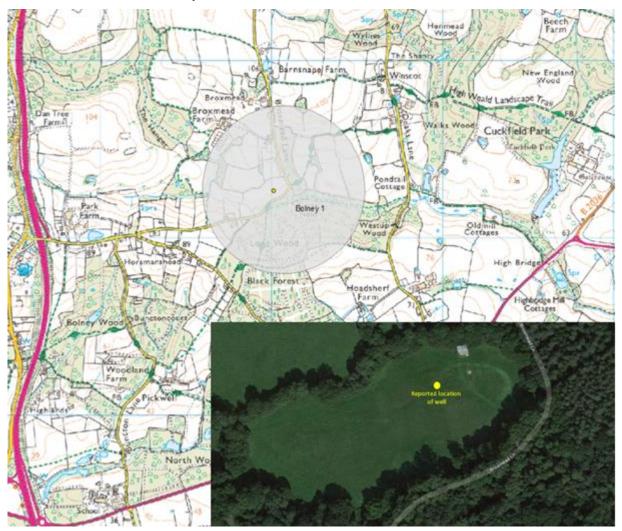


Figure 33. Bolney 1 soil gas survey area and reported location of the Bolney 1 well. Inset satellite imagery ©2018 Google; Inset map data ©2018 Google

Figure 34. Figure 4. Open path CO₂ laser surveying at Bolney 1

5.4.2.1 BOLNEY $1 - MOBILE CO_2 LASER$

Mobile CO_2 laser data for the Bolney 1 survey area are shown in Figure 35. Absolute CO_2 concentrations indicate areas of elevated CO_2 towards the south-western boundary of the site (upper left panel), and the five-point moving average (upper right panel) indicates a few rapid changes in CO_2 , but none shows any clear correlation with the reported location of the well. This lack of correlation is unsurprising since both the ground and weather conditions were especially wet at the time of the Bolney 1 survey, which will have impacted on the mobility of CO_2 at the surface or near surface.

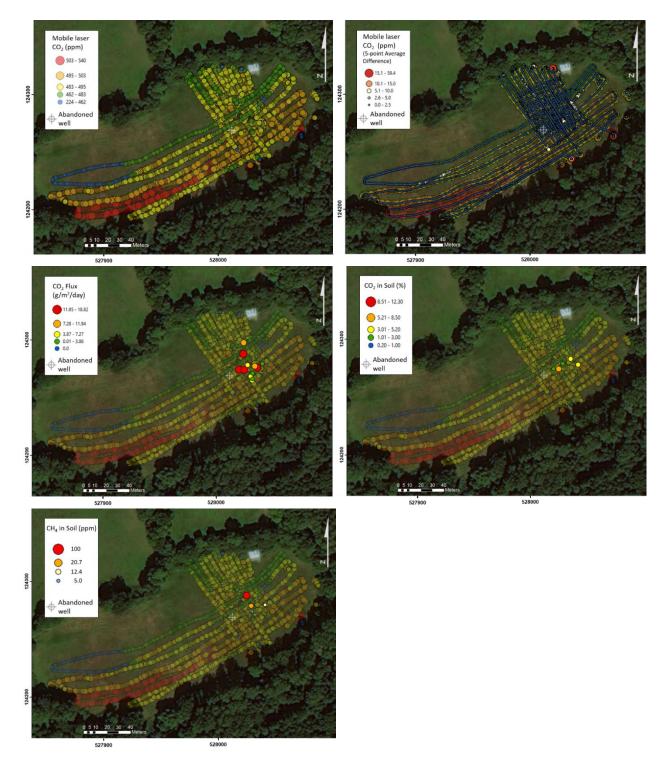
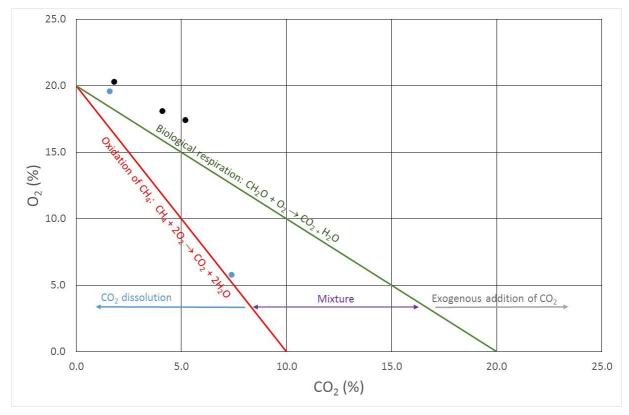


Figure 35. Bolney 1 open path CO₂ laser, CO₂ flux, and CO₂ and CH₄ in soil gas. Laser CO₂ concentrations (upper left panel), overlaid with moving five-point average (upper right panel), CO₂ flux (centre left panel), CO₂ concentration (centre right panel) and CH₄ concentration (lower right panel). Note that the accuracy of the location of the abandoned well, based on well records, is ± 10 metres. Base map data sources: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

5.4.2.2 Bolney $1 - CO_2$ and CH_4 Flux

A total of 17 flux measurements were obtained across the reported location of the well during the January 2018 survey. Carbon dioxide flux ranged between 0.06 and 18.83 g/m²/day, with the highest CO₂ flux recorded close to the location of the well (Figure 35, centre left panel). There was no detectable CH₄ flux at any of the Bolney 1 measurement points at the time of survey.

$5.4.2.3 \hspace{0.1in} \text{Bolney} \hspace{0.1in} 1-\text{Soil gas}$


Obtaining soil gas samples at Bolney 1 was especially difficult under the extremely wet conditions. Gas flows were frequently low and short-lived before water was drawn through the push probe. As a result it was only possible to collect eight measurements for CH_4 , and five measurements for CO_2 , O_2 and other soil gases.

Hydrogen sulphide was not detected at any of the Bolney 1 soil gas measurement points. Diatomic hydrogen was detected at ppm levels at all but one location; the highest hydrogen concentration (30 ppm) was measured during the reconnaissance in November and appears co-located with one of the highest flux measurements collected during the January survey close to the reported location of the well, but where other measured soil gas concentrations (e.g. CO_2) were low.

Methane concentrations at Bolney 1 ranged from 1.6 to 100 ppm, with four of the eight measurements significantly elevated compared to expected atmospheric concentrations of c.1.8 ppm (Figure 35, lower left panel). Poor gas flow meant it was not possible to analyse for other soil gases at the highest (100 ppm) methane concentration, but it was coincident with one of the highest CO_2 flux measurements obtained (17.94 g/m²/day), close to the well.

Concentrations of CO_2 in soil gas are shown with the mobile laser CO_2 concentrations in Figure 35, centre right panel. The apparently random distribution of sample points is a reflection of poor gas flow preventing a soil gas measurement to be collected; only three of the five soil gas measurements reported were made during the January 2018 survey. The two additional measurements are taken from the reconnaissance visit in November 2017. Carbon dioxide concentrations range between 1.6 and 7.4%, with the highest concentration recorded in November 2017, close to the reported location of the well.

For completeness, gas compositions (CO₂ to O₂ ratios) for the Bolney 1 survey area are plotted in Figure 36. Given the lack of samples, it is not possible to reach any conclusions with respect to the source of CO_2 in soil gas.

Figure 36. Bolney 1 CO_2 and O_2 ratios in soil gas collected in January 2018 (black points) and November 2017 (blue points)

$5.4.2.4 \hspace{0.1in} \text{Bolney 1-Stable Carbon isotopes in CO}_2$

Carbon isotope analysis (δ^{13} C) of CO₂ samples collected at the four measurement points with sufficient gas flow are tightly grouped, with δ^{13} C VPDB ranging from -27.78 to -27.43 ‰. These are in common with the Ashdown 1 site and consistent with a biogenic source of CO₂.

5.5 SOIL GAS SUMMARY

The limited amount of soil gas data available appear to indicate elevated CH_4 and/or CO_2 , and intriguing, but ambiguous, gas composition relationships around both abandoned wells. However, the ground and weather conditions at the time of survey (heavy rain, standing water, extensive waterlogging) prevented sufficient quantities of meaningful gas or flux data to be collected at either site and, as a result, the survey findings to date have to be considered inconclusive.

Establishing the extent to which any tentative findings from this survey could be attributed to the two wells, or are an artefact of the conditions at the time of survey, warrants further investigation in drier conditions e.g. in spring or, ideally, in autumn. Repeat or continuous measurements at a small number of sites will provide information on temporal variations (e.g. diurnal or seasonal changes), and obtaining better-quality data overall would allow the processes responsible for producing CH_4 and CO_2 around these wells to be distinguished with more certainty. Given the good relationship now established with the landowners, securing access to both sites for any future work should be relatively easy.

6 Conclusions

This report presents the decision making process behind the final selection of the four Abandoned Well study areas. An initial phase of fieldwork revealed significant difficulties in finding sufficient suitable sampling sites. The resulting data failed to indicate an unequivocal impact on the groundwater from HC fields in the four study areas.

Additional sample sites were sought to increase the sampling network in all locations, and springs were included from the Nooks Farm area. Despite a concerted effort, sufficient sample sites could not be found for conducting a robust groundwater investigation. The new data provided no further evidence of impact on groundwater.

A reconnaissance was then undertaken to investigate new potential areas for study. Despite significant effort this demonstrated that other areas were as equally unsuitable.

A soil gas survey was completed in January 2018 after discussions between the BGS and the EA at two sites identified as being suitable: Bolney and Ashdown in Sussex. Due to poor ground conditions, the results were ambiguous, but did show elevated concentrations of both CO_2 and CH_4 . Further work in dry ground conditions would be required to say with certainty that these elevated concentrations are directly linked to the presence of the gas wells.

References

Beaubien, S. E., D. G. Jones, F. Gal, A. K. A. P. Barkwith, G. Braibant, J. C. Baubron, G. Ciotoli, S. Graziani, T. R. Lister, S. Lombardi, K. Michel, F. Quattrocchi and M. H. Strutt (2013). "Monitoring of near-surface gas geochemistry at the Weyburn, Canada, CO₂-EOR site, 2001–2011." International Journal of Greenhouse Gas Control 16, Supplement 1(0): S236-S262.

Ekblad, A. and P. Hogberg (2000). "Analysis of delta C-13 of CO₂ distinguishes between microbial respiration of added C-4-sucrose and other soil respiration in a C-3-ecosystem." Plant and Soil 219(1-2): 197-209.

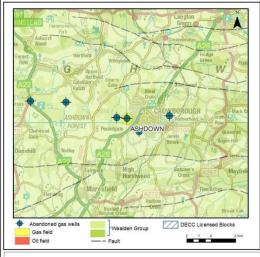
Romanak, K. D., P. C. Bennett, C. Yang and S. D. Hovorka (2012). Process-based approach to CO₂ leakage detection by vadose zone gas monitoring at geologic CO2 storage sites. Geophysical Research Letters 39(15): L15405.

Appendix 1 Hydrocarbon field factsheets

British Geological Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

Abandoned Wells Project 2016

Name and type of field: ASHDOWN gas field


Grid reference of primary well: 550060, 130341

Number of hydrocarbon wells in field: One, Ashdown 1 detailed below

Licence number: No PEDL locally

BGS reference: TQ53SW/BJ/3

Location: Crowborough, East Sussex

Hydrocarbon well information: *All depths in mbgl

Depth: 1383 m

 $\label{eq:hydrocarbon} \begin{array}{l} \mbox{(oil and gas) shows:} \mbox{ Purbeck between} \\ \mbox{241-253 m 0.7 m}^3\slash day; 262 -288 m 1.3 m}^3\slash day; 327- \\ \mbox{336 m 17.3 m}^3\slash day; 896-904 m 90.9 m}^3\slash day. \end{array}$

Water strikes: No data for sands in Ashdown Formation, no water 241-253 m, 262-288 m; 629-635 m 9.5 m³ day drilling fluid and gaseous water; 703-708 m 13.6 m³/day drilling fluid and gaseous water; 896-904 m 5.5 m³/day water.

Comments: Drilled by BP. Water analysis available. Area known to be a zone of shallow thermogenic gas. 5 additional 'Ashdown' wells in the area.

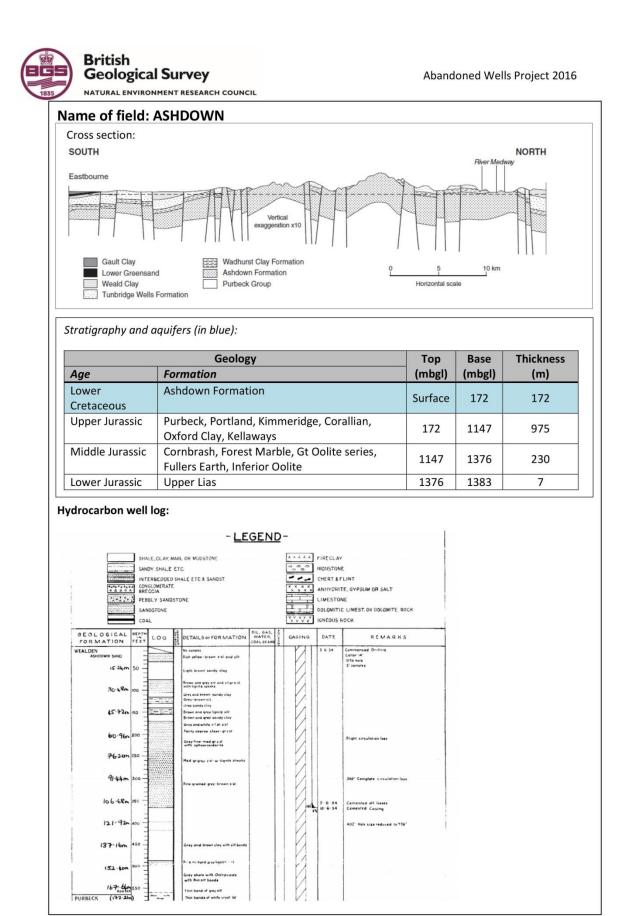

Bedrock aquifer: Ashdown Formation, Secondary A

Superficial aquifer: No designation

GW levels (main aq): -

GW flow direction: Complex, faulted and discontinuous multi-layered aquifer. Clay layers.

Other aquifer props: Top Ashdown, Pebble Bed, is best part of the aquifer. T range: <50m²/d - >150m²/d.

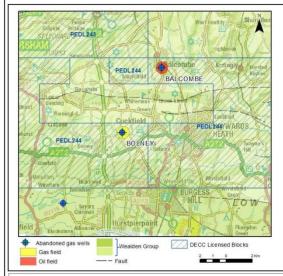

Groundwater

Potential groundwater sampling points:

	Wellmaster	EA	EA
		Licence	database
Within field	1	0	0
1km	4	0	0
2km	11	0	3
5km	54	9	16

Кеу

•	EA monitoring network
0	EA Licensed boreholes
•	Wellmaster Boreholes
\bigcirc	Buffer Zone

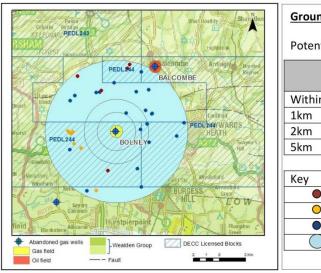

Grid reference of primary well: 528011, 124269

Number of wells in field: One, BOLNEY 1

Licence number: PEDL244

BGS reference: TQ22SE17/BJ

Location: Haywards Heath, West Sussex


Hydrocarbon well information: *All depths in mbgl Depth: 2,440 m

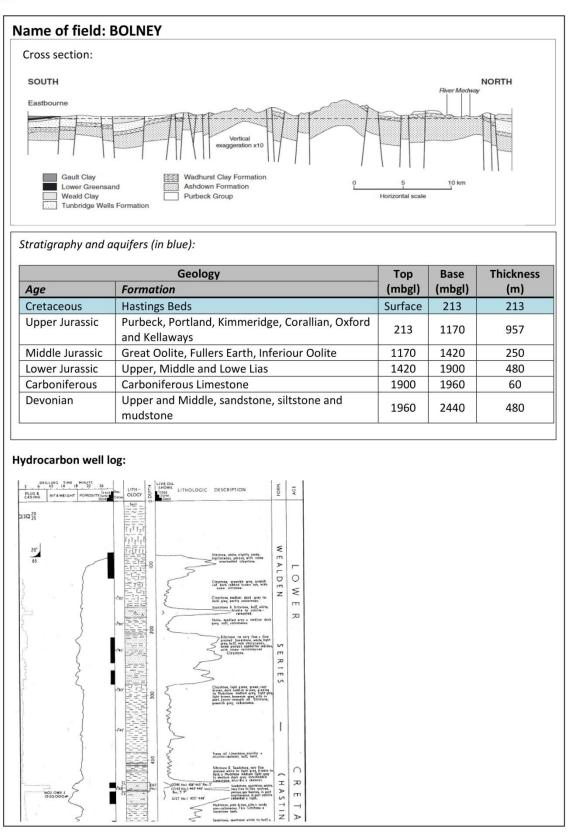
Hydrocarbon (oil and gas) shows: Hastings Beds, gas @ ~132m, Purbeck, oil @ ~293m & ~400m (significant), Kimmeridge, Corallian and Great/Inferior Oolite.

Water strikes: Not reported

Comments: Drilled by ESSO for gas exploration – testing of the prospective Mesozoic and Palaeozoic. Poor porosity. Gas analysis available, good logs and report. Area known to be a zone of shallow thermogenic gas.

Bedrock aquifer: Tunbridge Wells Sand, Secondary A Superficial aquifer: No designation GW levels (main aq): TWS 17-105 mAOD GW flow direction: Complex due to faulting, compartmentalised. Other aquifer props: TWS usually unconfined, forms springs.

Groundwater


Potential groundwater sampling points:

	Wellmaster	EA	EA
		Licence	database
Within field	1	0	0
1km	1	0	0
2km	4	0	0
5km	25	7	5

ley	
•	EA monitoring network
0	EA Licensed boreholes
•	Wellmaster Boreholes
\bigcirc	Buffer Zone

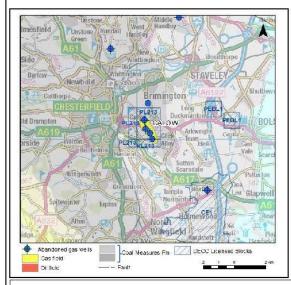
Abandoned Wells Project 2016

NATURAL ENVIRONMENT RESEARCH COUNCIL

stle Ucon Typ

Dente

Name and type of field: CALOW gas field


Grid reference of primary well: 440850, 370400

Number of wells in field: Four, CALOW 1 described below

Licence number: PL213

BGS reference: SK47SW/BJ/43

Location: Calow, near Chesterfield, Derbyshire

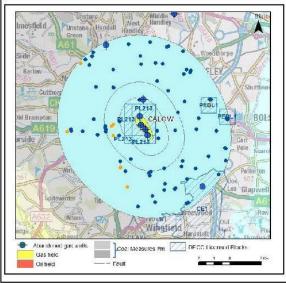
Hydrocarbon well information: *All depths in mbgl Depth: 1130

Hydrocarbon (oil and gas) shows: oil seepage 322 – 628 m. Gas 148-154 m 78.6 m³/day; 220-230 m 572.8 m³/day; 220-241 m 2455 m³/day; 293-298 m 818 m³/day; 312-319 m 264 m³/day; 312-341 m 168 m³/day. No gas from 421-910m

Water strikes: not recorded

Comments: BP, exploration for oil. Three more non-Calow HC wells within the buffered area.

Bedrock aquifer: Lower Coal measures, Secondary A


Superficial aquifer: No designation

GW levels (main aq):

GW flow direction:

Other aquifer props: predominantly fracture flow in Coal Measures sandstones. Higher yields near old mines.

k

<u>Groundwater</u>

Potential groundwater sampling points:

	Wellmaster	EA Licence	EA database
Within field	2	0	0
1km	5	0	0
2km	14	3	0
5km	84	9	0

0	EA monitoring network
0	EA Licensed boreholes
0	Wellmaster Boreholes
\bigcirc	Buffer Zone

NATURAL ENVIRONMENT RESEARCH COUNCIL

Name of field: CALOW

Cross section:

Not available.

Stratigraphy and aquifers (in blue):

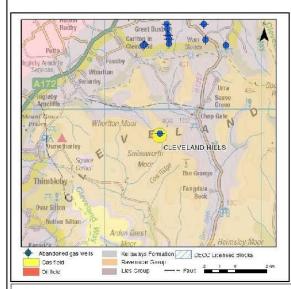
	Geology	Тор	Base	Thickness	
Age	Formation	(mbgl)	(mbgl)	(m)	
Carboniferous	Lower Coal Measures	surface	251	251	
Carboniferous	Millstone Grit	251	829	578	
Carboniferous	'Limestone shales'	829	841	12	
Carboniferous	Carboniferous Limestone	841	1130	291	

Hydrocarbon well log:

GEOLOGICAL FORMATION	DEPTH IN FEET	LOG	CORING X RECORD	DETAILS OF FORMATION	OIL GAS WATER COL SEMIS	CASING	REMARKS
DEFR COAL	-	masama		V. f. s. aic. yrligs-buff. tst. svil ceneuted			19' Fossil Fingments.
MFASURES	-			Y. f. g. mic. yrllg=-buff.tki.sril cenentri non-cale, hord L. grow sil, finely nic., horder, s. coarses gradu sirr 5 culc.conent.Friable.			22-34 Pish Scales & Tech. 37 Carbonacrout Pregnents.
	50-	E - 6 - 6 -		Soft, grty non-calr. Siltst. finely sic. *.			
	2	TATISTICS.		eries and the start is a rank of the start o	(j	16	58' 61' Firh scales teeth & cerb, renains. 59' Cecented 16' cosing.
				Black carb, their sudst. Non-calc.			
	100-	0.0.01	1	Sapiterio, and south the fragments	. 8		
	T	0		Grey bundy, slitte, w. some ironst.	d .		
	0 5			Soft, grey hudst, s. s. little sill hironet Cerb, shele, silty, pic, "itsel, s. itonst	Trece		140 ⁷ 21 -15 rentins.
	150 -	219 6			Tere		The strate the state
	-			Soft, grey, siltst. *, abundant, f. sics. finer grained at base.	÷		
	1			Pink-grey, soft, shely, nodet, silty in perts.			
	200	18-18-18	_	Bard gray arenactous linesions we some brown staining			205' Shell frequents.
	-	70, 107		bill fight grey black apervied alParane.			273' Plont Eccains.
	1			Big any structory liestions of space from shaining the out of the factor approach the out of the structure of the share for the structure of the structure of the structure the structure of the structure of the structure of the structure the structure of the structure of the structure of the structure the structure of the structure of the structure of the structure of the structure the structure of the structure of t	1		AND A PROPERTY OF A PROPERTY O
	250-			Soft, grey, silty, sudet., s. v. f. sice. becoming siltign helds.			
8	-	12/16/16		Besoping sitter & prasing in siltst. Soft provide the sone in some sone of the server of the sone in some in the server of the sone of the			275' Dev. W
				Mudat, w. song ironat, -passing to gray			272 00 1 34
	300-	H45569		Slightly silty addt, passing days into			
	1 9			Slightly silty mudat, passing down into normal soft, grey mudat. Shely, non-celr. 			
	1 3	0000		· silly at hass.	ē .		
	350			Soft, grev, shaly, siltst. Finely uic, black speckled, on siltst. Finely uic, black v Forster tillst passing to v.f. g. silly			2
	1.1	0 0 0		V Fourier filler, pasking to v.f. g. silly Soft, shely, sudst.w. silty, & ironst, bends			376'Cerb.plant remains (frags).
	1	0,1001 0,1001 0,1001		sort, mery, south, w. Mirty, & fronst, owner,			BEC Bryoros. 391' Carb.plant remains.
	400-				8	-	402' Cesented 11% cosing.
	1 3			Mid grey shale, cile, & silty at shown, sparsely pyritic in part.	6	198	1
°	1 3				8		1
	450	A = 4 = A = A	ì	The grey silty restorth, s. spheresis, Y. f. g. fran, silty sate blue, grey andy sestearth, breening timer -, Jepth.	8		
	-	·		"Med, dark groy scale,	12		
	Sec.	Contractor Po		Sittsi, o, a, changet i c.	Odout		0. S.T. No. 1 487' 504' Prod. 648
S	500		70				17, 300 tu. ft./dry.
	1 7		37	91 act. fissile shale, finely dic. in part,	i		
	R		95	mic. shelt at base, occ. broils, f. r. sillet	1615		
De 11 - 12	550	Y.Y. V.I.	81 55	Statesith, sitts of the boundy provide a	ALL +		$\underbrace{ \begin{array}{c} \sum 0, 0, 5 \ 3^{0} & 3^{0} \\ -\underline{1} & \underline{\mathbf{n}}_{0} \\ \end{array} }_{\text{output}} \underbrace{ \begin{array}{c} \sum 0, 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \\ 5 \ 5 \ 5 \\ 5 \ 5 \\ 5 \\ 5 \end{array} } \underbrace{ \begin{array}{c} \sum 0, 5 \ 5 \\ 5 \\ 5 \\ 5 \\ 5 \end{array} } }_{\text{output}} \underbrace{ \begin{array}{c} \sum 0, 5 \\ 5 \\ 5 \\ 5 \\ 5 \end{array} } }_{\text{output}} \underbrace{ \begin{array}{c} \sum 0, 5 \\ 5 \\ 5 \\ 5 \\ 5 \end{array} } }_{\text{output}} \underbrace{ \begin{array}{c} \sum 0, 5 \\ 5 \\ 5 \\ 5 \end{array} } }_{\text{output}} \underbrace{ \begin{array}{c} \sum 0, 5 \\ 5 \\ 5 \\ 5 \end{array} } }_{\text{output}} \underbrace{ \begin{array}{c} \sum 0, 5 \\ 5 \\ 5 \\ 5 \end{array} } }_{\text{output}} \underbrace{ \begin{array}{c} \sum 0, 5 \\ 5 \\ 5 \\ 5 \end{array} } } \underbrace{ \begin{array}{c} \sum 0, 5 \\ 5 \\ 5 \end{array} } }_{\text{output}} \underbrace{ \begin{array}{c} \sum 0, 5 \\ 5 \\ 5 \end{array} } }_{\text{output}} \underbrace{ \begin{array}{c} \sum 0, 5 \\ 5 \\ 5 \end{array} } }_{\text{output}} \underbrace{ \begin{array}{c} \sum 0, 5 \\ 5 \end{array} } }_{\text{output}} \underbrace{ \begin{array}{c} \sum 0, 5 \\ 5 \end{array} } } \\ \underbrace{ \begin{array}{c} \sum 0, 5 \\ 5 \end{array} } \\ \underbrace{ \begin{array}{c} \sum 0, 5 \end{array} \end{array} } \\ \underbrace{ \begin{array}{c} \sum 0, 5 \end{array} } \\ \underbrace{ \begin{array}{c} \sum 0, 5 \end{array} } \\ \underbrace{ \begin{array}{c} \sum 0, 5 \end{array} \end{array} } \\ \underbrace{ \begin{array}{c} \sum 0, 5 \end{array} } \\ \underbrace{ \begin{array}{c} \sum 0, 5 \end{array} \end{array} } \\ \\ \underbrace{ \begin{array}{c} \sum 0, 5 \end{array} \end{array} } \\ \underbrace{ \begin{array}{c} \sum 0, 5 \end{array} \end{array} } \\ \underbrace{ \begin{array}{c} \sum 0, 5 \end{array} \end{array} } \\ \underbrace{ \begin{array}{c} \sum 0, 5 \end{array} \end{array} } \\ \underbrace{ \begin{array}{c} \sum 0, 5 \end{array} \end{array} } \\ \\ \underbrace{ \begin{array}{c} \sum 0, 5 \end{array} \end{array} } \\ \underbrace{ \begin{array}{c} \sum 0, 5 \end{array} \end{array} } \\ \\ \\ \underbrace{ \begin{array}{c} \sum 0, 5 \end{array} \end{array} } \\ \\ \underbrace{ \begin{array}{c} \sum 0, 5 \end{array} \end{array} } \\ \\ \\ \\ \end{array} \end{array} \end{array} } $ } \\ \\ \\ \end{array} } \\ \end{array} } \\ } \\ \end{array} } \\ \end{array} } \\ \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} } \\ \end{array} }
CONTRACT STOLES	14 million 100	10	.10	and a second data in the second second	311		and the second
3 4 6	1000 S	INVESTIGA	61		same 1		the second carry and second
	600		100	Mack thele sic, towards unter	302239		Contraction of the second second second second second
	왜 그	M.M.M	100	Series in. Shi grey allow the Carly Stillets	lince		622' 6" <u>Purchars IIs an</u> COM, Usalase 622' 9" > Align,
	650-		-				D. S. T. No. 4 6215 660' No Production
	0.0		100	Sti nate area for y for a bunds whate	slight		
		1946.446	100	st top, v. slight odour in places.	odour.		
	100	0 0	100		Common and		
	-	1 hx x - X.	96	Trace Coal, Grey fired, writty & base. Intervided witter, a shele, handy at har Sat, m. c. grit in places, fairly hard, wiight win down door.	Tiece		Tr. CO.M. 709"
725	1	100000	100	Interbedded sitts & shele, soudy at has Sat. n c. p. grit in places, fairly hard,	SLIght		U.5.T. No.5 721-754' Prod. GAS 126,000 cu.ft. / day.
Crawshaw Sat.	750		96		adour		D. S. T. No. 6 723 792' Prod. GAS 540,000 cu. It./day.
	-		94	Sat. as above, peobly in part, mostly self cem., nod. fluorers. No odour, banda, dark grey, I. g. strongly pyritic sat.			540,000 cu. It. /day.
	1 32		92		183		
	800			Dark even wilty shale & shely mudat			
824	1	an and	100	Black fissile shale, natine hand w. G.subcrenatum at base.			
111.1.STONE	1 1	M-M-	35	Pale grev pasister becoming sandier			824' Marinehand a. G. subcrenatum.
RIT kough Rock.	850-		linn	Interbedded silty sat.& silty shale.		11	· · · · · · · · · · · · · · · · · · ·
1000 0 00 0	100 miles	and the second	H	V. f. shard presnith sst. Interhedded w. Stite share			

NATURAL ENVIRONMENT RESEARCH COUNCIL

Name and type of field: CLEVELAND HILLS gas field


Grid reference of primary well: 453540 498440

Number of wells in field: One, Cleveland Hills 1

Licence number: A64 no PEDL number

BGS reference: SE59NW/BJ/1

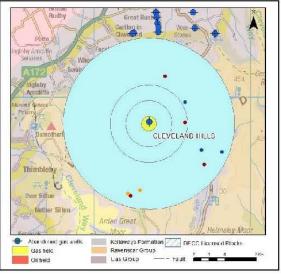
Location: Cleveland Hills, Middlesbrough, North Yorkshire

Hydrocarbon well information: *All depths in mbgl Depth: 1915 m

Hydrocarbon (oil and gas) shows: Gas seen at 1300, 1330, 1520 m bgl. At 1517 m bgl yielded 682 m³/day of gas

Water strikes: Salt water seen in several tests between 974 m bgl and 1875 m bgl.

Comments: No additional HC wells in the 5km buffered zone.


Bedrock aquifer: Ravenscar Group (Cloughton Fm), Secondary A

Superficial aquifer: none

GW levels (main aq):

GW flow direction:

Other aquifer props: Deltaic and estuarine deposits, variable facies. Water quality issues.

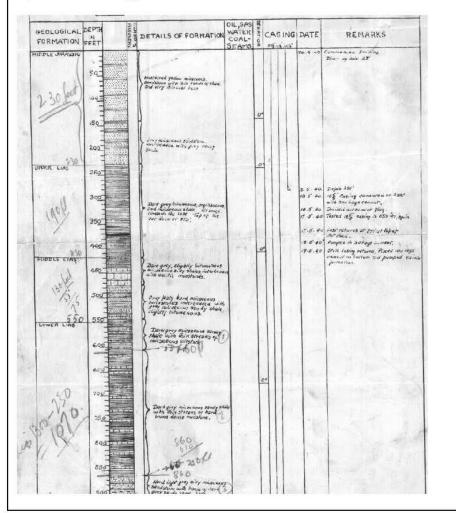
Groundwater

Potential groundwater sampling points:

	Wellmaster	EA Licence	EA database
Within field	0	0	0
1km	0	0	0
2km	0	0	1
5km	3	2	5

/	
0	EA monitoring network
0	EA Licensed boreholes
0	Wellmaster Boreholes
\bigcirc	Buffer Zone

Name of field: CLEVELAND HILLS


Cross section:

Not available.

Stratigraphy and aquifers (in blue):

	Geology	Тор	Base	Thickness (m)	
Age	Formation	(mbgl)	(mbgl)		
Mid Jurassic	Ravenscar Group	surface	43	43	
Jurassic	Upper Lias, Middle Lias, Lower Lias (Rhaetic (shale)/new name Penarth Group)	43	407	364	
Triassic	Keuper Marls, Bunter Sandstone	407	890	483	
Permo-Trias	Permo-Trias	890	973	83	
Permian	Permian	973	1170	197	
Carboniferous	Carboniferous	1170	1180	10	

Hydrocarbon well log:

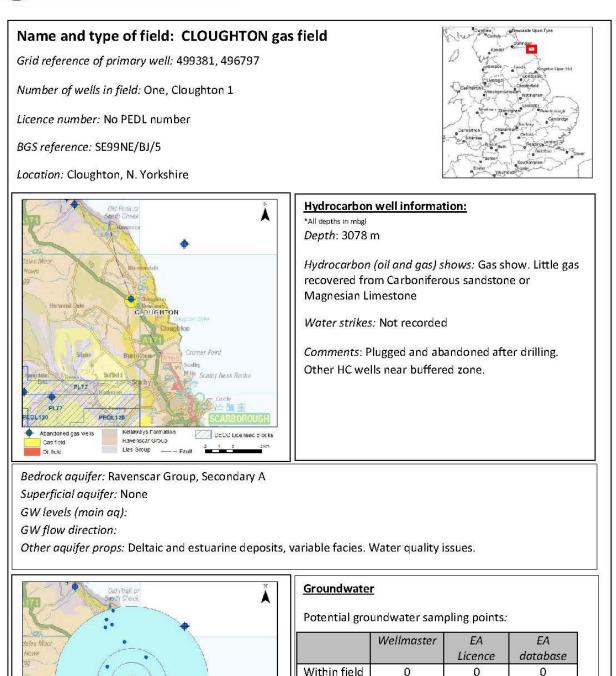
NATURAL ENVIRONMENT RESEARCH COUNCIL

CLOUCHTON

Kellaways Formation

Faut

Revensear Croup


PL7

PEOL120

77

Oilfield

Abandoned gas wells Gas held

1km

2km

5km

Key

0

0

0

0

3

14

Buffer Zone

EA monitoring network

EA Licensed boreholes

Wellmaster Boreholes

0

0

1

0

0

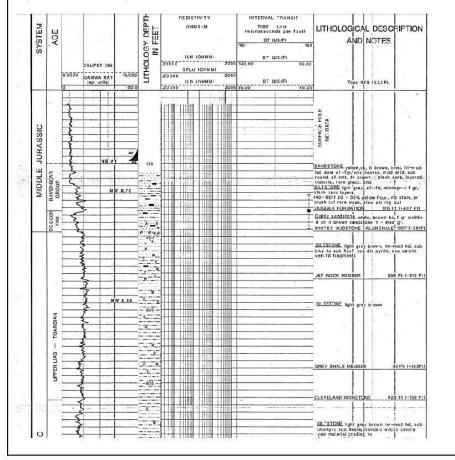
0

by Ness Rocks

DECG Licensed Block

NATURAL ENVIRONMENT RESEARCH COUNCIL

Name of field: CLOUGHTON


Cross section:

Not available.

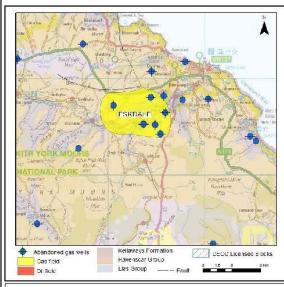
Stratigraphy and aquifers (in blue):

	Geology	Тор	Base	Thickness	
Age	Formation	(mbgl)	(mbgl)	(m)	
Mid Jurassic	First 30m not logged, Ravenscar Group, Dogger Formation	?	59		
Jurassic	Upper Lias, Lias Group	59	471	412	
Triassic	Penarth Group, Mercia Mudstone Group, Sherwood Sandstone Group	471	1100	633	
Permian	Eskdale Group, Staintondale Group, Teeside Group, Aislaby Group, Don Group	1100	1820	717	
Lower Permian Upper Carb	Rotliegendes/ Westphalian A	1820	~1840	~20	
Carboniferous	Lower Westphalian A; Namurian A, B and C	~1840	3080	~1240	

Hydrocarbon well log:

Upon Tyne

Name and type of field: ESKDALE gas field


Grid reference of primary well: 484480, 508060

Number of wells in field: Eight, Eskdale 2 described below

Licence number: No PEDL locally.

BGS reference: NZ80NW/BJ/27

Location: Grosmont near Whitby, North Yorkshire

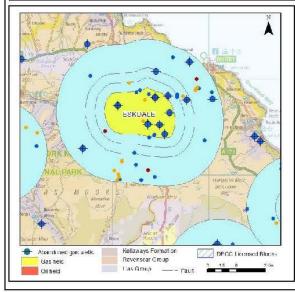
Hydrocarbon well information: *All depths in m bgl

Depth: 1540 m

Hydrocarbon (oil and gas) shows: Gas found at and below 1300 m

Water strikes: Not recorded

Comments: Drilling problems encountered at Eskdale 1. Eskdale 2 – 'put officially on production 23/09/60' drilled 1939. Eight Eskdale wells in well field, a further 5 Eskdale wells in buffered zone.


Bedrock aquifer: Ravenscar Group, Secondary A

Superficial aquifer: Till, Secondary A

GW levels (main aq):

GW flow direction:

Other aquifer props: Deltaic and estuarine deposits, variable facies. Water quality issues.

Groundwater

Potential groundwater sampling points:

	Wellmaster	EA Licence	EA database
Within field	6	2	0
1km	12	3	1
2km	14	4	1
5km	24	14	3

0	EA monitoring network
0	EA Licensed boreholes
0	Wellmaster Boreholes
\bigcirc	Buffer Zone

Name of field: ESKDALE

Cross section:

Not available.

Stratigraphy and aquifers (in blue):

	Geology	Тор	Base	Thickness	
Age	Formation	(mbgl)	(mbgl)	(m)	
Jurassic	Ravenscar Group	?	?		
Jurassic	Upper, Middle, Lower Lias		378		
Triassic	Penarth Group (Rheatic), Keuper and Bunter.	378	1000	622	
Permian	Saliferous Marl (Roxby Fm?), Upper Permian Salt, Upper Magnesian Lst, Middle Permian	1000	1540	550	

Hydrocarbon well log:

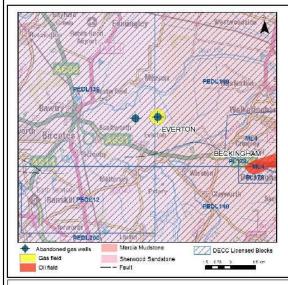
FORM	GICAL	DEPTH FEET	CORING W RECONSIL	DETAILS OF FORMATION	OIL, GAS, WATER, COAL SEAMS	DEVIATION	CASING	DATE	REMARKS	Å
LIAS	UPPER		AR	the of the force of the second second				17 . 1 . 37	Commenced drilling Celler 13'6" Deem of hole 174.	
	1	. The	No.	Herd, dark grey micaciaus shake and mudstone. Traces of pyntes					19 Jan	6
	MIDDLE		T.	carthy Linestones and fassil	l a					
	1	-		Hagments. Jandy streaks and Hanstoning.			1 E			
11		00	7		С п.					
11		-			1 N	1			াও মান্দ্রমী মন্	
		1.3		6	9 8 C		x u	1 • 1	3 8	
		150						1 . 1	14 (A)	125
		-		a 10 10 1	1 A A					12
					0			1		÷
	2 1	200			52		4 Q	1	. It' Lost 75 cu.fl. of mud.	
					Inakish Water 209		6i 8		203 Lost 6/5 cy. ft of med.	
11	LOWER	- <u>6</u> 2	Ti	Shell (Gry three 2) fragments in earling sandy \$31 "Byster Head	=					100
		250		,,,,		0"		1 1		6
11	2			testing rates and a			1	1 1	256-26+ Lost 680 cult of mud.	
11				Sandy inidiatore, laminated with light grey sandstone				1	174 Lost 36 out to mand.	
11		300		and ages grey tandstone			1	1 1	257-308 Lost 36 cust of mud.	
				ו	- X3		. 1	1 1		
		350		Less sandy hard grey wudstom				1 .1	94. E	
1 1							4		and the second second	10 10
				{				31 - 7 - 37	Depth 367. Shut down 5 days repar SI.M. George	eng
	- 1 - 1	100				1	1	1 1		
1 1		400					1	1 1		
1 B 1				120-125 Here grey nucheous				· . [
	. 1 1	450		the 125 Mard arey nucleous shaley tandy buildstant, with solver shaley mudistant, below			1			88
							1			28 - 6)
1 1			3	415-80' Hard sandy shaley mudstone with brown timestone				ł ł	656	
	- 1 1	500	-	freqments, followed by Hard	1	9°			51	
		1	3	grey slightly carevous slightly				1 1	÷ •	
		1		Soundy shally mindstone Fassiliterais in care 495-515		f	f	1 1		
	21	550							211227-12755 (B. S.)	
	11	-					. e. 1	l f	562 Last 30 cu.H. of mud.	
		. 구극관	調「				*		4	
	- 1 1	600		Hard brown invisione frequents	1		5	1.11	1. 1. S	51 B
11	- 1 - 1			browing sandy from 605'10			5	- X - 16		2.3
		AND					e 5	15 · 8 · 37	Debth 638	8
1851 Bi	a 63		000 vi	2		0.65	10	a 17		2

Abandoned Wells Project 2016

2 mil

istle Upon Tyne

Name and type of field: EVERTON gas field


Grid reference of primary well: 470175, 392960

Number of wells in field: One, Everton 1 described below

Licence number: PEDL139

BGS reference: SK79SW/BJ/22

Location: Everton, North Nottinghamshire

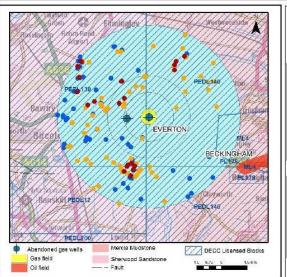
Hydrocarbon well information:

Depth: 1660 m

Hydrocarbon (oil and gas) shows: No details

Water strikes: No details

Comments: Enterprise Oil drilled Everton 1 well – deep oil target reached. Everton 2 was drilled as a coal bed methane borehole by Greenpark Energy in 2010. Exploration of the Everton Coalfield – abandoned without reaching target formation.


Bedrock aquifer: Sherwood Sandstone, Principal aquifer.

Superficial aquifer: Peat, Secondary A, unproductive.

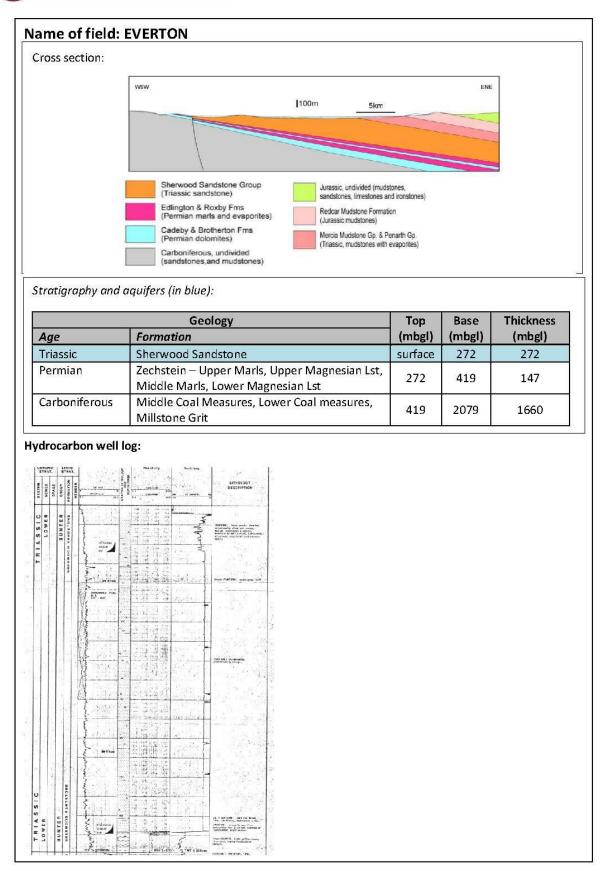
GW levels (main aq): -

GW flow direction: Eastwards

Other aquifer props: Unconfined. Dual porosity, fractures significantly contribute to GW flow. T = 76-92 m³/d.

Groundwater

Potential groundwater sampling points':


	Wellmaster	EA Licence	EA database
Within field	0	0	0
1km	1	1	0
2km	5	10	2
5km	75	80	24

Key	
0	EA monitoring network
0	EA Licensed boreholes
0	Wellmaster Boreholes
	Buffer Zone

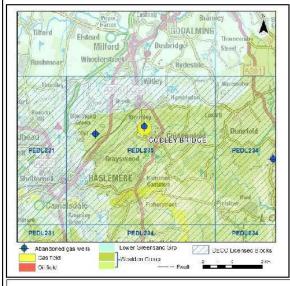
NATURAL ENVIRONMENT RESEARCH COUNCIL

Abandoned Wells Project 2016

astle Upon Tyne

Trans

Name and type of field: GODLEY BRIDGE gas field

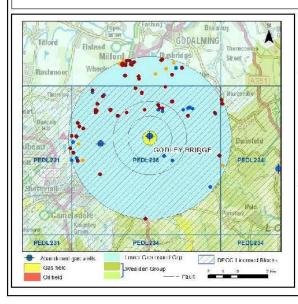

Grid reference of primary well: 495232, 136640

Number of wells in field: One, Godley Bridge 1 described below

Licence number: PEDL 235

BGS reference: SU93NE/BJ/21

Location: Chiddingfold, Sussex


Hydrocarbon well information: *All depths in mbgl Depth: 2584 m

Hydrocarbon (oil and gas) shows: Gas analysis for CH₄, C_2H_6 , C_3H_8 , C_4H_{10} in log. Just CH₄ until 823 m. Highest concentrations of all gasses 1873 m. See log and 'production during drilling' file.

Water strikes: Not recorded.

Comments: Discovery, not field. Two other Godley Bridge HC wells within the buffered zone.

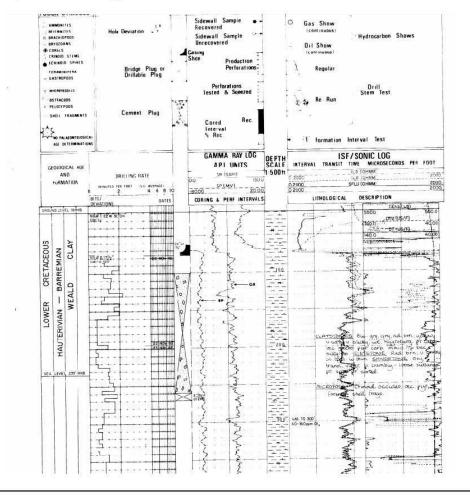
Bedrock aquifer: Weald Clay Formation, Secondary A Superficial aquifer: Alluvium GW levels (main aq): GW flow direction: Other aquifer props: Patchy aquifer, faulting.

Groundwater

	Wellmaster	EA Licence	EA database
Within field	0	0	0
1km	0	0	0
2km	8	0	6
5km	71	24	57

Varia		
Kev		

0	EA monitoring network
0	EA Licensed boreholes
0	Wellmaster Boreholes
\bigcirc	Buffer Zone


Name of field: GODLEY BRIDGE

Cross section:

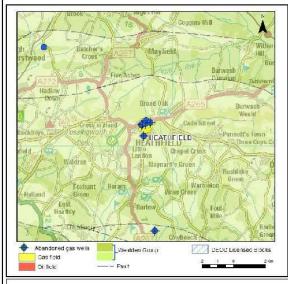
Not available.

Stratigraphy and aquifers (in blue):

Geology		Тор	Base	Thickness
Age	Formation (mbgl)		(mbgl)	(m)
Cretaceous	Weald Clay	surface	345	345
Cretaceous	Hastings Beds, Purbeck Beds (Durlston Fm)	345	734	389
Jurassic	Purbeck beds (Lulworth Fm, Purbeck Anhydrite), Portland Beds, Kimmeridge Clay, Corallian Beds, Oxford Clay, Kellaway Beds,	734	1780	1046
Middle Jurassic	Great Oolite Series, Inferior Oolite series	1780	2000	220
Lower Jurassic	Upper, Middle and Lower Lias,	2000	2580	580

NATURAL ENVIRONMENT RESEARCH COUNCIL

Name and type of field: HEATHFIELD gas field


Grid reference of primary well: 558110, 121380

Number of wells in field: Five. See below

Licence number: No PEDL or other licence details

BGS reference: TQ52SE/BJ/7, 9 to 13.

Location: Heathfield, East Sussex

Consider Constant of the case of the case

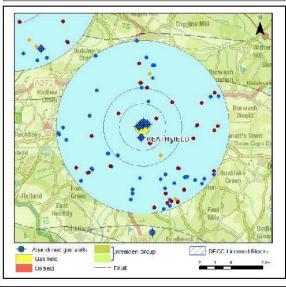
Hydrocarbon well information:

*All depths in mbgl Depth: TQ52SE/BJ/9 115 m. Drilled or completed depths not recoded for 5 of the wells. Article suggests 3 wells were 76 m, 91 m, 107 m deep.

Hydrocarbon (oil and gas) shows: Well 4 produced 68200 m³/day enough to provide natural gas to a small number of houses. Well at the Railway station (TQ52SE/BJ/9) provided gas to at least 1957.

Water strikes: Railway well records no water.

Comments: Prospective water wells that produced gas. A further HC well, Heathfield 6 within the buffered zone.


Bedrock aquifer: Ashdown Formation, Secondary A.

Superficial aquifer: None recorded

GW levels (main aq):

GW flow direction:

Other aquifer props: Complex hydrogeology, patchy, multi-layered aquifer, faulting in region.

Groundwater

	Wellmaster	EA Licence	EA database
Within field	4	0	0
1km	6	0	3
2km	11	1	5
5km	69	5	27

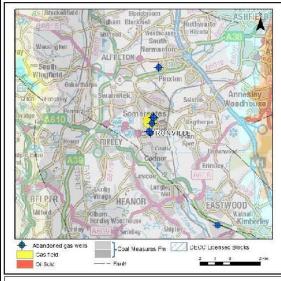
ley	
0	EA monitoring network
0	EA Licensed boreholes
0	Wellmaster Boreholes
\bigcirc	Buffer Zone

NATURAL ENVIRONMENT RESEARCH COUNCIL

Cross section:					
SOUTH				Pina	
Eastbourne			and a		
		rtical ration x10			
Cault Clay Lower Gre Weald Cla	ensand Ashdown Forma		U Horizo	5 11 I I) km
tratigraphy and	d aquifers (in blue):				
	Geology		Тор	Base	Thickness
Age	Ashdown sands		(mbgl)	(mbgl)	(m)
Cretaceous Jurassic	Purbeck		103	103 115	103? 12
Turussie	TUIDEEK		105	115	12
	1		1	1	
re quoted as As he above log is	 exists for five of the borehold hdown Sands at least 81m, P for (TQ52SE/BJ/9) of which t	Purbeck about 30 m.			vere poor. Th
re quoted as As he above log is drocarbon wel l borehole log e	shdown Sands at least 81m, P for (TQ52SE/BJ/9) of which t I log: xists for five of the six boreho	Purbeck about 30 m. he first 22 m is an exis	sting dug we	rds boreho	les were not
re quoted as As he above log is drocarbon wel l borehole log e	shdown Sands at least 81m, P for (TQ52SE/BJ/9) of which t I log:	Purbeck about 30 m. he first 22 m is an exis	sting dug we	rds boreho	les were not
re quoted as As the above log is drocarbon well borehole log e red and sample	shdown Sands at least 81m, P for (TQ52SE/BJ/9) of which t I log: xists for five of the six boreho s were poor. The log for the v	Purbeck about 30 m. he first 22 m is an exis	sting dug we	rds boreho	les were not
re quoted as As he above log is drocarbon well borehole log e red and sample	Shdown Sands at least 81m, P for (TQ52SE/BJ/9) of which t log: xists for five of the six boreho s were poor. The log for the v Storrow. He above 0.D. 450 ft. Map 44 TO 57 TO 580 To 580	Purbeck about 30 m. the first 22 m is an exist ples, just a description well at the Railways st	sting dug we	rds boreho	les were not
re quoted as As he above log is drocarbon well borehole log e red and sample	Shdown Sands at least 81m, P for (TQ52SE/BJ/9) of which t log: xists for five of the six boreho s were poor. The log for the v Starrow. He above 0.D. 450 ft. Vap 45 To 50 the output of the six boreho s were poor. The log for the v The source of the six boreho s were poor. The log for the v s were poor. The log for the v s were poor. The log for the v s to the source of the six boreho s were poor. The log for the v s to the source of the six boreho s to the source of the six boreho s to the source of the source of the source of the source s the source of th	Purbeck about 30 m. the first 22 m is an exist ples, just a description well at the Railways st	sting dug we	rds boreho	les were not
re quoted as As he above log is drocarbon well borehole log e red and sample	Shdown Sands at least 81m, P for (TQ52SE/BJ/9) of which t Hog: xists for five of the six boreho s were poor. The log for the v Station He above 0.D. 410 ft. Kap 45 TO 52 200 ft. 200 ft. Kap 45 TO 52 200 ft. 200 ft. Kap 45 TO 52 200 ft. 200 ft. 200 ft. Kap 45 TO 52 200 ft. 200 f	Purbeck about 30 m. the first 22 m is an exist ples, just a description well at the Railways st	sting dug we	rds boreho	les were not
re quoted as As he above log is drocarbon well borehole log e red and sample	shdown Sands at least 81m, P for (TQ52SE/BJ/9) of which t Hog: xists for five of the six boreho s were poor. The log for the v Station Lease 0.0. 450 ft. Map 45 TS 580 Station Lease 0.0. 450 ft. Map 45 Station Lease 0.0. 450 ft. Map 45 TS 580 Station Lease 0.0. 450 ft. Station 1. 450 Station 1. 450 Statio	Purbeck about 30 m. the first 22 m is an exist oles, just a description well at the Railways st	sting dug we	rds boreho	les were not
re quoted as As he above log is drocarbon well borehole log e red and sample	shdown Sands at least 81m, P for (TQ52SE/BJ/9) of which t Hog: xists for five of the six boreho s were poor. The log for the v Stational Data Station Station Station (1990) The shore O.D. 450 ft. May 45 TO 580 The shore O.D. 450 ft. May 45 TO 580 To 580 To 580 Stational Station Station (1990) The shore O.D. 450 ft. May 45 To 580 To 580 Stational Station Stational Station (1990) Stational Stati	Purbeck about 30 m. the first 22 m is an exist oles, just a description well at the Railways st	sting dug we	rds boreho	les were not
re quoted as As he above log is drocarbon well borehole log e red and sample	shdown Sands at least 81m, P for (TQ52SE/BJ/9) of which t I log: xists for five of the six boreho s were poor. The log for the v Starrow. He above 0.D. 450 ft. Vap 45 To 550 to Varpe Case when the provided of the starrow of the six boreho s were poor. The log for the v The source of the six boreho s were poor. The log for the v starrow of the six boreho s to the six borehout to the six borehout s to the six borehou	Purbeck about 30 m. the first 22 m is an exist oles, just a description well at the Railways st	sting dug we	rds boreho	les were not
re quoted as As he above log is drocarbon well borehole log e red and sample	shdown Sands at least 81m, P for (TQ52SE/BJ/9) of which t Hog: xists for five of the six boreho s were poor. The log for the v Starrow Ht above 0.D. 4to ft. Vap 45 To 50 To 5	Purbeck about 30 m. the first 22 m is an exist oles, just a description well at the Railways st	sting dug we	rds boreho	les were not
re quoted as As he above log is drocarbon well borehole log e red and sample	shdown Sands at least 81m, P for (TQ52SE/BJ/9) of which t Hog: xists for five of the six boreho s were poor. The log for the v Stational Depth of the six boreho s were poor. The log for the v The shore O.D. 450 ft. Map 45 TO 52 The shore of the six boreho s a stational Depth of the six boreho S a subsex, '	Purbeck about 30 m. the first 22 m is an exist oles, just a description well at the Railways st	sting dug we	rds boreho	les were not
re quoted as As he above log is drocarbon well borehole log e ed and sample that and sample that and sample the log will done the log will do lo	shdown Sands at least 81m, P for (TQ52SE/BJ/9) of which t Ilog: xists for five of the six boreho s were poor. The log for the v Starton. He above 0.D. to ft. Map of TOF The second start and start of the six starton of the six boreho s were poor. The log for the v Starton of the six boreho s were poor. The log for the v Starton of the six boreho s and start of the six boreho s and start of the six boreho s and start of the six boreho start of the six boreho s and start of the six boreho s and s	Purbeck about 30 m. the first 22 m is an exist oles, just a description well at the Railways st	sting dug we	rds boreho	les were not

NATURAL ENVIRONMENT RESEARCH COUNCIL

Name and type of field: IRONVILLE gas field


Grid reference of primary well: 443300, 352300

Number of wells in field: Three, Ironville 3 described below

Licence number: No licence number

BGS reference: SK45SW/BJ/14

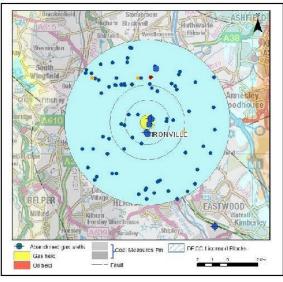
Location: Ironville, Derbyshire

Hydrocarbon well information: *All depths in mbgl Depth: 836 m

Hydrocarbon (oil and gas) shows: Oil show 180 to 190m, 240m, 370m, 408m, 615m, 660m, 710m and 830m. Oil and gas shows 515 to 530m, 585m, 680m. Tested ~235m 0.3 m³/day water and trace gas. 36 to 60 m³/day gas between 510-535 m.

Water strikes: Possible strike 45-50 m. Between 700-735 m 9 m³/day of water.

Comments: Gas for electricity, discovery not field. Three further Ironville HC wells within the buffer zones.


Bedrock aquifer: Lower Coal Measures, Secondary A

Superficial aquifer: None

GW levels (main aq):

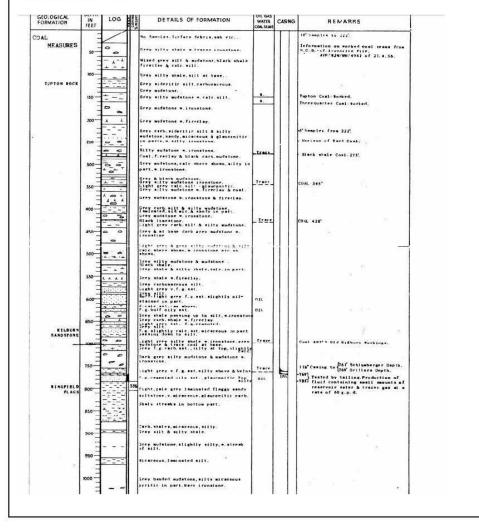
GW flow direction:

Other aquifer props: predominantly fracture flow in Coal Measures sandstones. Higher yields near old mines.

Groundwater

	Wellmaster	EA Licence	EA database
Within field	3	0	0
1km	10	0	0
2km	16	0	0
5km	85	4	1

<u>y</u>	EA monitoring network
-	
0	EA Licensed boreholes
0	Wellmaster Boreholes
\bigcirc	Buffer Zone


Name of field: IRONVILLE

Cross section:

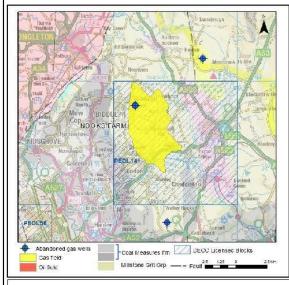
Not available.

Stratigraphy and aquifers (in blue):

Geology		Тор	Base	Thickness
Age	Formation	(mbgl)	(mbgl)	(m)
Carboniferous	Coal Measures	surface	399	399
Carboniferous	Millstone Grit	399	681	282
Carboniferous	Carboniferous Limestone Series	681	836	155

Abandoned Wells Project 2016

Name and type of field: NOOKS FARM gas field


Grid reference of primary well: 391747, 0358032

Number of wells in field: Three, Nooks Farm 1a described below

Licence number: PEDL 141

BGS reference: SJ95NW/BJ/12

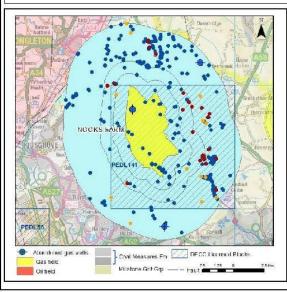
Location: Biddulph Moor, Staffordshire

Hydrocarbon well information: *All depths in mbgl Depth: 625 m

Hydrocarbon (oil and gas) shows: Good gas production.

Water strikes: None recorded

Comments: Nook Farm 1 – 'unsatisfactory'. Nook Farm 1 a drilled as replacement. Well 1z is listed as 'current'. Werrington 1 and Gun Hill 1 HC wells within the buffer zone.


Bedrock aquifer: Millstone Grit Group, Secondary A

Superficial aquifer: Till, Secondary Undiff

GW levels (main aq):

GW flow direction:

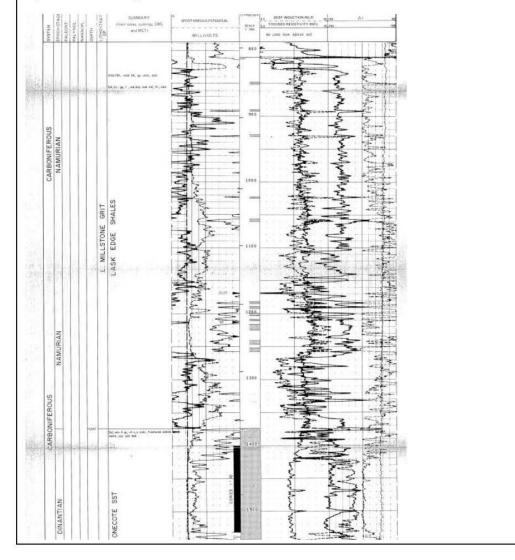
Other aquifer props: Predominantly fracture flow. Variable yields.

Groundwater

	Wellmaster	EA Licence	EA database
Within field	15	0	0
1km	40	3	0
2km	81	7	10
5km	289	28	34

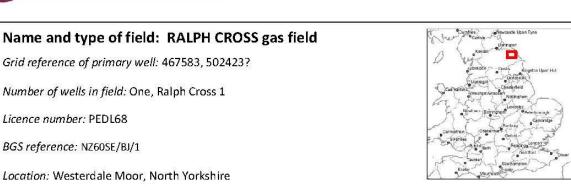
	EA monitoring network
0	EA Licensed boreholes
•	Wellmaster Boreholes
\bigcirc	Buffer Zone

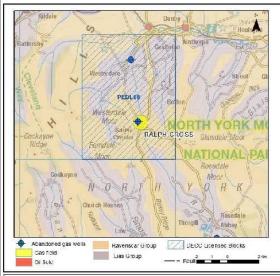
Abandoned Wells Project 2016


Name of field: NOOKS FARM

Cross section:

Not available.


Stratigraphy and aquifers (in blue):


	Geology	Тор	Base	Thickness	
Age	Formation	(mbgl)	(mbgl)	(m)	
Carboniferous	Millstone Grit	surface	419	419	
Carboniferous	Carboniferous Limestone	419	625	206	

Abandoned Wells Project 2016

Hydrocarbon well information:

*All depths in mbgl Depth: 1631 m (Difficult to link to other records)

Hydrocarbon (oil and gas) shows: Methane noted in log in 'considerable' amounts.

Water strikes:

Comments: Westerdale 1 HC well within the 5 km buffered zone.

Bedrock aquifer: Jurassic Ravenscar Group, Secondary A Superficial aquifer: None GW levels (main aq): GW flow direction: Other aquifer props:

Kildale	69	Danby	
Battersby	70/17	Ainthorpe	
12/1 A			1/2
Neve /	111444		aue
and (PEDL68		A A
4		PH CROSS	RKN
Gockayne Ridge			Moor
Cockayn	1. 1. 1. 1. 7. 8. 4. 4 <u>.</u> 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	ELA fidale	ALEA
COCKAYIN		Moor O R	K)
per la la	hurch House	-130	A
an	Low Set	Thorgill of Ab	ierlale bey
Abandoned gas wells	and the second	DECC Licensel	Blocks
Gasheld Oil field	Tias Gioup	- Fautien and	2 K-1

Groundwater

	Wellmaster	EA Licence	EA database
Within field	0	0	0
1km	0	0	1
2km	0	2	1
5km	3	4	3

0	EA monitoring network
0	EA Licensed boreholes
0	Wellmaster Boreholes
\bigcirc	Buffer Zone

NATURAL ENVIRONMENT RESEARCH COUNCIL

Name of field: RALPH CROSS

Cross section:

Not available.

Stratigraphy and aquifers (in blue):

Geology		Тор	Base	Thickness
Age	Formation	(m)	(m)	(m)
	Log starts at 914 m	914		-
	Upper Mag Limestone	1039	1071	
	Evaporite	1071	1079	
	Middle Magnesian Limestone	1079	1631	

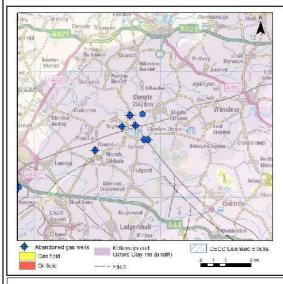
Hydrocarbon well log:

NZ 605E /1

	RALPH CROSS NO. 1	G II (b) L
	SAMPLE DESCRIPTION	
Interval	Description	
3000-3010	Sandstone, brick red, medium grain Quartzose with infrequent slightly dolomitic, denwej, sandstone, brick red, fin sporadically micaceous, do	black speckling, grading in part to a e grained, marly,
3010-3015	Sandstone, as above, variably fina and interpedded shale, br: dolomitic.	
3015-3030	Shale, brick red, slightly dolomi gypsum veinlets and interi red, becoming finer grain dense.	bedded sandstone, brick
3030-3035	As above, becoming increasingly st	naly.
3035-3055	Shale, brick red, slightly dolomi moderately high, variable firm, variably micromicane interbeds of sendstone, bu dense.	silt to fine sand content, sous, grading to fine
3055-3060	Predominantly shale, brick red, du silt to fine grained sand micromicaccous with minor brick red, fine grained, i dense.	content, in part amounts of sandstone,
3060-3065	Shale, brick red, dolomitic, varli interbedded sandstone, bri argillaceous, dolomitic, f	ick red, fine grained,
3065-3085	As above, shale increasingly micat gypsum blebs.	eous and with infrequent
	Landed 9-5/8" casing at 3083' K.B.	
3085-3095	Shale, red, dolonitic, considerabl variably micaceous. (Also Samples of very poor quali	abundant cement.)
3095-3120	Cement only.	

NATURAL ENVIRONMENT RESEARCH COUNCIL

Name and type of field: TWYFORD gas field


Grid reference of primary well: 467600, 226500

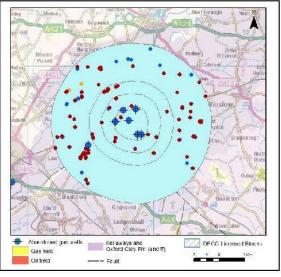
Number of wells in field: Four, Twyford 2 described below.

Licence number: No PEDL

BGS reference: SP62NE/BJ/3

Location: Twyford, Buckinghamshire

Hydrocarbon well information: *All depths in mbgl


Depth: 154 m

Hydrocarbon (oil and gas) shows: No gas until 126 m then gas and water to 144 m.

Water strikes:

Comments: No field, Sub-commercial, shallow Jurassic. Four Tywford HC wells within 1 km. An additional 2 (Calver East 1 and Calver West 1) within 1 km buffer zone and Marsh Gibbon 1 within the 5 km buffer zone.

Bedrock aquifer: Oxford Clay, unproductive Superficial aquifer: none GW levels (main aq): GW flow direction: Other aquifer props:

Groundwater

	Wellmaster	EA Licence	EA database
Within field	8	0	7
1km	14	0	17
2km	20	0	31
5km	82	2	90

еу	
0	EA monitoring network
0	EA Licensed boreholes
0	Wellmaster Boreholes
\bigcirc	Buffer Zone

Name of field: TWYFORD

Cross section:

Not available.

Stratigraphy and aquifers (in blue):

Geology			Base	Thickness	
Age	Formation	(mbgl)	(mbgl)	(m)	
Jurassic	Lower Oxford Clay	surface	8	8	
Jurassic	Kellaways, Cornbrash Fm, Great and Inferior Oolite, Upper, Middle and Lower Lias	8	138	130	
Triassic	Rheatic (Penarth Grp) or Tywford Beds	138	140	2	
Lower Paleozoic	Cambrian or Tremadoc	140	154	14	

Hydrocarbon well log:

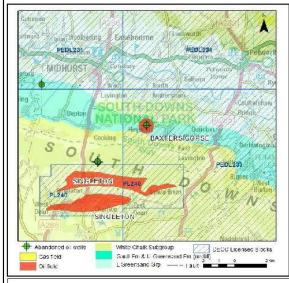
-

Twyford No 2 (BP,	1961)			SP62NE/3	3		
Alternative designati	ions -			GR 6760 2	550		
og Types available	Gamma Ray; I	Resistivity;	Chippings,	cores			
RG Box No 3248	-		_				
				inance and			
	Ft	m					
Ground level	277.4	84.6					
Datum Level	278.9	85.0					
casing to	503	153.3					
terminal depth	505	153.9					
	T	top fl	top m	base ft	base m	Thick m	m OD
Oxford Clay Formati	on and	0	0.0	25	7.6	7.6	+77.4 OE
Kellaways Sand Mer		25	7.6	35	10.7	3.0	+74 3 OD
(ellaways Clay Mon		35	10.7	42	12.8	2.1	+72.2 OD
Combrash Formatio		42	12.8	47	14.3	1.5	+70 7 OD
Forest Marple Form		47	14.3	55	16.8	2.4	+68.2 OL
White Limestone Fin		55	16.8	103	31.4	14.6	+53.6 OF
with Bladon Member		55	16.8	66	20.1	3.4	+64.9 00
Ardlev Member at		66	20.1	83	25.3	5.2	+59.7 OD
Shipton Member at		83	25.3	103	31.4	6.1	+53.6 OD
Rutland Formation	1000	103	31.4	119	36.3	4.9	+48.7 OD
Tavaton Limestone		119	36.3	140	42.7	6.4	+42.3 00
Sharp's Hill Formatio		140	42.7	144	43.9	1.2	+41.1 00
Horsehav Sand For		144	43.9	148	45.0	1.2	+39.9 00
Whitby Mudstone Fo		148	45.1	179	54.6	9.4	+30.4 OE
Maristone Bock For		179	54.6	184	56.1	1.5	+28 9 00
Dymam Formation	inauon -	184	56.1	211	64.3	8.2	+20.7 OD
Charmouth Mdst Fo	rmation	211	64.3	452	137.8	73.5	-52 8 00
with 100 Marker at	meddar	260	79.2	264	80.5	1.2	+4.5 OD
85 Marker at		308	93.9	320	97.5	3.7	-12.5 OD
2 70 Merker et		390	118.9	320	121.6	2.7	-36.6 CE
Penarth Group (Tw	auford Beds)	452	137.8	458.5	139.8	2.0	-54.8 OD
Tremadoc (dip 60°)	(Jioro Deda)	458.5	139.8	505	153.9	14.2	-68.9 OD
The reduce (cap do)		400.0	100.0	0001	150.5	14.4	
	000		11				
nterpreted from Ga							
og and IGS chipping							
NB There remains s							
Dolite Group. Comp							
Twyford Beds facies	; green grey an	gillaceous d	alcareous	sandstones	which were	proved	
by coring and produ	cc a fairly mark	ed leftward	peak in the	gamma log	g. There is li	tte	
evidence to support		Rhaetian ag	e, and in m	ny view the:	se strata cou	ild well	
be Sinemurian Plien	sbachian						
M G Sumbler					ober 2000		

atle Upon Tyne

Longe

Name and type of field: BAXTERS COPSE oil field


Grid reference of primary well: 491496, 117733

Number of wells in field: One, Baxters Copse 1

Licence number: PEDL 233

BGS reference: SU91NW/BJ/10

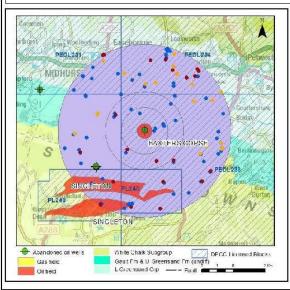
Location: Graffham, West Sussex

Hydrocarbon well information: *All depths in mbgl Depth: 2365 m

Hydrocarbon (oil and gas) shows: Some CH_4 , C_2H_6 , C_3H_8 , C_4H_{10} seen during drilling, details on log. Borehole produced 150 BFPD (25% was 37° API oil, light crude oil).

Water strikes: Not noted.

Comments: Discovery not field. Oil and gas in field. Five additional Singleton HC wells within the buffered area.


Bedrock aquifer: Gault Formation, unproductive

Superficial aquifer: None

GW levels (main aq):

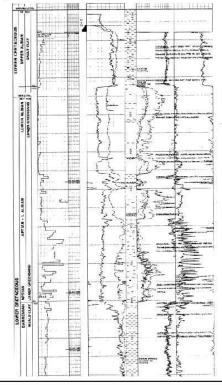
GW flow direction:

Other aquifer props: No Upper Greensand present at this site, only Gault Fm.

Groundwater

	Wellmaster	EA Licence	EA database
Within field	0	0	0
1km	6	0	0
2km	12	0	4
5km	78	22	27

Кеу	
0	EA monitoring network
0	EA Licensed boreholes
0	Wellmaster Boreholes
\bigcirc	Buffer Zone



NATURAL ENVIRONMENT RESEARCH COUNCIL

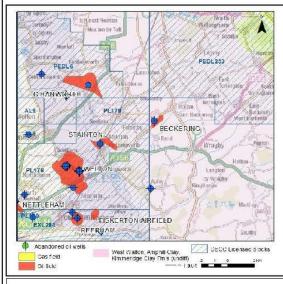
Stratigraphy and aquifers (in blue):

Geology		Тор	Base	Thickness
Age	Formation	(mbgl)	(mbgl)	(m)
Cretaceous	Gault Formation	surface	69	69
Cretaceous	Lower Greensand	69	245	176
Cretaceous	Weald Clay, Hastings Beds, Durston Fm	245	783	538
Upper Jurassic	Purbeck Beds, Portland Beds, Kimmeridge Clay, Corallian Beds, Oxford Clay, Kellaway Beds	783	1510	727
Middle Jurassic	Great and Inferior Oolite Series	1510	1720	210
Lower Jurassic	Upper, Middle and Lower Lias	1720	2120	400
Triassic	Penarth Grp, Mercia Mudstone Grp, Sherwood Sandstone Group	2120	2270	150
?	?	2270	2370	100

Abandoned Wells Project 2016

de Upon Tyne

Name and type of field: BECKERING oil Field

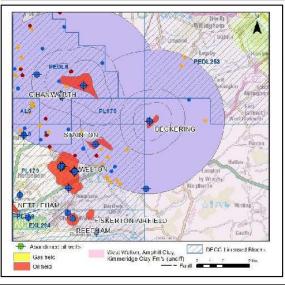

Grid reference of primary well: 510396, 380252

Number of wells in field: One, Beckering 1

Licence number: No PEDL

BGS reference: TF18SW/BJ/13

Location: Berkering, Lincolnshire


Hydrocarbon well information: *All depths in mbgl Depth: 1699 m

Hydrocarbon (oil and gas) shows: No details

Water strikes: No details

Comments: Beckering 1 buffered zone overlaps with other oil fields. Within the buffered zone are the following HC wells Apley 1 and 5 Stainton wells.

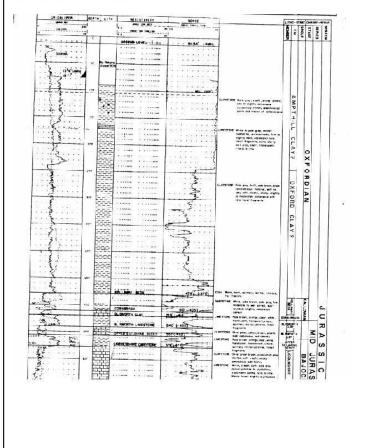
Bedrock aquifer: Ampthill Clay, unproductive Superficial aquifer: Glaciofluvial deposits – sands and gravels. Secondary A GW levels (main aq): GW flow direction: Other aquifer props:

Groundwater

	Wellmaster	EA Licence	EA database
Within field	0	0	0
1km	0	0	0
2km	0	0	0
5km	5	15	2

ey	
0	EA monitoring network
0	EA Licensed boreholes
0	Wellmaster Boreholes
\bigcirc	Buffer Zone

Abandoned Wells Project 2016


Name of field: BECKERING

Cross section:

Not available.

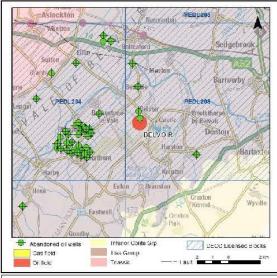
Stratigraphy and aquifers (in blue):

Geology		Тор	Base	Thickness
Age	Formation	(mbgl)	(mbgl)	(m)
Recent	Glaciofluvial sands and gravels	surface	?	?
Jurassic	Amphthill Clay/ Oxford Clay	?	146	?
Jurassic	Kellaway Beds, Cornbrash, Blisworth Clay, Blisworth Lst Upper Estuarine series, Lincolnshire Lst, Upper, Middle and Lower Lias	146	452	306
Triassic	Penarth, Mercia Mudstone, Sherwood Sst	452	975	523
Permian	Zechstein, Basal Sands	975	~1180	205
Carboniferous	Westphalian A, B and C, Namurian-Dinantian	~1180	1700	520

Abandoned Wells Project 2016

satle Upon Tyne

Name and type of field: BELVOIR oil field


Grid reference of primary well: 480924, 333979

Number of wells in field: One, Belvoir 1

Licence number: PEDL 208

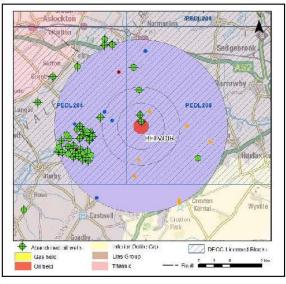
BGS reference: SK83SW/BJ/107

Location: Belvoir, Leicestershire

Hydrocarbon well information: *All depths in mbgl Depth: 960 m

Hydrocarbon (oil and gas) shows: Presence of oil seen in the core description from about 560 m to 590m, 700 m, 860 m to 920 m

Water strikes:


Comments: Discovery, not field. Noted as a potential oil producer. Details of oil, gas and water flow/ trace has been obscured on this log. One additional HC well 0 to 1 km, 1 HC well within 1-2km, 38 HC wells within 2 to 5 km of well field. Total 40 additional HC wells in the buffered zone.

Bedrock aquifer: Lias Group/ (Charmouth Mudstone Fm), Secondary Undiff. *Superficial aquifer:* Secondary Undiff

GW levels (main aq):

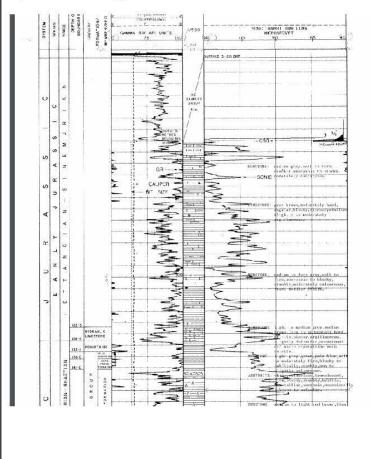
GW flow direction:

Other aquifer props: Seen in borehole log as mudstone with limestone bands.

Groundwater

	Wellmaster	EA Licence	EA database
Within field	0	0	0
1km	0	1	0
2km	2	2	0
5km	37	8	2

0	EA monitoring network
0	EA Licensed boreholes
0	Wellmaster Boreholes
\bigcirc	Buffer Zone


Name of field: BELVOIR

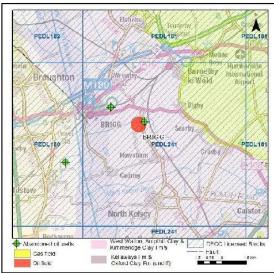
Cross section:

Not available.

Stratigraphy and aquifers (in blue):

Geology		Тор	Base	Thickness
Age	Formation	(mbgl)	(mbgl)	(m)
Jurassic	Hettangian - Sinemurian		128.4	
Triassic	Penarth Group, Mercia Mudstone Group, Sherwood Sandstone Group	128	466	338
Permian	Zechstein Marl, Basal Permian Breccia	466	484	18
Carboniferous	Westphalian A and B, Marsdenian-Yeadonian, Kinderscoutian, Dinantian	484	960	476

Grid reference of primary well:


BGS reference: TA00NW/BJ/122

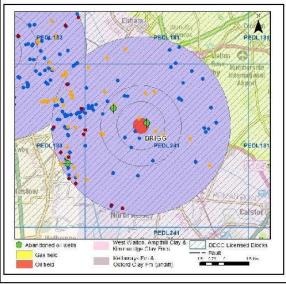
Location: Brigg, Lincolnshire

Licence number: PEDL 241

NATURAL ENVIRONMENT RESEARCH COUNCIL

stle Upon Tyne Name and type of field: BRIGG oil field Number of wells in field: Two, Brigg 1 described below.

Hydrocarbon well information: *All depths in mbgl Depth: 1937m


Hydrocarbon (oil and gas) shows: Oil shows from 1650 m to 1750 m and 1880 m to bottom of hole.

Water strikes: Not recorded.

Comments: Oil well, not field - not developed.

Three additional Glanford HC wells in 1-2km buffer zone and 1 Hibaldstow HC well within 2-5km buffer.

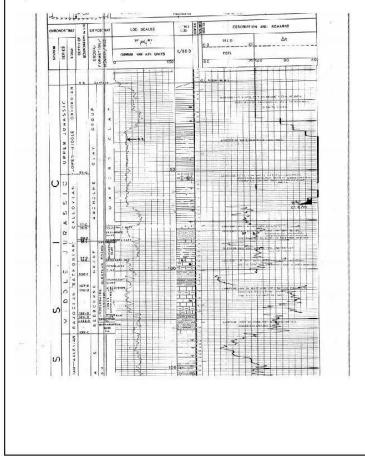
Bedrock aquifer: Ampthill Clay (Ancholme Clay), unproductive. Superficial aquifer: Breighton Sand Fm, Secondary Undiff. GW levels (main aq): GW flow direction: Other aquifer props:

Groundwater

	Wellmaster	EA Licence	EA database
Within field	1	1	0
1km	4	2	0
2km	8	9	0
5km	99	32	14

Кеу	
0	EA monitoring network
0	EA Licensed boreholes
0	Wellmaster Boreholes
	Buffer Zone

NATURAL ENVIRONMENT RESEARCH COUNCIL


Name of field: BRIGG

Cross section:

Not Available.

Stratigraphy and aquifers (in blue):

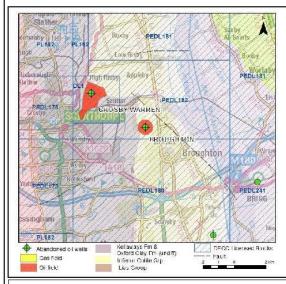
Geology		Тор	Base	Thickness	
Age	Formation		(mbgl)	(m)	
Upper Jurassic	Ancholme Clay group	surface	84	84	
Middle Jurassic	Redbourne Group	84	132	48	
Lower Jurassic	Lias	132	318	186	
Triassic	Rhaetic, Mercia Mudstone, Sherwood Sandstone	318	944	626	
Permian	Zechstein	944	1270	326	
Carboniferous	Westphalian A, B & C, Namurian, Diantian	1270	1940	670	

NATURAL ENVIRONMENT RESEARCH COUNCIL

nto

astle Upon Tyn

Name and type of field: BROUGHTON oil field


Grid reference of primary well: 494624, 410766

Number of wells in field: One, Broughton B1

Licence number: PEDL 182

BGS reference: SE91SW/BJ/456

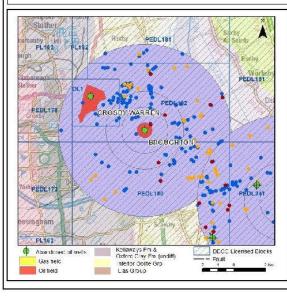
Location: Broughton, Lincolnshire

<u>Hydrocarbon well information:</u> *All depths in mbgl *Depth*: 1920 m

Hydrocarbon (oil and gas) shows: Westphalian A and Upper Namurian moderate to good hydrocarbon shows but only Peniston Flags produced oil (40 bopd), others formations water and traces of oil and gas

Water strikes:

Comments: More detailed information in the log. Oil well only, not field – not developed. Additional oil field (Crosby Warren) and 3 HC wells within the 2-5 km buffer zone.

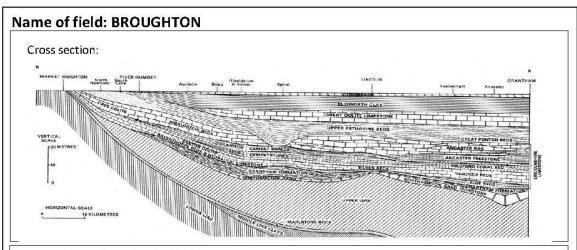

Bedrock aquifer: Lincolnshire Limestone Formation, Principle

Superficial aquifer: None

GW levels (main aq): can see large seasonally variation.

GW flow direction: Eastwards

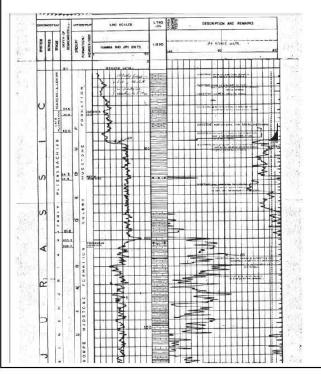
Other aquifer props: The Lincs Lst is part of the Inferior Oolite Grp, a major aquifer. Fracture flow.



Groundwater

	Wellmaster	EA Licence	EA database
Within field	0	0	0
1km	8	0	1
2km	37	0	3
5km	148	47	10

0	EA monitoring network
0	EA Licensed boreholes
0	Wellmaster Boreholes
\bigcirc	Buffer Zone



Stratigraphy and aquifers (in blue):

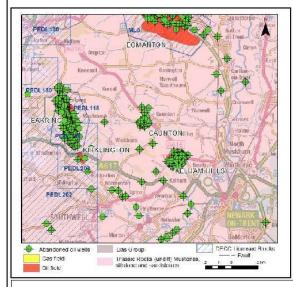
	Geology	Тор	Base	Thickness	
Age	Formation	(mbgl)	(mbgl)	(m)	
Jurassic	Lincolnshire Limestone Formation	Surface	~15?	~15?	
Lower Jurassic	Lias Group – Coleby Mudstone Fm, Scunthorpe Mudstone Fm		185		
Triassic	Mercia Mudstone, Sherwood Sandstone	184	802	618	
Permian	Zechstein	802	1130	328	
Carboniferous	Westphalian, Namurian, Dinantian	1130	1920	790	

placement on the map. More detailed description in log.

NATURAL ENVIRONMENT RESEARCH COUNCIL

Abandoned Wells Project 2016

Name and type of field: CAUNTON oil field


Grid reference of primary well: 473798 360555

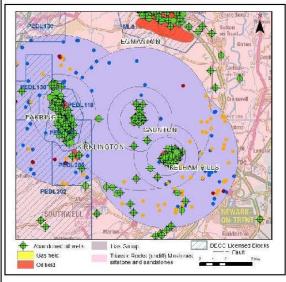
Number of wells in field: Nineteen, Caunton 2 described below

Licence number: No PEDL number.

BGS reference: SK76SW/BJ/2

Location: Caunton, Nottinghamshire

Hydrocarbon well information: *All depths in mbgl Depth: 699 m


Hydrocarbon (oil and gas) shows: Oil shows below 672 m

Water strikes: No details.

Comments: Within the Caunton 1 log is a report and conceptual model of the Caunton and Kelham hills oilfields. Page 16 – 17 'The relationship of Igneous Rocks to Oil accumulation'. Additional HC wells within buffer zones; 0-1 km 5 Caunton wells, 1-2 km 1 Winkburn and 1 Knapthorpe, 2-5 km Kelham Hills, Eakring, Kirlington well fields.

Bedrock aquifer: Mercia Mudstone, Secondary B Superficial aquifer: Unproductive / Secondary A GW levels (main aq): GW flow direction:

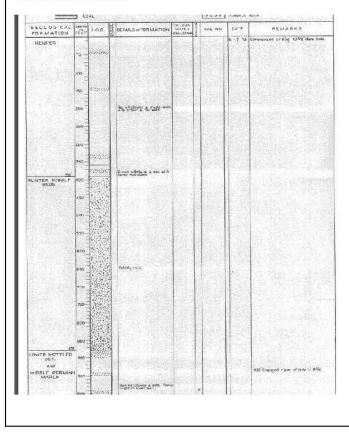
Other aquifer props: MMG - Keuper Marls are an aquitard, Waterstone Fm and Green beds minor aquifer.

Groundwater

	Wellmaster	EA Licence	EA database
Within field	23	1	3
1km	28	1	3
2km	32	1	3
5km	133	15	6

Кеу	
0	EA monitoring network
0	EA Licensed boreholes
0	Wellmaster Boreholes
	Buffer Zone

Name of field: CAUNTON


Cross section:

Not available.

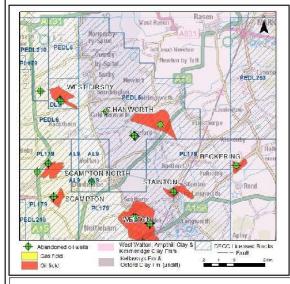
Stratigraphy and aquifers (in blue):

	Geology	Тор	Base	Thickness	
Age	Formation		(mbgl)	(m)	
Triassic	Keuper (Mercia Mudstone Group)	surface	119	119	
Triassic	Bunter pebble beds, (Sherwood Sandstone Group)	116	268	152	
Triassic - Permian	Lower Mottled Sandstones Middle Permian Marls, Magnesian Limestone	268	392	124	
Carboniferous	Coal measures, Millstone grit series Carboniferous limestone	392	699	307	

Contained within the Caunton 1 log is a report on the igneous rocks below the Caunton and Kelham hills oilfields that includes a conceptual model of the geology of the area. Caunton 1 is just outside of the well field.

stle Upon Tyne

Name and type of field: COLD HANWORTH oil field

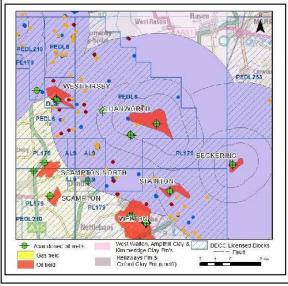

Grid reference of primary well: 505391, 382955

Number of wells in field: One, Cold Hanworth 1 described below

Licence number: PEDL 6

BGS reference: TF08SE/BJ/3

Location: Cold Hanworth, Lincolnshire


*All depths in mbgl Depth: 1760 m

Hydrocarbon (oil and gas) shows: Possibly but some of the information has been obscured. Oil staining, hydrocarbon odour and fluorescence tests noted in sample descriptions.

Water strikes: No details

Comments: Additional HC wells within the buffer zones 0-1 km 5 Cold Hanworth wells, 1-2 km 1 Spridlington, 2-5km 1 Dunholme, 5 Stainton (and well field), 5 West Firsby (and well field), 1 Beckering (and well field).

Bedrock aquifer: West Walton Fm, unproductive. Superficial aquifer: Secondary. GW levels (main aq): GW flow direction: Other aquifer props:

Groundwater

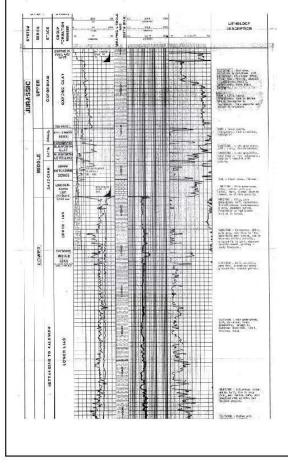
Potential groundwater sampling points':

	Wellmaster	EA Licence	EA database
Within field	1	0	0
1km	2	1	2
2km	3	1	2
5km	40	32	20

еу	
0	EA monitoring network
0	EA Licensed boreholes
0	Wellmaster Boreholes
\bigcirc	Buffer Zone

Hydrocarbon well information:

88


Name of field: COLD HANWORTH

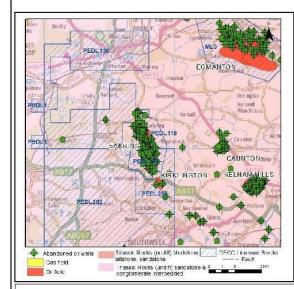
Cross section:

Not available.

Stratigraphy and aquifers (in blue):

	Geology	Тор	Base	Thickness	
Age	Formation	(m)	(m)	(m)	
Upper Jurassic	Oxford Clay	surface	60	60	
Middle Jurassic	Kellaways, Cornbrash, Blisworth clay and Lst, Upper Estuarine Series, Lincolnshire Lst	60	113	53	
Lower Jurassic	Upper, middle, lower Lias	113	355	242	
Triassic	Penarth Grp, Mercia Mudstone Grp, Sherwood Sandstone Grp	355	808	453	
Permian	Zechstein	808	1110	302	
Carboniferous	Westphalian A to D, Dinantian	1110	1760	650	

Abandoned Wells Project 2016


Grid reference of primary well: 47605 361321

Number of wells in field: 65, Eakring 1 described below.

Licence number: PEDL118

BGS reference: SK66SE/BJ/1

Location: Eakring, Nottinghamshire

Carbonia Annouate Licon Type Carbonia Annouate Licon Type Carbonia Contractor Contractor

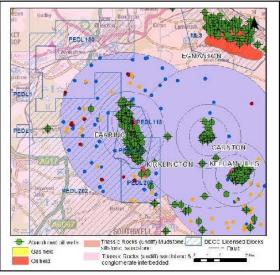
Hydrocarbon well information: *All depths in mbgl Depth: 819 m

Hydrocarbon (oil and gas) shows: Core samples show a little oil. Oil in borehole at 596 m, 632 m, 677 m

Water strikes: Water in borehole 689 m, 811 m,

Comments: '806 to 819 m core contains pockets of oil but flows water.'

- HC wells in the buffered zones
- 0-1 km: 102 Eakring and 1 Mill Hill,
- 1-2 km: 29 Eakring
- 2-5km: no Eakring, 2 Hockerton, 3 Kirlington, 1
- Maplebeck, 1 Rufford.


Bedrock aquifer: Mercia Mudstone Group, Secondary B

Superficial aquifer: None

GW levels (main aq):

GW flow direction:

Other aquifer props: MMG - Keuper Marls are an aquitard, Waterstone Fm and Green beds minor aquifer.

Groundwater

	Wellmaster	EA Licence	EA database
Within field	70	0	0
1km	174	0	0
2km	209	2	3
5km	277	31	23

0	EA monitoring network
0	EA Licensed boreholes
0	Wellmaster Boreholes
\bigcirc	Buffer Zone

Name of field: EAKRING

Cross section:

Not available.

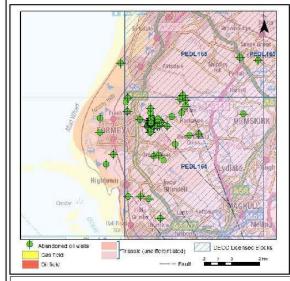
Stratigraphy and aquifers (in blue):

	Geology	Тор	Base	Thickness	
Age	Formation	(mbgl)	(mbgl)	(m)	
Triassic	Keuper, Green Beds (Mercia Mudstone Group)	surface	84	84	
Triassic	Bunter pebble beds, Lower Mottled Sandstones (Sherwood Sandstone Group)	84	268	184	
Permian	Middle Marls and sands, Magnesian Limestone	268	359	91	
Carboniferous	Coal measures, Millstone grit series? Carboniferous limestone	359	819	460	

GEOLOGICAL FORMATION	PEET	0.0	CORING N	DETAILS OF FORWATION	DIL, GAS WATER, EDAL SEAM		CASING	DATE	AKMARKE
KEUPER	-	-	*			9	П	zn 3 · 59	Conversion drilling. Josth of setar 12". Dian of hale 12's
	1.1						in the state of the	fam.	V
	50	has		Red - grace marte - Hitle mart me	ist.	20	1. 20	14.4.1 A	6 (12) (2)
		199					 12 		
				Yerls with the deterrited sala.	- 1		100	1 63 S	
	100	144	8.	tenden maris att mereterindet	et 1		2	1.	107" Hole took much time checked by one of agoing
a **		T		The grant and a processional canada mention with the determine case. The grant with the determine case. The grant with the determine to the case of the state of the served and the case of the state of the served and the second of the served and the served and with rank grant manifer a served runna Receipt marks is and grants	1 1		N. 144	S	mud.
		日中		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			1.00	1000	Contract and the second
	150	1000		Rer fine preimes des, light raisem umbanaphus det, e greine h det with res e greenisif meris e shee	1 1		2.4		
	1 -			with rec e creenisis merio e shee	1 1				
	200	-		and the second sec	1			il	
	200	ALC: NOT		Red morte, greenish marie with	1	1	1.1	13.346	C. Margares of the start of the Lot
	1 .	Part and		Red north, grantat maris with sommer sort colored missions refrontering the string of a series with the south of the series	han 1		1 m	1. A	the second s
	250	Sec.		and the second second second	1 1	c	A Fail		
GREEN BEDS	1 -	1 Saltara		and a set of the set o	1		1.11	1 20 1	
OUNTER	-	bally hat		Sinte an mary st. a green monthe				31 . 3 . 15	- 277. Drif coller triated aff - recovered
SUALEA	300	14:22						1	and the second second second
TBBLE BEDS					1 2		500	1 H	
	1			and a second second		1	1.15		print and the weather that its
	350	13.7.4		a de la constance de la constan	1 1			Ctra	
		11.3.5	1	Course light red ist, with pebbles	1.1			Sec.	in the second second
		11 113	1	1 1 1 L L			Same 1	Sec. 1	he was not the top of the state
	403	Sec. 1	8		9		Contraction of the		NAME OF THE OWNER
	1 3	1.1.3		Soft sand rook with proving comme	1 . 1	13			
	450						1.24	(a) = 0	
	1			Course light rad sit with pebbias				(m) (m) (m)	
	1 3	-	8	Yery pebbig charge sist	1 1	3			
8	500	1			1 1	10			
	1	1226	§ -	Carse revisit with poiting	1 5				La Calification and the second
		1.12		bett send cost	1 . 4			82 1	
	550	an and the second	6	Berg period verte det det.	1 1				PART OF A CALL AND A CALL
1.0				Sett And rock a coarse withouth	1	-	- 11	1 .	Contraction of the second second
	1	100		coarse red pently dat.	1		U 031		이 그 연습이 같은 것이 같은 것이 같이 없다.
	600-	20.00		Course red, little yelonish peoply			12	the set	
	25	1						2	1
		18.00		Course settly sist.				1001 3	
	650	1000			1				La service de
		10.00		all and the second second	1		-	123	States and States
	700-			Course she receivering with with	1 1			5 4 . 35	- 70%. Desended must a added aquaget to exercise rout ranging
	100	Sec.					32	10.00	was singing
		- Anna	1	Surrow rod welling dat red wart	1.		1.1	1 6.5	and the second se
	750	No The	1		1.01	r	1.5		
	10.000	and a		Red shees with probily dat			11	1	
e" 621 - "	17			and a second second second	1000		1.5	1.11	
	800-	127		Carrac red accessionally pebbly	1			1.1	이 이 이유가 가지는 한 옷이 나라 이다.
LOWER	1.				1.0. 3	-		1	1 0 1 K K
MOTTLED	1		1	Part at a vist - marte with assess to	4 1	-	1	1	

Abandoned Wells Project 2016

Name and type of field: FORMBY oil field


Grid reference of primary well: 331880, 408040

Number of wells in field: 61, Formby 1 described below

Licence number: PEDL 164

BGS reference: SD30NW/BJ/22

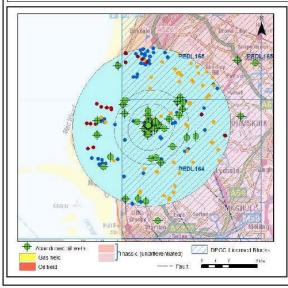
Location: Formby, Merseyside

Hydrocarbon well information: *All depths in mbgl Depth: 2340 m

Hydrocarbon (oil and gas) shows: Free oil and oil staining 30 to 55 m; 104 – 113 m. Gas odour 711-712 m.

Water strikes: Not recorded

Comments: BP. No gas field, current wells present and lots of abandoned wells. About 61 Formby HC wells in the field and 19 Formby HC wells in the 1km, 2km, 5 km buffer together with 5 Barton Moss, 2 Flea Moss, Freshfield HC wells. Formby 3, G13 and G109 are outside the 5km buffer zone


Bedrock aquifer: Mercia Mudstone, Secondary A

Superficial aquifer: Peat, Unproductive superficial aquifer.

GW levels (main aq):

GW flow direction:

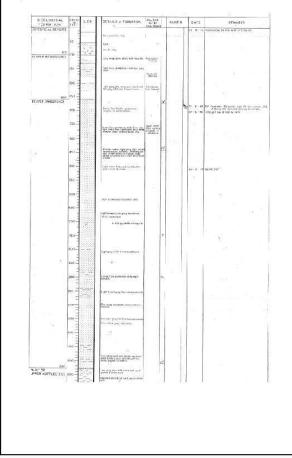
Other aquifer props: Interbedded mudstones, siltstones and sandstones

Groundwater

	Wellmaster	EA Licence	EA database
Within field	16	1	0
1km	25	2	0
2km	38	5	0
5km	149	55	25

Кеу	
0	EA monitoring network
0	EA Licensed boreholes
0	Wellmaster Boreholes
	Buffer Zone

NATURAL ENVIRONMENT RESEARCH COUNCIL


Name of field: FORMBY

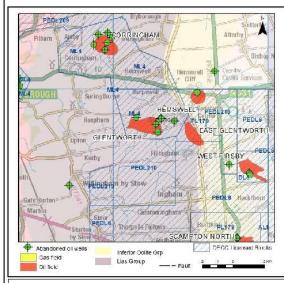
Cross section:

Not available.

Stratigraphy and aquifers (in blue):

	Geology		Base	Thickness
Age	Formation	(mbgl)	(mbgl)	(m)
Recent	Superficial deposits	surface	30	30
Triassic	Mercia Mudstone (Keuper Waterstones, Keuper sandstones)	30	375	345
Triassic	Sherwood Sst Bunter Sst, Bunter pebble beds, lower mottled Sst (Lenton Sandstone Fm?),	375	~1080	705
Permian	Collyhurst Sst	~1080	1790	710
Carboniferous	Wilpshire Grit Grp, Bowland Shales, Pendleside Grit, Pendleside Lst, Worston Shales	1790	2340	550

Name and type of field: GLENTWORTH oil field


Grid reference of primary well: 493120, 388059

Number of wells in field: Two, Glentworth 2 described below.

Licence number: ML4

BGS reference: SK98NW/BJ/2

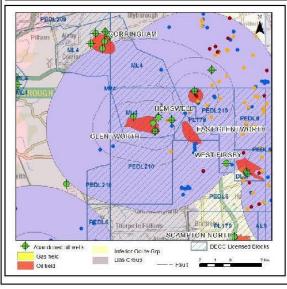
Location: Glentworth, Lincolnshire

Hydrocarbon well information: *All depths in mbgl Depth: 1666 m

Hydrocarbon (oil and gas) shows: Traces, no production.

Water strikes: Millstone Grit 1650-1670 m 550 m³/day

Comments: Glentworth 1 (outside the field) 'Excellent on production test' from the Coal Measures sandstone. Wells 2 and 7 within the field no production on test.


Additional HC wells in buffer zones; 0-1km 5 Glentworth, 2-5km Hemswell field and 2 wells, 1 Spital, 1 Ingham, 1 Corringham (and field)

Bedrock aquifer: Charnmouth Mudstone Fm, Lower Lias, Secondary Undiff *Superficial aquifer:* Till, Secondary Undiff

GW levels (main aq):

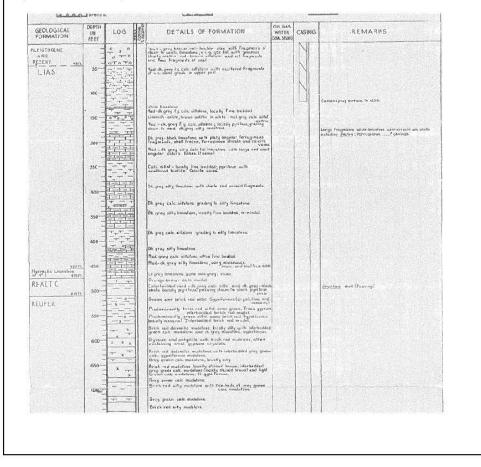
GW flow direction:

Other aquifer props: Log shows interbedded Lst, mudstone, siltstone and sst. Compartmentalised aquifer.

Groundwater

	Wellmaster	EA Licence	EA database
Within field	1	0	0
1km	5	1	0
2km	7	2	0
5km	33	12	3

0	EA monitoring network
0	
<u> </u>	EA Licensed boreholes
0	Wellmaster Boreholes
\bigcirc	Buffer Zone


Name of field: GLENTWORTH

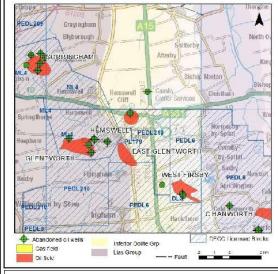
Cross section:

Not available.

Stratigraphy and aquifers (in blue):

	Geology		Base	Thickness
Age	Formation	(mbgl)	(mbgl)	(m)
Recent	Boulder Clay	surface	14	14
Jurassic	Lower Lias	14	145	131
Triassic	Rheatic; Keuper, Bunter (Mercia Mudstone and Sherwood Sandstone)	145	706	561
Permian	Upper beds, Upper mag Lst, Middle Marls, Lower Mag Lst, Lower Marls	706	933	227
Carboniferous	Coal measures, Millstone Grit	933	1666	733

Name and type of field: HEMSWELL oil field


Grid reference of primary well: 495437 389781

Number of wells in field: Two, Hemswell 1 described below.

Licence number: PEDL210

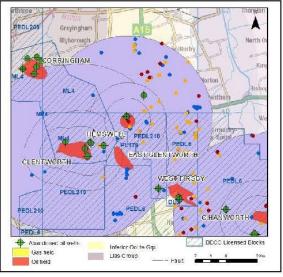
BGS reference: SK98NE/BJ/8

Location: Hemswell, Lincolnshire

Hydrocarbon well information: *All depths in mbgl Depth: 1669 m

Hydrocarbon (oil and gas) shows: Oil ~1390 to 1410 m 1530 m and 1570 m. Gas shows throughout Coal Measures and Millstone Grit.

Water strikes: Water intermittent throughout Coal Measures and Millstone Grit.


Comments: Three further HC well fields within the buffered zone. Additional HC wells within the buffered zones:1 to 2 km buffer 1 Spital and 4 Glentworth HC well; 2-5 km buffer 1 Ingham, 3 Glentworth HC wells

Bedrock aquifer: Lincolnshire Limestone Fm, Inferior Oolite Group. Principle *Superficial aquifer:* None.

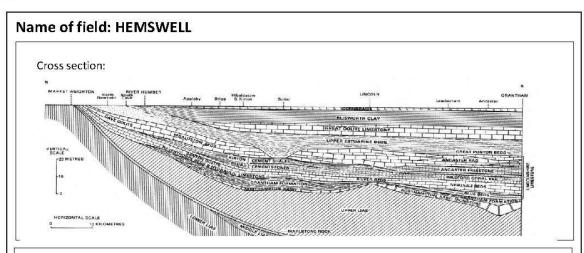
GW levels (main aq): Seasonable variable, flashy.

GW flow direction: Eastwards.

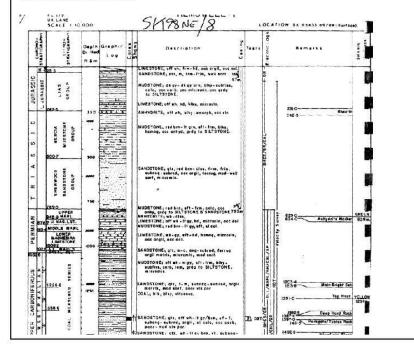
Other aquifer props: Fracture flow. Complex interactions with surface waters.

Groundwater

Potential groundwater sampling points':


	Wellmaster	EA Licence	EA database
Within field	1	1	2
1km	7	5	2
2km	9	12	2
5km	54	62	12

0	EA monitoring network
0	EA Licensed boreholes
•	Wellmaster Boreholes
\bigcirc	Buffer Zone

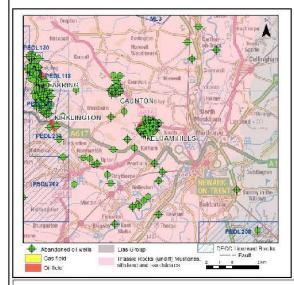

stle Upon Tyn

Stratigraphy and aquifers (in blue):

	Geology	Тор	Base	Thickness
Age	Formation	(mbgl)	(mbgl)	(m)
Jurassic	Lincolnshire Limestone	4.2?	25.5	21.3
Jurassic	Lias Group	25.5	231	206
Triassic	Rheatic; Mercia Mudstone Group and Sherwood Sandstone	231	790	559
Permian	Upper Marls, Upper mag Lst, Middle Marls, Lower Marls, Basal SST	790	1040	250
Carboniferous	Westphalian A, B and C (Coal Measures Series), Namurian (Millstone Grit), Dinantian	1040	1670	630

NATURAL ENVIRONMENT RESEARCH COUNCIL

Name and type of field: KELHAM HILLS oil field


Grid reference of primary well: 475945, 357615

Number of wells in field: 20, Kelham Hills 1 described below.

Licence number: No PEDL number

BGS reference: SK75NE/BJ/1

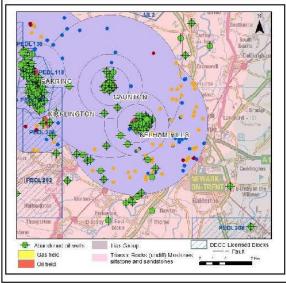
Location: Kelham Hills, Nottinghamshire

Hydrocarbon well information: *All depths in mbgl Depth: 767.8 m

Hydrocarbon (oil and gas) shows: Oil 458m, 465 m, 476 m

Water strikes: Artesian water 212 m. Salt water 732 m to 748 m

Comments: See Caunton 1 log for a report containing a conceptual model of the geology of the area. Caunton well field within buffer zones. Additional HC wells within; 0 - 1 km 47 Kelham hills; within 1 - 2 km 1 Knapthorpe, 1 Averham Park, 1 Kelham Hills; 2-5 km Caunton well field and additional 13 HC wells.


Bedrock aquifer: Mercia Mudstone Group, Secondary B

Superficial aquifer: None.

GW levels (main aq):

GW flow direction:

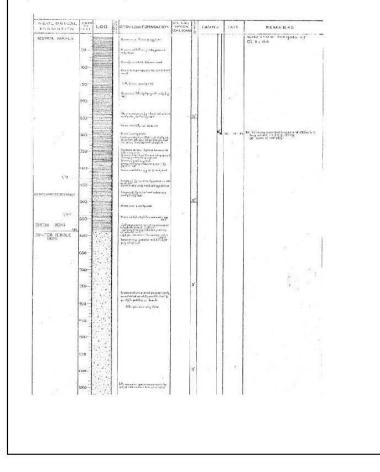
Other aquifer props: MMG - Keuper Marls are an aquitard, Waterstone Fm and Green beds minor aquifer.

Groundwater

	Wellmaster	EA Licence	EA database
Within field	21	0	2
1km	70	1	2
2km	77	6	2
5km	168	53	7

	EA monitoring network
0	EA Licensed boreholes
0	Wellmaster Boreholes
\bigcirc	Buffer Zone

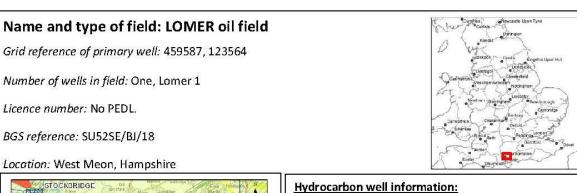
Name of field: KELHAM HILLS

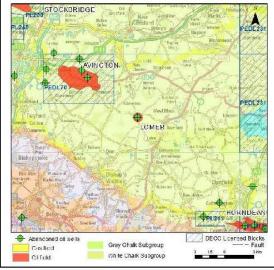

Cross section:

Not available

Stratigraphy and aquifers (in blue):

Geology		Тор	Base	Thickness	
Age	Formation	(mbgl)	(mbgl)	(m)	
Triassic	Keuper Marl, Waterstones, Green Beds (Mercia Mudstone Group)	surface	178	178	
Triassic	Bunter pebble beds Lower Mottled Sandstones (Sherwood Sandstone Group)	178	354	176	
Permian	Middle Permian Marls, Magnesian Limestone	354	437	83	
Carboniferous	Coal measures, Millstone grit series Carboniferous limestone	437	768	331	


Contained within the Caunton 1log is a report on the igneous rocks below the Caunton and Kelham hills oilfields that includes a conceptual model of the geology of the area.



Abandoned Wells Project 2016

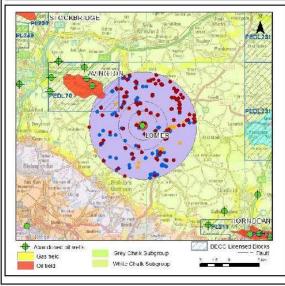
Hydrocarbon well information: *All depths in mbgl Depth: 2120 m

Hydrocarbon (oil and gas) shows: Oil shows from 1360 m to 1390 m. Intermittent gas shows, 872 m to end

Water strikes: No details

Comments: There are more details including a chromatogram and fluorescence tests of the core in the log. The information above is an amalgamation of that from the 3 different logs.

Oil well only, not field — not developed. No additional HC wells within the buffer zone.


Bedrock aquifer: Seaford Chalk (White Chalk Subgroup), Principle

Superficial aquifer: None

GW levels (main aq): Seasonally variable

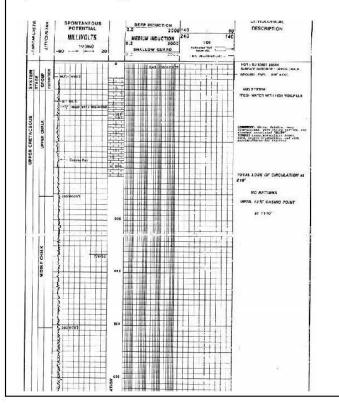
GW flow direction:

Other aquifer props: Fracture flow, transmissivity declines with depth and distance from valleys. Faulting and folding in Hampshire basin.

Groundwater

	Wellmaster	EA Licence	EA database
Within field	3	0	2
1km	10	3	9
2km	26	5	19
5km	158	29	106

еу		
0	EA monitoring network	
0	EA Licensed boreholes	
0	Wellmaster Boreholes	
\bigcirc	Buffer Zone	


Name of field: LOMER

Cross section:

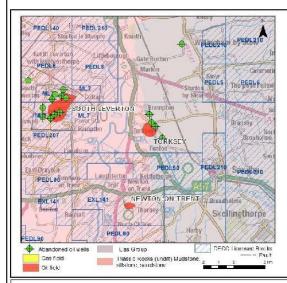
Not available.

Stratigraphy and aquifers (in blue):

Geology		Тор	Base	Thickness
Age	Formation	(mbgl)	(mbgl)	(m)
Cretaceous	Upper Chalk	0	78	78
Cretaceous	Middle & Lower Chalk, Upper & Lower Greensand, Atherfield Clay, Wealden Clays, Hastings Beds, Upper & Middle Purbeck	78	765	687
Upper Jurassic	Middle and Lower Purbeck, Portland Beds, Kimmeridge Clay, Corallian, Oxford Clay, Kelaway Beds	765	1360	595
Middle and Lower Jurassic	Cornbrash, Great and Inferior Oolite, upper, middle and lower Lias	1360	2040	680
Permo – Triassic Devonian?	Rhaetian, Mercia Mudstone	2040	2120	80

astle Upon Tyn

Name and type of field: TORKSEY oil field


Grid reference of primary well: 485200, 378680

Number of wells in field: One, Torksey 3 described below.

Licence number: No PEDL

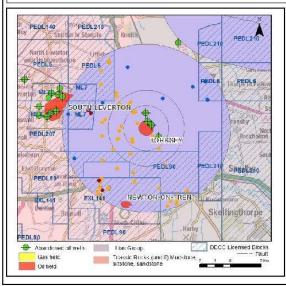
BGS reference: SK87NE/BJ/1

Location: Torksey, Lincolnshire

Hydrocarbon well information: *All depths in mbgl Depth: 1427 m

Hydrocarbon (oil and gas) shows: 1360-1430 m 0.09 m³/day Gas 1410 - 1430 m 0.23 m³/day Gas and a trace of oil

Water strikes: Between $1130 - 1150 \text{ m } 0.8 \text{ m}^3/\text{day}$, between $1360-1430 \text{ m } 0.5 \text{ m}^3/\text{day} 1410 - 1430 \text{ m } 3.4 \text{ m}^3/\text{day}$


Comments: (only Torksey 3 in field). Additional 3 Torksey HC wells within the 0-1 km buffer zone.

Bedrock aquifer: Scunthorpe Mudstone Fm, Lower Lias, Secondary A *Superficial aquifer:* Holme Pierrepont Sand and Gravel Member. Secondary A

GW levels (main aq):

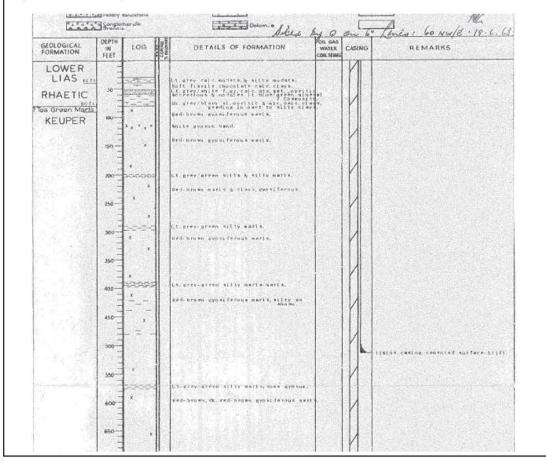
GW flow direction:

Other aquifer props: Previously 'Hydraulic Lst'. Interbedded Mdsts & Lsts. Lias is a compartmentalised aquifer.

Groundwater

	Wellmaster	EA Licence	EA database	
Within field	2	1	0	
1km	4	7	0	
2km	5	17	0	
5km	22	57	4	

Кеу		
0	EA monitoring network	
0	EA Licensed boreholes	
0	Wellmaster Boreholes	
	Buffer Zone	


Name of field: TORKSEY

Cross section:

Not available.

Stratigraphy and aquifers (in blue):

Geology		Тор	Base	Thickness
Age	Formation	(mbgl)	(mbgl)	(m)
Recent	Superficial (not on log)	Surface	?	
Jurassic	Lias (Rhaetic)	?	21	
Triassic	Keuper Marl, Bunter (Mercia Mudstone and Sherwood Sandstone)	21	530	509
Permian	Upper Permian Marls, Upper mag Lst, Middle Marls, Lower Mag Lst, Lower Permian Marls and Basal beds	530	716	186
Carboniferous	Coal measures, Millstone Grit?	716	1430	714

