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Highlights 

 We sought chemical and biological trends in metal toxicity data, using the WHAM-FTOX 

potency parameter αM,max. 

 There were no consistent differences in αM,max among invertebrates, plants and vertebrates. 

 There were significant differences in αM,max among species, but greater within-species 

variability. 

 Values of αM,max depended strongly upon Pearson’s hardness-softness categories.  

 

 

Abstract 

We used the WHAM chemical speciation model and the WHAM-FTOX toxicity model to analyse the 

published results of laboratory toxicity experiments covering 52 different freshwater biological test 
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species and 24 different metals, a total of 2037 determinations of EC50 with accompanying data on 

solution composition. The key extracted parameter was αM, the parameter in WHAM-FTOX that 

characterises the toxic potency of a metal on the basis of its estimated metabolically active body 

burden. For 16 data sets applying to metal-test species pairs with appreciable variations in solution 

composition, values of EC50 back-calculated from averaged values of αM showed significantly (p<0.001) 

less deviation from the measured EC50 values than did the simple average EC50, confirming that the 

modelling calculations could account for some of the dependence of toxicity on chemical speciation. 

Data for different exposure times permitted a simple parameterisation of temporal effects, enabling 

values of αM,max (values at infinite exposure time) to be obtained, and the effects of different exposure 

times to be factored out for further analysis. Comparison of averaged values of αM,max for different 

metals showed little difference among major taxa (invertebrates, plants, and vertebrates). For Cd, Cu, 

Ni and Zn (the four metals with most data) there were significant differences among αM,max values for 

different species, but within-species variabilities were greater. Reasonably similar species sensitivity 

distributions of standardised αM,max applied to Cd, Cu, Ni and Zn. The average values, over all species, 

of αM,max increased in the order Al < lanthanides < Zn ~ UO2 < Ni ~ Cu < Pb < Cd < Ag. Considering all 

the αM,max values, there was a strong dependence (r2 = 0.56, p < 0.001) on Pearson’s hardness-softness 

categories, and a slightly stronger relationship (r2 = 0.59) if ionic radius was included in the statistical 

model, indicating that softer, larger cations are the most effective toxicants.  

 

Key words: Chemical speciation; Meta-analysis; Metals; Toxicity; WHAM; WHAM-FTOX 

 

1. Introduction 

The toxicity of cationic metals towards aquatic organisms depends strongly upon solution chemical 

speciation (Luoma, 1983; Campbell, 1995), and this has led to the development of models to quantify 

the dependence of toxicity on solution chemistry. Pre-eminent among these is the Biotic Ligand Model 

(BLM), first described in full by DiToro et al. (2001) and Paquin et al. (2002), and recently reviewed by 

Ardestani et al. (2015).  Over the past twenty years, the BLM has been applied to numerous toxicity 

data sets, usually with the aim of producing a practical means to take water chemistry into account 

when conducting risk analysis for individual metals (e.g. Peters et al., 2009). A related but distinct 

model, WHAM-FTOX (Stockdale et al., 2010; Tipping & Lofts, 2013), has a more ecological purpose, the 

explanation of field results, including metal mixture effects. Developments to date of both models 

have mostly involved their applications to individual laboratory data sets, with little attempt to 

combine results for different biological test species and different metals to explore underlying 
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relationships. Neither has chemical speciation-based toxicity modelling been used to relate the 

toxicity of metals to their physico-chemical characteristics, as has been done with EC50 values, under 

standardised conditions (Khangarot & Ray, 1989; Walker et al., 2007; Kinraide, 2009). Here we report 

an attempt to bring together chemical and biological trends in freshwater toxicity data, by using 

WHAM-FTOX to analyse the published results of laboratory toxicity experiments with a range of metals 

and biological test species. 

The WHAM-FTOX model assumes that exposure to metals is proportional to the amount of metal bound 

by weak-acid coordination sites on or in the organism, in equilibrium with the surrounding medium. 

The fractional occupancy of sites reflects metal bioavailability from the surrounding medium, akin to 

the use of metal body burdens as a measure of contamination (Rainbow, 2007; Borgmann et al., 2008; 

Maclean et al., 1996; Adams et al., 2010; Wang, 2013). The toxic response is given by the product of 

the fractional occupancy and a toxicity parameter αM which is specific to the metal and to the 

biological species in question. Thus the toxic effect of a metal, or the proton, arises from two factors, 

binding site occupancy and toxic potency. The model assumes that the products of site occupancy and 

αM for each metal can be added together to give the overall toxic effect. As yet, the exact mechanism 

of toxicity is not specified; αM is an empirical measure, optimised to match experimental (Tipping & 

Lofts, 2013, 2015) or field (Stockdale et al., 2010, 2014) data.  If a single metal is present, the toxic 

effect is simply due to the metal and the proton (always present), but mixtures of metals are readily 

combined, taking competition (antagonism) into account (Tipping & Lofts, 2013, 2015). 

The naming of the WHAM-FTOX model arises from the assumption that metal accumulation by living 

organisms can be estimated with a pre-existing chemical speciation model, i.e. WHAM (Tipping et al., 

2011), using cation binding by humic acid (HA) as a proxy. In other words, the weak-acid groups in 

different biomolecules (e.g. proteins, polysaccharides, lipids, nucleic acids, fatty acids), are assumed 

to be adequately represented by those of natural (non-living) organic matter. Evidence that this 

approximation is valid for metal accumulation by a variety of living organisms comes from Stockdale 

et al. (2010) and Tipping & Lofts (2013). Although it is very much an approximation, the significant 

advantages of the approach are that (a) competition, and hence mixture effects, are readily taken into 

account, and (b) much additional effort, to measure and then model interactions with living organisms 

exposed to different metal-bearing solutions, is avoided. 

So far, the analysis of laboratory toxicity data with WHAM-FTOX has focused on results with mixtures, 

from which 38 separate estimates of αM have been made, covering 7 metals and 13 test species 

(Tipping & Lofts, 2015). While the exercise has been useful to explore the ability of the model to 

explain mixture effects, the results are too few to permit a wider analysis. Therefore we extended the 
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model parameterisation by fitting data collated from single metal toxicity studies, a total of 2036 

separate determinations of EC50 with accompanying solution data, extracted from published papers, 

from which the key WHAM-FTOX parameter αM could be calculated for each metal-test species pair. 

The results referred to experiments on 52 different species (25 of which had four or more data points) 

and 24 metals (although 11 were lanthanides with similar toxic properties). We used the derived αM 

values to address a number of questions, as follows. (1) Does the model consistently account for 

variability in toxic response (expressed as EC50), arising from variations in solution chemical speciation? 

(2) Can temporal variability in αM be parameterised and quantified? (3) Does αM for a given metal 

differ in any consistent or systematic way among large taxonomic units (invertebrates, plants, 

vertebrates) or species? (4) Are there quantitative relationships between αM values and the chemical 

properties of the metals? 

 

2. Methods 

2.1. Data assembly 

The ECOTOX database (https://cfpub.epa.gov/ecotox/index.html) was searched using the "Advanced 

Database Query" option, to identify freshwater toxicity studies with sufficient solution chemistry data 

for speciation calculations, i.e. there were data (including definite zero values) at least for pH, DOC, 

Na and/or K, Cl, and Mg and/or Ca. We referred to the source references in order to extract the 

solution chemistry data, together with EC50 as the concentration-based endpoint, exposure duration, 

temperature, species scientific name and taxonomic group. We discounted data for aluminium and 

thorium at neutral pH, because of uncertainty about hydrolysis products. In the absence of parameters 

for WHAM (see below), we did not consider Pt toxicity data. Data were extracted from papers 

published by De Schamphelaere and colleagues (see Table S1 for references). The database published 

by Brix et al. (2017) was used without further checking. We ensured that the toxicity test solutions 

were free of metal-complexing ligands such as EDTA (ethylenediaminetetraacetic acid) or NTA 

(nitrilotriacetic acid), but we accepted data from solutions containing non-complexing buffers such as 

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid). The final number of data lines, each with 

an individually-measured EC50, was 2037, sourced from 70 published references.  

The data are summarised in Table 1 and given in full in Table S1. They are not evenly spread; 76% are 

for Cu, 48% for fish, 42% for crustacea. The main metals are Ag, Cd, Cu, Ni, Pb and Zn. The results refer 

to 52 biological species, 72% of which are covered by the top five species; Daphnia magna (510), 

Oncorhynchus mykiss (280), Pimephales promelas (450), Pseudokirchneriella subcapitata (101) and 

Ceriodaphnia dubia (118). The data for vertebrates, mostly fish, refer to organisms in early life stages, 
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those for invertebrates are for early stage and adult organisms. The toxicity endpoint for plants was 

growth (or growth inhibition), and for vertebrates it was survival (or mortality). For invertebrates, 

survival was by far the commonest endpoint (880 of 931 determinations), but some Daphnia magna 

results (51 of 488 determinations) referred to reproduction or growth.  

In the following, we use the term “data set” to mean a collection of data obtained in a single study, 

and referring to results for a single test organism and metal. Studies with more than one metal or test 

species could therefore yield more than one data set. 

2.2. Modelling chemical speciation with WHAM 

The chemical speciation of each test solution was calculated from the published chemical composition 

(Table S1) using WHAM (Tipping, 1994) incorporating humic ion-binding model VII (Tipping et al., 

2011). This modelling takes into account the competitive complexation of cations, including protons, 

major cations and potentially toxic metals, by organic and inorganic ligands, the reactions of the 

carbonate system, ionic strength etc. The following text describing the model is based on a previous 

paper published in this journal (Tipping & Lofts, 2013); for detailed information about the assumptions 

of the model and the construction of its database, see Tipping (1998, 2002) and Tipping et al. (2011). 

Model VII uses a structured formulation of discrete, chemically-plausible, binding sites for protons in 

humic and fulvic acids (HA, FA), in order to allow the creation of regular arrays of bidentate and 

tridentate binding sites for metals. Metal aquo ions (Al3+, Cu2+, Zn2+ etc.) and their first hydrolysis 

products (AlOH2+, CuOH+, ZnOH+ etc.) compete with each other, and with protons, for binding. The 

same intrinsic equilibrium constant (KMA) for binding to carboxyl or type A groups is assumed to apply 

to the aquo ion and its first hydrolysis product. The constant (KMB) for binding to weaker acid groups 

is related to KMA, and the contributions of rarer “soft” ligand atoms are factored in. The intrinsic 

equilibrium constants are modified by empirical electrostatic terms that take into account the 

attractive or repulsive interactions between ions and the charged macromolecule. The humic ion-

binding model is combined with an inorganic speciation model, the species list and constants for which 

were given by Tipping (1994). The inorganic reactions in this database are restricted to monomeric 

complexes of metals. The effects of ionic strength on the inorganic reactions are taken into account 

using the extended Debye-Hückel equation. Temperature effects on reactions between inorganic 

species are taken into account using published or estimated enthalpy data, but in the absence of 

experimental information, reactions involving humic substances are assumed to be independent of 

temperature.  

When natural dissolved organic carbon (DOC) was present in the test solutions, proton and metal 

complexation were taken into account by assuming dissolved organic matter (DOM) to be 50% carbon, 
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with 65% of sites active with respect to cation binding, represented by fulvic acid, FA (Tipping et al., 

2008). For example, a DOC concentration of 5 mg L−1 corresponds to a concentration of FA equal to 

6.5 mg L−1 for modelling. When isolated FA or humic acid (HA) were present, reported DOC was 

converted to FA or HA by multiplying by 2.0, on the assumption that FA and HA are 50% carbon. In 

performing the speciation calculations, we assumed a CO2 partial pressure of 0.0040 atm. We did not 

take into account possible competition by dissolved Al and Fe(III) species for metal binding by organic 

matter (see Tipping et al., 2002; Lofts et al., 2008), because of uncertainty about possible changes in 

Al and Fe(III) solubility controls caused by the filtration and storage of natural waters used for toxicity 

testing. Comparisons of speciation outputs calculated with and without solubility control by Al(OH)3 

and Fe(OH)3 showed only minor differences in metal free ion concentrations and organic 

complexation. 

For six of the metals studied (Cd, Co, Cu, Ni, Pb, Zn), the possible precipitation of carbonates was 

checked, using the speciation outputs compared with the solubility products given by Grauer (1999). 

Oversaturation was calculated for Cd (7% of solutions), Co (67%), Ni (26%), Pb (12%) and Zn (19%). 

However, as previously argued (Tipping & Lofts, 2015), whether precipitation really occurred is quite 

uncertain because the solutions are dilute and the times for precipitation to occur are fairly short, so 

any precipitates would likely be poorly crystalline and, therefore, would have higher solubility 

products than the better-ordered phases used to obtain the published solubility products. Moreover, 

the degrees of oversaturation were modest, rarely exceeding a factor of 10. Therefore, we did not 

attempt to take into account the possibility that metal precipitation affected toxic responses. 

2.3. The WHAM-FTOX model 

The key variable of the model is the toxicity function, which was originally defined by Stockdale et al. 

(2010) as; 

FTOX = ∑ αi νi       (1) 

where i refers to each toxic cation (metals and the proton), νi is the amount of toxic cation bound to 

HA (mmol g−1), and αi is the toxicity coefficient. For laboratory toxicity experiments, the toxic response 

(TR), on a scale from zero to unity, depends upon lower and upper thresholds (LT and UT) of FTOX 

according to the following definitions; 

FTOX ≤ FTOX,LT  TR = 0       (2) 

FTOX,LT < FTOX < FTOX,UT  TR = (FTOX − FTOX,LT) / (FTOX,UT − FTOX,LT)  (3) 

FTOX ≥ FTOX,UT  TR = 1       (4) 
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We realise that some confusion arises from the use of νi, i.e. calculated binding to HA, as a measure 

of the fractional occupation of binding sites possessed by the biological organism. This confusion is 

exemplified by the description of WHAM-FTOX in the review of Liu et al. (2017), in which the authors 

state that νi is the amount of metal bound by the organism. This was not our intention; we only 

consider νi to be proportional to the fractional occupancy of organism sites. Therefore it is preferable 

to use, instead of νi, the variable ϴi which we define as the amount of metal or proton bound divided 

by the number of cation-binding sites per gHA (5.1 mmol g-1), i.e. ϴi = νi / nHA. The dimensionless 

variable ϴi is the same for all cation-binding agents, i.e. HA and all the different biological species that 

might be of interest. Although the actual number of binding sites, e.g. in mmol g−1, will vary among 

these cation-binding agents (see Tipping & Lofts, 2013), the value of ϴi will be the same for all binding 

agents that are in equilibrium with the same solution of protons, metals, inorganic anions, DOM, etc. 

Therefore our revised version of equation (1) is: 

FTOX = ∑ αi ϴi       (5) 

The upshot of replacing equation (1) with equation (5) is that the absolute values of FTOX all change by 

the same factor, which is 1/nHA. For example using equation (1) a value of FTOX might be calculated as 

{(1 x 2) + (10 x 0.1)} mmol g-1 for a condition in which the HA binding of protons and a single metal 

were 2 and 0.1 mmol g-1 respectively, with α values of 1 (proton) and 10 (metal ion). This FTOX would 

be 3.00 mmol g-1. Using equation (5), FTOX would be {(1 x 0.002)/nHA + (10 x 0.0001)/nHA}, i.e. 0.588. 

Equations (2) - (4) still apply after changing to equation (5). Numerical values of αi are unaffected, and 

the parameter remains dimensionless. The variable FTOX is now also dimensionless. 

In the WHAM-FTOX model, values of ϴi are assumed to be the same for all biological species exposed 

to a given solution, and variations in toxic response among species are attributed entirely to species-

specific values of αi. This picture differs from that of the BLM, which is usually parameterised for a 

single metal-test species pair, so that all the equilibrium constants for ion-binding by the BL, as well 

as the critical effect concentration (i.e. the occupancy of the BL corresponding to the observed effect) 

are species-specific. 

2.4. Calculation of αM from EC50 and solution composition 

For each data line, we applied WHAM/Model VII to calculate the chemical speciation of the test 

solution, assuming the presence of a small concentration of HA (10-9 g L-1), insufficient to affect the 

bulk speciation but yielding the cation loading of HA (νi in mol gHA-1) for toxicity modelling. Note that 

in these calculations the values of νi depend, through chemical equilibria, upon the bulk solution 

concentrations of ions. The calculations follow conventional chemical equilibrium rules, which means 
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that binding sites cannot be fully saturated (although in principle their occupancy by a particular ion 

can be very high). Another point to appreciate is that near-saturation of binding sites cannot occur 

simply by the solution metal concentration greatly exceeding the total concentration of HA binding 

sites; the extent of site occupation depends on binding affinity and competition by other ions, 

including H+.  

Values of νi (mol gHA-1) for the toxic metal and H+ were converted to ϴi by dividing by nHA. For each 

value of EC50, we thus obtained values of ϴM (toxic metal) and ϴH. In this work, values of ϴM ranged 

from 0.00015 to 0.343, in experiments with Cd and Zn respectively. 

We used the same constraint as in previous work (Tipping & Lofts, 2013, 2015) to fix the value of FTOX 

at which TR= 0.5, i.e. FTOX,0.5. Previously the modelling was done with equation (1) for which FTOX,0.5 = 

4.12 mmol g-1. Here we used equation (5) and so FTOX,0.5 = 4.12/nHA = 0.808. The value of αM for the test 

metal is given by; 

αM = (0.808 - ϴH) / ϴM     (6) 

For example, for ϴH << 0.808, which applies at neutral pH, then if ϴM = 0.5, αM = 1.6. This would apply 

to a weakly-toxic metal, requiring a high fractional occupancy of sites to exert the toxic effect. On the 

other hand, if the toxic effect could be generated at low binding, e.g. ϴM = 0.001, then a high αM value 

of 808 would apply. Because we only used measured values of EC50, the parameters FTOX,LT and FTOX,UT 

do not feature in the present work; their average values from model applications to 15 data sets 

covering a range of toxic responses (Tipping & Lofts, 2015) were 0.45 and 1.17 respectively, on the ϴ 

scale introduced here. 

Thus, for each value of EC50 we can obtain a value of αM. The EC50 values depend upon solution 

composition, which means that in a series of tests with the same metal and organism in different 

solutions, a number of different EC50 values will be obtained. However, the WHAM-FTOX model should 

take such chemical variation into account, and so ideally the derived αM values should all be the same 

for each of the series of tests. 

2.5. Variation of α with exposure time 

We assumed that after exposure of the test organism to the potentially-toxic single metal solution, it 

takes time for the organism fully to equilibrate with the solution chemistry. This can be pictured as an 

extent of penetration into the organism, quantified by the expression kt / (1 + kt), where t is time and 

k is a constant. Thus at time zero there is no toxic effect, while the full effect is achieved at t = .  
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A complication arises because before exposure to the potentially-toxic solution, the organism can be 

assumed to be in equilibrium with protons, which means that the ϴHαH term in FTOX (equation 5) 

already applies. In principle, the value of ϴH then changes as metal equilibration takes place, due to 

competition between the metal cation(s) and H+ for the binding sites. To calculate this over time would 

be difficult, and is not really necessary, since the change in bound H+ will be small, and the value of αH 

and hence of ϴH αH, is also relatively small. We therefore neglected this secondary effect, and assumed 

that only metal cation binding alters over time, according to the equation: 

αM = αM,max kt / (1 + kt)     (7) 

To explore temporal variability in αM, we extracted data from studies in which the same or similar test 

conditions were used, but with different exposure times. They were fitted to equation (7) to derive a 

common value of k and a value of αM,max (the value of αM for long-term or chronic toxicity) for each 

data set. Standardised values of αM were calculated as the ratio of αM to αM,max. 

2.6. Model evaluation 

The model should account for variability in observed EC50, due to variations in the chemical 

composition of the test medium. To test for this we identified 16 data sets (786 EC50 values) in which 

at least 20 EC50 values were reported for a range of solution compositions, with the same metal, test 

organism and exposure time. We only accepted data with non-zero values of natural DOC 

concentration. 

For each data set we computed RMSD-null, the root-mean-squared deviation between each observed 

log10 EC50 and the mean log10 EC50. We also computed RMSD-αM the root-mean-squared deviation 

between each observed log10 EC50 and the corresponding value of log10 EC50 obtained by back-

calculating (using systematic trial-and error) the EC50 value from the average αM for the data set. Log10 

EC50 was used to avoid bias towards high EC50 values. 

We also tested results against predictions obtained with the multiple linear regression (MLR) model 

introduced by Brix et al. (2017), which uses an  equation of the form; 

log EC50 = a + b log [DOC] + c log [hardness] + d pH   (8)  

where square brackets indicate concentrations and hardness has units of mg CaCO3 L-1. Brix et al. 

(2017) reported that the MLR model provided a level of accuracy comparable to the BLM. We used it 

because it allowed the toxicity data to be analysed in a consistent way, i.e. with four adjustable 

parameters, whereas BLM applications have used different numbers of parameters, depending upon 

data availability and with the exercise of judgement by modellers. Brix et al. (2017) used natural 

logarithms in their work, we used log10 to be consistent with our other calculations. The choice of 

ACCEPTED M
ANUSCRIP

T



 

logarithm only affects the values of the regression coefficients, not the significance of fit, nor the back-

calculation of EC50 from the MLR model. For each data set, RMSD-MLR was computed as the root-

mean-squared deviation between each observed log10 EC50 and the corresponding value of log10 EC50 

obtained from the parameterised MLR model. 

Predictions of the WHAM-FTOX and MLR models were made with Akaike information content (AIC) 

tests, by applying the equation 

ΔAIC = n × ln (SS-MLR/SS-αM) + 2ΔDF    (9)  

where n is the number of data, SS-MLR is the sum of squared residuals between observed and MLR-

predicted log10 EC50, SS-αM is the equivalent sum of squared residuals from WHAM-FTOX, and ΔDF is the 

difference in the degrees of freedom, or number of model  parameters (here, ΔDF = 6). A positive 

value of ΔAIC means that the MLR model is superior. See 

https://www.graphpad.com/guides/prism/7/curve-fitting/embim5.gif. 

Regression analyses, t-tests and analyses-of-variance (ANOVA) were performed with Microsoft Excel.  

 

3. Results  

3.1. Accounting for variability in toxic response with WHAM-FTOX 

For 15 of the 16 studies suitable for model evaluation (Table S2), RMSD-αM was lower than RMSD-null, 

with average values over all data sets of 0.226 and 0.404 respectively. These averages are significantly 

different (t-test, p < 0.001), indicating that WHAM-FTOX accounts for some of the variation in solution 

composition.  

We calculated how many of the predicted EC50 values were within a factor of two of the measured 

EC50, this procedure being a widely-used measure of the success or failure of models of bioavailability 

and toxicity. The method has been used to evaluate BLMs (e.g. Paquin et al. 2002; Deschamphelaere 

et al. 2002, 2003; Villavicencio et al., 2011) and the models generally give more than 90% of 

predictions within a factor of two. With the αM approach, on average 82% of the predicted EC50 values 

fell within a factor of two of the measured value, whereas with the null method, the result was only 

52%, confirming that WHAM-FTOX reduces variability.  

The WHAM-FTOX results were also compared with the results of applying the MLR model, equation (8), 

which has four parameters for fitting a sufficiently large data set. The average RMSD-MLR was 0.163, 

which was significantly (p<0.001) lower than both RMSD-null and RMSD-αM. With the MLR model, 93% 

of the calculated EC50 values were within a factor of two of the observed values. We further evaluated 
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the two models using the AIC method (equation 9), and found that for 13 of the 16 data sets, the MLR 

model was superior to WHAM-FTOX, whereas in three cases WHAM-FTOX performed better (Table S2). 

The WHAM-FTOX and MLR model predictions of log10EC50 are compared with measured values in scatter 

plots in Figure S1. 

Because WHAM-FTOX reduces variability in modelled EC50, compared with the null model (see above), 

it is evidently capable of taking into account at least some of the variability in EC50 that is due to 

variations in solution chemistry. Therefore we are justified in proceeding to extract values of αM from 

measured EC50 values for different metal-species pairs, to analyse them in terms of variations with 

exposure time, major taxa, and species, and to explore their dependence on metal physico-chemical 

characteristics. 

3.2. Variation of αM with exposure time 

The data base (Table S1) yielded 14 suitable data sets that could be fitted to equation (7). Of these, 12 

were for fish, taken from the studies of Besser et al. (2007), Cacela et al. (1996), Galvez & Wood (2002), 

Hansen et al. (2002), Welsh (1996) and Welsh et al. (1998, 2008), and two were for Daphnia magna 

(De Schamphelaere et al., 2005; Villavicencio et al., 2011). The 578 observations covered four different 

metals (Ag, Cd, Cu, Zn), with time-periods of up to 28 days. A highly significant (p<0.001) fit was 

obtained (Figure 1). The value of k was 0.770 d-1, which means that for a one-day exposure the ratio 

of αM to αM,max is 0.44, for a four-day exposure it is 0.75. We assumed that this relationship was 

universal and converted all individual values of αM to αM,max (Table S1). The values of αM,max were (of 

course) greater than those of αM, the increases ranging from 6% (5 percentile) to 65% (95 percentile) 

with a median increase of 32%. The derived αM,max values (included in Table S1) permit toxicity results 

for different exposure times to be analysed all together. 

3.3. Systematic errors in speciation-toxicity modelling 

As already noted, values of αM,max should ideally be the same for all solutions in a toxicity experiment, 

but the results described in Section 3.1 show that, although WHAM-FTOX reduces data dispersion, 

variability in derived αM (and αM,max) remains. To examine whether this variability is systematic, we 

regressed log10 αM,max against log10 [hardness], pH, and log10 [DOC], for 12 metal-test species pairs 

(Table S1). We used log10 values, except for pH, to avoid bias towards high values. Of the 36 bivariate 

relationships with sufficient data for analysis, 24 showed a significant trend (Table S3), indicating that 

systematic variability does indeed occur. However, the trends were split almost equally with respect 

to the signs of their slopes, precluding the application of simple universal adjustments to the model, 

that might produce general improvements.  
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3.4. Variation of αM,max among major taxa and species 

Before considering average results for major taxa and individual species, the data were examined for 

possible dependences on toxicity endpoint; only for Daphnia magna were comparative results 

available. The average αCu,max obtained from the 405 experiments with survival as the endpoint was 

39.4, significantly (p < 0.001) greater than the average of 23.3 obtained from the 37 experiments with 

reproduction as the endpoint. The average αZn,max values with survival (32 experiments) or 

reproduction or growth rate as endpoints (14 experiments) were 15.8 and 15.7 respectively, and did 

not differ significantly. The small numbers of experiments with non-survival endpoints, and the 

differing results between Cu and Zn, mean that drawing definite conclusions from these findings 

cannot be justified. Therefore we continued the analysis without distinguishing results for different 

endpoints. 

We calculated average αM,max values for the three major taxa (phyla or sub-phyla) for those metals 

with a sufficient number (taken to be six or more) of observations (Table 2). The values of αAg,max and 

αCd,max were consistently greater than αM,max values for the other metals, and values of αPb,max were 

intermediate, although relatively few and subject to large standard deviations. The tendency of 

average αM,max values for different metals to follow the same sequence within the different major taxa 

is illustrated in Figure 2. 

Comparisons among taxa did not show any consistent differences. Different results were obtained for 

the three metals with sufficient data to compare the three taxa statistically. Thus, αCu,max for 

invertebrates was significantly (p < 0.001) greater than the values for plants and vertebrates, which 

did not differ significantly, while the values of αNi,max differed across the three taxa (vertebrates < 

invertebrates, p < 0.01; vertebrates < plants, p < 0.001; invertebrates < plants, p < 0.05), and the values 

of αZn,max did not differ among taxa. 

Table 3 shows averaged values of αM,max for metal-species pairs. The grand averages for each metal 

over all species showed a similar, but expanded, sequence to that found for major taxa (Table 2, Figure 

2), increasing in the order Al < Ln < Zn~UO2 < Ni ~ Cu << Pb < Cd < Ag. However, appreciable differences 

among species were evident from Table 3; considering the six metals with results for more than one 

species, the αM,max values showed ranges across species of less than two-fold (Ag but only two species) 

to 55-fold (Cd), with intermediate ranges for Cu, Ni, Pb and Zn. 

For four metals (Cd, Cu, Ni and Zn) there were sufficient data for ANOVA analysis (Table S4), which 

showed that species differences account for significant (p < 0.001) amounts of the total variance for 

the metal in question;  31, 20, 43 and 45% respectively for Cd (8 species), Cu (22 species), Ni (4 species) 
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and Zn (7 species). Thus there were definitely differences among species, but most of the variance in 

each case was due to within-species variability.  

To test whether a given test species is consistently sensitive, or insensitive, to different metals, we 

plotted values of αM,max for one metal against those of another, by species, for cases where an average 

αM,max was available for a pair of metals for four or more different species. This was possible in four 

cases, Cd vs Cu, Ni vs Cu, Zn vs Cu, and Cd vs Zn (Figure S2). In one case was there a significant 

relationship, αZn,max being positively correlated with αCu,max (n = 7, r2 = 0.70, p < 0.02). 

Species sensitivity distributions of αCd,max, αCu,max, αNi,max and αZn,max, (Figure 3a) showed the 

distributions for Cu, Ni and Zn to be approximately log-normal, while that for Cd is distorted by the 

low value for Danio rerio (Table 3).  However, if the αM,max values were standardised, by dividing each 

one by the average for the metal in question, the shapes of the distributions, plotted on a linear scale, 

were quite similar (Figure 3b). 

For six of the metal-species pairings of Table 3, the results obtained here were in fair agreement with 

previously-published values of αM, obtained by Tipping & Lofts (2013, 2015) in the modelling of metal 

mixture effects (Table S5). 

3.5. Dependence of αM,max upon metal chemical character 

Although there were variations among major taxa and species, there were no strong patterns that 

precluded lumping the data all together, by metal. Therefore variation of αM,max with chemical 

character of the metals could be examined using all the data, while accepting substantial scatter.  

Of the metals for which there were data for several species, Ag and Cd had appreciably higher αM,max 

values than Cu, Ni and Zn (Tables 2 and 3), which suggests some relationship to the “softness” of the 

metal, in the terminology of Pearson (1963). Simply dividing all the metals into three softness 

categories, hard, intermediate and soft, led to the results of Table 4, showing highly significant (p < 

0.001) differences in the mean values of log αM,max for each hardness-softness category. The relative 

standard deviations in αM,max were similar, at 2.05, 1.07, 0.78 for hard, intermediate and soft metals 

respectively. In terms of bound metal, the soft metals on average are 83 (780/9) times more toxically 

effective than the hard ones, and 22 (780/35 times more effective than those in the intermediate 

category. 

Based on the idea that disruption of macromolecular structure is a likely metal toxicity mechanism 

(Tamas et al 2014), another possible factor with respect to toxicity and chemical character was ionic 

radius. Regression of log10 αmax for the different hardness-softness categories against ionic radius 

yielded evidence for this (Figure S3), with significant (p < 0.001) positive relationships found for hard 
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and soft metals, while there was no relationship for intermediate metals. A predictive equation was 

derived from metal hardness-softness and ionic radius (Figure 4). 

log10 αM,max = p (HIS + q IR)     (10) 

where HIS is 0, 1 or 2 for hard, intermediate or soft metals respectively, p =1.06 and q = 0.561. This 

relationship was somewhat better (r2 = 0.577) than the same model but with q = 0, i.e. not including 

ionic radius (r2 = 0.556).  

Results for Hyallela Azteca, which cover many metals, show a similar trend to the whole data set, 

although the  αM,max values tend to be greater than average (Figure S4a). Values from previous mixture 

modelling (Tipping & Lofts, 2015) also show a similar trend (Figure S4b), but with αM,max values tending 

to be lower than average. 

 

4. Discussion 

4.1. Empirical results 

We set out to address four related questions about the performance of the WHAM-FTOX model. These 

were essentially empirical questions, which can be asked whether or not the model is mechanistically 

correct or reasonable. In other words, they are to do with how well the model works. We had hoped 

to find data for different life stages, but nearly all the results for invertebrates and vertebrates are for 

early life stages, and so this could not be explored. Neither were there sufficient results for different 

toxicity endpoints to establish general trends across metals and test species. 

4.1.1. Does the model consistently account for variability in toxic response (expressed as EC50), arising 

from variations in solution chemical speciation?  

The results for different studies involving a number of different solution compositions (Section 3.1, 

Table S2, Figure S1) show that WHAM-FTOX takes into account some of the variation in toxic response 

due to differences in solution chemistry.  Thus, using the average αM obtained with WHAM-FTOX to 

back-calculate EC50 values gave significantly better results than the null model using average measured 

EC50. Investigations of αM,max for individual species (Section 3.3) revealed systematic (although not 

consistent) errors in the model predictions, and these would probably account for the poorer 

performance of WHAM-FTOX compared with the MLR model, and in all probability also the BLM.  

This poorer performance is the price that must be paid for the generality of the WHAM-FTOX approach, 

and highlights the different reasons for much BLM work compared to the goals of the present study. 

ACCEPTED M
ANUSCRIP

T



 

The BLMs (and the MLR approach; Brix et al. 2017) are primarily  practical tools to assess water 

chemistry effects for single metal-single species responses, in connection with individual site 

assessments. Our ultimate goal with WHAM-FTOX is a general description of field toxicity, which would 

be difficult with multi-parameter modelling for different species, but is facilitated by a single 

parameter (average αM,max) characterisation of toxic effect. The ability of WHAM-FTOX to deal with 

metal mixtures is another advantage with respect to modelling field toxicity. 

4.1.2. Can temporal variability in αM be parameterised and quantified? 

Parameterisation of equation (7) permits the exposure time of toxic exposure to be taken into 

account. For the same toxic effect to occur at different times (i.e. the same value of FTOX), the values 

of ϴi will thus have to vary, being larger at shorter times. The assumption that the same time 

dependency occurs with all metals and all test species is bold; our results are almost all for fish, there 

are no data for plants, and few for invertebrates. Therefore assuming a universal effect is a strong 

assumption, which certainly requires further testing. However, it is likely a useful first approximation. 

Support for our approach comes from the measurements by Feng et al. (2018) of Cd accumulation in 

Danio rerio, which showed that 50% of the maximum accumulation occurred within 24 hours, similar 

to our results (Figure 1).  

We can attempt to relate the time dependence of toxicity derived here with acute-chronic ratios 

(ACRs) that are used to quantify toxicity variability in conventional parameterisations. These normally 

compare acute LC50 values with reproduction NOEC or LOEC values; ACRs in the range 10-28 have been 

reported for metals with aquatic species (Länge et al., 1998; Roex et al., 2000; Raimondo et al., 2007). 

For a two-day exposure (i.e. acute) to a single metal, compared to an “infinite” exposure, our 

parameterisation of equation (7) would give a ratio of ϴ of 1.65. But the ϴ value at infinite exposure 

refers to an EC50, whereas NOEC or LOEC values would be smaller, by a factor of about two (Tipping & 

Lofts, 2015), so the ratio in ϴ would be about 3.3. A more important reason for the difference between 

the ratio in ϴ and the ACRs is that ranges of FTOX are smaller than those of solution concentrations in 

dose-response plots; Tipping & Lofts (2013) showed that the 5%-95% range in solution concentration 

was about 10 times that of FTOX. This would correspond to an ACR of about 30 for the present results, 

similar to the highest value from the literature range. 

We cannot claim that equation (7) provides a complete description of temporal effects, because it 

may not fully take into account long-term detoxification, due to the build up of induced metal-binding 

proteins (metallothioneins and phytochelatins) and metal-rich granules that occur in many organisms. 

Poteat & Buchwalter (2014) emphasised the lengthy periods (in some cases more than one year) 

required for aquatic insects to reach steady state with the surrounding aqueous medium. 

ACCEPTED M
ANUSCRIP

T



 

4.1.3. Does αM for a given metal differ in any consistent or systematic way among large taxonomic 

units (invertebrates, plants, vertebrates) or species? 

The results in Table 2 and Figure 2 show no clear systematic differences among the major taxa in their 

sensitivity to toxic metals. Generally, the average αM,max values for invertebrates, plants, and 

vertebrates are similar for a given metal. In two of the three cases (Cu, Ni, Zn) with sufficient data for 

statistical testing, significant differences were found, but the sequence for Cu was different from that 

for Ni. In the third case (Zn) there were no significant differences among major taxa.  

For Cd, Cu, Ni and Zn, significant differences in average αM,max among test species were demonstrated 

by ANOVA analysis (Section 3.4, Table S4). However at least half of the variances in αM,max arise from 

within-species variability. This will be partly due to imprecise modelling of solution speciation and 

toxicity by WHAM-FTOX, and to analytical errors in input data. However, it must also be recognised that 

toxicity measurements are prone to considerable error; toxicity data are generally noisy and often not 

well-replicated (Hanson et al., 2017), and large variations have been reported even for the same 

laboratory, solution conditions and species (Meyer et al. 2015; Traudt et al. 2017). 

Taking the results in Table 3 as a whole, a distinct pattern of sensitivity by species is elusive. There 

appears to be no straightforward ordering of species in terms of toxic responses to different metals. 

The only significant trend is found for Cu and Zn, which have the same order of sensitivity for the six 

common species with data for both metals (Figure S2), and there is a positive but insignificant trend 

with Ni and Cu.  

Species sensitivity distributions in terms of αM,max (Figure 3) show variability of an order of magnitude 

or more among metals (Cd, Cu, Ni, Zn), as also seen in the ranges of values in Table 3. After 

standardising the αM,max values to enable comparisons across all four metals, the distributions show 

quite similar variability (Figure 3b).  

4.1.4. Are there quantitative relationships between αM values and the chemical properties of the 

metals? 

There is a definite ordering of αM,max values, according to their chemical characteristics, in particular 

their hardness-softness properties, with an additional contribution from ionic radius (Table 4, Figures 

4 and S3). The findings here are novel in two ways. Firstly the results refer to the toxic potency of the 

metals, after correcting for chemical speciation and accumulation/exposure; in earlier analyses, 

chemical properties were compared with EC50 or similar variables (Khangarot & Ray, 1989; Walker et 

al., 2007; Kinraide, 2009). Secondly we have demonstrated a general behaviour over many biological 

test species, whereas the previous work focused on comparing metals for a single species.  
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4.2. Mechanisms of toxicity 

In earlier publications (Stockdale 2010, Tipping & Lofts, 2013, 2015) binding to “non-specific” sites on 

or in the organism were taken to be a measure of exposure to potentially-toxic cations, and their 

occupancy “controlled the supply of cations to one or more key toxicity receptors, not in equilibrium 

or steady state with the external solution” (Tipping & Lofts, 2015). This picture followed the BLM, the 

standard version of which involves interactions of toxic metal cations with a single key receptor - the 

biotic ligand - notably on fish gills (Playle et al 1993; Playle 1998; Wood et al 1999; Paquin et al 2002; 

Niyogi & Wood; 2004; Ardestani et al, 2015). 

However, the idea of a single receptor can be questioned, given that a variety of metal interactions 

with cellular components are possible (Rainbow, 2002). Firstly, excess metals can coordinate to  

proteins, substituting for essential metals in enzymes, altering protein structure allosterically, and 

interfering with protein folding (Blundell & Jenkins, 1977; Tamás et al., 2014). Secondly, excess metals 

can increase the generation of free radicals and reactive oxygen species, and reduce the effectiveness 

of anti-oxidants such as glutathione (Strohs & Bagchi, 1995; Ercal et al., 2001). Thirdly metals may bind 

to nucleic acids (Anastassopoulou 2003). As well as interfering with ion regulation, toxic metals have 

other physiological effects. In fish, these include oxidative stress (McCrae et al., 2016; Pereira et al., 

2016), neurological (Sonnack et al., 2015) and behavioural impairment (Nabinger et al), interference 

with embryo development (Kondera, 2016), and endrocrine stress (Alsop & Wood, 2011). In plants, 

metals are known to cause oxidative stress (Clemens, 2006;  Emamverdian et al., 2015).  

If multiple responses to excess metals, interacting at multiple sites, are accepted as a general 

description of toxic effects, then it seems reasonable to think of the WHAM-FTOX variables ϴH and ϴM 

as direct quantifications of binding to sites (in both macromolecules and small molecules) that elicit 

toxic responses, rather than just expressions of exposure, as we originally suggested (see above). Of 

course, different sites will be associated with different degrees of toxic response, but one or a few 

sites may not be critical. If ϴM covers binding to toxic sites, then αM is a measure of the subsequent 

effect. Differences among metals therefore show how metals differ in their disruptive capabilities. For 

example, the large, soft metals Ag, Cd and Hg are the most effective (Figure 4), which might be due to 

their greater disruptive abilities once bound to macromolecules, and also to their greater abilities to 

block anti-oxidants. Small, hard metals (Al, Be) can be toxic, but more binding is required, hence αmax 

values are lower.  

Considering all accumulated metal to induce toxic effects, rather than postulating an individual target 

site, is in line with the ideas of earlier workers (MacLean et al., 1996; Rainbow, 2002; Borgmann et al., 

2008; Adams et al., 2010; Pentinnen et al.; 2011; Wang, 2013), bearing in mind the need to consider 
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only metabolically available metal, i.e. stored detoxified metal is not included (Rainbow, 2002; Vijver 

et al, 2004). We suggest that the values of ϴM calculated with WHAM-FTOX are equivalent to the 

metabolically-available metal, expressed in terms of binding site occupancy. Previously we called the 

organism metal content calculated with WHAM-FTOX the “metabolically active body burden” (Tipping 

& Lofts, 2015). 

The modelling approach incorporating the metabolically active body burden assumes that all relevant 

cation binding sites possessed by the organism are in equilibrium with the external solution. Evidence 

to support this comes from a number of case studies in which measured metal body burdens were 

correlated with the metal loading of HA calculated with the WHAM speciation model (Tipping et al., 

2008; Stockdale et al., 2010; Tipping & Lofts, 2013). However, several factors need to be 

acknowledged. First, HA is not an accurate representation of the molecules comprising living 

organisms, and even if it is a useful approximation, this will likely vary among species. Second, 

measured body burdens are likely to include any metal present in stored, detoxified forms, such as 

metallothionein complexes, phytochelatins, or insoluble metalliferous granules. Third, cytoplasmic 

solutions have different chemical compositions from the external solution, which implies that the 

distributions of cations between solution and intracellular constituents are not correctly modelled 

with WHAM. Therefore the use of WHAM to estimate metabolically active body burdens must be 

regarded as a fairly crude approximation, and this will have contributed to the considerable scatter in 

plots comparing measured and modelled body burdens (Tipping et al., 2008; Stockdale et al., 2010; 

Tipping & Lofts, 2013). It also means that the derived values of αM presented here are imperfect 

measures of toxic effect, since they also reflect differences in binding properties among taxa or 

species.  

In the metabolically active body burden picture, the effect of time can be looked on as a penetration-

loading effect. It can be envisaged that at short times the external parts of the organism are fully 

loaded, while internal ones are not, then over time all the sites become loaded (as much as is 

compatible with the solution chemistry) and maximum toxicity is achieved for that solution condition. 
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5. Conclusions 

This exercise has shown that metal toxicity data obtained from laboratory measurements with 

freshwater organisms can be partly rationalised within the concepts of the WHAM-FTOX model. In 

terms of missing information, the results demonstrate the need for more data for metals other than 

Cu, and comparative toxicity experiments with several species exposed to the same metal-bearing 

solutions would help to improve understanding of species sensitivity. The model seems more 

consistent with multiple sites of toxic action than single key receptors. The most definite conclusions 

are as follows: 

(a) The WHAM-FTOX model partially accounts for variations in measured toxic effect (EC50), by taking 

account of differences in solution chemical speciation and bioavailability. 

(b) Temporal variation in responses to toxic metal exposure can be approximately quantified, 

permitting the estimation of the parameter αM,max, the toxic potency of accumulated metal at 

infinite time. 

(c) Values of αM,max for different metals show no clear or consistent differences among invertebrates, 

plants and vertebrates. 

(d) For Cd, Cu, Ni and Zn, there are significant differences among αM,max values for different species, 

but there is greater within-species variability. 

(e) There is a strong relationship between αM,max and metal chemical characteristics, i.e. Pearson’s 

hardness-softness categories and ionic radius. The most potent metals, in terms of metabolically 

active body burden, are Ag, Cd and Hg; intermediately-potent metals include Cu, Ni and Zn; the 

least potent metals include Al, Be and UO2. 
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Table 1. Summary of data; the numbers indicate the number of EC50 values.  

Metal Inverte-
brates 

Plants Verte-
brates 

Total 

Ag 6  37 43 
Al   7 7 
Be 2   2 
Cd 24  128 152 
Ce 2   2 
Co 6  3 9 
Cu 743 49 751 1543 
Dy 16   16 
Er 2   2 
Eu 2   2 
Gd 2   2 
Hg 4  1 5 
Lu 2   2 
Nd 2   2 
Ni 27 39 13 79 
Pb 11 18 4 33 
Pr 2   2 
Sc 2   2 
Sm 2   2 
Tb 2   2 

UO2 6   6 
Y 2   2 

Yb 2   2 
Zn 62 9 47 118 

Total 932 115 990 2037 
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Table 2. Mean values of αM,max for different metals and major taxa, for n ≥ 6. The Ln row shows 

results for all lanthanides.  

 Invertebrates Plants Vertebrates 
 n mean sd n mean sd n mean sd 

Ag 6 2411 2015    36 973 354 
Cd 24 376 490    128 729 396 
Co 6 162 198       
Cu 743 42 28 49 26 17 751 28 27 
Ni 27 26 32 39 43 28 13 6 1 
Pb 11 182 166 18 116 125    

 6 44 48       
Zn 62 17 15 9 15 22 47 18 10 
Ln 36 6 4       
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Table 3. Mean (bold) values of αM,max by species, and standard deviations (italic) for n ≥ 4. The Ln row collects results for all lanthanides.  

Species Ag Al Cd Cu Ni Pb UO2 Zn Ln 

Acipenser transmontanus       45 30           
Bufo americanus   3 0               
Ceratophyllum demersum       14 6           
Ceriodaphnia dubia     274 75 53 26 77 7     61 28   
Cottus bairdi     630 295 39 24       26 9   
Danio rerio     17 4 17 5           
Daphnia magna     158 108 38 28     20 8 16 6   
Daphnia obtusa       36 11           
Daphnia pulex       50 14           
Daphnia pulicaria       108 47 14 3         
Dugesia tigrina               3 0   
Etheostoma flabellare       8 0           
Etheostoma rubrum       7 0           
Hyalella azteca     952 730 23 10   314 88     6 4 
Lampsilis siliquoidea       34 11           
Lumbriculus variegatus       8 1       3 0   
Lymnaea stagnalis       37 10           
Oncorhynchus clarki       17 5           
Oncorhynchus mykiss 1206 283   869 282 26 16       18 10   
Oncorhynchus tshawytscha       18 4           
Pimephales promelas 896 351   785 392 33 35 6 1         
Pseudokirchneriella subcapitata       30 18 43 28 128 127   15 22   
Pyrgulopsis idahoensis       34 3           
Salvelinus confluentus     590 158 15 2       15 6   
Villosa iris       51 9           

Mean 1051  3  534   32  35  221  20  19  6  
Min  896  3  17  7  6  128  20  3  6  
Max 1206  3  952  108  77  314  20  61  6  
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Table 4. Mean αM,max values, classified according to the Pearson (1963) hardness-softness scheme. 

Hard metals comprise Al, Be, Sc, Y, Ln and UO2), intermediate Co, Cu, Ni, Pb and Zn, soft Ag, Cd and 

Hg. Key: n = no. of values; sd = standard deviation; rsd  = relative standard deviation. The mean values 

are significantly different (t-test) at p < 0.001. 

metal type n mean sd rsd 

hard 55 7 15 2.08 

intermediate 1782 26 27 1.07 

soft 200 550 454 0.82 
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Figure captions 

Figure 1. Time dependence of standardised αM. The trend is highly significant, judged by plotting 

observed against calculated y-axis values (n = 578, p < 0.001; intercept not significant). One 

observation (21 days, standardised αM = 3.88) is not shown, although it was included in the analysis. 

Figure 2. Mean αM,nax for plants (filled circles) and invertebrates (open circles) vs mean αM,max for 

invertebrates, plotted by metal. The data are from Table 2, which includes standard deviations. The 

1:1 line is shown. 

Figure 3. Species sensitivity distributions for Cd (closed circles), Cu (open circles), Ni (closed squares) 

and Zn (open squares). The x-axis values in panel (b) were obtained by dividing the αM,max for each 

species by the mean value for each metal. 

Figure 4. Observed log10 αM,max vs predicted values obtained with equation (10). The 1:1 line is shown.  
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