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Abstract 

  Numerical simulations suggest that submesoscale turbulence may transform lateral 

buoyancy gradients into vertical stratification, and thus restratify the upper ocean via 

vertical flow. However, the observational evidence for this restratifying process has 

been lacking due to the difficulty in measuring such ephemeral phenomena, 

particularly over periods of months to years. This study presents an annual cycle of 

the vertical velocity and associated restratification estimated from two nested clusters 

of meso- and submesoscale-resolving moorings, deployed in a typical mid-ocean area 

of the Northeast Atlantic. Vertical velocities inferred using the non-diffusive density 

equation are substantially stronger at submesoscales (horizontal scales of 1-10 km) 

than at mesoscales (horizontal scales of 10-100 km), with respective root mean square 

values of 38.0 ± 6.9 m/day and 22.5 ± 3.3 m/day. The largest submesoscale vertical 

velocities and rates of restratification occur in events of a few days’ duration in winter 

and spring, and extend down to at least 200 m below the mixed layer base. These 

events commonly coincide with the enhancement of submesoscale lateral buoyancy 

gradients, which is itself associated with persistent mesoscale frontogenesis. This 

suggests that mesoscale frontogenesis is a regular precursor of the submesoscale 

turbulence that restratifies the upper ocean. The upper-ocean restratification induced 

by submesoscale motions integrated over the annual cycle is comparable in magnitude 

to the net destratification driven by local atmospheric cooling, indicating that 

submesoscale flows play a significant role in determining the climatological upper-

ocean stratification in the study area.  
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Accepted for publication in Journal of Physical Oceanography. DOI 

1. Introduction 

  Vertical flows in the ocean surface boundary layer play a key role in shaping 

upper-ocean stratification, and in exchanging mass and tracers within and across the 

mixed layer (ML) (Klein and Lapeyre 2009; Rosso et al. 2014; Mahadevan 2016; 

McWilliams 2016). Oceanic submesoscale processes (defined here as those linked to 

subinertial flows with horizontal scales of 1-10 km) have been shown, mostly through 

numerical simulations, to be effective at inducing strong vertical velocities in the 

upper ocean (Mahadevan and Tandon 2006; Capet et al. 2008a). The occurrence of 

vertical motion at submesoscales is associated with a wide range of mechanisms 

characterised by distinct dynamics, such as surface frontogenesis (Lapeyre et al. 2006; 

Capet et al. 2008b; Gula et al. 2014), ML baroclinic instabilities (Boccaletti et al. 

2007; Fox-Kemper et al. 2008), wind-driven frictional effects at fronts (Thomas and 

Lee 2005; Thomas and Ferrari 2008), nonlinear Ekman pumping (Thomas and Rhines 

2002; Mahadevan et al. 2008), symmetric instability (Taylor and Ferrari 2010; 

Thomas et al. 2013; Brannigan 2016) and mesoscale-submesoscale coupling 

(Ramachandran et al. 2014). Most of the aforementioned studies have focused on 

regions of strong frontal currents or have made use of idealised simulations, while 

less attention has been devoted to investigating submesoscale flows in the open ocean 

(e.g., Shcherbina et al. 2015; Thompson et al. 2016) – which constitutes the majority 

of the marine environment.  

  The generation of submesoscale motions has been extensively documented in the 

ML, where the weak local stratification permits the rapid amplification of 

baroclinically unstable modes (Haine and Marshall 1998). In contrast, balanced flow 

in the ocean interior is commonly considered to follow quasi-geostrophic (QG) 

dynamics, characterized by mesoscale motions with horizontal scales of 10-100 km 
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(approaching or exceeding the first baroclinic deformation radius) and vertical scales 

of O(1 km). These balanced interior flows are often generated by mesoscale 

baroclinic instability (BCI) (Gill et al. 1974), whereby slumping of isopycnals unfolds 

over relatively long time scales on the order of weeks to months (Charney 1971). 

Compared to mesoscale BCI in the interior, BCI in the ML develops over 

substantially smaller horizontal scales (1-10 km) and shorter time scales of order 1 

day (Boccaletti et al. 2007). Both numerical simulations and observations indicate that 

variations in the intensity of mixed-layer BCI play a significant role in the seasonal 

modulation of submesoscale flows in the upper ocean (Mensa et al. 2013; Sasaki et al. 

2014; Callies et al. 2015, 2016). Mixed-layer BCI has been parameterised as an 

overturning streamfunction confined to the ML (Fox-Kemper et al. 2008), acting to 

rapidly restratify the upper ocean by releasing available potential energy. Simulations 

by Callies et al. (2016) indicate that mixed-layer BCI may energise the entire ML and 

produce intense vertical velocities. In contrast, the impact of balanced submesoscale 

motions with characteristic horizontal scales of 1-10 km on interior vertical flows 

remains relatively understudied, although several recent numerical investigations 

suggest that these flows may play an important role in vertical exchanges across and 

below the ML base (e.g., Brannigan 2016). 

  A common outcome of the development of mesoscale BCI in the ML is the 

occurrence of frontogenesis, which is associated with large vertical velocities (Spall 

1995; McWilliams et al. 2009). The connection between frontogenesis and 

restratification was established in the classical work of Hoskins and Bretherton (1972), 

who show that, in the presence of a larger-scale strain flow, an ageostrophic 

secondary circulation leads to buoyancy and momentum transports that maintain 

thermal wind balance. In the frontogenetic scenario, this ageostrophic secondary 
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circulation gradually slumps isopycnals and restratifies the upper ocean (i.e. it elicits 

an upward buoyancy flux). Thomas and Ferrari (2008) suggest that frontogenesis can 

penetrate from the ocean surface to depths beyond the ML base in the presence of 

deep fronts. Here, we will show that submesoscale vertical flows can be associated 

with strong mesoscale frontogenesis, which leads to substantial upper-ocean 

restratification down to at least 200 m below the ML base.  

  A key step in advancing our understanding of submesoscale turbulence and its 

associated restratification is to obtain representative observations of these phenomena 

in the upper ocean. However, due to the small magnitude of the vertical flows 

involved, the effects of submesoscale motions on stratification are difficult to measure 

directly. For several decades, the QG omega equation and variants have been widely 

used to estimate the vertical velocity for mesoscale flows (Pollard and Regier 1992; 

Martin and Richards 2001; Naveira Garabato et al. 2001; Thomas and Joyce 2010). At 

the submesoscale, ageostrophic motions are increasingly important, and the QG 

approximation provides a sub-optimal representation of the dynamics governing the 

vertical flow (Mahadevan 2016). An inverse formulation recently developed by 

Thomas et al. (2010) offers a dynamically comprehensive diagnostic of submesoscale 

vertical velocity from Seasoar data, but relies on the measurement of an assortment of 

spatial gradients and on specific assumptions about the character of temporal 

variability. 

  An alternative approach, based on the density conservation equation, has been 

successfully applied to oceanographic mooring observations. Previous research has 

pursued this method to estimate vertical velocity from individual moorings under the 

assumption of geostrophy (Bryden 1980; Lindstrom and Watts 1994; Phillips and 

Rintoul 2000; Sévellec et al. 2015). Our study follows in the footsteps of this body of 
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work, yet applies the density conservation equation to include subinertial ageostrophic 

flows (see Section 2c).  

  In this article, we document an annual cycle of the vertical velocity and buoyancy 

flux (i.e. the rate of restratification by the vertical flow) associated with balanced 

motions with horizontal scales characteristic of the mesoscale and submesoscale. 

These diagnostics are based on measurements obtained with a mooring array, 

deployed in a typical mid-ocean area of the Northeast Atlantic as part of the U.K. 

OSMOSIS (Ocean Surface Mixing, Ocean Submesoscale Interaction Study) 

experiment. The outline of the paper is as follows. Data and methods are introduced 

in Section 2. Section 3 describes the mooring site and outlines the annual cycle of 

meso- and submesoscale vertical velocities and buoyancy fluxes. Section 4 provides a 

discussion of the role of mesoscale-driven frontogenesis in forcing submesoscale 

turbulence. Conclusions are given in Section 5. Appendix A contains a discussion of 

observational uncertainties. Appendices B-D demonstrate the robustness of our 

approach to calculating vertical velocity with two numerical models, and with the 

density conservation equation grounded on the QG framework.   

 

2. Data and Methods 

a. Mooring data 

  Nine bottom-anchored subsurface moorings were deployed over the Porcupine 

Abyssal Plain (PAP, 48.63-48.75ºN, 16.09-16.27ºW) site in the Northeast Atlantic 

Ocean for the period September 2012 – September 2013 (Fig. 1a). The PAP site is an 

abyssal plain of depth close to 4800 m, and is analogous to many open ocean areas 

far away from complex topography, where energetic internal waves can be generated. 
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Coherent mesoscale vortices frequently form in or propagate through this region 

(Painter et al. 2010; Buckingham et al. 2016; Damerell et al. 2016).  

  The array, arranged in two concentric quadrilaterals with a centrally located single 

mooring, is designed to obtain hydrographic and horizontal velocity measurements 

linked to meso- and submesoscale flows with relatively high (30-100 m) vertical 

resolution. The four outer moorings were clustered in a 13 km by 13 km box, and 

thereby resolve mesoscale flows with horizontal scales as small as the local first 

baroclinic Rossby radius 𝑅1 = 
𝑁ℎ

𝑓
, where ℎ denotes the vertical scale of the main 

pycnocline, 𝑓 is the Coriolis frequency, and 𝑁 = √−
𝑔

𝜌0

𝜕𝜌

𝜕𝑧
 is the buoyancy frequency 

(with 𝑔 as gravity, 𝜌 as potential density, and 𝜌0= 1025 kg m-3 as a reference density).  

Here we will take ℎ  = 800 m, estimated from the local buoyancy e-folding scale. The 

value of 𝑅1 is in the range of 15-32 km throughout the year, consistent with the result 

in Chelton et al. (1998). The four inner moorings are clustered more closely, in a 2.5 

km by 2.5 km box, and can thus capture submesoscale flows. The ML deformation 

radius is defined as 𝑅𝑀𝐿 = 
𝑁𝐻

𝑓
 (with 𝐻 as the ML depth), and lies in the range of 1-4 

km with smallest values in summer and largest in winter.  

  Mooring sensors comprised a series of paired Nortek Aquadopp acoustic current 

meters (ACMs) and Seabird MicroCAT conductivity-temperature-depth (CTD) 

sensors at different depths, spanning the approximate depth interval 30-530 m (Fig. 

1b). The central mooring is the most heavily instrumented, having 13 CTD/ACM 

pairs. The inner and outer moorings have seven and five such pairs, respectively. The 

two nested mooring arrays return temperature, salinity, horizontal velocity and 

pressure observations at respective horizontal resolutions of approximately 1.5 km 

and 10 km for the inner and outer moorings. Note that the cross shape of each of the 
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mooring clusters is well suited to obtaining the lateral gradients of buoyancy and 

horizontal velocity. Mooring measurements captured most of the pycnocline and 

ocean interior throughout the year, and most of the ML during the winter months (Fig. 

2a). The vertical spacing between CTD/ACM pairs is finer above the base of the 

deepest winter ML (approximately 300 m, see Fig. 2a) than below; see also Table 1 

for detailed information of mooring instruments. In short, ACMs sampled at a 

frequency of 1 Hz within 1-minute averaging intervals, once in each 10-minute 

measurement interval. The compass upload was once every second, and the associated 

heading error was 2º. CTDs sampled continuously for each full 5-minute sampling 

interval. CTD calibrations were performed before the deployment, and no obvious 

sign of biofouling was found. The real-time clock in each CTD and ACM had an 

accuracy of ±1 min/year; thus clock drift is not expected to influence our results. The 

accuracy of pressure sensors on CTDs and ACMs was 0.005% of full depth scale, 

which is 0.24 m at the OSMOSIS site. Moorings were complemented by 

measurements from two oceanic gliders that navigated in a bow-tie pattern across the 

mooring array. The present study predominantly uses data from the moored 

CTD/ACM pairs. 

     Note that, in this article, our definition of submesoscale refers to subinertial 

motions of a specific horizontal scale (1-10 km), and thus excludes internal gravity 

waves and other superinertial phenomena. Previous analyses of our mooring 

(Buckingham et al. 2016) and glider (Thompson et al. 2016; Erickson and Thompson 

2018) observations reveal that these subinertial motions exhibit some of the 

characteristics of active submesoscale dynamics (McWilliams 2016), e.g., skewness 

in the vertical component of relative vorticity and occurrence of ML instabilities 

within and below the base of the ML.  
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b. Data processing and filtering 

We linearly interpolate measurements of temperature, salinity and horizontal 

velocity onto surfaces of constant depth at 10 m intervals between depths of 50 m and 

520 m, and onto uniform 10 minute intervals between 5 September 2012 and 5 

September 2013. Potential density (referenced to the ocean surface) and depth are 

calculated from interpolated temperature, salinity and pressure using the Gibbs 

Seawater Oceanographic Toolbox (McDougall and Barker 2011). Compressibility 

effects are considered to be negligible over the top 520 m. These unfiltered versions 

of data time series, indicated by the subscript ‘raw’, are used in spectral analyses 

(Section 3a). Subsequently, the 10-minute potential density and horizontal velocity 

data are averaged onto hourly intervals.  

Our approach is to distinguish meso- and submesoscale processes, not only by 

spatial scale as determined by the design of the outer and inner moorings, but also by 

temporal scale. To do this, we first apply different low-pass filters to outer and inner 

mooring measurements. Our initial consideration in defining the filter cut-offs is the 

characteristic advective time scale of each mooring array, i.e. the time typically 

required for a water parcel to cross the full lateral extent of each array. As the root 

mean square (RMS) upper-ocean horizontal velocity at the OSMOSIS site is 0.19 m/s, 

advective time scales of 30 hours and 6 hours may be respectively estimated for the 

outer and inner mooring domains. All (hourly) potential density and horizontal 

velocity data from the outer mooring array are low-pass filtered with a fourth-order 

Butterworth filter (whose power decreases by 24 dB per octave), with a cut-off 

determined by the outer-array advective time scale (30 hours). In turn, data from the 

inner mooring array are filtered with a cut-off of one inertial period (16 hours), so as 

to comply with our definition of submesoscale flows by removing all variability in the 
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internal wave band. In all calculations of lateral gradients, data from the central 

mooring are low-pass filtered with the same cut-off as the data from the (outer or 

inner) mooring array domain from which the gradients are computed.  

In the following, we refer to parameters (e.g., vertical velocity or lateral buoyancy 

gradient) estimated from the outer and inner moorings as outer and inner quantities, 

respectively. Outer quantities are representative of meso- and larger-scale flows. In 

contrast, inner quantities include all dynamically balanced motions with horizontal 

scales larger than the ML deformation radius 𝑅𝑀𝐿 and temporal scales longer than one 

inertial period, including (sub-)mesoscale and larger-scale flows. Unbalanced motions, 

such as internal tides, near-inertial flows and other high-frequency motions, are 

removed by the low-pass filtering (16 hours). For simplicity, we use the subscripts 

‘C’, ’I’ and ‘O’ to represent data from the central, inner and outer moorings, 

respectively. Further, we use the subscripts ‘16h’ and ‘30h’ to denote data filtered 

over 16 hours and 30 hours, respectively (e.g., 𝑤𝐶𝐼,16ℎ  denotes vertical velocity 

calculated from 16-hour low-pass filtered data from the central and inner moorings). 

Daily-averaged results are denoted as <∙>. A further 30-hour low-pass filter was 

applied to inner quantities when compared or related to outer quantities in Section 4.  

The ML depth is calculated from the glider data using a threshold value of density 

increase (∆𝜌 = 0.03 𝑘𝑔 𝑚−3) from a near-surface value at 10 m depth (Damerell et al. 

2016). The surface heat flux is taken from the ECMWF ERA-Interim reanalysis 

product (Dee et al. 2011). We ignore the freshwater flux at the OSMOSIS site, since it 

is negligible compared to the surface heat flux at the OSMOSIS site (Thompson et al. 

2016). Geostrophic velocities (𝑢𝑔, 𝑣𝑔 ) are obtained from the delayed-time gridded 

0.25º × 0.25º AVISO product at the grid points nearest to the OSMOSIS area, and 

interpolated to the central mooring site.  

10.1175/JPO-D-18-0253.1.
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Finally, the decorrelation time scale is estimated from the e-folding scale of the 

autocorrelation function. A bootstrap method is employed for confidence interval 

estimates by randomly sampling 90% of the data 10,000 times and selecting the 250th 

largest and smallest values. 

c. Vertical velocity and buoyancy flux calculation 

  The density conservation equation is used to determine vertical velocity, neglecting 

the diffusion term, 

 𝐷𝑡𝜌 = 𝜕𝑡𝜌 + 𝑢𝜕𝑥𝜌 + 𝑣𝜕𝑦𝜌 + 𝑤𝜕𝑧𝜌 = 0,  (1)  

where 𝐷𝑡 is the material derivative; 𝑡 is time; 𝑢,𝑣,𝑤 denote the velocity components 

in the 𝑥 , 𝑦 , 𝑧  coordinate system; and 𝜕𝑡 ,  𝜕𝑥 ,  𝜕𝑦 and 𝜕𝑧  are the temporal, zonal, 

meridional, and vertical partial derivatives. Note that vertical velocity in the ML is not 

calculated, as the neglected diffusion term becomes important there. The vertical 

velocity is estimated from the sum of a local isopycnal displacement term and a 

horizontal advection term, by rearranging Eq. 1 as 

 𝑤 = −
𝜕𝑡𝜌

𝜕𝑧𝜌
−

𝑢𝜕𝑥𝜌+𝑣𝜕𝑦𝜌

𝜕𝑧𝜌
.  (2) 

  The first term on the RHS of Eq. 2, defined as 

 𝑤𝑡 = −
𝜕𝑡𝜌

𝜕𝑧𝜌
,  (3)  

denotes the Eulerian change in the position of isopycnals and is associated with 

vertical migration of isopycnals or isopycnal heave. The second term on the RHS of 

Eq. 2 is the vertical velocity associated with flow along sloping isopycnals,
 
and is 

defined as 

 𝑤ℎ = −
𝑢𝜕𝑥𝜌+𝑣𝜕𝑦𝜌

𝜕𝑧𝜌
.  (4)  

The vertical derivative of 𝜌 (i.e. 𝜕𝑧𝜌) is calculated as a centered finite difference in 

depth, and used to compute 𝑁2. The temporal derivative of 𝜌 (i.e. 𝜕𝑡𝜌) is calculated 
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as a second-order centered finite difference in time. These two terms (𝜕𝑧𝜌 and 𝜕𝑡𝜌) 

and horizontal velocity (𝑢 and 𝑣) are computed from measurements at the central 

mooring, whereas lateral density gradients (𝜕𝑥𝜌 and 𝜕𝑦𝜌) are respectively derived 

from outer and inner mooring measurements for outer and inner vertical velocities 

(𝑤𝐶𝑂,30ℎ and 𝑤𝐶𝐼,16ℎ). As indicated in Section 2b, the two components of 𝑤𝐶𝑂,30ℎ and 

𝑤𝐶𝐼,16ℎ  can be expressed as (𝑤𝑡)𝐶,30ℎ ,  (𝑤ℎ)𝐶𝑂,30ℎ and (𝑤𝑡)𝐶,16ℎ , (𝑤ℎ)𝐶𝐼,16ℎ , 

respectively. Note that, since superinertial flows are removed by low-pass filtering all 

density and velocity data, both 𝑤 and its components (𝑤𝑡 and 𝑤ℎ) exclusively reflect 

contributions from subinertial flows.  

The validity of our method for the estimation of vertical velocity below the ML is 

demonstrated with the aid of output from an idealized numerical model (Brannigan et 

al. 2015) in Appendix B. As Bryden (1980) showed that the 𝑤ℎ term can be estimated 

from the rotation of the horizontal velocity vector with depth by assuming geostrophic 

balance, we additionally examine this alternative approach to ground-truth our 

diagnostics of vertical velocity in Appendix C. Further, a direct comparison between 

mooring-based vertical velocity estimates and modelled vertical velocities from a 

high-resolution realistic numerical simulation (LLC4320, Su et al. 2018) is shown in 

Appendix D, to further corroborate the realism of our estimates.  

  The perturbation vertical buoyancy flux is 𝑤′𝑏′, where buoyancy 𝑏 is defined as 

𝑏 = −
𝑔

𝜌0
(𝜌 − 𝜌0) and the primes denote deviations from the 10-day running mean. 

This choice of time window is based on the characteristic decorrelation time scales of 

𝑤 and 𝑏, which are 3 and 5.2 days, respectively, i.e. of O (10 days). We expect this 

time window width to be sufficiently short that a spatial average of 𝑤 and 𝑏 would 

not change appreciably over that period. In order to compare the magnitude of outer 
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and inner restratification with atmospheric forcing, the eddy component of the vertical 

buoyancy flux can be represented in terms of an equivalent heat flux, defined as, 

 𝑄𝑤 = 𝑤′𝑏′
𝐶𝑝𝜌0

𝛼𝑇𝑔
,  (5)  

where 𝐶𝑝 is the specific heat capacity, and 𝛼𝑇 is the thermal expansion coefficient of 

seawater.  

d. Frontogenesis function 

  In the upper ocean, a large-scale confluent flow intensifies lateral buoyancy 

gradients through frontogenesis. This effect is quantified as 

 𝐷𝑡(∇ℎ𝑏) =  �⃗� = (−𝜕𝑥𝑢𝜕𝑥𝑏 − 𝜕𝑥𝑣𝜕𝑦𝑏 , −𝜕𝑦𝑢𝜕𝑥𝑏 − 𝜕𝑦𝑣𝜕𝑦𝑏),  (6)  

where �⃗�  is the ‘Q vector’ (Hoskins et al. 1978) and ∇ℎ𝑏 = (𝜕𝑥𝑏, 𝜕𝑦𝑏) is the lateral 

buoyancy gradient. Following Hoskins (1982), we use the frontogenesis function to 

diagnose the impact of frontogenesis on the magnitude of lateral buoyancy gradients, 

 𝐹𝑠 =
1

2
𝐷𝑡(|∇ℎ𝑏|2) = �⃗� ∙ ∇ℎ𝑏.  (7)  

  Additionally, we define the current speed as 

 𝑈 =  √𝑢2 + 𝑣2,   (8)  

and eddy kinetic energy (EKE) as  

 𝐸𝐾𝐸 =  
1

2
(𝑢′2 + 𝑣′2).  (9)  

This definition is re-expressed as 𝐸𝐾𝐸𝑔 = 
1

2
(𝑢𝑔

2 + 𝑣𝑔
2)  when calculating the 

geostrophic EKE associated with the geostrophic velocity (𝑢𝑔, 𝑣𝑔), estimated from 

AVISO sea surface height data.  

e. Rossby and balanced Richardson numbers 

  Dynamically, submesoscale flows are characterized by Rossby and balanced 

Richardson numbers of O(1), indicating that the Earth’s rotation is significant but not 
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dominant in governing the dynamics of the flow (Thomas et al. 2008). Here we define 

the Rossby number as 

 Ro =  𝜁/𝑓,   (10)  

where 𝜁 = 𝜕𝑥𝑣 − 𝜕𝑦𝑢 is the vertical component of relative vorticity. The balanced 

Richardson number is defined as 

 Ri𝐵 = 𝑁2/(𝜕𝑈𝑔/𝜕𝑧)2  = 𝑓2𝑁2/|∇ℎ𝑏|2.  (11)  

f. Definition of seasons 

  In this work, the conventional definition of seasons is adopted: fall (21 September 

to 20 December), winter (21 December to 20 March), spring (21 March to 20 June) 

and summer (21 June to 20 September). 

 

3. Results  

a. Annual cycle of upper-ocean hydrography and horizontal flow 

  The 30-hour low-pass-filtered time series of stratification 𝑁𝐶,30ℎ
2  and current speed 

𝑈𝐶,30ℎ  at the central mooring are shown in Figs. 2a-b. The ML depth exhibits a 

significant seasonal cycle, shoaling to less than 30 m during summer and deepening to 

approximately 300 m during winter. The ocean is generally stratified with a shallow 

ML above a strongly stratified pycnocline during the fall and summer months (e.g., 

September and July). This strongly stratified pycnocline inhibits the outcropping of 

isopycnals from the ocean interior to the ML. During wintertime, unstable 

stratification (i.e. 𝑁𝐶,30ℎ
2 < 0 ) occurs frequently within the ML, indicating the 

occurrence of gravitational instability. The maximum value of 𝑁2  from mooring 

measurements is approximately 0.4 × 10−5 s−2  ( 𝑁𝐶,30ℎ/𝑓  = 18), occurring 
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sporadically in the 200-300 m depth range during winter, and 8 × 10−5 s−2 (𝑁𝐶,30ℎ/

𝑓 = 82) at ~110 m outside of winter, illustrating the strong seasonal cycle of upper-

ocean stratification at the OSMOSIS site.  

  Whereas the maximum 𝑈𝐶,30ℎ  exceeds 0.5 m s-1, the annual-mean velocity 

magnitude is less than 0.05 m s-1, characteristic of open-ocean regions with a weak 

mean flow. Intense flows typically coincide with periods of large mooring knock-

down (see white blocks in Fig. 2b). The depth-averaged 𝐸𝐾𝐸𝐶,30ℎ  estimated from the 

central mooring matches well with 𝐸𝐾𝐸𝑔 from AVISO (Fig. 2c), and 𝐸𝐾𝐸𝐶,30ℎ peaks 

at 0.12 m2 s-2 in May, approximately a factor of 4 smaller than values of ~0.5 m2 s-2 

observed in the Gulf Stream (Zhai et al. 2008). The mooring-based 𝐸𝐾𝐸𝐶,30ℎ  exhibits 

more high-frequency variability than AVISO-based 𝐸𝐾𝐸𝑔 , which typically has 

coarser temporal resolution and smaller magnitude (𝐸𝐾𝐸𝑔  <  0.05 m2 s-2). Both 

𝐸𝐾𝐸𝐶,30ℎ  and 𝐸𝐾𝐸𝑔  show enhanced values in winter and spring, when multiple 

mesoscale vortices propagate through the mooring array, captured by AVISO sea 

level anomaly (not shown).  

  Additional understanding of the physical processes at the OSMOSIS study region 

can be gained by computing frequency spectra of the observed variables. Spectra of 

the horizontal velocity 𝑢𝑟𝑎𝑤  and 𝑣𝑟𝑎𝑤  at the central mooring (Figs. 3a-3b) display 

high-energy peaks at the M2 semi-diurnal tidal frequency and at the inertial frequency 

f, which make up a large fraction of the unbalanced kinetic energy in the region. Near-

inertial flows are visible as a broad peak around f and decrease in magnitude with 

depth. M2 signals appear as a sharp peak, and have a higher spectral energy density 

than near-inertial signals. These features are also evident in spectra of potential 

density 𝜌𝑟𝑎𝑤  (Fig. 3c). All spectra exhibit enhanced energy near the surface at 

temporal scales characteristic of submesoscale flows (i.e. in the time range between 
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the inertial period and ~10 days), consistent with the expected preferential occurrence 

of submesoscale turbulence near the ocean surface (Klein et al. 2008; Levy et al. 

2012). 

      While the additional variance observed in the submesoscale band might in part 

arise from near-inertial flows directly generated by local wind forcing or internal 

wave energy Doppler-shifted to lower frequencies by mesoscale motions, we find that 

submesoscale subinertial flows are largely in geostrophic balance. This is illustrated 

by Fig. 4. Assessment of the degree of geostrophy from the inner cluster reveals 

strong and statistically significant correlations between measurements of the vertical 

shear terms (i.e. −𝜕𝑧𝑢  and 𝜕𝑧𝑣 ) and of the horizontal buoyancy gradient terms (i.e. 

1

𝑓
𝜕𝑦𝑏  and 

1

𝑓
𝜕𝑥𝑏 ) in the thermal wind balance equations. Geostrophy explains over 56% 

of the variance (as indicated by 𝑅2 , with 𝑅  being the correlation corfficient) of 

subinertial flows at ~2 km. These correlations suggest that the inertial to 10-day 

variance is likely associated with submesoscale motions that are largely in 

geostrophic balance. 

b. Annual cycle of upper-ocean vertical velocity 

  The time series of outer and inner vertical velocities inferred from the OSMOSIS 

moorings are displayed in Figs. 5a-c and 6a-c, after smoothing with a 1-day running 

mean to facilitate inter-comparison. The diagnosed inner vertical velocity, with RMS 

(〈𝑤𝐶𝐼,16ℎ〉) = 38.0 ± 6.9 m/day, is substantially larger than the outer vertical velocity, 

with RMS (〈𝑤𝐶𝑂,30ℎ〉) = 22.5 ± 3.3 m/day. Vertical velocities associated with flows 

of both horizontal scales are generally larger in magnitude and more variable in 

winter and spring than in fall and summer. Intense vertical flows are often observed 

during the passage of eddy features associated with steep isopycnal slopes; vertical 
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velocities are notably reduced when isopycnals are relatively flat (e.g., in November 

and July).  

The two components of (outer or inner) vertical velocity,  𝑤𝑡  and 𝑤ℎ , are 

comparable in magnitude, but are often oppositely signed (Figs. 5a-5b and 6a-6b). 

The 〈(𝑤𝑡)𝐶,30ℎ〉  and 〈(𝑤𝑡)𝐶,16ℎ〉  terms are highly coherent in depth, while the 

〈(𝑤ℎ)𝐶𝑂,30ℎ〉 and 〈(𝑤ℎ)𝐶𝐼,16ℎ〉 terms occasionally change sign with depth (e.g., at the 

end of April and in August). This additional vertical structure in 〈(𝑤ℎ)𝐶𝐼,16ℎ〉 

compared to 〈(𝑤ℎ)𝐶𝑂,30ℎ〉  may result from the higher vertical resolution of inner 

cluster measurements, but may in part be attributable to mooring motion.  

Annual-mean vertical velocities (Figs. 5d-f and 6d-f) indicate that the site is 

characterized by weak downwelling of less than 10 m/day, which arises as a small 

residual of the highly variable vertical flow. Both outer and inner annual-mean 

vertical velocities are dominated by the horizontal advection term. This result is 

consistent with the work of Sévellec et al. (2015) in the Southern Ocean, where the 

time-mean vertical motion in the deep Drake Passage was found to be primarily 

determined by the horizontal advection term, shaped by the underlying topography 

via stratified Taylor column dynamics. We have examined the possibility that a 

similar mechanism is at play in our study area by considering the vertical scale over 

which stratified Taylor column dynamics may be influential (Huppert 1975), and 

found that topographic effects are most likely insignificant in the uppermost 500 m (in 

which our measurements were acquired) of the ~4300 m-deep water column. 

c. Annual cycle of vertical buoyancy flux 

  The time series of outer and inner vertical buoyancy flux (〈𝑤𝐶𝑂,30ℎ
′ 𝑏𝐶,30ℎ

′ 〉 and 

〈𝑤𝐶𝐼,16ℎ
′ 𝑏𝐶,16ℎ

′ 〉) are shown in Fig. 7, having being smoothed with a one-day running 

mean as in the previous subsection. The RMS of these vertical fluxes of buoyancy is 
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O(10-7 m2 s-3), with peak values of O(10-6 m2 s-3) occurring frequently in winter and 

spring. These enhanced vertical buoyancy fluxes commonly extend to 500 m depth. 

Accordingly, 〈𝑤𝐶𝑂,30ℎ
′ 𝑏𝐶,30ℎ

′ 〉  and 〈𝑤𝐶𝐼,16ℎ
′ 𝑏𝐶,16ℎ

′ 〉  during winter and spring (i.e. at 

times in which the vertical velocity is enhanced) dominate restratification of the upper 

ocean. 〈𝑤𝐶𝑂,30ℎ
′ 𝑏𝐶,30ℎ

′ 〉  and 〈𝑤𝐶𝐼,16ℎ
′ 𝑏𝐶,16ℎ

′ 〉   are more intermittent during fall and 

summer, when they appear to be closely tied to a small number of mesoscale events 

(e.g., those on 4-9 June or 6-11 August). Note that the picture of a few discrete events 

of elevated 𝑤′𝑏′ remains unchanged when the time window has a width longer than 

10 days. Recall that our estimates of vertical velocity are founded on the assumption 

of negligible diffusive mixing below the ML. Since background thermocline mixing 

(at a rate of 𝜅 ≈ 3×10-5 m2 s-1; Ledwell et al. 1993) would induce a vertical buoyancy 

flux of 𝜅𝑏𝑧 ≈ 3×10-5 m2 s-1 × 1.3×10-5 s-2 ≈ 4×10-10 m2 s-3 (where 𝑏𝑧 ≈ 1.3×10-5 s-2 

is a characteristic value measured by our mooring array) that is much smaller than 

〈𝑤𝐶𝑂,30ℎ
′ 𝑏𝐶,30ℎ

′ 〉  and 〈𝑤𝐶𝐼,16ℎ
′ 𝑏𝐶,16ℎ

′ 〉 , our results are consistent with our starting 

assumption. 

  To assess the net contribution of the eddy-induced vertical buoyancy fluxes to the 

local climatological upper-ocean stratification, vertical profiles of the annual-mean 

(outer and inner) equivalent heat fluxes are computed from Eq. 5, and compared with 

the destratification induced by the annually integrated atmospheric cooling of the area. 

The annual-mean outer equivalent heat flux (Fig. 8) is consistently positive and 

attains a maximum value of approximately 20 W m-2. The amplitude of outer 

equivalent heat flux decreases gently with depth. In contrast, the annual mean of the 

inner equivalent heat flux (Fig. 8) is larger and more surface-intensified, reaching 50 

W m-2 above 250 m. This vertical range coincides with that in which spectra of 

horizontal velocity and density show elevated energy at submesoscale frequencies 
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(Fig. 3). Below 250 m, outer and inner equivalent heat fluxes are similar in magnitude 

and vertical structure. As the annual-mean surface heat flux is approximately -45 W 

m-2, and so comparable to the annual-mean inner equivalent heat flux, our results 

suggest that submesoscale flows contribute importantly to upper-ocean restratification, 

even in relatively quiescent mid-ocean areas such as the OSMOSIS site. 

It is also notable that, as was the case for the annual-mean vertical velocity (Figs. 

5d-f and 6d-f), the annual-mean vertical buoyancy flux is dominated by the horizontal 

advection term (𝑄𝑤ℎ
) at both horizontal scales. By contrast, the annual-mean (𝑄𝑤𝑡

) 

term is close to zero. As 〈(𝑤𝑡)𝐶,30ℎ〉  and 〈(𝑤𝑡)𝐶,16ℎ〉  are aligned orthogonal to 

isopycnal surfaces, the vertical transport of buoyancy related to this term does not 

induce net restratification in the long term.  

d. Annual cycle of frontogenesis and lateral buoyancy gradients 

Using the year-long time series provided by the OSMOSIS moorings, we 

document the probability distribution function (PDF) of the outer frontogenesis 

function, 𝐹𝑠𝑂,30ℎ, in different seasons (Fig. 9a). The dominant feature is the marked 

asymmetry between frontogenesis (i.e. positive 𝐹𝑠𝑂,30ℎ) and frontolysis (i.e. negative 

𝐹𝑠𝑂,30ℎ) during winter and spring, when frontogenetic processes are intensified (with 

𝐹𝑠𝑂,30ℎ exceeding 1×10-20 s-5, or 𝐹𝑠𝑂,30ℎ/𝑓
5 = 0.63) relative to frontolytic processes, 

albeit for less than 15% of the time. Over 95% of the values of 𝐹𝑠𝑂,30ℎ during the fall 

and summer are in the range of -0.4 ×10-20 to 0.4 ×10-20 s-5 (𝐹𝑠𝑂,30ℎ/𝑓
5 = 0.25). The 

decorrelation time scale of 𝐹𝑠𝑂,30ℎ over the annual cycle of measurements is roughly 

2 days. Overall, the increase in the probability of observing positive 𝐹𝑠𝑂,30ℎ in winter 

and spring over that in fall and summer suggests the occurrence of a seasonal cycle in 

the rate of mesoscale frontogenesis in the upper ocean.  
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Representative winter and spring times series of 𝐹𝑠𝑂,30ℎ, |∇ℎ𝑏|𝐼,30ℎ and |∇ℎ𝑏|𝑂,30ℎ 

are shown in Figs. 9b-d. The magnitude of |∇ℎ𝑏|𝐼,30ℎ is generally a factor of 2 larger 

than that of |∇ℎ𝑏|𝑂,30ℎ, with typical values on the order of 10-7 s-2. The decorrelation 

time scale of |∇ℎ𝑏|𝐼,30ℎis approximately 3 days. High 𝐹𝑠𝑂,30ℎ events correspond to 

inner lateral buoyancy gradients, |∇ℎ𝑏|𝐼,30ℎ, that are enhanced to a greater extent than 

outer lateral buoyancy gradients, |∇ℎ𝑏|𝑂,30ℎ.  

Positive values of 〈𝐹𝑠𝑂,30ℎ〉 display a significant positive trend with 〈|∇ℎ𝑏|𝐼,30ℎ〉, 

consistent with an active generation of submesoscale fronts (defined as areas of 

elevated lateral density gradient with horizontal scales of 1-10 km) by mesoscale 

frontogenesis (Fig. 10). Notably, the vertical extent of the enhancement of |∇ℎ𝑏|𝐼,30ℎ 

associated with 𝐹𝑠𝑂,30ℎ  exceeds the ML depth (Figs. 9b-9c). This may reflect the 

vertical extent of the ageostrophic secondary circulation required to restore thermal 

wind balance as frontogenesis unfolds (Thomas and Ferrari 2008). 

 

4. Discussion 

a. Mechanisms inducing vertical motion and restratification at the OSMOSIS site 

In the previous section, the vertical velocity and buoyancy flux associated with 

submesoscale motions are shown to be substantially larger than those associated with 

mesoscale flows. We now consider the possible mechanisms underpinning this result.  

Both the outer and inner vertical velocities broadly follow the annual cycle of 

𝐸𝐾𝐸𝐶,30ℎ at the central mooring (Figs. 2c and 11a). Inner vertical velocity is modest 

at times of weak mesoscale eddy activity (e.g., in July, with an RMS of 11.3 ± 2.0 

m/day), but is elevated when energetic mesoscale features propagate through the 

mooring array (e.g., in February, with an RMS of 40.0 ± 9.7 m/day). We find that 
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most of the enhanced inner vertical velocity events coincide with large values of 

〈𝐸𝐾𝐸𝐶,30ℎ〉  (Fig. 11b), yielding a statistically significant correlation coefficient 

between daily 𝐸𝐾𝐸𝐶,30ℎ  and daily RMS 〈𝑤𝐶𝐼,16ℎ〉  of 0.66. This suggests that the 

presence of mesoscale features may play a role in energising submesoscale flows with 

pronounced vertical velocity signatures. Outer 〈𝑤𝐶𝑂,30ℎ〉  also exhibits a positive 

correlation with 〈𝐸𝐾𝐸𝐶,30ℎ〉, yet its magnitude (𝑅 = 0.44, 𝑝 < 0.001) is lower than for 

inner 〈𝑤𝐶𝐼,16ℎ〉.  

One possible mechanism underpinning the intensification of inner 𝑤  is the 

sharpening of submesoscale horizontal buoyancy gradients by mesoscale 

frontogenesis, which would trigger ageostrophic secondary circulations to restore 

geostrophy. As mentioned in Section 2b, a further 30-hour low-pass filter was applied 

to inner variables in investigating the relationship between submesoscale turbulence 

and mesoscale forcing. We find that the RMS of inner 𝑤𝐶𝐼,30ℎ
′ and associated 

restratification (i.e. positive 𝑤𝐶𝐼,30ℎ
′ 𝑏𝐶,30ℎ

′ ) exhibit significant positive correlations 

with the inner lateral buoyancy gradient, |∇ℎ𝑏|𝐼,30ℎ, and with the outer frontogenesis 

function, 𝐹𝑠𝑂,30ℎ, at each depth (Fig. 12). This is consistent with the predictions of 

modeling studies on the regulatory role of mesoscale frontogenesis on submesoscale 

turbulence (Capet et al. 2008b). These positive correlations are shown to be 

significant by a bootstrap method. Thus, the variability of vertical velocity on 

horizontal scales of ~2 km is surmised to be due primarily to submesoscale (largely) 

balanced motions rather than unbalanced internal waves.  

Frontogenesis has been indicated by numerical simulations to be most pronounced 

in a thin surface boundary layer, and to decay rapidly below this layer (Lapeyre et al. 

2006). Our observational results present a somewhat different picture, in which 
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mesoscale frontogenetic processes and intensified submesoscale lateral buoyancy 

gradients are found well beneath the ML, particularly during winter and spring.   

The notable vertical penetration of submesoscale flows is illustrated more 

explicitly by the structure of the Rossby and balanced Richardson numbers calculated 

from the outer and inner arrays, shown in Fig. 13. The Rossby number is generally 

surface-intensified, yet decays only gradually with depth. The inner Rossby number,  

𝜁𝐼,30ℎ/𝑓, is in the range of -0.8 – 0.8, a factor of 2 larger than the outer Rossby 

number, 𝜁𝑂,30ℎ/𝑓. The inner Rossby number remains of order 1 all the way down to 

500 m depth, suggesting that intense vertical flows may extend beyond the ML base. 

This is in accord with numerical studies, which indicate that submesoscale flows on 

horizontal scales of O(1 km) are in geostrophic balance to leading order, despite their 

association with significant ageostrophic motions (Capet et al. 2008b; Brannigan et al. 

2015). In such numerical works, it is shown that departures from geostrophic balance 

at the submesoscale are associated with intense vertical flow. Thus, the coexistence of 

a dominant geostrophic component to submesoscale motions, elevated Rossby 

numbers, and intensified vertical velocities conforms to expectations from numerical 

simulations. Small values (< 5) of the inner balanced Richardson number are often 

observed below the ML, and indicate that submesoscale processes may be intensified 

in episodes of strong lateral buoyancy gradients and relatively weak vertical 

stratification across the ML base during winter and spring. This result is consistent 

with the findings of Erickson and Thompson (2018), who used the OSMOSIS glider 

measurements to demonstrate that submesoscale instabilities energized from the 

surface boundary can extend down to the ocean interior in wintertime, when the 

upper-ocean pycnocline is weak at the base of the ML. In contrast, the outer balanced 
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Richardson number consistently and considerably exceeds the inner balanced 

Richardson number below the ML.  

To synthesise the relationship between the generation of upper-ocean 

submesoscale turbulence and the occurrence of mesoscale frontogenesis in the 

OSMOSIS area, we conducted an analysis of the relationship of 𝑤𝐶𝐼,30ℎ
′  and 

𝑤𝐶𝐼,30ℎ
′ 𝑏𝐶,30ℎ

′  with positive 𝐹𝑠𝑂,30ℎ and |∇ℎ𝑏|𝐼,30ℎ. Given the depth independence of 

the relationship, here we only show depth-averaged results in Fig. 14. No obvious 

relationship is found between frontolysis (i.e. instances of 𝐹𝑠𝑂,30ℎ< 0) and vertical 

velocity, so frontolytic scenarios are not considered further here. Inner vertical 

velocity and buoyancy flux are clearly enhanced when both of 𝐹𝑠𝑂,30ℎ and |∇ℎ𝑏|𝐼,30ℎ 

are elevated. Persistent frontogenesis induced by the mesoscale strain field is common 

to periods of large submesoscale horizontal buoyancy gradient and enhanced upper-

ocean restratification. This is consistent with mesoscale frontogenesis being a regular 

precursor of restratifying submesoscale instabilities, and thus suggests that it is likely 

an important mechanism in generating the observed submesoscale turbulence.  

b. Effects of instabilities of balanced flows  

Mesoscale BCI is a likely contributor to upper-ocean restratification. This is 

suggested by the frequent occurrence of a reversal with depth (below the ML base 

down to ~500 m) of the isopycnal potential vorticity gradient (not shown), which is a 

necessary condition for the development of the instability (Charney and Stern 1962). 

Below 250 m, our diagnosed outer and inner equivalent heat fluxes exhibit similar 

patterns, with values approaching 20 W m-2 (Fig. 8). This is indicative of the 

restratifying action of deep-reaching, slowly-evolving mesoscale eddies in the ocean 

interior. 

Submesoscale instabilities have been argued to be active in the ML, where they 
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can reverse the sign of the equivalent surface heat flux intermittently in the OSMOSIS 

domain during winter (Thompson et al. 2016). The enhancement of the upper-ocean 

vertical velocity and buoyancy flux during winter and spring (when upper-ocean 

stratification is weakest) in our calculations is consistent with this interpretation, as 

well as with recent simulations of submesoscale BCI (Callies et al. 2016). It is worth 

emphasizing that submesoscale BCI and mesoscale frontogenesis are not mutually 

exclusive, and it is likely that upper-ocean restratification involves some combination 

of both processes. We thus highlight the likely importance of submesoscale BCI in 

inducing intense vertical motion and restratification in the upper ocean at the 

OSMOSIS site.  

 

5. Conclusions 

  The year-long OSMOSIS mooring observations provide an unprecedented long-

term data set to assess the phenomenology of submesoscale vertical flow in the 

context of measurements of mesoscale motions.  

  Our results indicate that submesoscale motions act to restratify the upper ocean 

throughout the year, and most intensely in winter and spring. Enhanced submesoscale 

vertical velocity and buoyancy flux generally occur in the presence of energetic 

mesoscale features. Submesoscale subinertial motions at horizontal scales of ~2 km 

depart from geostrophy to a greater degree than mesoscale motions with horizontal 

scales larger than 10 km. Consequently, substantially larger ageostrophic circulations 

are induced at the submesoscale, in response to strong frontal tendency to restore 

geostrophy. Persistent frontogenesis induced by the mesoscale strain field is common 

to periods of intensified submesoscale lateral buoyancy gradient and rapid surface 

restratification. This is consistent with mesoscale frontogenesis playing a role in 
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generating the lateral buoyancy fronts that are necessary for the development of 

submesoscale turbulence. The role of mesoscale frontogenesis in underpinning the 

enhanced submesoscale turbulence is suggested by the marked increase in 

submesoscale vertical velocity and buoyancy flux for periods of intensification of 

submesoscale lateral buoyancy gradient. The net upper-ocean restratification induced 

by submesoscale motions over the annual cycle is comparable in magnitude to the 

destratification associated with the annual-mean atmospheric cooling of the area, 

indicating that submesoscales play an important role in determining the climatological 

state of the local stratification. 

  This study provides observational evidence that strong submesoscale ageostrophic 

motions penetrate down to at least 500 m below the ocean surface, and at least 200 m 

below the ML base. One could speculate that large vertical velocities might arise from 

internal waves coupled to balanced motions, at least in part. However, this effect 

would more likely impact the wt term, and hence would not affect the net rate of 

restratification, which is mainly set by the 𝑤ℎ term. Thus, our results fundamentally 

challenge the widespread view of upper-ocean submesoscale motions being confined 

to the ML. 

 

Appendix A: Observational uncertainty 

The horizontal motion of the moorings is the main source of uncertainty in our 

calculation of vertical velocity, especially for the inner variables. Unknown variability 

in the distances between individual moorings introduces uncertainty into 𝜕𝑥𝜌 and 𝜕𝑦𝜌 

that is subsequently propagated into derived variables. Following Buckingham et al. 

(2016), we modeled the inner-mooring distance perturbations associated with 

mooring motion as a Gaussian white noise process with zero mean and non-zero 
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variance, estimated from the time integration of differential horizontal currents. We 

used the stochastic realizations of mooring positions thus obtained in a Monte Carlo 

approach to quantify the uncertainty in inner vertical velocity (Figs. 6e-f) and 

associated equivalent heat flux (Fig. 8) introduced by mooring motion. This source of 

uncertainty is also estimated for the equivalent outer diagnostics.  

A secondary limitation of our dataset is related to mooring knock-down, i.e. the 

pulling downward of a mooring by the drag of water flowing past the mooring 

(Meinen 2008).  In our case, sub-surface mooring knock-down is mainly caused by 

mesoscale and submesoscale flows, as well as tidal motions. This introduces temporal 

variability in the vertical positions of the moored instruments, although large vertical 

excursions are rare (e.g., vertical excursions in excess of 50 m and 100 m occur only 

in 3.2% and 0.5% of the mooring record, respectively; see Fig. 2b). The magnitude of 

the mooring knock-down at the OSMOSIS site was much smaller than for a similar 

mooring deployment in the Southern Ocean (Sévellec et al. 2015). While there were 

changes in the orientation of the instruments relative to the vertical (i.e., tilt angle), 

this perturbation was not excessive. The mooring tilt angle estimated from the 

Aquadopp roll and pitch angles had a year-mean value of 2.7º, with only 1.8% of the 

mooring record exhibiting tilts over 10º (not shown). The Aquadopps corrected for 

tilts for tilt angle <30º when computing 𝑢 and 𝑣. Given the modest mooring knock-

down and tilt angle, we choose not to apply mooring motion corrections in the present 

study. The uppermost buoyant spheres resided at a depth of ~30 m, where the 

oscillatory motion of wind waves and swell would have a minimal influence. Further, 

the ensemble averaging of 60 consecutive 1-Hz samples performed for the ACMs is 

expected to greatly suppress the effects of mooring motion associated with surface 

waves. 
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As the vertical resolution of the measurements is limited, the motion of the 

instruments introduces uncertainty into our estimates of 𝑤 . We have assessed the 

magnitude of this error by re-doing the calculation of vertical velocity with a 

vertically sub-sampled vertical stratification 𝑁2 at higher and lower resolutions with 

the aid of the OSMOSIS glider measurements (Thompson et al. 2016), which sampled 

the water column at 2-4 m vertical resolution throughout the entire year. We find that 

our diagnostics are weakly sensitive to the vertical resolution of the data. For instance, 

varying (higher or lower) the vertical resolution by a factor of 2, the ratios of the RMS 

of the 𝑤𝑣𝑎𝑟𝑦  to the original 𝑤  are 0.64 and 1.15, respectively. Note that a higher 

vertical resolution would give a higher 𝑁2 , and thus result in a smaller vertical 

velocity.  

Finally, to test the impact of instrumental errors in the computation of vertical 

velocity, we propagate the measurement uncertainty in Eqs. 2-4. Following Sévellec 

et al. (2015), we introduce random noise of prescribed amplitude (±4×10-3 K for 

temperature, ±8×10-3 psu for salinity and ±0.5 cm s-1 for horizontal velocity) and 

allow these uncertainties to accumulate in the calculation of 𝑤 , with confidence 

intervals computed at the 90% level using the Monte Carlo method. Results suggest 

that instrumental errors lead to relative uncertainties to the RMS of 1.50% for the 𝑤𝑡 

term, 2.41% for the 𝑤ℎ term and 6.25 % for the 𝑤. Further, the impact of instrumental 

errors on other diagnostics such as frontogenesis function and Rossby number have 

also been examined, with results suggesting that instrumental errors lead to negligible 

uncertainties. 
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Appendix B: Testing the calculation of vertical velocity with an idealized 

numerical model 

An idealized doubly-periodic numerical model (Brannigan et al. 2015) is employed 

to investigate the validity of the non-diffusive density equation used to diagnose 

vertical motion. The model domain is an analogue of an open ocean region like the 

OSMOSIS mooring site, where the kinetic energy budget is dominated by mesoscale 

eddies. The model state from a simulation spun up with 4 km horizontal grid 

resolution is interpolated to a finer resolution of 0.5 km to permit submesoscale 

instabilities. The model is integrated for 30 days using MITgcm in a hydrostatic 

configuration, and model outputs are averaged over one inertial period (about 15.9 h) 

to reduce inertial-gravity wave effects. The model is forced at the surface by wind 

forcing and a heat flux, but contains no barotropic tides. The surface boundary 

condition is calculated relative to a uniform zonal 10 m wind speed of 6.3 m s-1 to 

allow eddy-Ekman interactions, and the surface heat flux is a cooling of 75 W m-2. A 

limitation of the model is that the internal wave field is likely to be modest, due to the 

relatively coarse vertical and horizontal resolutions and smoothly varying surface 

forcing. 

Fig. 15a shows the surface temperature at the initial state. The RMS values of 

vertical motion increase continuously during the model run and the largest values of 

the vertical velocity below the ML depth are of order 10 m day-1. Data at 258 m depth 

(below the maximum ML depth) are used to validate our vertical flow calculation 

method.  

First, the amplitudes of 𝑤𝐷𝐸  computed from the non-diffusive density equation 

(see Eq. 1) are compared to the 𝑤𝑚𝑜𝑑𝑒𝑙 from simulations. To do so, 100 uniformly 

distributed data points throughout the model domain are chosen (shown as black dots 
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in Fig. 15a). The density gradients are calculated on a grid analogous to that of the 

inner mooring cluster. The absolute minima and maxima in the diagnosed and 

modeled distributions at each time interval are compared in Fig. 15b. Generally, 𝑤𝐷𝐸 

matches 𝑤𝑚𝑜𝑑𝑒𝑙 well, and the correlation coefficient between the amplitudes of 𝑤𝐷𝐸 

and 𝑤𝑚𝑜𝑑𝑒𝑙 is 0.76. The slope of the linear fitting line is 1.41, suggesting it is likely 

that the non-diffusive density equation slightly overestimates the intensity of vertical 

flow. The overestimation of vertical velocity by applying mass conservation is likely 

to result from numerical and explicit diffusion in the model. The horizontal 

distribution of vertical velocity implied by the non-diffusive density equation is 

compared to the modeled vertical velocity field (Figs. 15c-15d). The similarities 

between the two fields suggest that the non-diffusive density equation diagnoses the 

horizontal distribution of vertical velocity correctly.  

 

Appendix C: Estimation of vertical velocity from individual moorings under the 

assumption of geostrophic balance 

Following Bryden (1980), the 𝑤ℎ term in Eq. 2 can be expressed as the rotation of 

the horizontal velocity vector with depth by assuming geostrophic balance, 

 𝑤ℎ𝑔
= −

𝑓𝜌

𝑔
(𝑣

𝜕𝑢

𝜕𝑧
−𝑢

𝜕𝑣

𝜕𝑧
)

𝜕𝑧𝜌
= −

𝑓𝜌

𝑔
𝑈2𝜕𝜙

𝜕𝑧

𝜕𝑧𝜌
,  (A1) 

where 𝜙 is the direction of the flow measured anti-clockwise from east, and 𝑤ℎ𝑔
 is 

related to horizontal geostrophic advection. This alternative approach is particularly 

appropriate for reproducing 𝑤 from a time series of density and horizontal velocity 

measurements at multiple depth levels from a single mooring. The vertical velocity 

〈𝑤𝑔𝐶𝑂,30ℎ
〉 inferred from the central mooring agrees well with 〈𝑤𝐶𝑂,30ℎ〉 estimated 

from density equation with best-fit slopes of 0.80 – 1.06 and statistically significant 
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correlation coefficients of 0.86 ± 0.10 in the 50 - 500 m range (Fig. 16), thereby 

endorsing our density conservation-based diagnostics. Further, the vertical profile of 

𝑤′𝑏′ estimated from the above method shows a similar structure and magnitude to 

those of the outer 𝑤′𝑏′ profile (Fig. 8). 

 

Appendix D: Direct comparison of observational vertical velocity estimates with 

a realistic model simulation 

    The output of the most realistic high-resolution model (the LLC4320 simulation, 

Su et al. 2018; Torres et al. 2018) available for the OSMOSIS area is used here to 

provide a direct comparison between our mooring-based estimates of w and the 

modelled w. The LLC4320 simulation was performed using the MITgcm on a global 

Latitude-Longitude-Cap (LLC) grid with a time length of 14 months from September 

10, 2011 to November 15, 2012. The model fully resolves mesoscale eddies and 

internal waves, and permits submesoscale variability with an unprecedented 

horizontal grid spacing of 1/48º. Horizontal wavenumber spectra suggest that the 

effective resolution of LLC4320 is about 10 km. The model timestep is 25 s, and 

model variables are stored at hourly intervals. The model is forced by surface flux 

fields (with a time interval of 6 hours starting in 2011) from the 0.14º ECMWF 

atmospheric operational model analysis, which include 10-m wind velocity, 2-m air 

temperature and humidity, downwelling long and shortwave radiation, and 

atmospheric pressure load. Importantly, the model also includes 16 major tidal 

constituents that are applied as additional atmospheric pressure forcing. 

Fig. 17 demonstrates that vertical velocities in the model are enhanced in winter 

and penetrate significantly beyond the base of the ML, as in the observations. Further, 

the features of relatively weak 𝑤 in the thermocline and enhanced 𝑤 at depth at times 
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other than winter from the LLC4320 simulation are also consistent with the variability 

of mooring-based 𝑤  estimates. The reason that modelled vertical velocities are 

somewhat smaller than those in the observations is most likely the limited 

(submesoscale-permitting, but not -resolving) resolution of the model, as illustrated 

by the flattening of the spectrum at horizontal wavelengths shorter than 10 km (Fig. 

17d).  
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Mooring 
Observation 

period 

Longitude, 

Latitude 
Instrument 

CTD/ACM pair 

Depth (m) 

Sample 

Interval (min) 

Central 
5 Sep 2012 – 

5 Sep 2013 

48.6875, 

-16.1875 

ACMs, 

 

CTDs 

 

50, 77, 109, 145,168, 194, 228, 

261, 299, 359, 405, 466,527 

50, 77, 110, 144,159, 193, 226, 

262, 297, 349, 401, 460,514 

10 

 

5 

NE-Inner 
6 Sep 2012 – 

5 Sep 2013 

48.6940, 

-16.1740 

ACMs, 

CTDs 

55, 120, 163, 231, 304, 358, 530 

54*, 115, 163, 234, 302, 355, 517 

10 

5 

NW-Inner 
5 Sep 2012 – 

5 Sep 2013 

48.7000, 

-16.2060 

ACMs, 

CTDs 

27, 84, 133, 200, 274, 331, 493 

30, 85, 133, 203, 273, 327, 490 

10 

5 

SE-Inner 
6 Sep 2012 – 

5 Sep 2013 

48.6803, 

-16.1740 

ACMs, 

CTDs 

40, 91, 147, 218, 288, 345, 510 

35, 90, 140, 210, 280, 334, 496 

10 

5 

SW-Inner 
5 Sep 2012 – 

5 Sep 2013 

48.6780 

-16.2050 

ACMs, 

CTDs 

29, 85, 136, 205, 277, 329, 496 

31, 85, 133, 206, 275, 330, 493 

10 

5 

NE-Outer 
8 Sep 2012 – 

4 Sep 2013 

48.7480, 

-16.0945 

ACMs, 

CTDs 

61, 121, 235, 360, 511 

63, 123, 236, 358, 522 

10 

5 

NW-Outer 
8 Sep 2012 – 

5 Sep 2013 

48.7485, 

-16.2762 

ACMs, 

CTDs 

58, 117, 233, 359, 534 

61, 120, 233, 348*, 520 

10 

5 

SE-Outer 
18 Sep 2012 – 

4 Sep 2013 

48.6290, 

-16.0990 

ACMs, 

CTDs 

52, 113, 229, 354, 525 

55, 113, 228, 352, 516 

10 

5 

SW-Outer 
5 Sep 2012 – 

5 Sep 2013 

48.6290, 

-16.2775 

ACMs, 

CTDs 

43, 104, 220, 347, 521 

47, 106, 221, 344, 506 

10 

5 

 

Table 1. Detailed configuration of the OSMOSIS moorings. * represents data missing due to a sensor problem. 
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List of Figures 

Fig. 1.  (a) Geographical location of the OSMOSIS mooring array. The European 

continent is shaded grey, and bathymetry is shown in the colormap on the 

right. Inset map shows a magnification of the mooring site. The mooring 

array includes one central mooring (black), four inner moorings (blue) and 

four outer moorings (dark yellow). (b) Vertical sections of the OSMOSIS 

array. Current meters are shown as green diamonds, and MicroCAT-CTDs 

are shown as red squares. 

 

Fig. 2.  Time series of (a) stratification 𝑁𝐶,30ℎ
2 , (b) current speed 𝑈𝐶,30ℎ, and (c) eddy 

kinetic energy 𝐸𝐾𝐸𝐶,30ℎ (black) and 𝐸𝐾𝐸𝑔 (red) at the central mooring site. 

The black line in (a) represents the ML depth. Isopycnals are overlaid as 

black lines at intervals of 0.05 kg m-3 in (b), ranging from 26.90 to 27.20 kg 

m-3. White blocks in (b) indicate time periods with mooring knockdown 

larger than 50 m. Depths not sampled by the deployed instrumentation in (a-b) 

are colored in grey. 

 

Fig. 3.  Frequency spectra of (a) zonal 𝑢𝑟𝑎𝑤, (b) meridional 𝑣𝑟𝑎𝑤 components of the 

velocity, and (c) potential density 𝜌𝑟𝑎𝑤 at the central mooring as a function of 

depth. Signals have been linearly detrended. The 10 days, M2 tidal and 

inertial periods (𝑓) are marked on the upper axis. The 10 days period is also 

indicated by the black dashed line. 

 

Fig. 4.  Relation between the vertical shear and horizontal buoyancy gradient terms in 

the thermal wind balance equation, at depths from 150 to 500 m represented 

by color. Scatterplots of (a) 
1

𝑓
〈𝜕𝑥𝑏𝐼,16ℎ〉 and 〈𝜕𝑧𝑣𝐶,16ℎ〉, (b) 

1

𝑓
〈𝜕𝑦𝑏𝐼,16ℎ〉 and 

−〈𝜕𝑧𝑢𝐶,16ℎ〉 . Reference line with slope 1 is indicated in dashed grey. 

Correlation coefficient 𝑅 and 𝑝-value are given at the bottom right. All fields 

are from below the ML. 

 

Fig. 5.  Time series of the daily-averaged outer vertical velocity and its components in 

m/day, (a) 〈(𝑤𝑡)𝐶,30ℎ〉 term, (b) 〈(𝑤ℎ)𝐶𝑂,30ℎ〉 term and (c) 〈𝑤𝐶𝑂,30ℎ〉 at the 

central mooring. A positive value indicates upwelling. The ML depth is 

superimposed as a black line. Isopycnals are overlaid as grey dashed lines. 

Missing values in our calculations are colored in grey. (d-f) show time-mean 

values of outer vertical velocity corresponding to (a-c). 

 

Fig. 6.  Same as Fig.5, but for inner vertical velocity. The grey shaded regions in (e) 

and (f) illustrate the 90% confidence envelope of time-mean vertical velocity, 

estimated using a Monte Carlo approach. 

 

Fig.7.  Year-long time series of daily-averaged vertical buoyancy flux at (a) 

mesoscale (outer) 〈𝑤𝐶𝑂,30ℎ
′ 𝑏𝐶,30ℎ

′ 〉  and (b) submesoscale (inner) 

〈𝑤𝐶𝐼,16ℎ
′ 𝑏𝐶,16ℎ

′ 〉 from the central mooring. The black line represents the ML 

depth. Isopycnals are overlaid as grey dashed lines. Missing values are 

colored in grey. 
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Fig.8.   Vertical profiles of the year-mean equivalent heat flux. The outer and inner 

results are indicated by the blue and black solid lines, respectively. The 

equivalent heat flux estimated from Bryden’s (1980) method using the 

central mooring measurements only is shown by the blue dashed line. The 

shaded regions illustrate the 90% confidence envelope of year-mean results, 

estimated using a Monte Carlo approach. 

 

Fig. 9. (a) Histogram of depth-averaged outer frontogenesis function 𝐹𝑠𝑂,30ℎ . 

Representative winter and spring time series of (b) outer frontogenesis 

function 𝐹𝑠𝑂,30ℎ , (c) inner lateral buoyancy gradient |∇ℎ𝑏|𝐼,30ℎ and (d) outer 

lateral buoyancy gradient |∇ℎ𝑏|𝑂,30ℎat the central mooring site. The black 

line in (b-d) shows the ML depth. Missing values are colored in grey. 

 

Fig. 10. (a) Scatterplot of daily values of outer frontogenesis 〈𝐹𝑠𝑂,30ℎ〉  against outer 

and inner lateral buoyancy gradients 〈|∇ℎ𝑏|𝐼,30ℎ〉. Fields are from below the 

ML and depth-averaged. (b) Histograms of outer and inner lateral buoyancy 

gradients, with respective mean values and Normal distribution fits displayed. 

 

Fig. 11. (a) Root mean square of vertical velocity at mesoscale (outer) and 

submesoscale (inner) throughout the year. The standard deviation is shown 

by the light shades. (b) Daily root mean square of vertical velocity (dots) as a 

function of EKE. The mean values of RMS of vertical velocity, discretized in 

0.01 m2 s-2 EKE bins, for mesoscale (blue) and submesoscale (grey) are given 

by the circles. 

 

Fig. 12. The relationship between (a) RMS of 〈𝑤𝐶𝐼,30ℎ
′ 〉 and 〈𝐹𝑠𝑂,30ℎ〉, (b) RMS of 

〈𝑤𝐶𝐼,30ℎ
′ 〉  and 〈|∇ℎ𝑏|𝐼,30ℎ〉  , (c) 〈𝑤𝐶𝐼,30ℎ

′ 𝑏𝐶,30ℎ
′ 〉  and 〈𝐹𝑠𝑂,30ℎ〉 , (d) 

〈𝑤𝐶𝐼,30ℎ
′ 𝑏𝐶,30ℎ

′ 〉 and 〈|∇ℎ𝑏|𝐼,30ℎ〉, at depths from 50 to 500 m represented by 

color. 

 

Fig. 13. Time series of (a) outer Rossby number 𝜁𝑂,30ℎ/𝑓, (b) inner Rossby number 

𝜁𝐼,30ℎ/𝑓 , (c) outer Richardson number 𝑓2𝑁𝐶,30ℎ
2 /|∇ℎ𝑏|𝑂,30ℎ

2  and (d) inner 

Richardson number 𝑓2𝑁𝐶,30ℎ
2 /|∇ℎ𝑏|𝐼,30ℎ

2  at the central mooring. The black 

line represents the ML depth. Missing values in (a-b) are colored in grey. 

 

Fig. 14. Bin-averaged median values of (a) the RMS of 𝑤𝐶𝐼,30ℎ
′ , and (b) 𝑤𝐶𝐼,30ℎ

′ 𝑏𝐶,30ℎ
′ , 

as a function of inner lateral buoyancy gradient  |∇ℎ𝑏|𝐼,30ℎ  and outer 

frontogenesis function 𝐹𝑠𝑂,30ℎ . All fields are depth-averaged. Sample 

numbers in each bin are indicated in text. Sample numbers < 5 are neglected. 

 

Fig. 15. (a) Surface temperature anomaly at the initial state of the model simulation. 

(b) Relationship between the amplitude of the modeled vertical velocity, 

𝑤𝑚𝑜𝑑𝑒𝑙, and that of the vertical motion implied by the density conservation 

equation, 𝑤𝐷𝐸 .  The amplitudes (minima and maxima) are extracted from 

each time interval (i.e. every one inertial period) of the model output at 100 

data points, shown as black dots in (a). 𝑚 is the slope of the linear regression 

with ±  95% confidence intervals estimated by a bootstrapping method. 
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Reference line with slope 1 is indicated in grey. The horizontal distribution of 

(c) 𝑤𝑚𝑜𝑑𝑒𝑙 and (d) 𝑤𝐷𝐸 at a depth of 252 m at day 25.44. 

 

Fig. 16. Comparison of diagnosed 〈𝑤𝐶𝑂,30ℎ〉 estimated from the density equation and 

〈𝑤𝑔𝐶,30ℎ
〉  estimated from the central mooring measurements only as 

illustrated in Appendix C, at depths from 50 to 500 m represented by color.  

Reference line with slope 1 is indicated in dashed grey. 

 

Fig. 17. Year-long RMS of vertical velocity (a) averaged over the OSMOSIS region 

in the LLC4320 simulation, at (b) submesoscale and (c) mesoscale from the 

central mooring site. (d) Power spectral density (as a function of horizontal 

wavenumber) of LLC4320 𝑤  over 47-49ºN, 15-17ºW at 40 m depth in 

winter.  
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 FIG. 1. (a) Geographical location of the OSMOSIS mooring array. The European 

continent is shaded grey, and bathymetry is shown in the colormap on the right. Inset 

map shows a magnification of the mooring site. The mooring array includes one 

central mooring (black), four inner moorings (blue) and four outer moorings (dark 

yellow). (b) Vertical sections of the OSMOSIS array. Current meters are shown as 

green diamonds, and MicroCAT-CTDs are shown as red squares. 
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FIG. 2. Time series of (a) stratification 𝑁𝐶,30ℎ
2 , (b) current speed 𝑈𝐶,30ℎ, and (c) eddy 

kinetic energy 𝐸𝐾𝐸𝐶,30ℎ (black) and 𝐸𝐾𝐸𝑔 (red) at the central mooring site. The black 

line in (a) represents the ML depth. Isopycnals are overlaid as black lines at intervals 

of 0.05 kg m-3 in (b), ranging from 26.90 to 27.20 kg m-3. White blocks in (b) indicate 

time periods with mooring knockdown larger than 50 m. Depths not sampled by the 

deployed instrumentation in (a-b) are colored in grey. 
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FIG. 3. Frequency spectra of (a) zonal 𝑢𝑟𝑎𝑤, (b) meridional 𝑣𝑟𝑎𝑤 components of the 

velocity, and (c) potential density 𝜌𝑟𝑎𝑤 at the central mooring as a function of depth. 

Signals have been linearly detrended. The 10 days, M2 tidal and inertial periods (𝑓) 

are marked on the upper axis. The 10 days period is also indicated by the black 

dashed line. 
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FIG. 4. Relation between the vertical shear terms and horizontal buoyancy gradient 

terms in the thermal wind balance equation, at depths from 150 to 500 m represented 

by color. Scatterplots of (a) 
1

𝑓
〈𝜕𝑥𝑏𝐼,16ℎ〉  and 〈𝜕𝑧𝑣𝐶,16ℎ〉 , (b) 

1

𝑓
〈𝜕𝑦𝑏𝐼,16ℎ〉  and 

−〈𝜕𝑧𝑢𝐶,16ℎ〉. Reference line with slope 1 is indicated in dashed grey. Correlation 

coefficient 𝑅 and 𝑝-value are given at the bottom right. All fields are from below the 

ML. 
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FIG. 5. Time series of the daily-averaged outer vertical velocity and its components in 

m/day, (a) 〈(𝑤𝑡)𝐶,30ℎ〉 term, (b) 〈(𝑤ℎ)𝐶𝑂,30ℎ〉 term and (c) 〈𝑤𝐶𝑂,30ℎ〉  at the central 

mooring. A positive value indicates upwelling. The ML depth is superimposed as a 

black line. Isopycnals are overlaid as grey dashed lines. Missing values in our 

calculations are colored in grey. (d-f) show time-mean values of outer vertical 

velocity corresponding to (a-c). 
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FIG. 6. Same as Fig.5, but for inner vertical velocity. The grey shaded regions in (e) 

and (f) illustrate the 90% confidence envelope of time-mean vertical velocity, 

estimated using a Monte Carlo approach. 
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FIG. 7. Year-long time series of daily-averaged vertical buoyancy flux at (a) 

mesoscale (outer) 〈𝑤𝐶𝑂,30ℎ
′ 𝑏𝐶,30ℎ

′ 〉 and (b) submesoscale (inner) 〈𝑤𝐶𝐼,16ℎ
′ 𝑏𝐶,16ℎ

′ 〉 from 

the central mooring. The black line represents the ML depth. Isopycnals are overlaid 

as grey dashed lines. Missing values are colored in grey. 
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FIG. 8. Vertical profiles of the year-mean equivalent heat flux. The outer and inner 

results are indicated by the blue and black solid lines, respectively. The equivalent 

heat flux estimated from Bryden’s (1980) method using the central mooring 

measurements only is shown by the blue dashed line. The shaded regions illustrate the 

90% confidence envelope of year-mean results, estimated using a Monte Carlo 

approach.  
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FIG. 9. (a) Histogram of depth-averaged outer frontogenesis function 𝐹𝑠𝑂,30ℎ . 

Representative winter and spring time series of (b) outer frontogenesis function 

𝐹𝑠𝑂,30ℎ , (c) inner lateral buoyancy gradient |∇ℎ𝑏|𝐼,30ℎ and (d) outer lateral buoyancy 

gradient |∇ℎ𝑏|𝑂,30ℎat the central mooring site. The black line in (b-d) shows the ML 

depth. Missing values are colored in grey. 
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FIG. 10.  (a) Scatterplot of daily values of outer frontogenesis 〈𝐹𝑠𝑂,30ℎ〉  against outer 

and inner lateral buoyancy gradients 〈|∇ℎ𝑏|𝐼,30ℎ〉. Fields are from below the ML and 

depth-averaged. (b) Histograms of outer and inner lateral buoyancy gradients, with 

respective mean values and Normal distribution fits displayed. 
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FIG. 11. (a) Monthly RMS of vertical velocity at mesoscale (outer) and submesoscale 

(inner) throughout the year. The standard deviation is shown by the light shades. (b) 

Daily RMS of vertical velocity (dots) as a function of EKE. The mean values of RMS 

of vertical velocity, discretized in 0.01 m2 s-2 EKE bins, for mesoscale (blue) and 

submesoscale (grey) are given by the circles. 
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FIG. 12. The relationship between (a) RMS of 〈𝑤𝐶𝐼,30ℎ
′ 〉 and 〈𝐹𝑠𝑂,30ℎ〉, (b) RMS of 

〈𝑤𝐶𝐼,30ℎ
′ 〉 and 〈|∇ℎ𝑏|𝐼,30ℎ〉 , (c) 〈𝑤𝐶𝐼,30ℎ

′ 𝑏𝐶,30ℎ
′ 〉 and 〈𝐹𝑠𝑂,30ℎ〉, (d) 〈𝑤𝐶𝐼,30ℎ

′ 𝑏𝐶,30ℎ
′ 〉 and 

〈|∇ℎ𝑏|𝐼,30ℎ〉, at depths from 50 to 500 m represented by color.  
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FIG. 13. Time series of (a) outer Rossby number 𝜁𝑂,30ℎ/𝑓, (b) inner Rossby number 

𝜁𝐼,30ℎ/𝑓, (c) outer Richardson number 𝑓2𝑁𝐶,30ℎ
2 /|∇ℎ𝑏|𝑂,30ℎ

2  and (d) inner Richardson 

number 𝑓2𝑁𝐶,30ℎ
2 /|∇ℎ𝑏|𝐼,30ℎ

2  at the central mooring. The black line represents the ML 

depth. Missing values in (a-b) are colored in grey. 
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FIG. 14. Bin-averaged median values of (a) the RMS of 𝑤𝐶𝐼,30ℎ
′ , and (b) 𝑤𝐶𝐼,30ℎ

′ 𝑏𝐶,30ℎ
′ , 

as a function of inner lateral buoyancy gradient  |∇ℎ𝑏|𝐼,30ℎ and outer frontogenesis 

function 𝐹𝑠𝑂,30ℎ . All fields are depth-averaged. Sample numbers in each bin are 

indicated in text. Sample numbers < 5 are neglected. 
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FIG. 15. (a) Surface temperature anomaly at the initial state of the model simulation. 

(b) Relationship between the amplitude of the modeled vertical velocity, 𝑤𝑚𝑜𝑑𝑒𝑙, and 

that of the vertical motion implied by the density conservation equation, 𝑤𝐷𝐸.  The 

amplitudes (minima and maxima) are extracted from each time interval (i.e. every one 

inertial period) of the model output at 100 data points, shown as black dots in (a). 𝑚 

is the slope of the linear regression with ± 95% confidence intervals estimated by a 

bootstrapping method. Reference line with slope 1 is indicated in grey. The horizontal 

distribution of (c) 𝑤𝑚𝑜𝑑𝑒𝑙 and (d) 𝑤𝐷𝐸 at a depth of 252 m at day 25.44.  
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FIG. 16. Comparison of diagnosed 〈𝑤𝐶𝑂,30ℎ〉 estimated from the density equation and 

〈𝑤𝑔𝐶,30ℎ
〉 estimated from the central mooring measurements only as illustrated in 

Appendix C, at depths from 50 to 500 m represented by color.  Reference line with 

slope 1 is indicated in dashed grey.  
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FIG. 17. Year-long RMS of vertical velocity (a) averaged over the OSMOSIS region 

in the LLC4320 simulation, at (b) submesoscale and (c) mesoscale from the central 

mooring site. (d) Power spectral density (as a function of horizontal wavenumber) of 

LLC4320 𝑤 over 47-49ºN, 15-17ºW at 40 m depth in winter.  
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