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Spatial variability of 2H and 18O composition of meteoric freshwater is 

not always dominated by the latitude effect   

Abstract 

Coastal regions, and in particular islands where precipitation from clouds formed 

out at sea occurs for the first time, are prime candidates for regions where 2H and 
18O composition of precipitation will deviate significantly from the global mean 

geographic and physiographic trends of vapour-transport patterns.  The results 

reported here are the outcome of a study that aimed to test this hypothesis by 

‘isotopographically’ mapping the characteristic 2H and 18O signatures of 

Scottish freshwaters.  The resulting isotope abundance landscapes or 'isoscapes' 

will underpin studies aiming to authenticate origin of Scottish produce but may 

also offer a baseline against which environmental changes could be assessed.  

Between April 2011 and May 2012 freshwater samples were collected from 127 

different freshwater lochs and reservoirs across Scotland and analysis results 

were compared to precipitation data provided by the British Geological Survey.  

Here we present the results of the 2H and 18O analyses of these water samples as 

well as the first detailed Scotland freshwater isoscapes with a grid resolution of 

about 5 × 5 km (0.05 degrees). 

Keywords: coastal regions; continental effect; evaporated rain; freshwater; island; 

isoscapes; Hebrides; hydrogen-2; latitude effect; oxygen-18; precipitation; 

Scotland; stable isotopes; Western Isles 
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Introduction 

Since the seminal work by Dansgaard [1, 2] and the inception of the Global Network of 

Isotopes in Precipitation (GNIP) by the International Atomic Energy Agency (IAEA) 

and the World Meteorological Organization (WMO) in the 1960s our understanding of 

how factors such as altitude, latitude and temperature influence changes in isotopic 

composition of precipitation has increased quite considerably.  Yet despite these early 

beginnings and the wealth of data collated by the GNIP stations, it was the seminal 

work by Bowen and Wilkinson in 2002 that unlocked the information present therein by 

creating a spatial framework to model and visualise the geographic distribution of 18O 

abundance values (18O values) in precipitation [3].  In their article, Bowen and 

Wilkinson applied a two-step regression technique to deconvolve the effects of latitude 

and altitude on 18O values of global precipitation.  The resulting equation combined a 

second-order polynomial for absolute values of GNIP station latitude (|LAT|) with a 

linear residual for altitude (ALT).   

18Oprecip. = -0.0051(|LAT|)2 + 0.1805(|LAT|) - 0.002(ALT) - 5.247  (1) 

During a study into the potential use of 2H and 18O signatures as indication of 

provenance and authenticity of Scottish Single Malt whiskies [4] two of the authors 

(HFK and WMA) measured 18O values of -4.06 ‰ and -4.73 ‰ for water samples 

from precipitation fed freshwater lakes on the Isle of Islay, Scotland, UK.  Even 

accounting for potential effects of time-averaging on the 2H and 18O composition of 

larger bodies of water, these values were significantly different to the modelled 18O 

value of -8.4 ‰ as calculated by the Online Isotopes in Precipitation Calculator (OIPC) 

[5].  The measured 18O values of -4.06 ‰ and -4.73 ‰ were also significantly 

different to 18O values of about -6.5 to -6.0 ‰ one would have expected to see based 
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on a published 18O contour map of groundwater and surface waters in the British Isles 

[6].  A similar observation was made for a freshwater sample from Orkney (main 

island).  Here, measured and OIPC calculated 18O values were -5.0 ‰ and -6.9 ‰ 

respectively, while the 18O contour map by Darling, Bath and Talbot (2003) suggested 

a 18O value of -6.0 ‰.  While artefacts due to sampling or sample storage of waters 

collected as part of the whisky study could of course not be completely discounted as 

potential explanation for these differences, we formed the hypothesis that these 

differences between measured and expected 18O values were a reflection of the 

sampling locations where 2H and 18O composition of precipitation was dominated by 

the continental effect due to the locations proximity to the North Atlantic and associated 

weather patterns. 

Scottish water is the only mandatory requirement for production and bottling of 

Scottish whisky.  Scottish distilleries source the water they use from lochs, reservoirs or 

their outflows.  Therefore, any method aiming to use 2H and 18O analysis as one way to 

prove or disprove geographic origin requires sound knowledge of the spatial variability 

of 2H and 18O composition of freshwater across Scotland.  It was therefore deemed 

necessary to collect freshwater samples across Scotland including additional samples 

from Islay and Orkney.  

The opportunity to revisit the sampling locations on Islay and Orkney and to test 

this hypothesis arose when, part of a wider research project of Scottish freshwaters, the 

Stable Isotope Laboratory at the James Hutton Institute (JHI) in Dundee (UK) was 

given the opportunity to survey predominantly rain water fed freshwater lochs and 

reservoirs for their 2H and 18O composition over a two year period during which a total 

of 127 samples were collected, 29 of them on the Hebrides alone.  Scotland’s water 

provides a vital resource for sustaining biodiversity, agriculture, food production as well 



Spatial variability of 2H and 18O composition of meteoric freshwater in Scotland page 5 

as for human consumption.  Therefore the aim of this survey was to compile a 2H and 

18O inventory of Scottish freshwater bodies that could be turned into well resolved 

stable isotope contour maps or isoscapes which in turn could serve as both baseline for 

studies in food authenticity or traceability and as a springboard for future surveys into 

the impact of climate change. 

As mentioned above we also expected the results of this survey to support or 

disprove our hypothesis for the relatively high 18O values observed for freshwaters on 

the Scottish Islands to be a consequence of the continental effect rather than artefacts.  

As a rule of thumb, 2H and 18O values of precipitation become lower with increasing 

distance to the equator, i.e. the higher the latitude the lower 2H and 18O values of 

precipitation will be.  This latitude effect is illustrated quite nicely by the global 2H 

and 18O isoscapes of precipitation published at 

http://wateriso.utah.edu/waterisotopes/pages/data_access/figures.html.  However, earlier 

work by Darling, Bath and Talbot [6] had already given an indication that across the 

British Isles the continental effect (i.e. proximity to the sea) may outweigh the latitude 

effect.  The Western coastal regions of Ireland and the British Isles receive between 700 

and 1200 mm of rain per year (30 year average) [7] owing to the fact that rain clouds 

formed out in the North Atlantic make their first landfall in Ireland and the Western 

Isles.  This is particularly the case for the Hebrides, the West coast of Scotland but also 

applies to the Orkneys and, to a lesser degree to the Shetland Isles. 

Here, we report and discuss the results of this survey of surface freshwater 

collected from lochs and reservoirs in Scotland and the Scottish Isles.  In the context of 

this freshwater survey we also report and discuss results of a survey of precipitation 

samples collected in Scotland and analysed by the British Geological Survey (BGS) 
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which served as a point of reference against which the results of the freshwater survey 

were compared. 

 

Materials and Methods 

Collection and analysis of freshwater samples (JHI) 

From April 2011 to May 2012, freshwater samples were collected with the support of 

the Scottish Environment Protection Agency (SEPA) from 127 freshwater lochs and 

reservoirs across Scotland.  Lochs and reservoirs were chosen that, based on 

information provided by SEPA, had a residence time of >2.0 years.  Due to the potential 

for evaporation around the margins and on the surface of the Lochs and reservoirs [8], 

samples were collected at least 5 m away from the shore at a depth of at least 0.5 m to 

avoid artefacts in isotopic composition.  On site, samples were pushed through syringe 

filter disks of 0.8 m pore size into 22 mL glass vials until vials were filled to the point 

of overflowing.  Vials were capped using crimp seals fitted with white PTFE/silicon 

septa.  In the laboratory, samples were inspected for any loss of water on account of 

breakage or leaking crimp seals and nine samples were discarded.  Subsamples of the 

remaining 118 samples were prepared by filling 2 mL amber glass vials with water 

ultimately pushed through syringe filter disks of 0.22 m pore size.  Vials filled to the 

point of overflowing were capped by crimp sealing and stored in a fridge at +2° to +4° 

C until analysis. 

Sterile filtered water samples were analysed for their 2H and 18O stable isotopic 

composition by direct injection on a DeltaplusXP isotope ratio mass spectrometer system 

(Thermo-Fisher, Bremen, Germany) coupled to a High Temperature Conversion 

Elemental Analyser (Thermo-Fisher, Bremen, Germany).  Samples were analysed in 
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replicates of N = 5 and sample volume injected was 0.1 L.  Measured 2H and 18O 

values were scale normalised to VSMOW by 2-point end-member correction derived 

from contemporaneously analysed samples of VSMOW and SLAP, and quality 

controlled using contemporaneously analysed injections of GISP.  Typical errors of 

measurement for 2H and 18O values were ±0.64 and ±0.19 ‰ respectively. 

Collection and analysis of precipitation samples (BGS) 

The rainwater samples were collected using a funnel method with silicon oil to prevent 

evaporation.  At the British Geological Survey, oxygen isotope (18O) measurements 

were made using the CO2 equilibration method with an Isoprime 100 mass spectrometer 

plus Aquaprep device (sample volume 100 l, with random repeats). Hydrogen isotope 

(2H) measurements were made using an online Cr reduction method with a 

EuroPyrOH-3110 system coupled to a Micromass Isoprime mass spectrometer (sample 

volume 2ml, replicates x 3).  Isotope measurements used internal standards calibrated 

against the international standards VSMOW2 and VSLAP2.  Errors are typically 

< ± 0.05 ‰ for 18O and ± 1.0 ‰ for 2H. 

 

Data analysis 

Rather than using a strictly spatial interpolation based on latitude and altitude [3] we 

followed a similar approach as van der Veer et al. [9] for European mineral waters by 

first correlating the calibrated results with gridded climate data using the WorldClim 

dataset with ~1km resolution [10]. In addition, we determined the distance between 

each sampling site and the nearest coast and the nearest coast in the general westerly 

wind direction (270) for the whole of Scotland [11]. We tested both multiple linear 
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regression approaches and Random Forrest regression using the R statistical 

environment [12] with multiple spatial analysis packages (sp, rgeos, raster) and home 

written code (JH, pers. commun.; unreferenced).  The Random Forrest regression on a 

combination of: mean temperature in coldest quarter [9], annual mean temperature [9], 

coastal distance in the wind direction (JH, pers. code; unreferenced) and longitude 

provided the most explanation of variance (2H: 82 % and 18O: 78 %) of the data.  

Linear regression on the same parameters provided an adjusted R2 for 2H of 78 % and 

18O of 74 % with mean temperature in the coldest quarter being the most dominant 

explanator of variance for both isotope systems.  The correlation matrix for all the 

parameters is presented as Table 1.  The residuals between the predicted and observed 

values were used to make residual variation maps using the spatial kriging interpolation 

function in "sp" R package.  The Random Forrest models were used in a first step to 

predict 2H and 18O values for all Scottish WorldClim grid cells and subsequently the 

kriging models added to account for the remaining ~20 % (spatial) variation of the data.  

The final data was imported in Surfer (v13) and resampled at a 0.05 x 0.05 degree (~ 5 

x 5km) scale and the resulting 2H and 18O isoscapes are presented in Figures 1a and 

1b.  Importantly, due to uneven spatial distribution of the sampling points it must be 

appreciated that the isoscapes are model interpretations and locations between actual 

measured points are interpolations and not necessarily true values.  It is important to be 

aware of these two latter points for any applications of these maps in a forensic context. 

MS Excel 2007 was used to create correlation plots, carry out regression 

analyses and calculate solutions to regression lines presented in Figures 2 to 5. 
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Results and Discussion 

Survey of Standing Freshwater Bodies in Scotland 

Scale normalised 18OVSMOW values of 118 Scottish freshwaters samples collected all 

over Scotland and the Scottish Isles extended over a range from -9.70 to -2.36 ‰.  

Corresponding 2HVSMOW values ranged from -65.6 to -20.4 ‰.  Colour gradients in 

Figure 1 represent differences in isotopic composition and clearly show that 

westernmost locations exhibit 18OVSMOW values higher than -4.8 ‰ (Figure 1b).  In 

spite of their location > 56° Northern Latitude, water samples collected from lochs on 

the Hebridean islands Harris, Lewis South Uist and North Uist (cf. data sheet provided 

in Supplemental Materials) showed more than 80 % of 18OVSMOW values was higher 

than 18OVSMOW values reported in the GNIP database for South European coastal 

locations such as Brest (-4.31 ‰; 48.36° / -4.57°) or Gibraltar (-4.80 ‰; 36.13° / 

-5.35°).  Analyses of samples from revisited sample locations on the Isle of Islay as well 

as additional sample locations there yielded 18O values that ranged from -4.74 to 

-3.24 ‰ thus confirming the observations made as part of the aforementioned whisky 

authenticity project [4].  Similarly, analysis of a sample from Kirbister Loch on Orkney 

that had also been sampled as part of the whisky project yielded a 18OVSMOW value of 

-4.59 ‰ as compared to the then observed 18OVSMOW value of -5.00 ‰. 

Plotting 2H or 18O abundance values of Scottish freshwater versus altitude 

showed weak correlation between the two variables (Figure 2).  Coefficients of 

determination R2 for solutions of linear regression and logarithmic regression analysis 

were 0.38 and 0.42 respectively.  Plotting 2H or 18O abundance values of Scottish 

freshwater versus degree latitude values showed no correlation between isotopic 

composition and degree Northern latitude (Figures 3a and 3b).  Coefficients of 
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determination R2 for solutions of linear regression and second order polynomial 

regression analysis were 0.091 and 0.115 respectively.   

However, when plotting 2H or 18O abundance values versus degree longitude 

values a different picture emerges.  A plot of data from all sampling locations already 

shows some degree of correlation between 18O abundance and degree longitude 

although values from locations on the Shetland Isles (~+60° latitude) appear to buck 

this trend (Figure 4a).  This interpretation was confirmed by re-plotting this data set but 

this time excluding data from the three Shetland Isles' sampling locations (Figure 4b).  

Coefficients of determination R2 for solutions of linear regression and second order 

polynomial regression analysis were 0.62 and 0.65 and, hence, correlation coefficients 

R were 0.79 and 0.81 respectively.  This strongly suggests the predominant driver for 

2H and 18O composition of freshwater in Scotland and the Scottish Isles is longitude and 

thus the continental effect, which in this case is synonymous with proximity to the 

Atlantic Ocean, prevailing Westerly winds and resulting movement of air masses and 

rain clouds from the Atlantic.  This interpretation receives some support from a 

comparison of measured 18O values for sample locations Scotland and France which 

are in close and unsheltered proximity to the Atlantic Ocean with OIPC modelled18O 

values (Table 2).  For these locations, differences between measured and OIPC 

modelled 18O values range from 0.89 to 3.82 ‰.  By contrast, for the comparatively 

sheltered location on the West Coast of Norway the difference between GNIP measured 

and OIPC modelled 18O value was only 0.15 ‰.  Noteworthy are also the within 

0.71 ‰ similarity between 18O values for precipitation in Brest and Lochan na Crege 

Duibhe and freshwater of Loch An Eilan Liath, or the identical within error 18O values 

for Loch Osgaig and Valentia Island (Ireland) despite the more than 6° difference in 

Northern Latitude.  The Scottish sample locations presented in Table 2 were selected 
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because they were the closest match to locations for which data were available in the 

GNIP data base in terms of latitude, longitude and coastal location. 

Greater similarities between 18O values of Scottish water, GNIP data and OIPC 

modelled 18O values were found when comparing sample location of comparable 

inland locations sheltered from the open seas (Table 3).  For these locations modelled 

18O values are consistent with measured 18O values though for one Scottish Highland 

location the OIPC modelled 18O value underestimated the measured 18O values by 

3.3 ‰. 

Comparing Standing Freshwater with Precipitation 

While some may argue time averaged 2H and 18O abundance values of 

freshwater bodies with residence times of >2 years might not be a good proxy for 

isotopic composition of meteoric water, i.e. annual average 2H and 18O values of 

precipitation.  Regrettably, we were not in a position to compare freshwater 2H and 

18O values with corresponding annual average values of precipitation for the survey 

period 2011/12 or any of the preceding two years.  Searching the GNIP data base for 

2H and 18O values of precipitation in 2011 or any of the preceding two years returned 

no data for sample locations between 55.0° and 60.9° Northern Latitude and -7.45° and 

-0.88° Western Longitude.  The nearest GNIP sample location for which 2H and 18O 

values were available was Wallingford in England at 51.60° Northern Latitude and 

-1.10° Western Longitude. 

Quite fortuitously, the British Geological Survey (BGS) had data from analysing 

samples of a survey of precipitation at 21 locations in Scotland collected in the period of 

January to February 2002 and again in the period of January to March of 2005.  

Precipitation records by the UK Met Office show for years 2005 to 2011, rainfall in 
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Scotland as a whole or in Scottish regions such as the Highlands from January to May 

typically amounted to 40 % of the total annual rainfall total (Table 4; note, hydrological 

summaries for the UK published by the UK Met Office referenced in Table 4 only 

provide precipitation amount for certain time frames; the Jan to May record was the 

closest match to the time frame of precipitation sampling).  Given five months represent 

41.67 % of a whole year, the BGS precipitation samples ought to be a fairly 

representative in terms of rainfall accumulation in mm rainfall during the period of their 

collection.  While there is not a 100 % coincidence in sampling locations between the 

BGS and the JHI data, longitude and latitude of the 21 BGS sampling locations were 

still quite close to corresponding JHI sampling locations (Supplemental Material and 

Table 5).  Data provided by the BGS were thus deemed suitable to serve in a 

comparative capacity as points of reference, a kind of benchmark to compare against 

and thus gauge measured 2H and 18O values of the JHI survey samples.  Based on 

available information regarding recharge rates, it is obvious samples from standing 

bodies of freshwater we surveyed would yield time averaged 2H and 18O abundance 

values of the last two years prior to 2011 at least.  For the avoidance of doubt, therefore 

no claim is made for 2H or 18O values of these precipitation samples to represent 

annual averages for years 2002 or 2005.  However, work by van der Veer et al. has 

shown the coldest months dominate the annual mean isotope values of precipitation in 

Europe and thus provide a good approximation of annual average values [9].  The 

spreadsheet supplied as Supplementary Material lists all GPRS grid references, location 

names, date of collection (where known) and results of stable isotope analyses of both 

precipitation samples collected and analysed by BGS (formatted in Italics) and 

freshwater body survey samples collected and analysed by JHI.  A representative 

sample from either data set is presented in Table 5.   
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Comparing solutions of linear regression analyses of 18O / 2H correlation plot 

of both the JHI freshwater survey and the BGS precipitation survey shows results of the 

two surveys to be in very good agreement (Figure 5).  With a slope of 6.97 for the 

freshwater regression line and slopes of 6.73 or 6.28 for the two precipitation regression 

lines respectively (Figure 5), the slopes of any of these Scottish Water Lines are 

shallower than that of 8.0 of the Global Meteoric Water Line (GMWL) [13].  However, 

the slope of the freshwater line is steeper than the slopes of either precipitation line.  

The findings for these two regional precipitation lines are however in good agreement 

with the slope of 6.798 reported for the regression line for monthly precipitation 

samples from Valentia Island on the West Coast of Ireland [14].  A slope of <8 is 

usually interpreted as representing evaporation trend of residual water after evaporation; 

the shallower the slope, the greater the evaporative trend.  However, by taking samples 

well below the water surface great care was taken during sample collection of standing 

freshwater bodies to at least minimize if not exclude any mass discriminatory influences 

surface evaporation may have had on sample isotopic composition of the freshwater 

samples.  While a cumulative effect of evaporation owing to convection of water layers 

over a prolonged period of time cannot be excluded, it seems strange for bodies of water 

fed almost entirely by precipitation to show consistently lower 2H and 18O values than 

the precipitation feeding them (Table 5 and Figure 5).  A possible first explanation 

could be the contribution of snow melt water.  Very low 18O values have been 

documented for a remote mountain lake in Scotland [15]. It is noteworthy that the 

difference in 2H (and 18O) values between freshwater and precipitation is stronger for 

locations in the West of Scotland and becomes less pronounced for more Easterly 

locations (Table 5).  
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The finding of Scottish freshwater 2H and 18O values in mainland Scotland 

locations between approximately -4.7° and -2.7° Western Longitude and 56.2° and 

58.2° Northern Latitude being very similar to those of precipitation in corresponding 

locations (Table 5) within 2 ‰ and 0.2 ‰ respectively, as well as being similar to 

isotopic abundance values calculated using the OIPC (Table 3) suggests whichever 

singular effect or combination of effects dominates isotopic composition of freshwater 

bodies and precipitation on the West Coast of Scotland is replaced by latitude and 

altitude driven effects for more inland locations.  With a slope of almost 7, the 

freshwater regression line is much closer to the slope of 8 of the GMWL and therefore 

presumably already a reflection of 2H and 18O values of Scotland's freshwater bodies 

representing time averaged 2H and 18O abundance values of Scotland's precipitation 

(Figure 5).  A possible interpretation of measured freshwater 2H and 18O values being 

significantly lower than precipitation 2H and 18O values for the Western half of 

Scotland (Table 5) might be for the isotopic composition of water in these reservoirs to 

be less a result of evaporative loss from the water surface but representing an integrated 

time average of the precipitation feeding the freshwater bodies over the years.  As a 

consequence of seasonal changes in temperature and humidity, isotopic composition of 

precipitation will be subject to seasonal if not monthly variability.  Run-off from snow 

melt, as mentioned above, could be a strong influence that would cause averaged 

isotopic abundance values of these freshwater bodies to be lower than those of 

precipitation.  A longitudinal survey of precipitation and freshwater at a remote Scottish 

mountain loch reported 18O values for snow as low as -10 ‰ and on one occasion even 

-16.7 ‰ [15].  The authors of that study concluded precipitation amount to be of 

particular importance since it controls catchment and lake residence times, and 
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determines the degree of phase lag and amplitude change between 18O(freshwater 

body) and 18O(precipitation). 

From a precipitation perspective, a potential explanation for higher 2H and 

18O values observed for the precipitation samples may be water loss incurred during 

rainfall by partial evaporation of rain drops while they are falling from the clouds to the 

ground [16].  This evaporative process can occur when rain falls through air of 

relatively low humidity resulting in the rain reaching the surface being isotopically 

heavy.  Conversely, and in the Scottish climate more likely, with increasing humidity 

levels falling rain droplets will increasingly interact with vapour molecules and 

exchange will occur.  In particular at coastal locations of low altitude, 18O values of 

precipitation are less likely to be influenced by the amount of precipitation.  This is 

exactly what a study of precipitation in the British Isles has found for a low altitude 

sampling site on the East Coast of Scotland near Montrose [17].  In these locations 

raindrops are more likely to encounter vapour parcels in the initial stages of moisture 

depletion because rainout occurs as a function of progressive cooling e.g. due to 

convective uplift of a vapour parcel [17].  In other words, because of the positive 

direction of the isotopic fractionation between liquid and vapour, this process also 

results in the liquid rain drops becoming richer in the heavier isotopes [18].  The two 

processes of evaporation and exchange are therefore further drivers in addition to the 

continental effect for the observed enrichment in heavy isotopes in precipitation in the 

West of Scotland.  For West coast precipitation to be fed by rain relatively 2H and 18O 

rich would also fit with the finding of small d-values (d = 2H - 818O [1]) around zero 

for the water lines of all three data sets (see Figure 5). d-values are predominantly 

controlled or influenced by levels of atmospheric humidity during vapour formation or 

condensation with low d-values being consistent with the general pattern of 
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precipitation in the northern hemisphere [7].  This potential explanation receives further 

support from modelled d-values across Scotland shown in Figure 6.  Along the Western 

islands and West coast regions d-values are consistently close to zero, ranging from +1 

to +3 ‰.  By comparison, in more inland and/or higher altitude regions of Scotland 

between approximately -4.7° and -2.9 Western Longitude and 56.6° and 57.5° Northern 

Latitude, d-values are of the order of +6 to +8, even >+10 ‰ in places, i.e. values close 

to the d-value of the GMWL.  The combined Random Forrest and kriging modelling 

show a general trend of d-values increasing from coast into the Highlands.  However, it 

should be noted individual measurements show larger variations in d-values which is 

probably indicative of varying atmospheric conditions for the specific precipitation 

samples. 

 

Conclusions 

Results from the standing freshwater survey confirmed observations made during an 

earlier study [4], namely, for 2H and 18O values of freshwater bodies in the West of 

Scotland's and Scottish Isles to be higher than one would expect based on data from the 

nearest GNIP stations (Valentia, Wallingford and Keyworth) or on currently available 

modelled OIPC data.  Clearly, more regularly monitored sampling points than the 

current three GNIP sites in Ireland and the UK are required for extrapolated regression 

models and isoscapes to provide a more realistic data set underpinning any modelled 

representation of 2H and 18O values in meteoric water of Scotland if not Ireland and 

the entire British Isles. 

The strong correlation seen between 2H and 18O values of Scottish freshwaters 

and longitude contrasts the weak correlation seen between these values and either 
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altitude or latitude.  We therefore conclude the influence of a strong continental effect 

due the prevailing wind direction and resulting movement of air masses and rain clouds, 

potentially in combination with the effect of evaporative and/or exchange driven 

enrichment in the falling droplets offer a conceivable explanation for the findings of 

higher than expected 2H and 18O values of Scottish precipitation and freshwater 

bodies in Scotland especially on the Western Isles and on West Coast locations [14].  

We also conclude existing algorithms for calculating expected regional 2H and 18O 

values of precipitation may need to be reassessed and possibly amended by a term 

accounting for continental effects. 

Irrespective as to the exact nature of the underlying effect or combination of 

effects for the difference between 2H and 18O values of Scottish freshwater and those 

of precipitation, especially along the West Coast and on the Western Isles, we conclude 

2H and 18O values of Scotland's freshwater bodies may be a useful proxy for isotopic 

composition of Scotland's precipitation when it comes to cost effective longitudinal 

monitoring on a like-for-like basis to study e.g. what, if any effects climate change may 

have on Scotland's water budget.  Of course, time and cost involved in sampling and 

analysing water from >100 locations on a regular basis in Scotland alone would still be 

prohibitive.  However, annual sampling of freshwater bodies would still be a more cost 

effective way to generate data sets and isoscapes albeit based on time averaged 2H and 

18O values than sampling and analysis of precipitation from >100 locations on a 

monthly basis.  Hence, future work will focus on using the data set discussed here to 

determine the minimum number and optimal location of samples required to create 

isoscapes providing a realistic picture so any longitudinal changes can be detected, 

monitored and interpreted in a meaningful way. 
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