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Abstract Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN
emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase,
we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the
plasmasphere and in the topside ionosphere. A low-frequency part of EN emissions becomes EMIC waves
through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs
around the frequency of M/Q = 2 (deuteron and/or alpha particles) cyclotron frequency. These processes
result in plasmaspheric EMIC waves. We investigated the ion composition ratio by characteristic
frequencies of EN emissions and EMIC waves and obtained ion composition ratios. We found that the
maximum composition ratio of M/Q = 2 ions is ~10% below 3,000 km. The quantitative estimation of the
ion composition will contribute to improving the plasma model of the deep plasmasphere and the
topside ionosphere.

Plain Language Summary Equatorial noise (EN) emissions are whistler mode waves. Using Van
Allen Probe and Arase (ERG) plasma wave data, we found that EN emissions propagate toward the Earth
and are converted to electromagnetic ion cyclotron (EMIC) waves in the deep plasmasphere and the topside
ionosphere. We suggest that minor ions with a mass per charge (M/Q) = 2, that is, deuteron or alpha
particles, play an important role in this process. The processes reported here are a new generation process of
plasmaspheric EMIC waves. Moreover, we determined the ion composition ratio using characteristics of
wave dispersion. We derived the altitude profile of the ion composition ratio and identified the maximum
ratio of M/Q = 2 ions of about 10% in the deep plasmasphere.

1. Introduction

Equatorial noise (EN) emissions (Gurnett, 1976; Russell et al., 1970) are often observed inside and outside
the plasmapause. It should be noted that EN emissions are referred to as magnetosonic mode waves
(Boardsen et al., 1992; Gul'elmi et al., 1975) and Rauch and Roux (1982) referred to this wave as the
class-2 wave. EN emissions are generated through the ring distribution of the ring current protons (Ma
et al., 2014; Min & Liu, 2015; Umeda et al., 2012). EN emissions are generated near the magnetic equator
(e.g., Boardsen et al., 2016; Santolik et al., 2004) and propagate across the magnetic field lines (Ma et al.,
2014). The waves propagate toward Earth inside the plasmasphere (Horne et al., 2000; Horne & Miyoshi,
2016; Xiao et al., 2015) and azimuthally around Earth (Kasahara et al., 1994) across the field lines without
significant damping.

EN emissions typically have wave normal angles (WNA) within +2° of 90° (e.g., Boardsen et al., 2016);
however, at frequencies less than f.p, the spread can be much broader in WNA, and it is expected that the
polarization of the waves changes from right-hand (RH) to left-hand (LH) polarized at the crossover
frequency. The crossover frequency, where the refractive indices for the RH waves are equal to those of
the LH waves, is given by
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where m; and m, are the masses of ion species i and electrone, respectively. Q. is the electron cyclotron fre-
quency (Kimura, 1966). The cutoff frequency (w¢y,) of the LH is given by

Xe Xi
1- — =0
1+Y, 1-Y;
w? Q
Xe = 587 e = . (2)
Weyt Weut
w2, Q;
X, =2 y, =12
2
Wyt Weut

where w), and w),; are the plasma frequency of the electrons and ions, respectively, and Q; is the cyclotron
frequency of the electrons and ions. The summation of relative composition ratio A; should be 1.

YAi=1 (3)

Considering that the local crossover frequency depends on the L-shell (Horne & Throne, 1993; Matsuda
et al., 2016), it is expected that the RH polarization of EN emissions should readily change to LH polar-
ization during its radial propagation toward Earth inside the plasmasphere (Parrot et al., 2016; Santolik &
Parrot, 1999, 2000). In fact, Santolik et al. (2016) reported that the polarization reversal of the whistler is
decoupled from the low-frequency magnetosonic branch at low-altitudes from the DEMETER observa-
tions. This is not the mode conversion but is the polarization reversal of EN emissions along the same
wave branch.

In the deep plasmasphere, the existence of minor ions of mass per charge (M/Q) = 2 (deuterons and/or alpha
particles) is expected based on plasma wave observations (Watanabe & Ondoh, 1976; Matsuda et al., 2014a,
2014b, 2015, 2016), so we should consider the presence of M/Q = 2 ions together with H*, O*, and He* ions.
As shown later, four different electromagnetic ion cyclotron (EMIC) waves can exist under the presence of
M/Q = 2 ions as possible wave modes. If EN emissions propagate toward low altitudes, where the ratio of
M/Q = 2 ions will become larger, it is expected that the wave component below fg = » (cyclotron fre-
quency of M/Q = 2 ions) becomes EMIC waves through branch splitting and that the mode conversion takes
place around f.ps/0 = ». However, these processes between EN and EMIC waves have not been reported.

In this paper, we report on the mode conversion from EN emissions to EMIC waves in the deep plasma-
sphere based on Van Allen Probes and Arase (ERG) observations. The presence of M/Q = 2 ions plays an
indispensable role in the generation of the proton band EMIC waves through the mode conversion from
EN emissions. We also investigate the ion composition ratio by the observed crossover and L = 0 cutoff fre-
quencies from the wave observations, and we quantitatively show the altitude profile of the ion composition
ratio in the deep plasmasphere.

2. Analysis of Van Allen Probe and Arase Observations

In this study, we use data from the electric field and waves (EFW) instrument (Wygant et al., 2013) and
search coil sensors for the Electric and Magnetic Field Instrument Suite and Integrated Science (Kletzing
et al., 2013) on board the Van Allen Probe-A. We also use the waveform data from the wave form capture
(WFC) of the Plasma Wave Experiment (Kasahara et al., 2018; Matsuda et al., 2018) on board the Arase
(ERG) satellite (Miyoshi, Hori, et al., 2018; Miyoshi, Shinohara, et al., 2018). The Arase satellite has operated
the wave burst observations intermittently to obtain the wave form with the sampling frequency of 1,024 Hz.
The ambient magnetic field is observed by the Magnetic Field Experiment (MGF) on board the Arase satel-
lite (Matsuoka et al., 2018). Typical EMIC waves observed by Arase are reported in Matsuda et al. (2018) and
Shoji et al. (2018).

We investigate the wave spectrum, wave polarization, and wave propagation directions using the spectral
matrix. The spectral matrix is estimated from the frequency analysis of the EFW waveform data. In this
study, the singular value decomposition (SVD) method (Parrot et al., 2016; Santolik et al., 2003; Santolik
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Figure 1. (a) Frequency-time diagram of magnetic field observed by EFW. The horizontal axis is time, and L and Magnetic Local Time (MLT) are taken along the
satellite trajectory. (b) Same as (a) but the elevation angles of the wave normal vector are derived from the spectrum matrix. (c) Same as (a) but for wave polarization.
The positive sign indicates right hand, while the negative sign indicates left hand. (d) Same as (a) but for wave planarity. Three black lines in the figures
correspond to the local ion cyclotron frequency of H*, M/Q = 2ions, and He* respectively. (e) Wave dispersion relations at 09:12:30 UTC. The horizontal axis is the
product of the Alfvén velocity and wave number. The vertical axis is the frequency. The red color indicates right-hand polarization and blue left-hand polarization.
(f) Same as (e) wave dispersion relations at 09:12:30 UTC but the ion composition of H+, O+, and He+ are assumed. EMIC = electromagnetic ion cyclotron.

& Gurnett, 2002) is used to derive the wave propagation characteristics. The polarization, wave normal
angles, and magnetic planarity are derived from the magnetic spectral matrix.

Figure 1a shows the frequency time diagram of magnetic fields obtained from the EFW that was observed on
14 July 2013. During that time, the Van Allen Probe traversed the plasmasphere and the topside ionosphere
from ~3,200 to ~1,000 km (the corresponding Roeder L* is 1.3 and 1.1, respectively). The three black lines
correspond to the local cyclotron frequencies of H*, M/Q = 2 ions, and He*, respectively. The broadband
emissions from 50 to ~250 Hz are EN emissions. Two cutoff frequencies can be found. The low-frequency
cutoff started around 50 Hz at 09:12 UTC, and this cutoff frequency gradually increased when the satellite
moved toward the lower L-shell. Another cutoff frequency is seen at approximately 90 Hz at 09:12 UTC,
and this cutoff frequency also gradually increased.

Figure 1b shows the elevation angle of wave normal vectors relative to the ambient magnetic field, which
indicates that a wave vector of EN is perpendicular to the ambient magnetic field. The analysis of wave
vectors on the azimuthal angle (not shown) indicates that EN emissions propagate toward the earth during
the period. Figure 1c shows the frequency-time diagram of the polarization derived from the SVD method.
The red and blue indicate RH and LH, respectively, while the green indicates linear polarization. Looking at
the polarization at 09:12 UTC, the polarization at a frequency above f./o = 2 is RH, while the polarization
below fearo = 2 is almost linearly polarized. After 09:12 UTC, LH polarization is found at a frequency below
Jemyq = 2. After 09:15 UTC, only the LH polarization is seen at a frequency below f.r/¢ = 2, and LH polariza-
tion is also seen above fuyo = 2. Figure 1d shows the frequency-time diagram of the planarity. During the
period, the planarity is almost 1, which is a necessary condition for the plane wave assumption.

To specify the wave modes, we show the wave-dispersion relation. The wave-dispersion relation is derived
from the following analysis. Since the wave power gap along fuyo = 2 is observed, it is natural to consider
multi-ion populations, including H", M/Q = 2 ions, He* and O*. From Figure 1la and c, we can
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Figure 2. Conversion from equatorial noise emissions to electromagnetic ion cyclotron wave obtained by Arase Plasma
Wave Experiment/wave form capture at low altitudes. The horizontal axis is time, and altitudes and MLT are taken
along the satellite trajectory. (a) The frequency-time diagram of the magnetic field is obtained by Plasma Wave
Experiment/wave form capture. The two black lines show the local ion cyclotron frequency of H* and M/Q = 2 ions.
(b) Same as (a) but for wave polarization. The positive sign indicates right hand, while the negative sign indicates left hand.
EMIC = electromagnetic ion cyclotron.

determine the crossover frequency betweenf .+ and fea/o = 2, and two cutoff frequencies at a frequency
above f.pe. and around f.0 = 2. Using these three characteristic frequencies, four different equations,
that is, one equation on the crossover frequency (equation (1)), two equations on the cutoff (equation (2))
and equation (3) can be used to determine the ion composition ratio. The ambient plasma frequency (f,)
and the local electron cyclotron frequency (f..) are derived from the Van Allen Probe observations
(Kurth et al., 2015). The estimated ion composition ratio of (H*:M/Q = 2 ions: He*:0™) at 09:12:30UTC
is (~91.68%:~2.27%:~0.59%:~5.44%).

These ion composition ratios are used for the dispersion relation. Figure le is the wave-dispersion
relation at 09:12:30 UTC. The wave normal angle is 75.7° at 100 Hz, which is used to calculate the
wave-dispersion for the whole frequency range at this time. The estimated ion composition ratio is also
considered. Five different branches are found, that is, whistler waves above f. ;o = 2, proton band
EMIC waves above fur., the M/Q = 2 ion, He* band EMIC waves below fuz., and O" band EMIC
waves as the lowest frequency band.

In comparing Figure 1c with Figure le, we confirmed the wave modes that appeared in Figure 1c. The
highest frequency components above f.p/q = > are EN emissions. Before 09:15 UTC, the polarization above
femyo = 2 1s almost RH, and it is difficult to find the crossover frequency because of the limited frequency reso-
lution, although LH polarized waves are expected from theoretical investigations. After 09:15 UTC, both LH
and RH polarized waves are found because of the increase of the crossover frequency at low altitudes. The
frequency component between fepr/q = 2 and fepe+ is the proton band EMIC waves. Wide-band linear polar-
ization and a narrow-band LH frequency range are seen at 09:12 UTC, and then polarization at a frequency
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that EN emissions (the whistler mode branch) split into EN emissions and
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proton band EMIC waves.

To consider the mode conversion from EN emissions to the proton band
EMIC waves, we show another wave dispersion relation in Figure 1f.
This dispersion relation is the same as that shown in Figure le, but

+
He
O«
=
o
1

M/Q = 2 ions are not included. We assume that the proton composition

branch and the proton/helium/oxygen band EMIC waves, but we do not

see any gap at the frequency around figo = 2. In comparing Figures le

and 1f, the mode conversion occurs from a low-frequency component of
the whistler (EN emissions) waves to H" band EMIC waves through

ratio in Figure 1f is the sum of the composition ratios for both proton
and M/Q = 2 ions in Figure le. In Figure 1f, we see the whistler mode
; branch splitting due to the presence of M/Q = 2 ions.

Figure 3. Example of equatorial noise emissions and electromagnetic ion
cyclotron waves and the estimated ion composition ratio along the satellite
orbit. (a) Same data format as Figure 1a; (b-e) the ion composition ratio

EN emissions and EMIC wave are also detected by the recent Arase
satellite observations in the deep plasmasphere. Figure 2a shows the
magnetic field spectra observed by Plasma Wave Experiment/WFC on
board Arase on 20 April 2018. During this time, the Arase satellite
observed EN emissions above 110 Hz in the altitude range from 830 to
670 km (the corresponding Roeder L* are 1.03 and 1.01, respectively).
The same polarization reversal as shown in Figure 1 is observed. There

Bou— |
_h-b-bN

estimated from wave observations: H, M/Q = 2 ions, He™, and O, exists a cutoff of EN emissions along the local f.p/0 = 2. Figure 2b shows

respectively.

a frequency-time diagram of polarization estimated from the SVD

method during the period. At 11:55 UTC, the polarization at frequencies
below the local f.p/0 = » is LH; that is, the proton band EMIC waves. On the other hand, the polarization
at frequencies above the local f.p0 = 2 is RH, that is, EN emissions. From both Van Allen Probes and
Arase observations, we expect that the conversion from EN emissions to EMIC waves is common
phenomena that occur at low altitudes, and we show the results from the statistical survey in section 3.

3. Investigation of the Ion Composition

As we have mentioned, using equations (1)-(3) for the dispersion relation, the relative abundance of each ion
species can be estimated. Figure 3 is an example of the ion composition ratio estimated from Figure 1b.
Figure 3a is similar to Figure 1a in data format. Figures 3b-3e show the estimated ratio of HY, M/Q = 2 ions,
He", and O™, respectively. The ratio of the proton (oxygen) decreases (increases) when the satellite moves
toward the low altitudes, and this is a typical altitudinal dependency of the ion composition. In addition to
these ions, a few percent of M/Q = 2 ions are expected during the period. The existence of M/Q = 2 ions
has been reported in previous research on plasma waves (Watanabe & Ondoh, 1976; Matsuda et al., 2014a,
2014b, 2015, 2016), while this is the first result reported for a quantitative estimate of the ion composition ratio.

From the survey of the EFW burst data from 26 January 2013 to 16 July 2016, we statistically investigate the
ion composition ratio near Earth. The number of the burst mode operation near the perigee altitudes was 23,
and we identified 12 events of the conversion. Considering the signal-to-noise ratio, we use eight events to
estimate the ion composition.

MIYOSHI ET AL.
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Figure 4 shows the altitude profile of the ion composition up to 3,000 km,
;| which was derived from the crossover frequencies and the cutoff frequen-
B cies. The black, blue, orange, and red indicate the ion composition ratio
for H*, He*, 0", and M/Q = 2 ions, respectively. The proton abundance
decreases sharply below 2,000 km, while the abundance of O increases.
M/Q = 2 ions exist at the lower altitudes, and the maximum ratio is
~10% at the lowest altitude.

4. Summary and Discussions

The conversion process shown in this study is a general linear mode con-
version process in the multicomponent plasma. As shown in Figures le
and 1f, the whistler wave branch should split into different wave modes,
and a low-frequency component of the whistler waves into H" band
EMIC waves (Fraser, 1985). Branch splitting occurs due to the presence

0.0
0 500

Figure 4. Altitude dependence of the estimated ion composition. The colors

Altitude [km]

1500 2000 2500 3000  around fuo = 2

There are several origins of plasmaspheric EMIC waves (Kasahara et al.,
1992; Sakaguchi et al., 2013; Sawada et al., 1991). Cyclotron resonance

are the same as in Figure 3. The error bars indicate the standard deviation at with the temperature anisotropy of ring current ions and subsequent non-

each altitude.

Table 1

linear evolution (Shoji & Omura, 2011) are a process to generate plasma-

spheric EMIC waves, and the EMIC waves propagate along the field line.

This nonlinear evolution of EMIC waves was confirmed by Akebono
(Sakaguchi et al., 2013). Ion cyclotron whistlers are also EMIC mode waves that have been generated by
lightning discharges through mode conversion (e.g., Gurnett et al., 1965; Matsuda et al., 2015). Recently,
Horne and Miyoshi (2016) presented a theoretical analysis of the mode conversion that occurs between
EN emissions and the proton band of EMIC waves. They predicted that mode conversion across different
wave branches is possible if their propagation angles are parallel to the ambient magnetic fields.

In addition to these processes as an origin of the plasmaspheric EMIC waves, the conversion from EN emis-
sions into oblique EMIC waves in the plasmasphere is shown in this study. When EN emissions propagate
earthward across the field lines, the EN emissions convert into different wave modes; EN emission and
EMIC waves occur with the presence of M/Q = 2 ions in the deep plasmasphere and the topside ionosphere.
Table 1 summarizes the origin of plasmaspheric EMIC waves. In this process, the presence of M/Q = 2 ions
plays an important role in controlling the conversion process. As shown in Figure 4, the composition ratio of
M/Q = 2 ions increases at the low altitudes, EMIC waves generated through the conversion from EN emis-
sion are mainly observed in the deep plasmasphere and in the topside ionosphere. The EMIC waves that
were identified in this study showed oblique propagation because the seed EN emissions propagate across
the field line, as shown in Figure 1, which is different from the propagation angle of EMIC waves through
other generation processes.

Possible Origins of Plasmaspheric EMIC Waves

Wave normal angle of

Mechanisms Frequency EMIC waves Reference
Direct generation Cyclotron instability A few hertz Parallel propagation Sakaguchi et al. (2013)
Parallel mode conversion (a) Mode conversion from EN emissions A few tens hertz to Parallel propagation (a) Horne and Miyoshi (2016)
across the different branches multihundred hertz
(b) Mode conversion from the lightning (b) Gurnett et al. (1965) and
whistler across the different branches Matsuda et al. (2015)
(ion cyclotron whistlers)
Oblique mode conversion Branch splitting of EN emissions under the A few tens hertz Oblique propagation  This study

presence of M/Q = 2 ions

Note. EMIC = electromagnetic ion cyclotron; EN = equatorial noise.
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We determined the ion composition ratios using crossover frequency and the cutoff frequency of the EN
emissions and the EMIC waves. While several previous studies identified the existence of a variety of ion
species by using wave dispersion with ion cyclotron whistlers (Watanabe & Ondoh, 1976; Matsuda et al.,
2014b, 2015, 2016), this study is the first quantitative assessment of the ion composition ratio inside the
plasmasphere. Matsuda et al. (2015) reported the spatial distributions of M/Q = 2 ions from the
Akebono observations and showed the presence of M/Q = 2 ions above L = 1.5. As shown in Figures 3
and 4, we identified M/Q = 2 ions at lower altitudes, even below 1,000 km, which have not been
reported previously.

The estimated altitude dependence of the H* and O™ ratio is similar to the International Reference
Ionosphere (IRI) model. On the other hand, M/Q = 2 ions, which are not included in the IRI model, can
be estimated from the proposed approach. Therefore, the method that was established in this study is poten-
tially a useful diagnostic tool to investigate the ion composition in the inner plasmasphere and in the topside
ionosphere. It is not possible to distinguish between deuteron and alpha particles from the wave data that
were used in this study. However, it is reasonable to conclude that the primary candidate of M/Q = 2 ions
is deuteron from Earth's atmosphere rather than alpha particles from the Sun. As shown in Figure 4, the
ratio of M/Q = 2 ions increases with decreasing altitudes, and the relative composition ratio increases up
to 10% in the low altitude. Plasma density at the topside ionosphere (and even in the plasmasphere) is domi-
nated by very cold ions and electrons (<1 eV), while the kinetic energy of the solar wind at ~1 AU is ~1 keV.
Further statistical investigation on the spatial distribution and geomagnetic activity dependence is essential
to clarify the properties of M/Q = 2 ions in the deep plasmasphere.
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