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Summary 

This report summarises the likely sources of uncertainty associated with the GB recharge model 

and its application to the 11 ensembles of RCM produced for the Future Flow and Groundwater 

Level datasets.  It identifies the sources of uncertainty in the base model as applied to historical 

data (1962-2010).  The range of responses caused by the application of the 11 ensembles is 

presented and discussed.  Recommendations for further work include quantifying the parametric 

uncertainty associated with the base model. 
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1 Introduction 

The BGS authored recharge model ZOODRM and its application to the British mainland or Great 

Britain (GB) has been increasingly used on a number of BGS projects and to produce products.  

The Future Flow and Groundwater Level (FFGWL) ensembles have been run through it to 

examine the impacts of climate change.  This has resulted in a number of outputs produced which 

have potential value for understanding how soil processes change under conditions of forecast 

climate change.  However, there is a need to define the sources of uncertainty as part of model 

metadata, which will aid both its reliability and credibility.   

This report briefly describes the recharge model and its application to the GB mainland and 

FFGWL ensembles and presents sample spatial output.  The main data inputs are documented and 

a qualitative assessment of the uncertainty associated with each one is provided. Given that the 11 

ensemble members each provide a source of uncertainty, the rainfall, potential evaporation and 

recharge from each is presented.  Finally, recommendations are made for further work. 
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2 Description of recharge model code and its use 

2.1 NATIONAL-SCALE RECHARGE MODEL  

2.1.1 Model code 

ZOODRM (Mansour and Hughes, 2004) is an Object Oriented model developed by BGS as part 

of the ZOOM suite of models.  It is a distributed recharge model that simulates runoff and recharge 

processes and provides the output in a gridded form for use with groundwater flow models or on 

a catchment basis for water balance purposes.  It has been applied in both the UK nationally (see 

Figure 1), regionally and overseas (e.g. West Bank; China).  

2.1.2 Model Instance - application to the GB mainland:  

The GB-wide recharge model was built using BGS’ code ZOODRM.  Potential recharge is 

calculated on a grid with 2 × 2 square kilometre cells over the area described by the following 

National Grid Reference: Bottom Left (40000, -10000) Top right (680000, 1010000).  The model 

has been run for the period 1st January 1962 to 31st December 2010 and calibrated against the 

runoff component of river gauged flow.  It calculates recharge on a daily basis and aggregates the 

recharge to a monthly value. 

The calculation method used is the modified UN Food and Agricultural Organisation (FAO) as 

proposed by Griffiths et al. (2006). It uses the distribution of soil parameters and crop parameters 

obtained from the HOST soil data map, which includes 33 classes of soil types (Boorman et al., 

1995), and the land cover map, Land Cover Map 2000 which includes 9 land use classes (Natural 

Environmental Research Council, 2000).  The values of these parameters are obtained from the 

literature.   

The model calculates potential recharge, which is the amount of water calculated to leave the 

bottom of the soil zone.  It does not, therefore, take into account any modification of recharge 

resulting from the unsaturated zone and other, minor aquifers which may lie above the water table. 

The implications for uncertainty for the model are discussed in Section 3. 
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Figure 1.  Long-term average recharge calculated for the GB landmass 

2.2 CLIMATE CHANGE DATASETS – FUTURE FLOWS CLIMATE  

Funded by DEFRA and produced in 2009, UKCP09 provides projections of climate change in the 

UK (Prudhomme et al., 2012; Murphy et al, 2007; Jenkins et al., 2009; Murphy et al, 2009).  Based 

on the 11 variants of the Hadley Centre Regional Climate Model HadRM3-PPE, which underpins 

the UKCP09 scenarios, the Centre of Ecology and Hydrology (CEH) applied a bias-correction and 

downscaling procedure to produce 11 scenarios of Future Flow Climate data. The HadRM3 is used 

as a perturbed physics ensemble approach to produce the 11 ensembles (Prudhomme et al., 2012) 

with one unperturbed example (afgcx) and ten variants (aixfa – afixq). These data are 1 km gridded 

climate time variant projections of rainfall and potential evaporation and allow comparison of 

results across a range of scales and geographical regions. The data were produced as daily grids 

from 1st January 1950 to 30th November 2099. The 11 ensembles are named as follows: 

1. afgcx (unperturbed) 

2. afixa 

3. afixc 

4. afixh 

5. afixi 

6. afixj 

7. afixk 

8. afixl 

9. afixm 

10. afixo 

11. afixq 

The recharge model has been run with rainfall and potential evaporation for all 11 ensembles and 

the results processed as discussed in Section 4. 
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3 Qualitative assessment of uncertainty 

3.1 STRUCTURAL UNCERTAINTY 

Whilst the recharge model is itself a relatively simple model, relying on a soil water balance, there 

remain choices to be made for the model setup.  The model grid and runtime period are 2 km and 

1st January 1961 to 31st December 2010.  The former was chosen as a compromise between the 

level of detail required and run times / data handling issues.  The latter was chosen based on data 

availability.  No work has been undertaken to determine the impact of changing either the grid 

spacing or the length of the model run.  However, a 30 year period is chosen for running models 

driven by rainfall as this covers most of the climate extremes. 

The model runs on a fixed time step of one day.  However there is a choice of recharge calculation 

method.  The modified FAO method was used (see above) which was a compromise between 

sophistication of soil processes and data availability.  The model has been benchmarked against 

the results from other recharge models (see Mansour et al., 2018) which assist the understanding 

of its accuracy. 

3.2 PARAMETRIC UNCERTAINTY 

The main parameters for the GB recharge model are presented in Figure 2 and their provenance 

and main source of uncertainty is described in Table 1.  Broadly the parameters fall into two 

categories: model results produced as grids or interpreted data involving human input and/or some 

form of algorithm. 

Regarding rainfall datasets, Keller et al. (2015) state that further research is required to increase 

the confidence in certain areas for the CEH-GEAR rainfall estimates. They attribute the source of 

error to two regions, the first is in the North and West of the UK where they associate errors to 

rapid orographic rainfall enhancement with altitude. The second is in the South and East of the 

UK where the terrain is flatter resulting in poorer representation of convective storms, which 

typically occur in the summer months as a result of heating of the land mass. This leads to lower 

confidence and greater uncertainty in the rainfall distribution. 

While there is no discussion related to uncertainty associated with the UK Met Office MORECS 

potential evaporation data (Hough and Jones, 1997), Kay and Davies (2008) discuss the 

application of two different formulations to derive PE for a set of climate models and they also 

compare MORECS PE dataset with these formulations. They conclude that the uncertainty 

introduced by the PE formulation is important for some applications but is less than that due to the 

climate model. 

Geological and soil maps are prepared by delineating the boundaries of the different stratigraphic 

or lithological units based on field observations. Despite the recent developments in computer-

based geological modelling, the geological boundaries mapped in two dimensions remain an 

important source of information that assist constraining the 3D geological models. The source of 

uncertainties associated with these boundaries can be conceptual or scale dependent (Lark et al., 

2015) and is usually annotated by buffering the line or with text on maps. Because of the high 

resolution of the grid used to undertake the calculations, it is assumed that errors due to 

uncertainties associated with geological and soil mapping will be overshadowed by the errors 

introduced to the discretisation of the study area. 

Land Cover Map LCM2000 is a vector land cover map of the UK based on satellite data. Land 

parcels were derived from image segments. Land cover is based upon UK Biodiversity Action 

Plan (BAP) Broad Habitats (Morton et al., 2011). The LCM 2000 product uses external datasets 

that were collected with different resolutions, with different levels of generalisation, and their own 

potential inaccuracies, so the final accuracy of LCM2000 depends in part on their reliability of 
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these source datasets (Fuller et al., 2002). 

 

Table 1.  Summary of the main parameters used as input for ZOODRM model of GB 

mainland 

Parameter Description Sources of uncertainty 

Rainfall Daily 1 km2 gridded rainfall 

available from CEH 

(modelled) 

Measurement of rainfall; 

process of gridding 

(imputation) 

Potential Evaporation Monthly MORECS available 

on a 40 km2 gridded basis 

(Hough and Jones, 1997) 

(modelled) 

Input parameters to the model; 

assumptions; interpolation 

from  40 km x 40 km grids 

Digital Elevation Model CEH gridded data (modelled) Source data; assumptions; 

process of gridding 

(imputation) 

River network CEH – shapefile (NERC, 

2003) 

Source data; process of river 

centre line/thalweg creation – 

see Morris and Heerdegen 

(1988) for more details on 

automatic creation of river 

networks 

Geological mapping BGS (human interpretation) Mapping process itself 

(heuristic/field interpretation); 

digitisation of outcrop 

linework; gridding of vector 

data 

Soils mapping Maculay Institute (human 

interpretation) 

Mapping process 

Soil properties HOST (Boorman, 1995) Source data; assumptions; 

interpretation 

Land cover mapping LCM2000, CEH (Fuller et al., 

2002) (Interpreted from 

remote sensed data) 

Source data; assumptions; 

process of gridding 

(imputation) 
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Figure 2.  Flowchart illustrating input data for ZOODRM 

3.3 CALIBRATION PARAMETERS 

The only calibration parameter is the runoff coefficient, the split between runoff and recharge 

when excess water is produced at a node, and how this is obtained.  River flow data was used to 

produce baseflow estimates and the remaining component, i.e. fast flow was used to compare with 

the recharge model results.  The runoff coefficient was assigned to zones based on geological 

mapping and the runoff coefficient was optimised so that the modelled fast flow component 

matched the observed.  More details can be found in Mansour et al., (2018). 

Note that the river flows are themselves subject to both measurement and model uncertainty.  The 

latter is due to the stage-discharge relationship.  As well as this, base flow separation is, in itself, 

a modelling process and has an associated uncertainty. 
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4 FFGWL climate change ensembles 

Following recharge model application to the GB landmass, one of its uses is for determining how 

climate change may impact potential recharge.  However it is necessary to understand what the 

nature of the ensemble members are and how they may affect recharge.  The following describes 

the output produced by running the recharge model with the 11 ensemble members and the 

resulting time series of rainfall, potential evaporation and potential recharge: 

 Table 2, Table 3, and Table 4 present the total (GB landmass) for rainfall, potential 

evaporation and recharge for the 11 ensemble member. 

 Figure 3 to Figure 5 show time series of the minimum, median, and maximum projected 

values of rainfall, evapotranspiration, and recharge together with the historical values for 

every month. 

 Figure 6 to Figure 8 show time series of the 25th percentile, the median, and the 75th 

percentile of the projected values of rainfall, evapotranspiration and recharge.  

 Appendix 1 show the time series of rainfall, evapotranspiration and recharge plotted for all 

months. 

Figure 3 shows the minimum, maximum, and mean time series of the projected rainfall values. It 

is produced by running the 11 ensemble members through the recharge model and calculating total 

rainfall for the British mainland.  It is clear that, for every month, the maximum rainfall is 

approximately 3 times greater than the minimum rainfall reflecting the degree of uncertainty 

associated with the future projection of rainfall data. It must be noted, however, that the time series 

of maximum or minimum values may not be produced from a single model, rather they are a 

collection of values obtained from different models. Comparing with observed historical rainfall 

values, it is clear that in most cases, the maximum and minimum projected rainfall values bound 

the historical ones except in couple of occurrences, e.g. the rainfall time series for February. 

Figure 4 presents the evapotranspiration time series calculated using the projected and historical 

rainfall and potential evaporation data. Again it is produced by running the 11 ensemble members 

through the recharge model and calculating total potential evaporation for the British mainland.  

While the projected maximum and minimum values also bound the historical ones, it is clear that 

on average, the historical evapotranspiration values are higher than the projected ones. This applies 

especially to the months: January, March, April, November and December. Average historical 

values calculated over June, July and August are close to the average projected values, while the 

average historical evapotranspiration values for September are below the projected averages.  

Figure 5 shows the recharge time series calculated using the recharge model from the driving data 

of historical and future predicted rainfall and potential evaporation data. Unlike the 

evapotranspiration time series, the recharge time series behave as the rainfall time series, i.e. the 

average historical values are aligned more to the average projected ones than those of the 

evapotranspiration values. Also there are a period of time in February where the historical recharge 

values are above the maximum projected recharge values. Figure 5 also shows that the minimum 

projected recharge values are approximately 4 times lower than the maximum projected recharge 

values illustrating, consequently, the significance of uncertainty in the calculated recharge values. 

Figure 6, Figure 7, and Figure 8 illustrates clearly the trends in the used projected rainfall values 

and the calculated evapotranspiration and recharge values respectively. Figure 6 demonstrates that 

there is an increase in the trend of the rainfall values over the autumn and winter months (October, 

November, December and January, February,) and a decrease in the trend of rainfall values over 

May and the summer and early autumn months (June, July, August, and September) while the 

future values for March and April have little or no change. This observation applies to the time 

series of recharge values (Figure 8) but the changes in trends are a bit more subdued than for either 

rainfall or evaporation. For example, the recharge time series for October show almost flat trends 

as observed in the March and April time series. This behaviour can be also depicted in the seasonal 
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summaries of recharge (Figure 9, Figure 10, and Figure 11).  The greatest differences are shown 

by the seasonal recharge maps as time goes on 2020s to 2050s to 2080s with the winter recharge 

increasing at the expense of the summer values.  The positive pattern within spring and autumn 

also becomes clearer through the time slices and suggests a move towards wetter winters and dryer 

summers. 

The summary tables (Table 2, Table 3, and Table 4) show that the average values for each variable 

show differing results for each ensemble.  All of the ensembles apart from afixk are wetter, i.e. 

have greater average rainfall than the equivalent historical simulation.  For PE the picture is more 

mixed with afgcx, afixa, afixh, afixi, afixl, afixm and afixo showing increases and the rest of the 

ensemble decreases.  This results in the changes in recharge to follow the rainfall pattern with only 

afixk showing a reduction in recharge from historical simulation to future climate. 

In general, there is greater variability of the future climate compared to the historical simulation 

for each ensemble. 
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Figure 3. Minimum, mean, and maximum projected rainfall values and simulated 

historical rainfall values. Horizontal axis represents years and vertical axis shows rainfall 

in Ml/day. 
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Figure 4. Minimum, mean, and maximum evapo-transpiration values calculated using 

projected rainfall data and simulated historical evapo-transpiration values. Horizontal axis 

represents years and vertical axis shows evapo-transpiration in Ml/day. 
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Figure 5. Minimum, mean, and maximum recharge values calculated using projected 

rainfall data and simulated historical recharge values. Horizontal axis represents years and 

vertical axis shows recharge values in Ml/day. 
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Figure 6. Mean, 25th and 75th percentiles of projected rainfall values. Horizontal axis 

represents years and vertical axis shows rainfall in Ml/day. 
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Figure 7. Mean, 25th and 75th percentiles of evapo-transpiration values calculated using 

projected rainfall data. Horizontal axis represents years and vertical axis shows evapo-

transpiration in Ml/day. 
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Figure 8. Mean, 25th and 75th percentiles of recharge values calculated using projected rainfall 

data. Horizontal axis represents years and vertical axis shows recharge values in Ml/day.  
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Table 2.  Summary of differences in rainfall – historical simulation to forecast climate  

 afgcx afixa afixc afixh afixi afixj afixk afixl afixm afixo afixq 

Av. Hist 

Sim 

6.27E+05 6.33E+05 6.31E+05 6.32E+05 6.22E+05 6.29E+05 6.32E+05 6.31E+05 6.38E+05 6.15E+05 6.39E+05 

Av. Fut. 

Climate 

6.40E+05 6.46E+05 6.34E+05 6.63E+05 6.45E+05 6.31E+05 6.15E+05 6.57E+05 6.48E+05 6.31E+05 6.47E+05 

Diff. Abs 1.29E+04 1.37E+04 3.27E+03 3.13E+04 2.36E+04 1.15E+03 -1.74E+04 2.65E+04 1.06E+04 1.64E+04 8.33E+03 

Diff. (%) 2.05 2.17 0.52 4.96 3.79 0.18 -2.76 4.19 1.65 2.66 1.30 

Table 3.  Summary of differences in PE – historical simulation to forecast climate  

 afgcx afixa afixc afixh afixi afixj afixk afixl afixm afixo afixq 

Av. Hist 

Sim 

2.53E+05 2.61E+05 2.46E+05 2.40E+05 2.48E+05 2.60E+05 2.58E+05 2.45E+05 2.57E+05 2.44E+05 2.56E+05 

Av. Fut. 

Climate 

2.56E+05 2.69E+05 2.42E+05 2.47E+05 2.53E+05 2.56E+05 2.53E+05 2.57E+05 2.66E+05 2.54E+05 2.56E+05 

Diff. Abs 2.19E+03 7.88E+03 -3.61E+03 6.89E+03 4.56E+03 -3.73E+03 -5.42E+03 1.25E+04 9.29E+03 9.87E+03 -9.69E+01 

Diff. (%) 0.86 3.02 -1.47 2.87 1.84 -1.44 -2.10 5.10 3.62 4.05 -0.04 

Table 4.  Summary of differences in recharge – historical simulation to forecast climate  

 afgcx afixa afixc afixh afixi afixj afixk afixl afixm afixo afixq 

Av. Hist 

Sim 

1.76E+05 1.73E+05 1.81E+05 1.85E+05 1.75E+05 1.73E+05 1.75E+05 1.81E+05 1.78E+05 1.74E+05 1.80E+05 

Av. Fut. 

Climate 

1.80E+05 1.76E+05 1.85E+05 1.97E+05 1.84E+05 1.75E+05 1.69E+05 1.87E+05 1.79E+05 1.77E+05 1.83E+05 

Diff. Abs 4.27E+03 2.17E+03 4.09E+03 1.22E+04 8.93E+03 2.02E+03 -6.11E+03 6.08E+03 4.98E+02 2.06E+03 3.64E+03 

Diff. (%) 2.43 1.25 2.26 6.59 5.10 1.17 -3.48 3.36 0.28 1.18 2.02 
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Figure 9.  Seasonal changes in recharge values (2020s)  
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Figure 10.  Seasonal changes in recharge values (2050s)  
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Figure 11.  Seasonal changes in recharge values (2080s) 
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5 Summary and recommendations 

5.1 SUMMARY 

This report has outlined how the recharge model code ZOODRM has been applied to the GB land 

mass.  It has presented sources of uncertainty, showing that even input data consists of those which 

are modelled and those that involve human interpretation.  To understand the variability of the 

FFGWL ensembles then examples of the output from the 11 ensembles have been presented. 

5.2 RECOMMENDATIONS 

The following recommendations are made to improve the understanding of uncertainty within the 

application of the model to the BGS landmass as follows: 

 Understand the sources of uncertainty in the datasets used and to investigate whether 

quantification of uncertainty has been undertaken.  This should lead to the creation of an 

uncertainty model which can then be used to quantify the uncertainty for any model 

outputs. 

 Draw on previous work, e.g. Defra land use project (Mansour and Hughes, 2014) and 

extend this to undertake a sensitivity analysis to determine the parameters that control the 

calculation of recharge 

 Determine the impact on model structure. i.e. grid resolution, on recharge values 

 Understand the impact of different recharge calculation methods on the results 

 Produce the time series of rainfall, evaporation and recharge for catchments and geological 

outcrops related to the main aquifers in Britain (Chalk, Permo-Trasssic Sandstone and 

Jurassic Limestone) 

One source of uncertainty is that the model calculates potential recharge (soil drainage) rather than 

that which reaches the water table (actual).  Therefore, work should be undertaken to include the 

effect of Quaternary deposits on recharge so as to calculate actual recharge rather than just 

potential. 
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Appendix 1  

This appendix shows time series of the total values of rainfall, evapo-transpiration, and recharge 

calculated over the whole study area. 
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TIME SERIES OF TOTAL RECHARGE FOR EACH ENSEMBLE 

 

 

 

 


