
Recovering Land Surface Temperature Under
Cloudy Skies Considering the Solar‐Cloud‐
Satellite Geometry: Application to MODIS
and Landsat‐8 Data
Tianxing Wang1 , Jiancheng Shi1 , Ya Ma2, Letu Husi1 , Edward Comyn‐Platt3 ,
Dabin Ji1 , Tianjie Zhao1 , and Chuan Xiong1

1State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing and Digital Earth of
Chinese Academy of Sciences and Beijing Normal University, Beijing, China, 2Chinese Academy for Environmental
Planning, Beijing, China, 3Centre for Ecology and Hydrology, Wallingford, UK

Abstract Clouds play a significant role in the derivation of land surface temperature (LST) from optical
remote sensing. The estimation of LST under cloudy sky conditions has been a great challenge for the
community for a long time. In this study, a scheme for recovering the LST under cloudy skies is proposed by
accounting for the solar‐cloud‐satellite geometry effect, through which the LSTs of shadowed and
illuminated pixels covered by clouds in the image are estimated. The validation shows that the new scheme
can work well and has reasonable LST accuracy with a root mean square error < 4.9 K and bias < 3.5 K. The
application of the new method to the Moderate Resolution Imaging Spectroradiometer (MODIS) and
Landsat‐8 data reveals that the LSTs under cloud layers can be reasonably recovered and that the fraction of
valid LSTs in an image can be correspondingly improved. The method is not data specific; instead, it can be
used in any optical remote sensing images as long as the proper input variables are provided. As an
alternative approach to derive cloudy sky LSTs based only on optical remote sensing data, it gives some new
ideas to the remote sensing community, especially in the fields of surface energy balance.

1. Introduction

Land surface temperature (LST) is an important parameter for studying the surface energy budget and water
cycle of the Earth system (Brunsell & Gillies, 2003; Duan et al., 2017; Kustas & Anderson, 2009; Li et al.,
2013; Wan &Dozier, 1996). It is an important variable in many land applications, such as evapotranspiration
(Hu & Jia, 2015; Kalma et al., 2008; Tang et al., 2017), longwave radiation budget (Wang et al., 2009; Yan
et al., 2016; Wang et al., 2012; Jiao et al., 2015; Yan et al., 2016), urban heat island (Ma et al., 2010; Weng,
2009), snowmelting (Chen et al., 2017), vegetation monitoring (Julien & Sobrino, 2009), drought monitoring
(Wan et al., 2004), and fire detection (Giglio et al., 2003). Moreover, LST is an important forcing or intermedi-
ate data for many models, such as hydrological (Xue et al., 2013), meteorological (Baehr et al., 2015), and
ecological (Pielke et al., 1998) models.

Compared with the traditional ground‐based measurements, remote sensing provides an unprecedented
advantage in mapping LST on the regional and even global scales with various spatial resolutions.
Since the 1970s, great progress has been made in deriving LST from space, and a number of methods have
been proposed to derive LST from various satellite data. Typically, these approaches can be roughly
grouped into three types: (1) single‐channel methods (Sobrino et al., 2004; Jiménez‐Muñoz and Sobrino
(2003) and Jiménez‐Munoz et al. (2009); Qin et al. (2001); Jiménez‐Muñoz et al., 2014), (2) split‐window
or multiband methods (Becker & Li, 1990; Du et al., 2015; Mao et al., 2005; Mao et al., 2008; Qian et al.,
2015; Sobrino et al., 1994, 1996; Sobrino et al., 2004; Tang et al., 2008; Wan & Dozier, 1996), and (3) tem-
perature and emissivity separation methods (Gillespie et al., 1998; Hulley & Hook, 2011; Ma et al., 2002,
2000; Paul et al., 2012; Wan & Li, 1997). However, all of the mentioned methods only work under clear
skies, and none of the currently available satellite‐based LST products are spatially continuous due to the
presence of clouds, restricting the application of LST. Specifically, a recent study reported that the annual
average of cloud fraction at a global scale can exceed 70% (Mercury et al., 2012). To weaken the influence
of clouds, many cloud detection and removal approaches have been suggested (Eckardt et al., 2013;
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Hagolle et al., 2010; Li et al., 2005; Lv et al., 2016; Lyapustin et al., 2008; Paudel & Andersen, 2011; Zhu &
Woodcock, 2014) for various applications. However, almost all of them were designed only for visible and
infrared bands. Furthermore, a basic assumption of most cloud‐remove methods is that the surface prop-
erty remains unchanged over a short time (e.g., a few days; Hagolle et al., 2010; Lyapustin et al., 2008;
Zhu & Woodcock, 2014), which is not true for energy‐related LST or longwave radiation because they
change quickly in time and space. Thus, recovering the LST of pixels contaminated by clouds is not fea-
sible by using traditional cloud removal approaches.

Although cloud is a significant obstacle for deriving surface LST, recovering the LST under cloudy skies is
not impossible. In some cases, the pixels covered by clouds in the image are visible to the sun but invisible
to the sensor because of the fact that both solar and satellite have certain illumination or observing angles
(Wang et al., 2017). In general, the cloudy pixels shown on a remote sensing image are only a projection
of the corresponding cloud at observing direction, but not of the cloud orthographic projection on the
ground. The orthographic location and the projection of the cloud will have a large deviation if the observing
and the solar illumination angles are relatively large. This geometry of solar‐cloud satellite makes it possible
to recover the LSTs for cloudy pixels in the image. As illustrated in Figure 1, region A (i.e., B + C) is the cloud
projection on the image along the observing direction of the sensor (i.e., the cloud pixels shown on the image
for which the LST algorithms are not applicable), and regions C and D are the cloud shadows on the image.
According to the applicability of the current LST algorithms, only the LSTs of pixels in region D can be the-
oretically estimated. Amore detailed description of the effect of the solar‐cloud‐satellite geometry (SCSG) on
surface energy can be found in Wang et al. (2017).

As shown in Figure 1, area B can be illuminated by the sun although it is covered by clouds in the image.
Therefore, it is possible that the LSTs of such pixels can be approximated using the LST of the around
clear‐sky pixels through proper processing. In a similar way, the LST of area C can also be estimated from
the LST of nearby cloud‐shadow pixels. This is our motivation in this work.

The purpose of this paper is twofold: (1) to identify the scopes of shadow (region C in Figure 1) and the illu-
minated (region B in Figure 1) portions of the cloud pixels on the image based on the satellite observing
angles, cloud top height, and solar angles and (2) to recover the LST of regions B and C by using the tempera-
tures of spatiotemporally nearby clear‐sky and shadow pixels, respectively. The remainder of this paper is
organized as follows. Section 2 describes the data sets used in this study. Section 3 presents an approach
to determine the position and scopes of shadow and illuminated regions for cloudy pixels for both
Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat‐8measurements. Then, the strategy
to recover the LST under a cloudy region is provided. The results and discussion are provided in section 4.
Finally, the conclusion is given in sections 5.

2. Data Sets

MODIS, which is onboard the Terra and Aqua satellites, is one of the most advanced instruments cur-
rently available for global land and atmosphere monitoring as evidenced by its relatively high spectral
and spatial resolutions (Justice et al., 2002; Masuoka et al., 1998). More importantly, various MODIS
cloud and land products are readily accessible to the scientific community. The MODIS products used
in this study are given in Table.1. Both MOD11_L2 and MOD11A2 products were used to discriminate
the clear‐sky LST and recover the LSTs under the cloud layer. The emissivity in MOD11_L2 and
MOD11B1 were used to calculate the broadband emissivity (Cheng et al., 2013) to convert site measure-
ments of longwave radiation to LST for validation. The illumination and observing geometry in MOD03
and the cloud top height embedded in MOD06 were used to determine the position and the scope of the
shadow part (region C in Figure 1) and the illuminated part (region B in Figure 1) of the cloud projection
on the image.

In addition to the MODIS products, a set of Landsat‐8 images was selected for the case test (Table.1). The
visible and near‐infrared bands of Landsat‐8 were used to identify the cloud and shadow pixels and then
to estimate the cloud height. The two thermal bands were employed to derive the LST under clear‐
sky conditions.

10.1029/2018JD028976Journal of Geophysical Research: Atmospheres

WANG ET AL. 3402

Writing ‐ original draft: Tianxing
Wang
Writing – review & editing: Tianxing
Wang, Ya Ma, Dabin Ji, Tianjie Zhao,
Chuan Xiong



3. Methods
3.1. Identification of the Scope of the Cloud and Its Shadow Due to the SCSG Effect

As illustrated in Figure 1, the cloudy pixels shown on the image consists of two parts, namely, the cloud sha-
dow (region C) and the illuminated surface (region B). The position and the scope of these two parts should
be predetermined before recovering their LSTs. According to the principle of triangular geometry, the
required variables to deduce the positions of such parts are cloud top height, zenith and azimuth angles of
both the solar and the observation, and the cloud projection (i.e., cloud pixels) shown on the image. In this
study, for MODIS data, the required solar and satellite observing angles were extracted from theMOD03 pro-
duct, and the cloud top height was obtained from the MOD06 product. For Landsat‐8 images, the required

angle information was extracted from the corresponding metadata file.
First, the orthographic positions of the clouds were determined using
equation (1), and then the positions of the associated cloud shadows were
estimated using equation (2) (Wang et al., 2017).

Xcld ¼ xmap þ H tanθv sinφv;

Ycld ¼ ymap þ H tanθv cosφv;
(1)

Xshw ¼ Xcld−H tanθs sinφs;

Yshw ¼ Ycld−H tanθs cosφs;
(2)

where (Xcld, Ycld) is the cloud orthographic projection on the surface;
(Xshw, Yshw) is the orthographic position of the cloud shadow on the sur-
face; (xmap, ymap) is the cloud position in the remote sensing image and
is probably a pseudo position (projected along the satellite observing
direction); andH is the cloud top height above the surface, which is deter-
mined by subtracting the surface altitude (in the MOD03 product) from
the cloud top height (in the MOD06 product) for MODIS. The cloud top
height of the Landsat‐8 images was estimated by using the difference of

Table 1
MODIS Products and Landsat‐8 Data Used in This Study

Product name Resolution Parameters

MOD11_L2 1 km LST
Emis_31
Emis_32

MOD11A2 1 km 8‐day LST_Day_1 km
MOD11B1 6 km Emis_29
MOD021KM 1 km Radiance of bands 1–7
MCD12Q1 0 .5 km Land Cover Type 1
MOD06 1 km Cloud top height
MOD03 1 km View zenith/azimuth angle

Solar zenith/azimuth angle
Elevation

Landsat‐8 30/100 m Bands 1–7
Bands 10 and 11

Note. LST = land surface temperature; MODIS = Moderate Resolution
Imaging Spectroradiometer.

Figure 1. A 3‐D schematic diagram of the solar‐cloud‐satellite geometry effect on the land surface temperature (LST; or surface longwave flux; pixels in regions B
and C are shown as the cloud in the image; region D indicates the shadow pixels; (Xcld, Ycld) is the cloud orthographic projection on the surface; (Xshw, Yshw) is
the orthographic position of the cloud shadow on the surface; (xmap, ymap) is the cloud position in the remote sensing image; H is cloud top height above the
surface. θv and φv are the satellite observing zenith and azimuth angles, respectively, and θs and φs are the solar zenith and azimuth angles, respectively.)
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cloud top brightness temperature and LST, which was followed by an
iterative optimization between the projected shadows and the actual
image shadows (section 3.2). θv and φv are the satellite observing zenith
and azimuth angles, and θsand φs are the solar zenith and azimuth angles,
respectively. Note that in equations (1) and (2), the azimuth angle is in the
range of [−180°, 180°], the true north is at 0° azimuth, east has an azimuth
of 90°, and west has an azimuth of −90°. A 3‐D demonstration of these
variables is also indicated in Figure 1.

In general, the remotely sensed cloud top height is derived pixel by pixel;
that is, a big cloud with continues heights is divided into many discrete
heights, and each cloud (a pixel) is deemed as a single 2‐D layer. In this
case, if the height difference between two nearby cloud pixels is large,
these clouds may result in shadow gaps (see Figure 2) on the surface fol-
lowing equations (1) and (2) when the sunlight illuminate the top of the
clouds at certain zenith angles. This is unreasonable for a cloud that is
inherently continuous. To avoid the gaps, the MOD06 cloud top height
was smoothed using a mean filter with a 7 × 7 window. In addition, many
pseudo cloud heights were found in MODIS cloud product (Figure 3). It
can be seen from Figure 3b that some areas are recognized as cloudy,
although they are visually completely clear. Furthermore, many unrea-

sonable hard boundaries (yellow arrows in Figure 3b) between cloudy and clear regions are detected. In this
study, a threshold (1,600 m) was used to screen out these pixels with unreasonable cloud top heights.

3.2. Optimal Estimation of Cloud Height for Landsat‐8 Data

Unlike MODIS, Landsat‐8 does not have a cloud height product, which is indispensable for determining the
scope of a cloud and its shadow. For this point, after many tests, two thresholds were selected to simply iden-
tify the cloud and shadow based on the radiance of bands 10 and 1, respectively. Then, the clear‐sky LSTs
were derived by using a typical split window method (Du et al., 2015; Ren et al., 2015). The initial height
for each cloud pixel was approximated by using equation (3) based on the lapse rate (Cosgrove et al., 2003):

Cld Hi ¼ LST−T i
cld

6:5
; (3)

where Cld_Hi is the cloud top height for pixel i; LST is the average temperature of the clear‐sky pixels (Du
et al., 2015; Ren et al., 2015) around the cloud in the Landsat‐8 image; and Ti

cld is the cloud top brightness
temperature for pixel i, which was determined by using the radiance of band 10 of Landsat‐8 (equation (4)).

BT ¼ K2

ln K1
Rad

� �þ 1
; (4)

where BT is the TOA brightness temperature; Rad is the radiance of the thermal band (i.e., band 10); and K1
and K2 are the constants with values of 774.89 and 1,321.08 for band 10, respectively. Considering that our
study area is not very large, all cloudy pixels were considered as a big cloud and assigned an average initial
altitude.

As only a simple assumption of the cloud top temperature and lapse rate is used in equation (3), the derived
cloud altitude generally with high uncertainties cannot be directly used to predict the cloud projection, and a
refinement should be further conducted to estimate the proper cloud height. To this end, an iterative opti-
mization scheme was employed. First, taking the initial cloud altitude derived from equation (3) as an initial
value, equations (1) and (2) were then iteratively applied to predict a new shadow image when a new cloud
height was assigned. During the iteration, the correlation coefficient between the predicted new shadow
image (for each iteration) and the abovementioned shadow image generated in section 3.2 (based on
radiances of bands 10 and 1) served as a cost function. After many iterations, the cloud height was finally
determined when the cost function (correlation coefficient) reached its maximum. Given the cloud top
height, the scopes of the regions of B, C, and D (Figure 1) can be determined straightforwardly for the

Figure 2. A schematic diagram to show the shadow gaps resulted from the
large difference in cloud top heights of nearby cloud pixels.
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Landsat‐8 imagery. The comparison between the cloud height derived using equation (3) and that based on
the above optimization method is analyzed in section 4.1.

3.3. Recovering the LST for Cloudy Pixels
3.3.1. Recovering the LST for Illuminated Areas (Region B)
Because the illuminated areas covered by the cloudy pixels (region B) on the image are not affected by the
cloud, the corresponding LSTs should be similar to those under clear‐sky conditions. In this study, the 8‐
dayMODIS LST product was selected as a clear‐sky reference to approximate the LSTs of the pixels in region
B. Note that here we only approximate the spatial pattern of LSTs in region B but do not directly fill the cor-
responding pixels using the specific values of 8‐day LSTs because we can never think the atmospheric and
land surface conditions of the 8‐day LST product are exactly the same as the image in which the cloudy pix-
els' LSTs need to be recovered. In this study, the recovery of LST was performed in four steps: (1) to find a
clear‐sky reference region (hereinafter referred to as Clear_Region), which is geographically collocated in
both the image being studied (hereinafter referred to as IMG‐target) and the corresponding 8‐day LST

Figure 3. Cloud top height extracted from MOD06 product on 22 January 2010. (a) Moderate Resolution Imaging Spectroradiometer composite (bands 1, 2, and 3
for Red, Green and Blue (RGB) bands, respectively); (b) MOD06 product; (c) screened cloud height based on a threshold of 1,600 m.
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image (hereinafter referred to as IMG‐reference)—a sketch map is shown in Figure 4 to help the readers to
better understand the method. To make our scheme simple and easy to use, all the clear‐sky pixels
collocated in both scenes (IMG‐target and IMG‐reference) were chosen as the reference region
(Clear_Region) in this paper—(2) to calculate the ratio (Ri) of the LST of each illuminated pixel (Pi) to the
average LST of the Clear_Region pixels in the IMG‐reference—this step is performed to build a
relationship between the LST of a certain illuminated pixel and the average LST of all the clear‐sky pixels
within the reference region (Clear_Region)—(3) the LST ratio (Ri) calculated above is then assigned to the
collocated pixel (Pi; region B in Figure 1) in the IMG‐target—it should be noted that, here, the assumption
behind the method is that the LST ratio (Ri) estimated from the IMG‐reference is supposed to be consistent
with that in the IMG‐target for a certain collocated pixel within the region of B. To verify the above

assumption, a comparison between the LST ratios of IMG‐target and
IMG‐reference was conducted (Figure 5) based on more than 50 MODIS
scenes, which cover most of the world's land and span from spring to
winter in time. Figure 5 proves that our above assumption is believable
—and (4) to recover the LST of each pixel (Pi) in IMG‐target by
multiplying the corresponding Ri and the averaged LST of the pixels
within the Clear_Region in the IMG‐target. A flowchart for recovering
the LSTs of the illuminated pixels is shown in Figure 6.

As for the Landsat‐8 data, the reference clear‐sky LST image (i.e., IMG‐
reference) should be obtained from a geographically collocated Landsat‐8
or comparable image acquired closest to the time of the image
being studied.
3.3.2. Recovering the LST for Shadow Areas (Region C)
Unlike the illuminated region in section 3.3.1, finding a reference image
(i.e., IMG_reference) for the shadow pixels is difficult. In this case, we
assumed that the LSTs of the shadow pixels (region C), which are covered
by clouds in the image, should be very similar to the LSTs of the nearby
shadow pixels (region D in Figure 1). In this study, the LST of a pixel
(denoted by Shw_Pi) in region C was approximated by using the average
LST of all the shadowed pixels (belong to region D) within a 5 × 5 moving
window. If the number of valid shadow pixels within a 5 × 5 window is
less than three, a larger window (10 × 10) was adopted. This

Figure 4. A sketch map to show the clear‐sky reference region (Clear‐Region) as well as the calculation and application
of the LST radio during the LST recovery (IMG‐target, the image being studied; IMG‐reference, the clear‐sky LST refer-
ence image; Pi, a typical pixel of the image; ratio (Ri), equal to the LST of the pixel (Pi), which is divided by the average LST
of the Clear_Region pixels in the IMG‐reference). LST = land surface temperature.

Figure 5. LST ratio comparison between the spatiotemporally collocated
IMG‐target and IMG‐reference. LST = land surface temperature;
RMSE = root mean square error.
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approximation was also performed pixel by pixel until each pixel in region C was assigned a valid LST. Note
that considering the fact that the temperatures of different land covers (e.g., bare soil, snow/ice, water, and
vegetation) are different, the MODIS land cover product was also incorporated and only the shadow pixels
with the same land covers as the studied pixel were accounted for in the moving window.

4. Results
4.1. Examination of the Landsat‐8 Cloud Top Height Based on the Optimization

In section 3.2, the cloud top height was initially estimated using equation (3). Owing to the inaccuracy of the
derived cloud top height, an optimization scheme was then applied to refine it. In this section, a comparison
(Figure 7) was conducted to examine the performance of the optimized scheme. The green polygons shown
on Figure 7 indicate the predicted cloud shadows using the optimized method. It is not difficult to see that,
on the whole, the shadow areas are correctly discriminated, although some discrepancies still exist, espe-
cially in the regions of shadow boundaries. These discrepancies in position matching are mainly attributed
to (1) the uncertainty in cloud detection and cloud height estimation for the cloud boundary pixels—gener-
ally, the cloudy pixels located around the boundary of a large cloud is optically thin, and thus, conducting an
accurate cloud screening would be challenging—and (2) the variation of cloud opacity. On one hand, unde-
tected thin clouds around the cloud boundary may cast shadows on the surface; on the other hand, the
detected thin clouds may not cast shadows because of their small optical depths. Note that in the present
method, all detected clouds were supposed to be optically opaque (i.e., would cast shadows on the surface).
By contrast, the shadows discriminated based on equation (3) (red polygons in Figure 7) show a poor consis-
tency with the real positions of the shadows. Moreover, some gaps frequently occur in the predicted shadows
using equation (3) because of the larger uncertainties in the cloud top height derived based only on equa-
tion (3). The above analysis reveals that the optimization method is very effective.

Figure 6. Flowchart to recover the LST of the illuminated pixels covered by clouds (region B in Figure 1) on the image.
LST = land surface temperature.
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4.2. Application to MODIS Data

In this section, MODIS‐Terra images acquired at 02:55 on 22 January 2010 covering Northeast China
(Figure 8), and at 04:30 (UTC) on 31 January 2010 covering part of the Tibetan plateau region (Figure 9) were
randomly selected for the test. To ensure consistency, all MODIS products were reprojected to the Albers
projection with WGS‐84 datum, and the product with a coarse resolution was spatially resampled into a spa-
tial resolution of 1 km using the nearest‐neighbor interpolation to match the scale of the MODIS LST pro-
duct. The necessary process mentioned in section 3 was performed, and the recovered MODIS cloudy sky
LST is illustrated in Figures 8c and 9c. Note that a similar optimization process mentioned in section 3.2
was also applied to Figures 8 and 9 by taking all cloud pixels in the image as a big cloud.

In comparison with theMODIS false‐color composite image, it can be seen that, on the whole, three cases (B,
C, and D shown in Figure 1) affected by the SCSG effect can be properly characterized using the proposed
scheme (Figures 8a and 9a). However, some flawed predictions are still detected in both Figures 8 and 9.
The possible reasons for that can be contributed to (1) incorrect cloud detection and (2) inaccurate cloud
top height for some cloud pixels even after applying an optimization process. In this paper, all cloudy pixels
in an image were treated as a whole 2‐D layer during the optimization. Although the optimized cloud height
is reasonable for most cloud pixels, it is probably not accurate for some pixels, especially for an image cover-
ing large regions. In addition, in Figure 9, we can see the cloud on the left portion of the figure looks much
bigger than that identified by the mask. That is because (1) some cloudy pixels are not correctly detected and
(2) the snow cover occurs in this area; that is, not all white pixels shown in RGB image are clouds. Of course,
the mixture of snow and cloud would be another contribution for this discrepancy.

It is not difficult to see that MODIS fails to provide a valid LST for a large portion of the original images due
to the presence of cloud (Figures 8b and 9b). This situation has been greatly improved using the suggested
scheme (Figures 8c and 9c) where the fraction of valid LSTs increases from 30% to 41% for Figure 8 and from
40% to 65% for Figure 9. However, the LST recovery is dependent on the correct identification of the three
cases affected by the SCSG (i.e., regions B, C, and D in Figure 1). Therefore, uncertainties in the position

Figure 7. Predicted cloud shadows of Landsat‐8 using the cloud top height derived based on equation (3) (red polygons)
and the optimization scheme (green polygons).
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prediction could result in an unsatisfactory LST reconstruction. This issue will be highlighted in the
discussion section.

4.3. Application to Landsat‐8 Imagery

Similar to the above analysis based on the MODIS data, the scheme is also applied to the relatively high‐
resolution Landsat‐8 imagery. The Landsat‐8 image collected on 9 April 2015 (path, 122; row, 30) was ran-
domly selected for this case study, and the corresponding Landsat‐8 image collected on 24 March 2015 was
used as a clear‐sky reference map (i.e., IMG‐reference).

Given the cloud top height and the solar and observing angles, the scopes of clouds and the corresponding
shadows can be straightforwardly calculated according to equations (1) and (2). Consequently, the map of
recovered LST was generated (Figure 10) based on the proposed scheme along with the reference LST
map. Although some mismatches still occur, in general, the predicted scopes of regions B, C, and D in the
Landsat‐8 image are relatively accurate than those of the abovementioned MODIS data due to its reliable
cloud height estimation. Figure 10 shows that the vast majority of LSTs in the regions of cases B and C
(Figure 1) can be recovered and a spatially continuous LST image can be produced using the
proposed method.

Figure 8. Recovered land surface temperature (LST) for Moderate Resolution Imaging Spectroradiometer (MODIS) data on 22 January 2010 by considering the
solar‐cloud‐satellite geometry. (a) MODIS bands 1–3 for R, G, and B with three cases influenced by solar‐cloud‐satellite geometry overlapped; (b) MODIS LST
product; (c) recovered MODIS LST based on the proposed scheme.
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4.4. Performance Assessment of the Proposed Scheme

In sections 4.2 and 4.3, the performance of the proposed method has been visually examined. The analysis
indicates that in general, the scopes of the clouds and shadows on the image can be reasonably discrimi-
nated. The shadow pixels covered by clouds (region C in Figure 1) were assigned low LST values, and the
illuminated pixels (region B in Figure 1), which are covered by the clouds in the image, were recovered with
higher LST values. Theoretically, the recovered LSTs should be very close to the real state of the surface
according to our scheme described in section 3. To further quantitatively examine the LST reliability of
the proposed scheme, a validation against ground‐based LST measurements using MODIS data
was conducted.

The MODIS data used for the validation covered 5 months in the year 2016 (January, March, May, July, and
September) over the United States. The Ground‐based LSTs were collected from seven SURFRAD sites

Figure 9. Recovered land surface temperature (LST) for the Moderate Resolution Imaging Spectroradiometer (MODIS)
data on 31 January 2010 by considering the solar‐cloud‐satellite geometry. (a) MODIS bands 1–3 for R, G, and B with
three cases influenced by solar‐cloud‐satellite geometry overlapped; (c) MODIS LST product; (d) recovered MODIS LST
based on the proposed scheme.
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(Bondville, Boulder, Desert Rock, Fort Peck, Goodwin Creek, Sioux Falls and Penn. State Univ.; Augustine
et al., 2000). The data are available at http://www.srrb.noaa.gov/surfrad/ and are collected with a 1‐min
average. Note that the SURFRAD sites do not directly measure the LSTs but only provide related upward
and downward longwave radiation. To deduce the LST from the longwave radiation, equation (5) was used
here to convert the longwave radiation to the corresponding LST.

LST ¼ LWUR−LWDR× 1−εð Þ
σε

� �1=4

; (5)

where LWUR and LWDR are the surface longwave upward and downward radiation, respectively, which are
directly measured at the sites; ε is the broadband surface emissivity at the site, which was estimated accord-
ing to the work of Cheng et al. (2013), which utilized both the MOD11_L2 and MOD11B1 products; and σ is
the Stefan‐Boltzmann constant (5.6703 × 10−8 W·m−2·K−4).

Figure 10. Recovered land surface temperature (LST) for Landsat‐8 imagery by considering the solar‐cloud‐satellite geometry. (a) Landsat‐8 bands 4, 3, and 2 for R,
G, and B with three cases influenced by solar‐cloud‐satellite geometry overlapped; (b) Landsat‐8 LST under clear‐sky conditions, with the gray pixels indicating
clouds; (c) recovered LST based on the proposed scheme.
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For each site, the ground‐based LST measurements (converted using equation (5)) closest to the time of the
MODIS overpass were used as reference to compare with the recovered LSTs. No special consideration was
given for spatial match, that is, the LST of the pixel wherein the site located was directly used for comparison
with the ground measurements. During the assessment, only data pairs influenced by the SCSG effect (i.e.,
cases B and C in Figure 1) but were invalid in the MODIS LST product were retained and compared. In total,
233 points were collected and the comparison between the recovered and the ground‐based LSTs is shown in
Figure 11. To better examine the reliability of the recovered LST, the MODIS clear‐sky LSTs collected in the
same time period versus the ground‐based measurements were also compared (Figure 11d). The scatterplot
reveals that in general, the recovered LSTs show a reasonable agreement with the ground measurements
with root mean square error (RMSE) < 4.9 K and bias < 3.5 K. In comparing with the clear‐sky validation

Figure 11. Validation of the proposed scheme versus the ground measurements at the seven Surface Radiation Budget Network (SURFRAD) sites. (a) Shadow
pixels covered by clouds (region C in Figure 1); (b) bright surface covered by clouds (region B in Figure 1); (c) data of all cases (a + b); and (d) MODIS LST
under clear‐sky conditions. LST = land surface temperature; MODIS = Moderate Resolution Imaging Spectroradiometer; RMSE = root mean square error.
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(Figure 11d), the RMSE of the recovered LST is slightly larger (4.9 vs. 3.5 K), while the bias is clearly cold
biased (−3.47 vs. −1.0 K). The relatively large low‐bias (−3.47 K) mainly results from the contribution of
the shadow pixels under the clouds (region C in Figure 1), as shown in Figure 11a. In accordance with
the above analysis, the cold bias can be explained by (1) the undetected cloud in the MODIS LST product
—some thin clouds are probably treated as valid clear‐sky shadow pixels. This can be evidenced by a cold
bias in the clear‐sky LSTs shown in Figure 11d in which a bias of−1 .0 Kwas also detected—and (2) the large
window used in searching for nearby shadow pixels. Although they are all shadow pixels, the LSTs may have
some difference, especially for the pixels that are relatively far away from the one being studied. This issue is
highlighted in the following discussion section. In contrast, almost no bias was detected for the bright pixels
covered by clouds (region B in Figure 1). It should be noted that only 20 points were collected here
(Figure 11b). In addition, no site dependence was found for each of the four cases in Figure 11 for both
RMSE and bias.

Although the performance of the proposed scheme is not accurate enough compared with the clear‐sky LST
retrievals as shown in Figure 11d, the proposed scheme provides an important idea for studying surface
energy and water cycles based on LST, especially under cloudy sky conditions. To some extent, this study
proves the feasibility of the proposed scheme.

Note that an alternative way to perform validation is to directly compare the derived longwave flux with
the ground‐based longwave flux, considering that the SURFRAD can only provide flux measurements.
However, the derived longwave radiation based on the recovered LST is the surface emitted radiation,
not the surface upward radiation (emitted radiation plus the reflected longwave downward radiation),
which is provided by the SURFRAD sites. In this case, the site measurements have to be converted to
the surface emitted radiation, in which the broadband emissivity is still an indispensable input variable.
Therefore, in this study, the LSTs were extracted at those SURFRAD sites and then compared with the
derived LSTs.

4.5. Error Analysis and Discussion

For the proposed scheme to reconstruct LST under cloudy sky conditions, the key steps include (1) determi-
nation of specific positions and scopes of clouds and shadows and (2) approximation of the LSTs of the cloud‐
covered pixels in the image based on the LSTs that are spatially and temporally close to the pixels recovered.
The possible error sources associated with the new scheme can be grouped into four points: (1) uncertainty
in cloud top height, which is considered to be the largest source of uncertainty of the new scheme (see ana-
lyses in sections 4.1–4.3)—as discussed in section 4.2, the cloud top height is an essential variable to calculate
the projected position of clouds and shadows. Any uncertainty in cloud height can definitely lead to inaccu-
rate identification of the three cases affected by the SCSG, which in turn affect the accuracy of LST recon-
struction—(2) misjudgment in cloud detection—theoretically, based on the proposed method, all LSTs of
the cloud‐contaminated pixels can be recovered. However, cloud or shadow misjudgment frequently occurs
inmany cases (see Figure 3), thus resulting in inaccurate LST approximations—(3) reliability of the clear‐sky
LST estimations—in our case, the MODIS 8‐day LST or the temporally closest Landsat‐8 image was chosen
to serve as the reference LST image. The data quality of the reference images and/or the variations in land
covers (e.g., snow/ice, water, and vegetation surfaces during growing season) may affect the accuracy of
the recovered LST. Specifically, the unidentified cloud or the mixing between cloud and snow/ice is a possi-
ble source of error in the clear‐sky LST for both the target and the reference image—and (4) the LST repre-
sentativeness of the nearby shadow pixels. The LSTs of the shadow pixels under a cloud were approximated
using those of the nearby shadow pixels by assuming that the nearby shadow pixels have similar tempera-
tures to the target pixel. Although our statistics reveals that the LST variation for all cloudy pixels within
a MODIS image is relatively small, the difference indeed exists for certain land covers or certain seasons.
Furthermore, the cloud boundary pixels, especially the thin cloud, may be deemed as valid in the LST pro-
duct. This is a possible cause of the cold bias in the validation. In addition, the window size used to search the
nearby shadow pixels, as described in section 3.3.2, is also a source of error for the cold bias. Of course, under
overcast skies, although the method used to determine the scopes of regions B, C, and D (Figure 1) can still
work, most predicted areas are corresponding to shadow pixels under clouds (region C in Figure 1); thus, it is
hard to recover the LST in region C under overcast conditions if we do not know the LST of the valid shadow
pixels (region D), which should be visible to the sensor.
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In addition to the abovementioned factors, we must admit that there are still some uncertainties in the pre-
sent version of the proposed scheme (such as the homogenous treatment of the cloud layer, the assumption
of similar LST ratio in target and reference images), so a lot of work is required in the future to provide a
reliable LST data set that meets the accuracy requirement of modeling/monitoring applications. One point
that needs to be addressed is that although it is very important, for a long time, the estimation of LST under
cloudy sky conditions has been a great challenge to the Earth‐observing community. In this study, we have
taken a step forward in estimating cloudy sky LST based on the SCSG, and the findings of this study demon-
strate the proof of concept of an LST‐recovery scheme, which could significantly increase the coverage of
remotely sensed LST products.

5. Conclusions

As is known to the Earth observation science community, clouds have a strong effect on remotely sensed
LST by almost completely absorbing the surface emitted thermal energy. Most LST products derived from
various algorithms are spatially discontinuous due to cloud contamination. However, we can take advantage
of the SCSG effect to recover the LST of cloudy pixels to some extent. To this end, a scheme to recover the
LST under the cloud is proposed by taking MODIS and Landsat‐8 images as test data.

The new scheme approximates the LST under cloudy skies by classifying the image into four cases, namely,
clear‐sky pixels, cloud shadow pixels (region D), shadow under a cloud (region C), and bright surface covered
by a cloud (region B) (see Figure 1) by considering the cloud top height, the solar, and observing angles. Then,
the LSTs of regions B andCwere separately recovered by using the reference LST under clear‐sky days, which
are temporally close to the image being recovered or estimated using the nearby shadow pixels. Although not
as accurate as those under clear‐sky conditions, the validation results indicate that the recovered LSTs show
reasonable agreement with the ground‐based LSTs measurements with bias < 3.5 K and RMSE < 4.9 K. The
application of the new method to MODIS and Landsat‐8 data reveals that the LSTs of cloudy pixels can be
recovered and that the fraction of valid LSTs in an image can be correspondingly improved.

It should be noted that although the MODIS and Landsat‐8 data were used in this study, the new method is
not data specific. Instead, it can be used in other remote‐sensing data (such as Visible Infrared Imaging
Radiometer Suite (VIIRS) and Advanced Very High Resolution Radiometer (AVHRR)) as long as the
required input variables, such as solar and observing angles, cloud top height and reference LST maps are
provided. Although it still has rooms for improvement, the new scheme provides an alternative manner to
derive cloudy sky LST based only on optical remote sensing data. Meanwhile, it also gives some inspiration
to the remote sensing community, especially in the field of surface energy balance.
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