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Livestock host composition rather 
than land use or climate explains 
spatial patterns in bluetongue 
disease in south India
M. M. Chanda  1, s. Carpenter2, G. prasad3, L. sedda4, p. A. Henrys5, M. R. Gajendragad1 & 
B. V. purse  6

Culicoides-borne arboviruses of livestock impair animal health, livestock production and livelihoods 
worldwide. As these arboviruses are multi-host, multi-vector systems, predictions to improve targeting 
of disease control measures require frameworks that quantify the relative impacts of multiple abiotic 
and biotic factors on disease patterns. We develop such a framework to predict long term (1992–2009) 
average patterns in bluetongue (BT), caused by bluetongue virus (BTV), in sheep in southern India, 
where annual Bt outbreaks constrain the livelihoods and production of small-holder farmers. In 
Bayesian spatial general linear mixed models, host factors outperformed landscape and climate factors 
as predictors of disease patterns, with more Bt outbreaks occurring on average in districts with higher 
densities of susceptible sheep breeds and buffalo. Since buffalo are resistant to clinical signs of BT, 
this finding suggests they are a source of infection for sympatric susceptible sheep populations. Sero-
monitoring is required to understand the role of buffalo in maintaining BTV transmission and whether 
they must be included in vaccination programs to protect sheep adequately. Landscape factors, namely 
the coverage of post-flooding, irrigated and rain-fed croplands, had weak positive effects on outbreaks. 
the intimate links between livestock host, vector composition and agricultural practices in India require 
further investigation at the landscape scale.

Culicoides (Diptera: Ceratopogonidae) are tiny biting flies that transmit arboviruses of livestock, wildlife and 
humans. These viruses cause diseases that have a significant impact on animal health and welfare, livestock 
production, trade and livelihoods1–3. In the past 20 years, Culicoides-borne arboviruses have undergone global 
changes in epidemiology that have been linked to changes in climate, land use, globalisation of trade and changes 
in animal husbandry4. Culicoides are also involved in transmitting human diseases with Culicoides paraen-
sis (Goeldi) being the major vector of Oropouche virus (Orthobunyavirus) that causes a febrile illness of peo-
ple in the neo-tropics5. Understanding and predicting how the impacts of Culicoides-borne arboviruses vary 
between geographical areas to inform targeting of control measures6 is hampered by their ecological complexity. 
Culicoides, require semi-aquatic developmental sites for egg, larval and pupal development and usually rely on 
mammalian hosts as a source of blood to produce eggs. Many aspects of this life cycle are affected by variations in 
temperature, moisture and host and habitat availability4,7. In most regions, several Culicoides vector species and 
both wild deer and domestic mammals are involved concurrently in transmission4,8 and each of these possesses 
different climate sensitivities and associations with natural and managed ecosystems9.

The emergence of bluetongue virus (BTV: Reoviridae; Orbivirus) and Schmallenberg virus (Bunyaviridae: 
Orthobunyavirus) in Europe has focussed research effort upon understanding and predicting spatial variability 
in Culicoides-borne arboviruses in relation to environmental drivers4,10–13. Research activity has been far less 
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intense in poor tropical and sub-tropical arbovirus endemic zones where selective resistance in livestock tends 
to be greater, and where vaccines may be used routinely to reduce the impact of what clinical disease occurs4. 
Prior studies of Culicoides-borne disease patterns in tropical endemic areas focussed largely on climatic factors, 
primarily temperature and rainfall14. More recent studies have incorporated land use15, vegetation16 and hosts17 
as potential explanatory factors, although the relative contribution of these factors to BT impacts are rarely quan-
tified together.

In India between 1997 and 2005 endemic circulation of over 20 different BTV serotypes resulted in over 2000 
outbreaks in sheep, involving 0.4 million cases and around 64 000 deaths, making it the top viral cause of disease 
in this host18. In addition to mortality (with local case fatality rates of up to 30%19), clinical impacts include weight 
loss, reductions in wool quality, infertility and lameness. Economic costs include those for veterinary treatment, 
vaccination, surveillance and trade restrictions20. Although there is limited information on breed susceptibil-
ity to bluetongue in India21, indigenous sheep breeds tend to be asymptomatic despite being widely infected 
with BTV (high antibody prevalence). Outbreaks were detected largely in exotic (introduced for improvement), 
or cross-breeds of sheep until the 1980s when cases began to be detected in indigenous sheep20,22. These latter 
cases are thought to have arisen from exotic strains of BTV introduced during breed improvement exercises. 
Bluetongue mitigation is currently achieved primarily through the use of inactivated pentavalent vaccines23, sup-
plied by the state governments of the affected states to small-holder farmers through village veterinary officers.

In common with the transmission of many other arboviral diseases14,24,25, rainfall variability during monsoon 
events is hypothesised to affect the size and timing of BT epidemics in India20 and to restrict its spatial distribu-
tion primarily to South India which receives high rainfall in both the south west and north east monsoon sea-
sons26. However, BT severity varies substantially between districts even within zones subject to similar monsoon 
conditions, suggesting that factors such as landscape, host and husbandry factors may modulate climate effects on 
transmission27,28 and should be accounted for in an ideal predictive framework. Furthermore, research in Europe 
has linked vector seasonality and abundance and spread of bluetongue to landscape and host factors alongside 
climate29–31.

The bluetongue system in India is epidemiologically complex. Most of the 26 global BTV serotypes have been 
detected in India19,26,32, and circulate alongside a diverse Culicoides fauna that includes at least seven species that 
have been implicated in arbovirus transmission in other countries (Culicoides actoni Smith; Culicoides brevitarsis 
Kieffer; Culicoides fulvus Sen and Das Gupta; Culicoides wadai Kitaoka; Culicoides imicola Kieffer; Culicoides 
oxystoma Kieffer)33–37. The immature stages of these species develop in a wide range of semi-aquatic habitats, 
ranging from animal dung (e.g. buffalo dung: C. oxystoma) to organically enriched moist soil (e.g. C. imicola, C. 
schultzei, C. peregrinus). Systematic studies of vectorial capacity and distribution are lacking33,38. In the mixed 
farming systems, practised by the small and marginal farmers of South India, mixed sheep and goat flocks are 
kept for meat production and indigenous cattle and buffalo maintained for milk production and for draught 
purposes. Although cattle, goats and buffalo are susceptible to BTV infection and in India are widely infected, dis-
playing high BTV antibody prevalence, they do not usually show clinical disease20. Despite this, bovines and some 
breeds of goats39 develop levels of viraemia equivalent to sheep40 and can thus theoretically infect Culicoides and 
be involved in the onward transmission of BTV making them potential reservoir hosts. Furthermore, the 14 dif-
ferent sheep breeds present in affected states in South India vary in susceptibility to disease effects21. Thus, a high 
diversity of both susceptible sheep and disease resistant, potential reservoir species for bluetongue virus, such as 
cattle and buffalo, are kept in the same landscape in South India. Breed and species composition of the livestock 
population, alongside landscape and climate factors are expected to contribute to patterns in bluetongue disease.

Utilising a substantial dataset of clinical BT outbreaks collected since 1992 by the Indian Council of 
Agricultural Research’s National Institute for Veterinary Epidemiology and Disease Informatics (NVIEDI), this 
paper investigates the relative roles of climate, land-use and availability of livestock hosts in driving long-term 
spatial variation in the severity of BT outbreaks in sheep across districts in South India.

This paper uses spatial Bayesian Generalized Linear Mixed Modelling approaches41 with the aim of enhancing 
current disease management systems in the region. Understanding how multiple environmental factors interact 
to produce variation in disease severity across districts requires quantitative methods that can deal with collinear-
ity between potential risk factors and spatial dependency in errors. The latter may arise due to intrinsic processes 
(such as disease spread between districts, represented by the spatial autocorrelation) and extrinsic processes 
(such as trends or drifts in the response which can be partly or totally explained by environmental covariates)42. 
Bayesian generalized linear mixed models overcome these problems by modelling the spatial dependence as ran-
dom effects, through a prior distribution43. We use a modified version of the Besag-York-Mollie (BYM) model44 
that quantifies the compromise between spatially structured and spatially unstructured random error variation 
(to account for overdispersion) as well as fixed effects of environmental predictors41.

Our specific aims for South India were to test for associations between the number of disease outbreaks in 
farmed sheep and:

 (a) coverage of rain-fed cropland and irrigated cropland45, that may encompass more abundant semi-aquatic 
habitat for immature Culicoides46.

 (b) coverage of open forest types and grassland or shrubland, used by small-holder farmers for grazing
 (c) coverage of closed forest types that are avoided by small-holders for grazing.
 (d) sheep densities, particular of sheep of susceptible exotic and cross-breeds in which cases have been more 

frequently recorded historically22.
 (e) densities of disease-resistant hosts such as cattle and buffalo numbers in which infection may circulate and 

be sustained silently.
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The dependent variable is the average number of villages reporting bluetongue outbreaks in sheep per district 
from 1992 to 2009 (offset by the total number of villages per district). An outbreak is defined as a village with 
more than one disease affected sheep in a given transmission year. The village is the epidemiological unit for 
disease reporting in South India because villages are assumed to be relatively homogenous in animal husbandry 
and environmental conditions. The analysis was restricted to data from three states of South India in which 
outbreaks are regularly reported, namely Karnataka (n = 27 districts), Andhra Pradesh (n = 22 districts) and 
Tamil Nadu (n = 29 districts), with 61 out of the total of 78 constituent districts reporting outbreaks of BT over 
the 18 year study period (see Fig. S1 for state boundaries and location of the study region within India). We used 
a hierarchical multi-model approach to infer the relative importance of climate, host and landscape effects in 
explaining disease patterns (see Methods for full details). The predictors were divided into climate, landscape and 
host categories (Table 1, Figs S2 to S5). Within each of these categories, all possible predictor combinations were 
fitted and ranked by Deviance Information Criteria (DIC47) to identify a best model with the lowest DIC and a top 
model set that had DIC values within 2 DIC units of the best model. Predictors that were present (in >70% of top 
models) and significant (in >50%) of top models were offered to a second stage of model fitting. In this stage, all 
possible model combinations of the top predictors across climate, host and landscape categories were fitted and 
ranked by DIC. In the second stage, the frequency with which predictors were present and significant in top set of 
models was again used to infer their importance in explaining disease patterns.

Results
The average annual number of outbreaks ranged from 0 to 33.8 and was highly variable between districts 
(mean ± s.d. = 4.93 ± 8.10) (Fig. 1a). The average annual number of outbreaks was highest across Andhra Pradesh 
(particularly in the south of the state) and at the southern tip of India, in Tamil Nadu. Here we first contrast the 
overall performance and important predictors of the top ranking models in each of the landscape, climate and 
host categories. Secondly we examine the performance and important predictors of top ranking models that 

Category Predictor name (abbreviation) Description and units of predictor Mean ± s.d.

Landscape

post-flooding or irrigated croplands (irrig. crop) Areal coverage per district of post-flooding or irrigated 
croplands, class 11 from the Globcover 2009 dataset in km2 1395 ± 1218

rainfed croplands (rain crop) Areal coverage per district of rainfed croplands, class 14 
from the Globcover 2009 dataset in km2 3440 ± 2691

mosaic cropland and vegetation (crop-veg mosaic)
Areal coverage per district of mosaic cropland and 
vegetation (grassland/shrubland/forest mix) with 50–70% 
cropland, class 20 from the Globcover 2009 dataset in km2

1176 ± 1437

mosaic cropland and vegetation (veg-crop mosaic)
Areal coverage per district of mosaic cropland and 
vegetation (grassland/shrubland/forest) with 50–70% 
vegetation, class 30 from the Globcover 2009 dataset in km2

297 ± 368

open broad-leaved deciduous forest (open decid.) Areal coverage per district of open broad-leaved deciduous 
forest, class 40 from the Globcover 2009 dataset in km2 417 ± 806

closed broad-leaved deciduous forest (closed decid.) Areal coverage per district of closed broad-leaved deciduous 
forest, class 50 from the Globcover 2009 dataset in km2 406 ± 589

urban areas and artificial surfaces (urban) Areal coverage per district of urban areas and artificial 
surfaces, class 190 from the Globcover 2009 dataset in km2 47 ± 71

Climate

annual rainfall amount (ann_rain) Average annual rainfall amount per district over the study 
period in mm 1768 ± 468

south west monsoon rainfall amount (sw_rain)
Average annual amount of rainfall each year falling in the 
south west monsoon period (June to September) per district 
(2004–2010) in mm

955 ± 410

north east monsoon rainfall amount (ne_rain)
Average annual amount of rainfall each year falling in the 
north east monsoon period (October to December) per 
district (2004–2010) in mm

54 ± 51

mean annual temperature (ann_temp) Average annual temperature across the pixels in a district 
(1950–2000) in 0.1 °C 267 ± 18

Host

buffalo (buffalo) Summed number of animals per district of buffalos from the 
2007 livestock census 4.98 ± 0.71

non-descript sheep (nsheep) Summed number of animals per district of sheep of non-
descript breeds of from the 2007 livestock census 4.78 ± 0.99

exotic and cross-bred sheep (esheep) Summed number of animals per district of sheep of exotic 
and cross-breeds from the 2007 livestock census 2.19 ± 1.65

indigenous cattle (icattle) Summed number of animals per district of cattle of 
indigenous breeds from the 2007 livestock census 5.20 ± 0.57

cross-bred cattle (cbcattle) Summed number of animals per district of cattle of cross-
breeds from the 2007 livestock census 4.78 ± 0.67

goats (goats) Summed densities per district sheep of goats from the 2007 
livestock census 5.24 ± 0.69

Table 1. Potential landscape, climate and host predictors considered in the analysis of bluetongue outbreaks 
in sheep in South India with mean values ± standard deviation (s.d.) across districts (see Methods for data 
sources).
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combined predictors across these categories. We also analyse the potential impact of temporal mismatches in our 
predictor data versus the bluetongue outbreak data on our results.

Landscape-driven models of Bt outbreaks. For the landscape suite of predictors, there were 32 models 
with similar support in the data that were within 2 DIC units of the best model with the lowest DIC (Table S1, 
DIC = 202.01, Fig. 2a). The best model contained three predictors – cover of post-flooding/irrigated croplands 
(irrig. crop), cover of rain-fed croplands (Rain crop), and cover of broad-leaved deciduous forest (open decid.). 
Cover of post-flooding/irrigated croplands and rain-fed croplands had significant (i.e. credible interval of pos-
terior distribution of parameter estimate did not bridge zero) positive effects on mean number of BT outbreaks 
in all of the top models and produced large increases in DIC when dropped from the best model – 2.36 and 
5.44 DIC units respectively. By contrast, cover of broad-leaved deciduous forest was selected in only half of top 
models, was never significant and caused an increase of only 0.09 DIC units when dropped from the best model, 
suggesting that this predictor has a weak effect, if any, on BT outbreaks. The remaining landscape predictors never 
had a significant effect on BT outbreaks (despite each being added to half of the top models, Fig. 2a). Cover of 
post-flooding/irrigated croplands and rain-fed croplands were the only LANDSCAPE variables offered to the 
second stage of the environmental variable selection. The best landscape model outperformed the null model 
substantially (DIC = 210.52, ∆DIC = 8.51).

Climate-driven models of Bt outbreaks. For the climate suite of predictors, there were 13 models 
with similar support in the data that were within 2 DIC units of the best model with the lowest DIC (Table S2, 
DIC = 207.08, Fig. 2b). The best performing model contained average North East Monsoon rainfall amount (ne_
rain) and average annual rainfall (ann_rain) amount whilst the second best model containing average annual 
rainfall amount, average annual temperature (ann_temp) and the interaction between these variables had very 
similar support in the data (∆DIC = 0.31). The best climate model outperformed the null model only marginally 
(∆DIC = 3.44). None of the climate predictors fulfilled the criteria for being added to the combined environmen-
tal model. Although annual rainfall appeared in 10 of the 13 top models and caused an increase of 2.75 DIC units 
if dropped from the best model, it had a significant (negative) effect on BT outbreaks in only four top models 
(Fig. 2b). North East Monsoon rainfall was added to seven models but had a significant (negative) effect on BT 
outbreaks in only six models and produced an increase of only 0.47 DIC units when dropped from the top model. 
South West Monsoon rainfall was added to seven of the top models and had a significant (negative) effect on BT 
outbreaks in only five models. Annual temperature was also selected in seven of the top models but had a signif-
icant (negative) effect on BT outbreaks in only four models. The annual temperature: annual rainfall interaction 
was added to four of the top models but was never significant.

Host-driven models of Bt incidence. For the host suite of predictors, there were 10 models with similar 
support in the data that were within 2 DIC units of the best model with the lowest DIC (Table 2, DIC = 197.63, 
Fig. 2c). All top models contained significant positive effects of densities of buffalo and non-descript sheep on BT 
outbreaks and 80% of them contained a significant positive effect of the density of exotic and cross-bred sheep 
(Fig. 2c). The best model contained the density of buffalo, non-descript sheep, exotic and cross-bred sheep and 
indigenous cattle and had much better support in the data than the null model (∆DIC = 12.89). Buffalo and 
non-descript sheep were the most important effects, leading to increases in DIC of 4.18 and 3.92, if dropped from 
the best model, followed by exotic and cross-bred sheep (∆DIC = 1.96 if dropped from top model). The indige-
nous cattle variable was added to six of the top models and had a significant negative impact on BT outbreaks in 
four of these. The effect of indigenous cattle was weak overall however, leading to an increase of only 0.91 DIC 
units if dropped from the top model. Thus density of buffalos, non-descript sheep and exotic sheep were the only 
HOST variables offered to the next step of the environmental variable selection.

Comparing between best models based on a single suite of predictors, the HOST-driven model (DIC = 197.63) 
outperformed the LANDSCAPE-driven model substantially (DIC = 202.01, ∆DIC = 4.37), and vastly outper-
formed the CLIMATE-driven model (DIC = 207.08, ∆DIC = 9.45).

Combined host- and landscape -driven models of Bt outbreaks. All possible combinations of five 
landscape and host predictors were fitted (irrig. crop, rain crop, buffalo, nsheep, esheep). Of the 33 models fit-
ted, 10 models had similar support in the data, being within 2 DIC units of the best landscape and host model 
(Table 3, Fig. 2d). The best landscape and host model had a DIC of 198.54, and contained only buffalos, density of 
non-descript sheep and density of exotic and cross-bred sheep and had slightly less support in the data than the 
best host model (DIC = 197.63, Table S1, that had also included density of indigenous cattle). Thus combining 
landscape and host predictors did not improve the ability of models to explain patterns in BT outbreaks compared 
to models with HOST variables possibly because of the substantial collinearity between landscape and host pre-
dictors. Both buffalo (r = 0.650, p < 0.001) and non-descript sheep (r = 0.573, p < 0.001) are positively correlated 
with post-flooding or irrigated croplands whilst exotic and cross-bred sheep are not (r = −0.170, p = 0.132). Since 
these combined models perform less well than host only models, we infer the importance of the host predictors 
from the top host models, namely that densities of buffalos, non-descript sheep and exotic and cross-bred sheep 
all have consistent and important positive effects on BT outbreaks (Fig. 2c).

The overall accuracy of host models was good with low RMSE values in comparison to the observed range 
of variability in average BT outbreaks, ranging from 0.63 to 0.66 across top models (Table 2, see match between 
Fig. 1a,b). Out-of-fit model performance was also good, with little evidence that CPO values clustered around 0 
for any of the top host models (Fig. S6), and a low logarithmic score for all top host models (Table 2).
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In the models based only on hosts, the proportion of marginal variance explained by the spatially structured 
effect (φ) ranged from 0.64 to 0.78 (where 1 represents a purely spatial model), indicating a prevalent effect of the 
spatially structured random effect on average BT outbreak numbers (Table 2). Of the overall variance explained 
by the top host model for example, the unstructured random effect makes up 18.8%, the spatially-structured 
random effect 69.4% and the fixed effects 11.8%. Although relatively weak effects, the host covariates are statisti-
cally significant in the model, as the credible intervals for corresponding coefficients do not cross zero (Table 4) 
and the DIC for the null intercept-only model (without fixed effects) is 12.9 DIC units higher than the best 
model with fixed host and random effects. This is also confirmed by the high Pearson correlation values obtained 
between observations and predictions when top host models are fitted only with fixed effects but no random 
effects (Table S3). Thus, these host covariates are a good approximation of the general spatial trend in the data, 
despite additional noise, with the majority of the departures from this trend due to spatial autocorrelation (prob-
ably dependent on the disease transmission process).

In addition to the landscape-host associations mentioned above, across South India densities of non-descript 
sheep are positively correlated with those of buffalo (r = 0.669, p < 0.001), indigenous cattle (r = 0.545, p < 0.001) 
and goats (r = 0.447, p < 0.001). Densities of exotic sheep are by contrast negatively correlated with buffalo 
(r = −0.377, p < 0.001) and indigenous cattle (r = −0.363, p < 0.001), but positively correlated with cross-bred 
cattle (r = 0.371, p < 0.001). Examining the geographical coincidence of the key environmental predictors of BT 

Figure 1. Average annual number of outbreaks affecting districts in India between 1992 and 2009 (a) observed 
data; (b) mean prediction per district across top combined environmental models; (c) standard deviation of 
predictions per district across top combined environmental models.
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Figure 2. Presence and significance and coefficient values for random and fixed effects present in the top 
set models of each category. The left hand plots indicate whether predictors are absent (yellow), present but 
non-significant (green), or present and significant (blue) in each top model. The right hand plots indicates the 
coefficient values for predictors when present in each top model. In each panel, models are numbered along the 
x-axis, ranked in order of model performance, from low DIC (“best”, left-hand side) to high DIC (“worst”, right-
hand side). The Intercept term was present with significant negative impacts in all models and is not shown. The 
fixed effect predictors are ordered by the number of times they appeared in the top model set from most (top) to 
least (bottom) and their names are abbreviated as in Table 1. The spatial random effects are precision (Prec_ID) 
and the phi parameter, (Phi_ID).
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outbreaks (Figs 1a and 3), the Andhra Pradesh hot spot of outbreaks is characterised by high densities of buffalo, 
non-descript sheep and post-flooding or irrigated croplands. In contrast, in Tamil Nadu at the tip of India, the 
areas of higher BT incidence are characterised by high densities of exotic and crossbred sheep together with 
high densities of buffalo and non-descript sheep (all exceeding 100,000 head per district), but with very little 
post-flooding or irrigated cropland. The district values of the spatial random effects are depicted in Fig. S7 are 
particularly substantial in this southern region of Tamil Nadu, indicating that alternative environmental effects 
may be constraining outbreaks there.

Considering the potential impacts on our analysis of temporal mismatches in climate predictors and the blue-
tongue data, very little change in median or range in district-level values of climate predictors was observed 
between snapshots at the start, middle and end of the study period. Districts have become a fraction warmer 
(<0.5 °C) on average from the start to the end of the period, and the middle period was drier on average than 
the start and end of the period (Fig. S8). Most importantly, values of climate predictors were highly correlated 
between the start, middle and end of the periods at the district level, meaning that districts that started out as 
warmer or wetter on average, remained warmer or wetter respectively (Table S5). For host predictors, there were 
substantial changes between livestock census periods (Fig. S9), with the total numbers of sheep and goats per 
district increasing over the study period, the number of cattle per district decreasing before increasing again to 
values comparable to the start of the study period, and the number of buffalos per district remaining fairly stable 
throughout the study period. However, the values of host predictors were highly correlated between livestock 
census periods at the district level, meaning that districts with more of a particular livestock type at the start of the 
study period tend to have more of the same livestock type at the end of the study period.

Discussion
This study advances understanding of the geographical determinants of BT in South India by quantifying the 
roles of climate, landscape and host factors across a wide geographical area within the same analysis. The resulting 
models predict average spatial patterns in BT with a high degree of accuracy. We found that host factors, primarily 
the availability of both susceptible (exotic and cross-bred sheep breeds) and disease-resistant reservoir hosts (buf-
falo), are more important than land use and climate factors as predictors of variability in BT outbreaks in sheep 
between districts in South India.

At the national scale, BT is restricted to those parts of India that are heavily affected by monsoons and is linked 
anecdotally to the timing and intensity of the monsoon seasons20. However, our models suggest that within this 
affected area, spatial variability between districts in long term outbreak numbers is driven by host and landscape 
heterogeneity rather than by climate. In line with known effects of temperature and moisture on Culicoides life 
cycle parameters (reviewed in4) and on the basic reproduction number of bluetongue48, many prior studies in 
tropical and sub-tropical areas have found significant impacts of climatic factors on sub-national patterns of 
Culicoides-borne disease or sero-conversion rates49. The direction and magnitude of inferred climate effects, how-
ever, varies between regions. For example, in South Africa Baylis et al.24 found that African horse sickness virus 
epizootics were associated with the sequence of drought and flood brought by the warm phase of the El Nino 
Southern Oscillation. In tropical Australia14, heavy rainfall during the cyclonic season was fond to be unfavoura-
ble for BT transmission, possibly reducing vector population size by destroying breeding sites.

The lack of a detectable climate effect in our study may be because we modelled average patterns in BT out-
breaks over a long period of time, potentially blurring important climate-driven inter-annual dynamics (cf. Purse 
et al.50) or due to the applied spatial scale units. By averaging patterns across villages within a district we may also 
miss the local scale effects of landscape factors on the BTV system. We also modelled patterns in outbreak num-
bers rather than seroconversion rates. Seroconversion rates are directly related to recent infection events and, if 
related to concurrent environmental conditions, should provide a more accurate picture of the conditions under 
which transmission occurs. But in India, seroconversion data are collected much less often, and very few places, 

Fixed effects in model LL DIC pD ∆ DIC Log-score RMSE

Proportion of marginal 
variance explained by 
spatial effect φ

mean sd

bt ~ buffalos + nsheep + esheep + icattle −106.31 197.63 45.60 1.64 0.656 0.69 0.21

bt ~ buffalos + nsheep + esheep + icattle + goats −111.56 197.92 46.05 0.29 1.70 0.637 0.67 0.22

bt ~ buffalos + nsheep + esheep + icattle + cbcattle −110.62 198.21 45.93 0.58 1.66 0.650 0.66 0.22

bt ~ buffalos + nsheep + esheep + icattle + cbcattle + goats −115.87 198.42 46.35 0.79 1.71 0.632 0.64 0.22

bt ~ buffalos + nsheep + esheep −103.74 198.54 45.49 0.91 1.63 0.656 0.78 0.18

bt ~ buffalos + nsheep + esheep + goats −109.02 198.79 45.92 1.16 1.67 0.639 0.76 0.19

bt ~ buffalos + nsheep + esheep + cbcattle −107.73 199.22 45.78 1.59 1.64 0.656 0.72 0.20

bt ~ buffalos + nsheep + esheep + cbcattle + goats −113.00 199.42 46.20 1.79 1.68 0.638 0.70 0.20

bt ~ buffalos + nsheep + icattle −104.02 199.59 46.09 1.96 1.65 0.658 0.74 0.18

bt ~ buffalos + nsheep + icattle + goats −109.21 199.60 46.37 1.97 1.71 0.641 0.74 0.18

*bt ~1 −103.81 210.52 49.11 12.9 1.70 0.625 0.87 0.11

Table 2. Log-likelihood (LL), Deviance Information Criteria (DIC) and effective parameters (pD) for top 
models of mean BT incidence driven by host predictors. The null intercept-only model* without any covariates 
is given at the bottom for comparison.
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compared to BT outbreak data22, and are thus likely currently to represent a narrow range of the environments in 
which transmission can occur.

The finding that more outbreaks occur in sheep on average in areas with high buffalo densities is consistent 
with the high antibody prevalence against BTV observed in this species, without clinical disease, in both India51 
and China52 and indicates this species’ potential importance as a reservoir host. Although the duration and level 
of BTV viraemia has not been measured in buffalo, isolations have been made from aborted buffalos in India, 
suggesting a transmissible viraemia53. Moreover adult Culicoides vectors from Europe are observed to feed pref-
erentially on larger animals such as cattle54 or horses55. This is explained in terms of their greater body surface 
but also their greater metabolic weight (calculated as body weight0.75) and emission of semio-chemicals including 
carbon dioxide, that are used by Culicoides in host-location. Whether buffalos are preferred over small ruminants 
as biting hosts for adult Culicoides in the Indian setting requires empirical confirmation, because such host pref-
erences have direct consequences for species’ roles in transmission56.

Densities of exotic and cross-bred sheep also had a positive effect on outbreak numbers. Such breeds are 
known to be more susceptible to clinical signs of BT in India57 and Nepal17 than indigenous local breeds and so 
infection is more likely to result in a recorded outbreak. Indigenous local sheep breeds in Asia also show antibody 
prevalence against BT with few disease effects58,59, although sporadic clinical cases have been observed in these 
breeds since the 1980’s20,60. The only metric of indigenous sheep density available to our analysis were densities 
from breeds categorised as non-descript, defined as not having more than 50% similarity to any recognized local 
breed. These non-descript sheep were found to have a consistent positive association with BT cases. Whether this 
effect arises because these breeds are disease-resistant and maintain transmission silently or because they are sus-
ceptible to disease effects and contribute to recorded cases is difficult to separate given the current lack of empir-
ical studies in India of breed susceptibility. Susceptibility of indigenous breeds in BTV transmission is extremely 
important to understand given that non-descript sheep constitute a huge proportion of the total sheep population 
in South India and often co-occur with buffalo and known susceptible sheep breeds (Figs 3, S5). Routine record-
ing and analysis of breed composition for disease cases may also give some insight into their role in transmission.

Although landscape predictors did not improve the description of bluetongue patterns substantially when 
added to models containing host factors, the landscape-driven models identified important land use types that 
favour Culicoides populations, namely post-flooding/irrigated croplands (irrig. crop) and rain-fed croplands 
(Rainfed crop), and that are intimately linked to particularly communities of susceptible hosts for bluetongue 
within agricultural systems in India. The distribution and vectorial capacity of candidate vector species has 
not been well studied in India33 and no quantitative links between BTV-infection or incidence rates and vector 

Fixed effects in model LL DIC pD ∆ DIC Log-score RMSE

Proportion of marginal 
variance explained by 
spatial effect φ

mean s.d.

bt ~ buffalos + nsheep + esheep −103.74 198.54 45.49 0.00 1.63 0.656 0.78 0.18

bt ~ irrig. crop + buffalos + nsheep + esheep −107.65 198.65 45.63 0.11 1.64 0.655 0.74 0.19

bt ~ irrig. crop + rain crop + buffalos + nsheep + esheep −111.99 198.87 45.95 0.33 1.65 0.650 0.73 0.19

bt ~ rain crop + buffalos + nsheep + esheep −108.35 198.93 45.97 0.39 1.65 0.647 0.75 0.18

bt ~ irrig. crop + rain crop + buffalos + esheep −108.38 199.22 45.41 0.68 1.63 0.664 0.77 0.17

bt ~ rain crop + buffalos + esheep −105.33 199.94 45.72 1.40 1.64 0.658 0.79 0.16

bt ~ irrig. crop + rain crop + nsheep + esheep −108.97 200.28 46.47 1.74 1.67 0.653 0.68 0.20

bt ~ irrig. crop + rain crop + buffalos + nsheep −109.06 200.32 46.20 1.78 1.65 0.657 0.77 0.17

bt ~ irrig. crop + rain crop + buffalos −105.19 200.37 45.64 1.83 1.64 0.669 0.79 0.15

* bt ~ 1 −103.81 210.52 49.11 11.98 1.70 0.625 0.87 0.11

Table 3. Log-likelihood (LL), Deviance Information Criteria (DIC) and effective parameters (pD) for top 
models of mean BT incidence driven by a combination of host and landscape predictors. The null intercept-only 
model* without any covariates is given at the bottom for comparison.

Model effect Posterior mean s.d. 2.5% quantile 97.5% quantile

(Intercept) −6.779 0.231 −7.269 −6.363

buffalos 1.039 0.341 0.383 1.725

nsheep 1.279 0.427 0.481 2.165

esheep 0.520 0.230 0.082 0.988

icattle −0.634 0.315 −1.268 −0.027

Precision* 0.536 0.147 0.303 0.875

Phi* 0.698 0.211 0.2192 0.9737

Table 4. Posterior means, standard deviation and credible intervals for fixed and random* effects in the top 
host model of bluetongue outbreaks.
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community composition have been made. Anecdotally, three key species, namely C. imicola, C. peregrinus, and 
C. oxystoma are abundant in BT-affected areas36,61. Populations of C. imicola and C. peregrinus, which both breed 
in moist and organically enriched soil, have been significantly associated with irrigated areas or other areas of 
high soil moisture availability (C. imicola62; C. peregrinus63). C. oxystoma, which develops in a range of habitats 
including buffalo wallows64, has also been found in both active and abandoned rice paddy fields (encompassed 
by the irrigated cropland class in this study) elsewhere in Asia46). It is possible that the extensive rice belt found 
in Andhra Pradesh (the state most severely affected by BT) makes a substantial contribution to maintaining BT 
transmission by supporting high, proximate populations of buffalo (Fig. 1c) and C. oxystoma.

Landscape or habitat configuration may provide a potential explanation for why buffalos play a stronger role 
in driving variability in bluetongue outbreaks in sheep compared to cattle in this context. Indigenous cattle were 
found to have a minor effect and cross-bred cattle no effect on outbreaks compared to buffalos despite the high 
sero-prevalence of infection detected in cattle in India51 and the comparable variation in densities of these species 
compared to buffalos across districts in the region (Table S4). Whether the body size or herd sizes of buffalos 
makes them more attractive to host-seeking midges than cattle requires empirical confirmation but buffalos seem 
to overlap in habitat to a greater extent with susceptible sheep and C. oxystoma midges within rice paddies than 
do cattle. This illustrates the importance of taking a resource or habitat-based approach to predicting the interac-
tions between key hosts and vectors in a disease system9.

The inference that buffalos (and potentially non-descript) indigenous breeds of sheep may be playing a key 
role in BTV transmission has considerable implications for BT control through vaccination in India. Inactivated 
pentavalent vaccine doses were supplied in 2015 by the respective state governments to small-holder farmers 
through village veterinary officers. These were targeted only at the susceptible sheep population in endemic dis-
tricts and cattle and buffalo were not included as vaccination targets. Buffalo outnumber exotic and cross-bred 
sheep in all but five of the 80 districts in the focal states of Karnataka, Tamil Nadu and Andhra Pradesh, usually 
by more than two orders of magnitude. This means that partial coverage of the susceptible sheep population 
is unlikely to achieve herd immunity where-ever these species co-occur. BTV strains could likely attain high 
levels of transmission in the buffalo population which could act as a source for infection and re-infection of the 
sheep population. Transmission models from Europe show that vaccinating bovine reservoirs can be an effective 
strategy for reducing BTV transmission and disease impacts in the sheep population56. It is advisable to conduct 
sero-monitoring of buffalo populations (alongside resistant sheep breeds26) in different parts of the country, to 
modify the composition of the multi-valent inactivated vaccine administered to susceptible sheep accordingly, 
and to quantify with mathematical models whether and where vaccination of buffalo is needed to reduce trans-
mission of BTV to sheep.

Our models showed good accuracy in both within-sample and out-of-fit tests but a high proportion of the 
overall variation was attributed to spatially structured random effects (this was particularly true for the districts 
at the southern tip of India). This indicates that the model could be improved by integration of other unmeasured, 
spatially structured environmental factors. These could include soil-related parameters (e.g. soil type and water 
retention capacity), or animal husbandry factors such as dung management and use as fertiliser, local drainage 
and flooding that influence vector populations or pathogen-related factors. In addition, the land use availability at 
the start of the study period may have been different due to the conversion of grassland and shrubland to cropland 
seen across the focal states65. Overall, we expect the temporal mismatch between the bluetongue outbreak data 
(1992–2009) and the rainfall (2004–2010) and host data (2007) to have had limited impact on our results because 
these conditions, when drawn from coarser resolution data, were highly correlated at district level between the 
start, middle and end of the study period.

Our approach was to fit a very robust spatial model that carefully analyses the importance of different types of 
spatial structure alongside climate, land use and hosts in determining bluetongue outbreak patterns as a baseline 
to inform future space-time model approaches. A properly specified space-time model would have to account 
for the greater sparsity and lower reliability of disease patterns observed at the monthly level as well as autocor-
relation in outbreaks and covariates over time and the possibility that spatial correlation may be structured over 
time. More-over only the climate covariates are observed on the same monthly time scale as the outbreak data 
whilst the most epidemiologically relevant host and land use data are available for only a single snapshot in the 
latter part of the study period. The resulting difficulty in identifying all parameters using a space-time approach 
would trade-off against determining the relative roles of average climate, land use and host variability in making 
some areas more susceptible to outbreaks than others. Our framework is highly complementary to the NADRES 
(National Animal Disease Referral System), the existing early warning system for BT in India, developed and 
maintained by NIVEDI. NADRES predicts presence rather than outbreak number, quantifies the importance 
of wide ranging host, landscape and climate drivers but does not account for spatial dependence. To improve 
targeting of disease control and risk communication, future modelling frameworks for India should investigate 
the scale-dependent contribution of climate, host and landscape variability to outbreak patterns, over seasonal 
and inter-annual time-scales, from districts to village level. To optimise control measures that are often taken at 
the landscape scale, links between particular agricultural ecosystems (like rice paddy cultivation), reservoir and 
vector community composition and dynamics, and BT impacts should be quantified.

Methods
epidemiological data. District level (Admin-2) annual BT outbreak data (1992–2009) were provided by 
NIVEDI of the Indian Council of Agricultural Research (ICAR). NIVEDI maintains the livestock diseases data-
base for India, collating outbreak data at district level, based on clinical symptoms observed and reported each 
month by village-level veterinary officers. Since most goats, cattle and buffalo are disease resistant, reported BT 
outbreaks are from sheep and thus disease patterns in sheep are analysed here. The village is considered as the 
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epidemiological unit for reporting animal disease outbreaks in India. An outbreak is defined as a village with 
more than one disease affected sheep in a given transmission year. The analysis was restricted to data from three 
states of South India in which outbreaks are regularly reported, namely Karnataka (n = 27 districts), Andhra 
Pradesh (n = 22 districts) and Tamil Nadu (n = 29 districts), with 61 out of the total of 78 constituent districts 
reporting outbreaks of BT over the 18 year study period (see Fig. S1 for state boundaries and location of the study 
region within India). The boundaries taken for Andhra Pradesh were those applicable before Telangana state was 
separated to become an independent state in 2014. District boundaries have changed over the time period for 

Figure 3. District-level variability in key environmental predictors of average number of BT outbreaks from 
1992–2009. (a) Buffalo density (buffalos) (b) non-descript sheep density (nsheep) (c) exotic and crossbred sheep 
density (esheep) (d) post-flooding/irrigated cropland cover (irrig. crop) (e) rain-fed cropland cover (rain crop).
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some states, but NIVEDI allocate the past outbreaks to districts according to the most recent district bounda-
ries, prior to providing the data. The dependent variable is the average number of villages reporting bluetongue 
outbreaks in sheep per district from 1992 to 2009 with total number of villages per district used as the offset (see 
Modelling Approach) to account for the fact that districts with more villages and more village veterinary officers 
are likely to report more outbreaks. The city administrative districts of Chennai and Hyderabad were omitted 
from the analysis as urban districts with little farming they recorded village outbreak data extremely rarely and 
inconsistently over the study period.

environmental data. Landscape: Land use types vary in their suitability for grazing for susceptible and 
reservoir domestic hosts and in the likely extent of semi-aquatic breeding habitat available to Culicoides BTV 
vectors. The absolute areal coverage in km2 of each of seven land use types per district in 2009 were extracted 
from the Globcover 2009 land-cover map66 that has an original pixel resolution of 300 m using Zonal statistics in 
ArcMap 10.1 (ESRI, Inc., Redlands, CA, U.S.A.) (see Figs S3 and S4). Although the Glob-cover dataset includes 
additional forest and water-body land use types, these made up less than 3% of the area of districts on average and 
were therefore unlikely to have been major drivers of overall outbreak numbers.

Host species composition: Densities of the following six host taxa were extracted from the database of 
National Livestock census data 2007 (http://www.dahd.nic.in/ accessed on 5th May 2014): (1) nondescript indige-
nous sheep; (2) exotic and cross-bred sheep; (3) goats; (4) crossbred cattle; (5) indigenous cattle and (6) buffaloes. 
These host density data are collected at village level during the census and then provided as summed district level 
densities. These predictors were log-transformed (see Fig. S5). Non-descript sheep breeds are indigenous breeds 
that do not have more than 50% similarity (phenotypically) to any recognized local breed.

Climate variables: Culicoides life cycle and BTV transmission cycle parameters are highly sensitive to tem-
perature and moisture availability (reviewed in4). The availability of moist soil breeding sites is highly dependent 
on seasonal rainfall patterns interacting with management factors like dung storage practices, irrigation and 
drainage. High temperatures increase rates of viral replication, blood digestion, immature midge development 
and adult biting, but decrease adult survival rates and dry up moist soil breeding sites. Monthly Rainfall Estimates 
(RFE) were obtained for seven years (2004–2010) from the NOAA/Climate Prediction centre RFE 2.067 at a pixel 
resolution of 0.1° latitude and longitude and were extracted for districts using zonal statistics ArcMap 10.1 (ESRI, 
Inc., Redlands, CA, U.S.A.). The average annual total rainfall, south-west monsoon rainfall (months of June to 
September) and north-east monsoon rainfall (months of October to December) were calculated. The annual 
mean temperature layer was downloaded from Worldclim68 (1950–2000) at a spatial resolution of around 1 km2 
and extracted and averaged across districts using zonal statistics ArcMap 10.1 (Fig. S2). In addition to these 
four main effect climate predictors, the interaction between annual rainfall and annual temperature was also 
considered.

Modelling approach. All environmental predictors were centred and standardised prior to model-fitting. To 
take account of spatial autocorrelation, the relationship between the average number of BT outbreaks in sheep per 
year and environmental predictors was quantified using spatial generalised linear mixed models, implemented 
in a Bayesian framework.

Let Ei denote the number of villages at risk of BT outbreaks in district i(i = 1, ….. n) used as the offset. The 
response variable, yi, the average number of BT outbreaks per year (as an integer) over the study period in district 
i, is assumed to follow a Poisson distribution:

θ θ| ~y Poisson E( )i i i i

where θi denotes the underlying true area-specific relative risk.
The log risk ηi = log(θi) was assumed to have the decomposition:

η μ β= + +Τz bi i i

Here μ denotes the overall risk level, = .....Τ Τz z z( , )i i ip1  a set of p covariates with corresponding regression 
parameters β β β= ..... Τ( , )p1 , and bi a random effect41. The random effects, = …b b b( , )n1 , are used to account 
for extra-Poisson variation, or spatial dependence between districts due to intrinsic factors or unmeasured abiotic 
risk factors. Areas that are close in space are assumed to be more similar than areas that are not close, and here 
districts i and j were defined as neighbours if they shared a common border, denoted as i~j.

The area-specific random effect b, was modelled considering a modified Besag-York-Mollie model with a 
parameterisation suggested by Dean et al.69

τ
φ φ= − + ⁎b v u1 ( 1 ),

having covariance matrix

τ τ φ φ| = − + .− −
⁎b I QVar( ) ((1 ) )b b

1

where u* is the scaled spatially structured effect, governed by a Gaussian Markov random field (GMRF) with 
regions conditionally independent unless classed as neighbours i~j, Q* is the precision matrix of the Besag model 
with −

⁎Q  denoting the generalised inverse and vi is the unstructured effect modified by Riebler et al.41 to make the 
model more intuitive and interpretable. In this parameterisation both ui and vi are standardised to have 
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(generalised) variance equal to one. The marginal precision is then τ and the proportion of the marginal variance 
explained by the spatial effect (u) is φ. Employing the hyper-parameterization structure proposed by41 allows 
these hyper-parameters to be mathematically interpretable and not confounded (as in the BYM model). The 
advantage of this formulation is that the compromise between pure over-dispersion and spatially structured cor-
relation is reflected by the mixing parameter φ. When φ = 0, the model reduces to pure over-dispersion, whilst 
when φ = 1, the model reduces to the Besag model, i.e. only spatially structured correlation. The model was fitted 
by integrated nested Laplace approximation using the INLA R package (www.r-inla.org)70 and “bym2” model 
specified inside the model formula. Weak prior distributions were used for μ and β given by Gaussian distribu-
tions with zero mean and precision of 1 × 106. The prior distributions on the standard deviation τ1/  and φ are 
both based on transformed exponential distributions following the penalised complexity framework as described 
in Simpson et al.71. Using a transformed exponential distribution has the property that greatest density is at the 
lowest values for both the precision parameter (τ) and the mixing parameter (φ). This implies that the penalised 
complexity prior will tend to shrink towards a model of no spatial smoothing in the absence of sufficient support 
for spatial complexity.

Model building and selection of environmental predictors. It was not computationally possible to 
fit all possible combinations (>130,000 combinations) of the 17 main effect predictors and one interaction term. 
Instead, the main effect predictors were divided into three categories, landscape predictors, climate predictors and 
host predictors and within each individual category all possible model combinations were first fitted to identify 
the best predictor variables from that category. Prior to this step, pairs of highly correlated predictors within 
each category were identified using Pairwise Pearson correlation analyses (r > 0.7, p < 0.001). These pairs were 
precluded from appearing together in model combinations. Once all models were fitted within a category, the 
model with the lowest Deviance Information Criteria (DIC)47 was identified as the best model. DIC is a generali-
sation of the Akaike Information Criterion (AIC), and is derived as the mean deviance adjusted for the estimated 
number of parameters in the model, compromising between model fit and complexity, and providing a measure 
of out-of-sample predictive error72. All models within 2 DIC units of the best model in a category were defined 
as the top model set, having similar support in the data as the best model, based on the often used rule of thumb 
of Burnham and Anderson73. The number of times that each predictor appeared and had a significant effect on 
BT outbreaks across the top model set was calculated. Predictors were only passed to the second stage of model 
selection if they had appeared in over 70% of within-category models, and had significant effects on BT outbreaks 
in over half of these models.

In the second stage of model selection, all possible combinations of the predictors selected in the first stage 
were fitted, and the top model set was again identified using DIC. The number of times that each predictor 
appeared and had a significant effect on BT outbreaks in the top model set was again calculated and mapped 
against the constituent predictors in the model. This approach reveals whether the effects of individual environ-
mental predictors on BT outbreaks is robust to presence or absence of other predictors in the model and was an 
attempt to understand the importance of predictors whilst avoiding the drawbacks of model averaging pointed 
out by Cade74.

Considering metrics of model accuracy, we calculated the Root Mean Square Error between the predicted 
posterior mean values and the corresponding observed annual mean number of BT outbreaks per district. To test 
the out-of-fit predictive performance of the model, leave-one-out cross validation statistics, namely Conditional 
Predictive Ordinates (CPOs) were calculated75. The CPO expresses the posterior probability of observing the 
value (or set of values) of yi when the model is fitted to all data except yi, with a larger value implying a better fit of 
the model to yi, and very low CPO values suggest that yi is an outlier and an influential observation. When many 
CPO values cluster near zero, the model demonstrates poor out-of-fit performance. When many CPO values 
cluster near one, the model demonstrates good out-of-fit performance76. We then calculated the cross-validated 
logarithmic score77, by taking the negative sum of logged CPO values across districts, a lower value of which indi-
cates a better prediction quality of the model.

In the model specification, the generalised variance is rescaled to 141, hence the summed variance across the 
components was set to be equal to 1. This allowed the contribution of each of the model components (spatially 
structured and unstructured random effects and the fixed effects) to the overall variance explained to be calcu-
lated. This follows a similar approach to that taken by Riebler et al.41.

However, the default posteriors for the spatial random effect parameters in INLA can result in a bias away 
from variance being attributed to fixed effects.

To avoid any bias in attributing variance to specific model components, the goodness of fit statistics and the 
proportion of variance explained by each component was calculated for a set of nested models. For each model 
in the top models, a full model, including fixed, random and spatial components, was compared with a set of 
sub-models in which one or two of these components were removed. Thus identifying any bias in the variance 
attribution by comparison amongst the model set.

temporal mismatches in environmental predictors and outbreak data. A potential drawback in 
our analysis is that while the temperature data reflect the whole period from which outbreak data are drawn, 
the rainfall, land cover data (from 2009) and the host data (from 2007) are drawn only from the latter half of the 
period. Datasets that spanned the total period were available for climate and land use. The Indian Meteorological 
Department New High Spatial Resolution (0.25 × 0.25 degree) Long Period (1901–2013) Daily Gridded Rainfall 
Data Set Over India78, and the ERA Interim daily 2 m temperature (0.25 × 0.25 degree)79 were too coarse in 
resolution compared to the size of a smaller districts (mean district size ± s.d. in km2 = 7452 ± 12, range in 
km2 = 178–19223). The alternative longitudinal dataset for land use, the ESA: Land Cover CCI Product80, divides 
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the landscape into land use categories that are less explicitly related to midge and host habitats than those in the 
Globcover products. Similarly, only the more recent livestock census data divide livestock into indigenous and 
exotic breeds which are known to have different clinical responses to bluetongue (see above).

These temporal mismatches in data will only have a large impact on our analyses of which factors make some 
districts more susceptible to bluetongue outbreaks in sheep on average, if the late period conditions of climate, 
hosts and land use are poorly correlated with the equivalent conditions in a district during the earlier parts of the 
study period. We tested this by performing Pearson’s correlation analysis, paired by district, between the values of 
climate and host predictors in different snapshots across the study periods.

Data Availability
The bluetongue data that were analysed during the current study are available from Indian Council of Agricultur-
al Research-National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI) and were 
obtained from the Director of ICAR-NIVEDI. The livestock data were downloaded from the website of Depart-
ment of Animal Husbandry, Dairying and Fisheries and were used under licence for this study. The environmen-
tal data were compiled from third party sources as referenced in the methods. The bluetongue data are available 
from the authors on reasonable request, contingent on permission of the Director of ICAR-NIVEDI.
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