
© 2019 The Association for Tropical Biology and Conservation 
 

This version available http://nora.nerc.ac.uk/id/eprint/522629/ 
    
NERC has developed NORA to enable users to access research outputs 
wholly or partially funded by NERC. Copyright and other rights for material 
on this site are retained by the rights owners. Users should read the terms 
and conditions of use of this material at 
http://nora.nerc.ac.uk/policies.html#access  
 
 
This document is the author’s final manuscript version of the journal 
article, incorporating any revisions agreed during the peer review 
process. Some differences between this and the publisher’s version 
remain. You are advised to consult the publisher’s version if you wish 
to cite from this article. 
 
The definitive version is available at http://dx.doi.org/10.1111/btp.12624 
 
 

    
 
 

Article (refereed) - postprint 
 
 
 

Hogan, J. Aaron; McMahon, Sean M.; Buzzard, Vanessa; Michaletz, Sean T.; 
Enquist, Brian J.; Thompson, Jill; Swenson, Nathan G.; Zimmerman, Jess K.. 
2019. Drought and the interannual variability of stem growth in an 
aseasonal, everwet forest. Biotropica, 51 (2). 139-154. 
https://doi.org/10.1111/btp.12624  

  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Contact CEH NORA team at  
noraceh@ceh.ac.uk 

 
 

The NERC and CEH  trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and 
other countries, and may not be used without the prior written consent of the Trademark owner. 



1 
 

Title: Drought and the interannual variability of stem growth in an aseasonal, everwet 1 

forest 2 

Running head: drought and tree growth at Luquillo 3 

List of authors (ORCID IDs in parentheses):  4 

J. Aaron Hogan1,8 (0000-0001-9806-3074),  5 

Sean M. McMahon2 (0000-0001-8302-6908), 6 

Vanessa Buzzard3 (0000-0003-2929-0833), 7 

Sean T. Michaletz3,4,5 (0000-0003-2158-6525), 8 

Brian J. Enquist3 (0000-0002-6124-7096), 9 

Jill Thompson6 (0000-0002-4370-2593), 10 

Nathan G. Swenson7 (0000-0003-3819-9767),  11 

Jess K. Zimmerman8 12 

Institutional affiliations:  13 

1 International Center for Tropical Botany, Department of Biological Sciences, Florida 14 

International University, Miami, FL, USA 33199 15 

2 Smithsonian Environmental Research Center, Edgewater, MD, USA 21037 16 

3 Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA 17 

85721  18 

4 Biosphere 2, University of Arizona, Tucson, Arizona 85721 19 

5 Department of Botany and Biodiversity Research Centre, University of British Columbia, 20 

Vancouver, British Columbia V6T 1Z4, Canada 21 

6 Centre for Ecology & Hydrology, Edinburgh, Midlothian EH26 0QB, United Kingdom 22 



2 
 

7 Department of Ecology and Evolutionary Biology, University of Maryland, College Park, MD, 23 

USA 20742 24 

8 Department of Environmental Sciences, University of Puerto Rico – Río Piedras, San Juan, PR, 25 

USA 00925 26 

Corresponding author information: 27 

J. Aaron Hogan, email: jhogan@fiu.edu, telephone: (970) 485-1412 28 

Keywords: interannual, tree growth, drought, dendrometers, allocation, phenology, Luquillo, 29 

aseasonal, tropical forest 30 

Paper type: Primary research 31 

 32 

Submission and Acceptance Dates: Received July 12, 2018 ; revision accepted: December 18, 33 

2018 34 

  35 



3 
 

Abstract 36 

Linking drought to the timing of physiological processes governing tree growth remains one 37 

limitation in forecasting climate change effects on tropical trees. Using dendrometers, we 38 

measured fine-scale growth for 96 trees of 25 species from 2013-2016 in an everwet forest in 39 

Puerto Rico. Rainfall over this timespan varied, including an unusual, severe El Niño drought in 40 

2015. We assessed how growing season onset, median day, conclusion, and length varied with 41 

absolute growth rate and tree size over time. Stem growth was seasonal, beginning in February, 42 

peaking in July and ending in November. Species growth rates varied between 0 and 8 mm/yr 43 

and correlated weakly with specific leaf area, leaf Phosphorus and leaf Nitrogen, and to a lesser 44 

degree with wood specific gravity and plant height. Drought and tree growth were decoupled, 45 

and drought lengthened and increased variation in growing season length. During the 2015 46 

drought, many trees terminated growth early but did not necessarily grow less. In the year 47 

following drought, trees grew more over a shorter growing season, with many smaller trees 48 

showing a post-drought increase in growth. We attribute the increased growth of smaller trees to 49 

release from light limitation as the canopy thinned because of the drought, and less inferred 50 

hydraulic stress than larger trees during drought. Soil type accounted for interannual and 51 

interspecific differences, with the finest Zarzal clays reducing tree growth. We conclude that 52 

drought affects the phenological timing of tree growth, and favors the post-drought growth of 53 

smaller, sub-canopy trees in this everwet forest.  54 

Keywords: interannual, tree growth, drought, dendrometers, allocation, phenology, Luquillo, 55 

aseasonal, tropical forest  56 
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 ACCURATELY QUANTIFYING TROPICAL TREE GROWTH AT INTERANNUAL SCALES IS 57 

DIFFICULT (Chambers et al. 1998). Variation remains problematic, in even the most-precise stem 58 

diameter measurements over time, for two main reasons. First, while differences in growth rates 59 

are often linked to variation in abiotic conditions including climate (Chapin et al. 1990, Clark et 60 

al. 2003, Clark et al. 2010, Wagner et al. 2016, Michaletz et al. 2018), it is less clear how tree 61 

growth is both influenced by resource supply and allocation at the organismal level (Körner 62 

2006, Würth et al. 2005), and how these may interact (Sala et al. 2010). Moreover, it is 63 

methodologically difficult and painstaking to continuously monitor carbon stocks (i.e., non-64 

structural carbohydrates) of individual trees (Körner 2015, Adams et al. 2017, but see Dickman 65 

et al. 2018). Our lack of knowledge of physiology and resource allocation is particularly acute in 66 

long-lived trees due, in part, to the impracticality of experimental manipulations (but see da 67 

Costa et al. 2010, Meir et al. 2015, Roland et al. 2015). Second, organism size is a primary 68 

factor underlying variability in growth and species life-history strategy (Calder 1984, Niklas 69 

1994), and trees are no exception (Samson & Werk 1986). Studies documenting the size 70 

dependency of life-history traits in tropical trees are numerous (Hubbell 1980, Peters et al. 1988, 71 

Wheelwright & Logan 2004, Iida et al. 2014, Visser et al. 2016, Rüger et al. 2018), yet 72 

understanding how these relate to growth and contribute to tropical forest dynamics in a 73 

changing climate is vital.  74 

Size-effects aside, tropical trees differ in growth rates across species and within 75 

individuals of the same species (Lieberman & Lieberman 1987, Poorter 1989, Clark & Clark 76 

1992). For example, annual diameter increment for six species of adult trees in lowland tropical 77 

forest at La Selva, Costa Rica varied up to 14 mm/yr (Clark et al. 2003). Within sites, growth 78 

rates are greatly influenced by climate (i.e., temperature, precipitation, solar radiation) (Vlam et 79 
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al. 2014, Wagner et al. 2016), global-scale climate drivers (i.e., the El Niño Southern Oscillation, 80 

the North Atlantic Oscillation) (Enquist & Leffler 2001, Schöngart et al. 2004) and environment 81 

(e.g., light, nutrients, soil moisture) (Wagner et al. 2012, Lambers & Poorter 1992, Brienen et al. 82 

2010). The degree to and exact nature by which climate controls ecosystem productivity and tree 83 

stem growth are a topic of current debate (Chu et al. 2016, Michaletz et al. 2014, 2018). But 84 

from a climate perspective, the best single predictor of wood production in tropical trees is 85 

precipitation, explaining nearly half of the variation among 68 tropical forests (Wagner et al. 86 

2016). Significant variation in growth exists among individual trees and across years, because 87 

individual-based allocation of carbon to radial stem growth is a physiological process that 88 

competes with carbon-investment in leaf, root, branch, and reproductive organ production 89 

(Chapin et al. 1990, Lacointe 2000, McMurtrie & Dewar 2013) and has a set phenology 90 

depending on the environment and individual performance (Alvim 1964, Shiel 1997, Baker et al. 91 

2002). In tropical forests, an estimated >60% of carbon is allocated to leaves (37%) and roots 92 

(24%) (Malhi et al. 2011), further confounding relationships between tree stem-growth and 93 

climate (Doughty et al. 2014).  94 

There is serious potential for climate change to affect tropical tree growth through the 95 

increasing concentration of atmospheric carbon-dioxide, shifting precipitation regimes and the 96 

increased frequency of drought (Malhi & Wright 2004, Choat et al. 2012, Feng et al. 2013, 97 

Wagner et al. 2014, Pachauri et al. 2014). Increased atmospheric concentrations of carbon 98 

dioxide have been hypothesized to enhance the carbon-use efficiency of plants (i.e., the ratio of 99 

carbon assimilation via photosynthesis to water loss through transpiration) (Chaves et al. 2003), 100 

resulting in increased growth rates. However, the degree to which an increase in carbon-use 101 

efficiency translates to changes in biomass production (i.e., stem growth) remains unclear 102 
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(Feeley et al. 2007, McMahon et al. 2010, Peñuelas et al. 2011, Zuidema et al. 2013, Van Der 103 

Sleen et al. 2015, Slot & Winter 2016). Conversely, there is mounting evidence that growth rates 104 

of mature tropical trees are slowing, with decreases in stem growth being attributed to an 105 

increase in temperature and drought frequency and severity (Clark et al. 2003, Clark et al. 2010, 106 

Brienen et al. 2015). 107 

Droughts, and severe El Niño-related drought events in particular, decrease the 108 

physiological functioning of tropical trees through hydraulic stress (Choat et al. 2012, Körner 109 

2015, Wolfe et al. 2016, Adams et al. 2017, Santiago et al. 2016). This can increase tree 110 

mortality (Phillips et al. 2010, Condit et al. 2013), reduce tree growth (da Costa et al. 2010, 111 

Rowland et al. 2015) and decrease forest ecosystem processes such as carbon uptake (Doughty et 112 

al. 2015, McDowell et al. 2018a). Hydraulic stress interacts with the abiotic environment 113 

(Santiago et al. 2016, Adams et al. 2017, McDowell et al. 2018a), making it very difficult to 114 

separate from other drivers (e.g., carbon deficit, nutrient limitation, liana load) that reduce tree 115 

physiological functioning and increase risk of mortality (Sala et al. 2010, Adams et al. 2017, 116 

McDowell et al. 2018a). Ultimately, the interaction of drought and tree growth is of interest 117 

because it may translate to changes in community composition of tropical forests based on the 118 

relative drought tolerance of tropical tree species, and their performance in dry years 119 

(Engelbrecht et al. 2007, Uriarte et al. 2016, Zuleta et al. 2017, Bartlett et al. 2018). 120 

Additionally, drought effects vary with plant size, disproportionately affecting the largest 121 

individuals in the forest (Bennett et al. 2015, McDowell et al. 2018b). Using data from the 122 

Caxiuanã throughfall-exclusion experiment in the Amazon, Rowland et al. (2015) showed that 123 

xylem vulnerability to embolism increased with tree size (i.e., the stem water potential values at 124 

50% loss of xylem connectivity, P50, decreased). Although the largest trees may not necessarily 125 
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dominate the carbon uptake of the forest (Meakem et al. 2017), they are still very important for 126 

understanding and predicting climate effects on forest structure and function, because they 127 

represent the upper bound on size distributions that determine total stocks and fluxes (Enquist et 128 

al. 2016, Meakem et al. 2017, McDowell et al. 2018b). Recent research has shown that taller 129 

forests in the Amazon were more photosynthetically-resistant to the 2015 El Niño drought, 130 

showing less of a decrease in remotely-sensed canopy fluorescence than shorter forests (Giardina 131 

et al. 2018), evidencing that they potentially access deeper, more stable sources of soil water 132 

(Brando 2018), and that hydraulic stress may not correlate directly with photosynthesis (Saleska 133 

et al. 2007).  Therefore, drought may prove to be an increasingly important driver of ecological 134 

change in moist tropical forests through its potentially-differential size effects on tree 135 

performance (Choat et al. 2012, Allen et al. 2015, Corlett 2016, Mier et al. 2015, McDowell et 136 

al. 2018a).  However, relatively less is known about how smaller trees might respond to droughts 137 

and climate change, and the potential they hold to offset the negative effects of drought on large 138 

trees (Uriarte et al. 2016, McDowell et al. 2018a). 139 

The predictions of downscaled global climate change models for the island of Puerto 140 

Rico are: a) a 4.6-9°C warming, b) an average precipitation decline between 313 and 511 mm/yr 141 

depending on slope and aspect, and c) an 18-21% increase in the total number of dry days by 142 

2100, depending on the IPCC emission scenario and locale (Khalyani et al. 2016). These 143 

projected changes are expected to disproportionately affect wetter areas of the island (i.e., El 144 

Yunque in the northeast) and at the landscape-scale are forecast to result in the loss of the 145 

subtropical rainforest and a major diminution of the subtropical wet forest Holdridge life zone by 146 

the end of the century (Khalyani et al. 2016). Furthermore, the Ecosystem Demography model 147 

parametrized using physiological data from trees in El Yunque was projected to 2050, 148 
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forecasting forest productivity to go negative by 2036 assuming a 1.2 °C warming and 30% 149 

drought frequency (Feng et al. 2017). Given these predictions, it is critical to understand and 150 

validate the effects of drought through in situ measurements of tree growth.  151 

We monitored fine-scale tree growth patterns for 96 tropical trees over four years (2013-152 

2016), a period that included a severe meteorological drought. Our first objective was to 153 

characterize the seasonal phenology of tree growth. We asked:  154 

1) What is the phenology of stem growth in this everwet forest? We hypothesized that 155 

tree growth would be greatest between May and November when temperatures are 156 

slightly warmer and total solar irradiation peaks (Zimmerman et al. 2007). 157 

2) How did a sharp decrease in annual rainfall in 2016 affect the seasonality of tree 158 

growth, overall and among species? We expected that resultant hydraulic stress from 159 

drought would decrease tree stem growth and alter any seasonal patterns in growth 160 

evident under normal rainfall conditions, shortening the duration of the growing season. 161 

3) What abiotic factors exacerbate or mediate drought susceptibility for 12 common tree 162 

species in the tree community? Ridge areas generally have less ability to retain soil water 163 

than slopes or bottoms, and soils with coarser textures drain more readily. We, therefore, 164 

anticipated topographic position and soil type to interact to determine drought 165 

susceptibility as both have been shown to influence soil water storage capacity.  166 

As a second objective, we were interested in whether phenological patterns in growth or the 167 

effects of drought differed by tree size.  168 

Methods 169 

SITE DESCRIPTION & THE 2016 EL NIÑO DROUGHT. — The forest at Luquillo is a broadleaf 170 

subtropical wet forest (Ewel & Whitmore 1973) with a history of some land-use (Thompson et 171 
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al. 2002) that is subject to infrequent hurricanes (Zimmerman et al. 1994, Hogan et al. 2016). 172 

The landscape is mountainous with a rugged topography dissected by several low-order 173 

freshwater streams and rivers (Scatena 1989). Soils are highly weathered, volcanically-derived 174 

clays that differ in the water permeability and occurrence; the three main soils types from most to 175 

least permeable and most common to rarest, are Zarzal (78% clay, 19% silt, 3% sand), Cristal 176 

(75% clay, 19% silt, 6% sand), and Prieto (52% clay, 29% silt, 15% sand) (Thompson et al. 177 

2002, Mount & Lynn 2004). The study site was the 16 -Ha Luquillo Forest Dynamics Plot 178 

(LFDP, Latitude: 18°20’N, Longitude: 62°49’W) of Northeastern Puerto Rico. The LFDP is in 179 

the Tabonuco forest, which is dominated by Dacryodes excelsa Vahl and Prestoea acuminata 180 

(Wild.) H.E. Moore var. montana (Graham) A.J. Hend & Galeano. In the Tabonuco forest, a 181 

uniform canopy reaches an average height of 20 m (Brokaw & Grear 1991). 182 

In the greater El Yunque area, precipitation ranges from 2216 mm/yr on the western, 183 

leeward side of the mountains (Guarbo watershed) to 4447 mm/yr on the southeastern, windward 184 

slopes (Icacos watershed) (Murphy et al. 2017), and always exceeds 100 mm/m, technically 185 

classifying the forest as aseasonal (i.e., lacking a dry season; Walter et al. 1975) or everwet 186 

(McGregor & Nieuwold 1998), although some seasonality in temperature exists (Fig 1a) . A 187 

severe meteorological drought started in April 2015, triggered by the unusual lack of May rains 188 

(Fig. 1b). The meteorological drought developed into a hydrological drought throughout the 189 

summer as streamflow and soil moisture decreased (Clark et al. 2017, O’Connell et al. 2018), 190 

until late August when Tropical Storms Danny and Erika passed over the forest. Danny and 191 

Erika combined dropped over 200 mm of rain in 9 d. However, rainfall at El Verde Field Station 192 

(300m adjacent to the LFDP, in northwestern El Yunque), for 2015 totaled 2036 mm, well below 193 

the annual average of 3655 mm (Fig. 1b).  The light environment from 2013-2016 was constant. 194 
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Photosynthetic photon flux density and total solar infrared radiation oscillated with season, 195 

averaging about 17,000 millimoles/m2, and 834 Watts/m2, respectively (Fig. S1).  Similarly, 196 

there was no notable change in cloud cover or minimum cloud base height from 2013-2016 (Fig. 197 

S2).  198 

DENDROMETER BANDS. — In November 2012, spring-tensioned dendrometer bands were placed 199 

on 96 mature trees (>10 cm diameter at 1.4m from the ground) of 25 species in the LFDP. 200 

Dendrometer bands were constructed individually for each tree from 20 mm width, 150 μm 201 

thickness, hard tempered aluminum and fastened with a stainless-steel spring. The species and 202 

number of individuals fit with dendrometer bands per species are given in Table S1 (also see 203 

supplement 1).  204 

Each dendrometer band was revisited 54 times during the 4-yr span, measuring 205 

dendrometer gap-openings using a digital Vernier caliper (Mitutoyo Digimatic 500, Mitutoyo 206 

America, USA) precise to the hundredth of a millimeter. For the first year and a half, 207 

measurements were taken every other month, then sampling was intensified to roughly every two 208 

weeks. Of 96 trees that were initially fit with dendrometer bands in November 2012, 209 

measurements were discontinued on five trees that died or were severely damaged at some point 210 

during the 4-yr monitoring period.  211 

DATA TRANSLATION, THE FITTING OF TREE GROWTH MODELS. — Fine-scale fluctuations in 212 

dendrometer gap-openings were translated to incremental changes in stem diameter using:  213 

௧ାଵܦ ൌ ௧ܦ ൅	
௫೟శభ	ି	௫೟

గ
	         (eq. 1),  214 

Where x is the dendrometer band gap, D is stem diameter, t+1 is the time at which the stem is 215 

being measured and t is the previous time the stem was measured (i.e., the last known diameter). 216 

This approach assumes the tree’s main stem is circular. Richards 5-parameter logistic growth 217 
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model (Richards 1959) was then fit to time series of tree stem diameter measurements (Fig. 2) 218 

using the workflow and functions developed by McMahon and Parker (2015). 219 

The model gives daily tree growth, dbhdoy, as:  220 

ܾ݄݀ௗ௢௬ ൌ 	
௅ାሺ௄ି௅ሻ

ଵା	ቀଵ ఏൗ ቁ	∙௘ሺషೝ	ሺ೏೚೤ష೏೚೤೔೛ሻ ഇ⁄ ሻഇ	
	,        (eq. 2) 221 

where ݀ݕ݋௜௣is the day of the year where the inflection point in tree growth occurs, L and K are 222 

the upper and lower asymptotes of the logistic growth curve, respectively, r is the slope of the 223 

growth curve at the inflection point, and θ allows for asymmetrical fits (McMahon & Parker 224 

2015). The inverse of the logistic function (see equation 3 in McMahon & Parker, 2015) was 225 

then used to estimate secondary metrics that characterize the phenology of growth of that 226 

individual: day of first growth, day of last growth, median day of growth, 80th and 90th 227 

percentiles of growing season length, and the day of the year (i.e. ordinal date) at 5, 10, 90, and 228 

95 percent of total annual growth. Annual and relative growth rates (AGR, RGR) are also 229 

calculated from Richard’s curve fits by taking the absolute and difference between the log-230 

transformed upper and lower bounds of the growth curve (i.e. the modeled change in diameter) 231 

(McMahon & Parker, 2015) 232 

PHENOLOGICAL INTERPRETATION OF TREE GROWTH FROM MODEL FITS & CIRCULAR STATISTICS. —233 

We looked at relationships (i.e., paired correlations) between all secondary metrics from the 234 

Richards curve fits, including AGRs and RGRs to understand how all the parameters were 235 

related. We decided to use four of the secondary metrics from the Richards curves, which are 236 

conservative estimates of key phenological events in stem growth that correspond to biological 237 

cues related to allocation of resources to woody biomass production. They are: 1) the number of 238 

days to grow 80% of the total annual growth (growing season length), 2) the ordinal date at 10% 239 

of total annual growth (start of growing season), 3) the median ordinal date of growth (middle of 240 
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growing season), and 4) the ordinal date at 90% of total annual growth (end of growing season). 241 

Because of low sampling effort in 2013, we refrained from fitting models for 42 of the 242 

individuals that had less than five measurements for the year, and we removed 16 trees from the 243 

data set due to unacceptable model fits or erratic data, because they did not grow sufficiently, or 244 

because the data had measurement error. We checked for points exerting high leverage on model 245 

fits and re-fit the models excluding them where necessary. This resulted in a total of 283 tree-yrs 246 

from 80 individuals, that we used Richards curve fit metrics from (see supplement 1) in 247 

histograms of phenological metrics. 248 

To examine the overall seasonality and interannual differences between secondarily-249 

derived metrics following model fitting, we used circular statistics. The circular nature of the 250 

ordinal calendar means that classical linear approaches are not adequate to statistically test the 251 

phenological timing of events against independent variables, because, for example, a tree with an 252 

ordinal date of 359 (December 25th) and tree with an ordinal date of 7 (January 7th) for middle of 253 

growing season, are equidistant from the start of the calendar year (ordinal date 1) and are not 254 

treated so in a classical linear regression. We plotted circular histograms for three of the four 255 

chosen metrics: start, middle, and end of growing season. Circular plots were not necessary for 256 

growing season length because it is measured as the number of days rather than an ordinal date. 257 

We statistically tested whether the density distributions of these phenological metrics differed 258 

from circular uniformity using the Rayleigh, Kuiper’s, Watson’s and Rao’s tests. Circular 259 

uniformity in our case represents a lack of seasonality in growing season onset, midpoint, or 260 

conclusion. The Rayleigh test tests for any single peak departure from circular uniformity, while 261 

the other three tests have greater ability to detect more complex deviations from circular 262 

uniformity (Pewsey et al. 2013). Kuiper’s test is a rotation-invariant Kolmogorov-type test 263 
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statistic that tests whether the circular uniform distribution is contradicted by the sample 264 

distribution. Watson’s test performs a goodness of fit test between the sample distribution and a 265 

circular uniform (Mardia & Jupp 2009). Lastly, Rao’s test relies on the assumption that if data 266 

are circularly uniform then they ought to be roughly evenly spaced about the unit circle, and tests 267 

for deviations from even spacing as evidence for directionality (i.e. seasonality) in the data 268 

(Levitin & Russell 1999). 269 

To examine how the seasonality of stem growth was influenced by tree performance (i.e. 270 

AGR) and tree size, we used nonparametric circular regression. The response variables: growing 271 

season length, start of growing season, middle of growing season, and end of growing season 272 

were circular-transformed and regressed against AGR and tree size. This is akin to doing 273 

classical regression with the y-axis wrapped as a cylinder, where the absolute maximum and 274 

minimum values are adjacent in the wrapped cylindrical y-axis space. The regression line is then 275 

fit through the cylindrical plane, minimizing the mean squared error. These analyses were 276 

conducted in R v. 3.4.2 (R Core Team 2017) using the ‘circular’ (Agostinelli & Lund 2017) and 277 

‘NPCirc’ packages (Oliveira et al. 2014).  278 

SPECIES DIFFERENCES & SIZE EFFECTS. —We correlated AGR and RGR with eight functional 279 

traits from the tree community.  We used species-level traits collected from canopy trees of the 280 

same species in this study (Swenson et al. 2012 ), including leaf area, specific leaf area (SLA), 281 

leaf Carbon (C), leaf Nitrogen (N), leaf Phosphorus (P), wood specific gravity, plant height, and 282 

seed mass, to understand and generalize how growth rates varied among species. We limited 283 

analyses of the individual and interannual growth responses trees that had at least one annual 284 

RGR > 0.0025 %, a criterion we determined from the data to signify tree-yrs with greater than 285 

poor growth. Implementing that criterion for RGR left 195 tree-yrs from 69 individuals.  286 
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We enumerated growth from each of these individuals into categories of growth or no 287 

growth and conducted Chi-Squared tests for independence to see whether growth across years 288 

differed, whether growth between drought years (2014, 2015) differed from non-drought years 289 

(2013, 2016) and whether growth in the severe drought year of 2015 differed from the other 290 

years. Next, we classified individual growth patterns into 6 growth classifications based on the 291 

shape of the Richards curve fits over time (see supplement 1). The classifications were: 1) 292 

unaffected by drought, no post-drought growth response, 2) unaffected by drought, post-drought 293 

growth response, 3) negatively affected by drought, no post-drought growth response, 4) 294 

negatively affected by drought, post-drought growth response, 5) positively affected by drought, 295 

and 6) dying (see Table 3). We employed homoscedastic, single-factor analysis of variance with 296 

a post-hoc Tukey HSD test and eight t-tests on tree size (i.e., annual starting diameter) data of the 297 

individuals in these six classifications to examine the interplay between drought susceptibility 298 

and recovery with tree size.  The eight t-tests evaluated size-differences between trees unaffected 299 

and negatively affected by drought, but with differing post-drought growth trajectories 300 

(classifications 1 vs. 2, 2 vs. 4, and 3 vs. 4), those unaffected, negatively affected and positively 301 

affected by drought (in several combinations of classifications: 1 vs. 3, 1 and 2 vs. 5, 3 and 4 vs. 302 

5, 1 and 2 vs. 3 and 4), , and those positively affected by drought and others (classifications 1, 2, 303 

3, and 4 vs. 5).   304 

LINEAR MIXED MODELING. — Lastly, tree absolute growth rate was modeled using a linear 305 

mixed effect model with gamma-distributed error and an inverse link function. We implemented 306 

the same criterion characterizing trees with greater than poor growth, RGR > 0.0025 %, for 12 307 

species (with the largest sample sizes), leaving growth data for 72 individuals comprising 180 308 

tree-yr. We explored the use of Lidar-derived topographic variables (slope and curvature at a 309 
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23m spatial scale) from a May 2011 Lidar flight by the National Center for Airborne Laser 310 

Mapping (http://calm.geo.berkeley.edu/ncalm/ddc.html; see Wolf et al. 2016 for further details), 311 

as fixed effects in the model, but they did not perform as well as soil type. Soil type (as described 312 

above; Zarzal vs. Prieto vs. Coloso), tree size, and year were used as fixed covariates. 313 

Interannual and interspecific differences in growth were modeled using a random effect of year 314 

with species nested within. All independent covariates were scaled and centered prior to model 315 

building, and model selection was performed using AICc. Best Unbiased Linear Predictors 316 

(BULP) for the random factors were explored to look at year and species effects in relation to 317 

drought. Analyses were performed using ‘lme4’ and ‘sjPlot’ packages in R v.3.4.4 (R Core 318 

Team, 2017).  319 

Results 320 

TREE STEM GROWTH: SPECIES AND INTERANNUAL VARIATION. — Measured individual tree growth 321 

was variable over the 4-yr study period, with estimated AGRs ranging from -51 to 13 mm/yr, 322 

being negative for 26 of the 283 tree-yr, but mostly ranging from -2 to 2 mm/yr (Table S1). 323 

Absolute tree growth was not statistically different among years (ANOVA, F= 1.70, df = 3, p 324 

= .17). Early successional species, such as Inga laurina, tended to grow slightly faster than 325 

shade-tolerant species, such as Dacryodes excelsa or Maniklara bidentata (Table 1). When 326 

correlated with functional traits, four-year AGRs were weakly and positively correlated with 327 

SLA (r = 0.23), leaf P (r = 0.16), leaf N (r = 0.12). Pearson correlations with RGRs were very 328 

similar, however in addition to SLA, leaf P and leaf N, leaf C (r = 0.16) and total plant height (r 329 

= -0.14) were significantly correlated (all p values < .05). Within years, AGR-functional trait 330 

correlations differed slightly, with SLA being correlated in 2013 (r = 0.32) and 2015 (r = 0.28), 331 

and leaf P being correlated only in 2015 (r = 0.27); 2014 and 2016 had no significant correlations 332 
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between any functional traits and AGR. Despite being statistically significant these traits 333 

explained very little of the variation in growth among individual trees. For example, the strongest 334 

correlated trait over all four years was SLA with a Pearson correlation coefficient of 0.23, and 335 

thus only explained 5% of the variation in growth. Absolute growth was marginally greater for 336 

large trees than for smaller trees in non-drought years but leveled out when precipitation declined 337 

in 2014 and 2015 (Fig. S3). Generally, absolute and relative growth rates were idiosyncratic with 338 

respect to species and tree size (Fig. S4) 339 

Our analysis of the secondary metrics from Richards growth model fits across all 4 years 340 

show that the average growing season length (± standard error) was 160 ± 6 d. From 2013 to 341 

2016, it was 137 ± 11, 161 ± 12, 178 ± 13, and 156 ± 8 d, respectively (Fig. 3a). Regarding the 342 

hypotheses that the length of the growing season varied with fluctuations in rainfall, we found 343 

that the length of growing season did not vary significantly across years (F = 2.32, df =3, p 344 

= .76). Trees in the LFDP began their annual growth cycles in the first quarter of the calendar 345 

year (Fig. 3b). Watson’s test found that the distribution of the start of the growing season 346 

differed significantly from normal (Table 2). The middle of the growing season peaked between 347 

the first week in June and the first week in July (Fig. 3c) and was slightly more normally 348 

distributed (i.e., circularly uniform) than the distributions of the other either the start or end of 349 

the growing season. The end of the growing season occurred most frequently from October to 350 

early November, with about 5% of trees growing into December (Fig. 3d).  351 

SEASONALITY, GROWTH AND TREE SIZE. — The circular regressions (Fig. 4) further clarified the 352 

seasonal pattern in stem growth in relation to absolute growth (panels a-d) and tree size (panels 353 

e-h). Over the four years for which we collected data, the average day of median growth for all 354 

individuals was June 18 (ordinal date 169, Fig. 4b,f). The average ordinal date for the start and 355 
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end of the growing season were March 7 (ordinal date 66, Fig. 4c,g) and October 17 (ordinal date 356 

290, Fig. 4d,h), respectively. Length of growing season was positively related to tree AGR up to 357 

an AGR of 2.5 mm/yr, wherein the length of the growing season reached an asymptote and 358 

oscillated noisily around a growing season length of 240 d (Fig. 4a). Trees that grew more did 359 

not necessarily tend to begin growth earlier in each calendar year, or grow later into the calendar 360 

year (Fig. 4c,d). In fact, trees with a median day of growth values closer to June 18th tended to 361 

perform better (i.e., have greater growth rates) (Fig. 4c; notice how points converge toward the 362 

4-yr trend with increasing AGR). Tree size showed virtually no relationships with the model-363 

derived metrics for seasonality; that is seasonal trends were consistent across trees of varying 364 

diameter (Fig. 4e-h).  365 

INTERANNUAL VARIABILITY. — Due to the large interannual variation on rainfall during from 366 

2013-2016 (i.e., the dry year in 2014, and the severe drought in 2015), the data were well suited 367 

to examine how tree growth varied among years in relation to climate, and we did so by plotting 368 

histograms of the metrics of seasonality. The circular histogram for start of growing season had 369 

an even annual distribution within the two-week bins, illustrating little interannual variability in 370 

the start of the growing season (Fig. 3b). The day at median growth peaked between the first 371 

week in June and the first week in July and was dominated by the growth pattern of trees in 2013 372 

and 2014. The bins from April to May are almost exclusively driven by growth pattern of trees in 373 

2015 and 2016 (Fig. 3c). Similarly, during these years, the distribution for the end of growing 374 

season was shifted earlier in the calendar year. In fact, there is a clear division at the end of 375 

growing season for the severe drought year of 2015, with some trees terminating growth between 376 

June and August, and others growing to the end of the growing season in November (Fig. 3d).  377 
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 The circular regressions depict some interannual differences in the seasonal phenology of 378 

stem growth. For example, in 2016, the start of the growing season began slightly earlier, with 379 

the middle of the growing season occurring more than 38 d earlier than the 4-yr average, and the 380 

end of the growing season being nearly two months (59 d) premature (Fig. 4a-d). Many of the 381 

larger trees tracked seasonal growth phenology more closely (Fig. 4e-h). In the case of the two 382 

drought years (2014 and 2015 more so), the phenological timing of growth events tended to be 383 

delayed, tracking the cessation of drought conditions. The tree size-seasonal metric relationships 384 

differed in nature among years (Fig. 4e-h). For 2013 and 2014, the start of the growing season 385 

had a more-fluctuating relationship with tree size, whereas variation in end of the growing 386 

season was more consistent across tree size in the other years. Additionally, in 2016, 56 of 79 387 

(70% of) trees completed 90% of their total annual growth earlier than October 19th, the four-yr 388 

average for end of growing season. This took place about eighty days sooner for many of the 389 

smaller individuals (dbh < 350 mm), however, the circular regression fit for 2016 more closely 390 

resembles the four-yr average for larger trees (dbh > 350mm) (Fig. 4h). 391 

 Of the 195 tree-yrs where individuals grew well (RGR > 0.0025 mm/yr), 55% (105) 392 

occurred during the drought. Of the remaining tree-yrs where individuals grew poorly, 40% 393 

occurred in non-drought years. Results from the Chi-Squared tests showed that the number of 394 

trees that grew well (RGR > 0.0025 mm/yr) was not statistically different across all years (Χ2 = 395 

2.13, df = 3, p = .54), between drought (2014, 2015) and non-drought (2013, 2016) years (Χ2 = 396 

1.03, df = 1, p = .35), or for the severe drought year of 2015 and the other three (Χ2 = 0.011, df = 397 

1, p = 1). Therefore, the drought did not impact the trees consistently (i.e., tree growth and 398 

drought were decoupled). Some trees grew during drought years, and some did not; the same 399 

occurred for non-drought years.  400 



19 
 

Based on the visual assessment of the Richard curves over time for the 65 individuals that 401 

registered at least one year with an RGR > 0.0025 mm, 22 were unaffected by the drought with 402 

no post-drought growth response, 14 were unaffected by the drought but had increased growth 403 

following the drought, 10 were negatively affected by the drought with no post-drought growth 404 

response, 11 were negatively affected by drought and had a post-drought increase in growth, six 405 

were positively affected by drought (i.e., had increased growth during the drought), and two were 406 

dying (Table 3). Analysis of variance followed by a Tukey HSD test showed no statistical 407 

difference between tree size for the six groups (F = 1.25, df = 6, p = .29). We conducted eight t-408 

tests to assess size differences between trees unaffected, negatively affected, and positively 409 

affected by drought and trees with or without a growth response. The only statistical difference 410 

detected was between trees unaffected by drought, either with or without a post-drought growth 411 

response (i.e., between growth classifications 1 and 2, see Table 3). Trees that grew more post-412 

drought were smaller (t = 2.25, df = 34, p = .015), however trees that were larger were not more-413 

negatively affected by drought (t = 0.37, df = 55, p = .35).  414 

SPECIES-RESPONSES. —Results from the linear mixed-effects model confirmed that in 2016 trees 415 

that grew, grew slightly more than in the previous years (p < .05, Table S1, Fig. 5). Furthermore, 416 

large trees tended to grow less across all years (tree size effect on AGR = -0.05, p < .01, Fig. 5, 417 

Table S1). Growth rates of trees that grew in 2014 and those that grew in 2015 were comparable. 418 

Growth on Prieto soil was highly variable, but the Zarzal soil type had a negative effect on tree 419 

growth (p < .01, Fig. 5, Table S1). Within the above described interannual dynamics of tree 420 

growth, slight intraspecific differences in AGR over the four-yr period were observed along 421 

species life-histories. The 2015 drought affected species consistently, in terms of their stem 422 

growth (Fig.6). However, the two species with most negative BULP for the random intercept for 423 
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species in normal years (i.e., Inga laurina, and Guarea Guidonia), exhibited the most positive 424 

effect in 2016, the year post-drought (Fig. 6). In other words, species that grew well in 2013 and 425 

2014, grew more poorly following drought in 2016 and vice versa. These trends are subtle and 426 

rarely statistically significant (i.e., most of the BLUP confidence intervals intersect the zero-427 

effect line, Fig. 6).  428 

Discussion 429 

Patterns of tree growth at Luquillo are seasonal and vary inter-annually with rainfall, with 430 

drought increasing seasonal variability.  We frame our discussion on interannual trends in the 431 

tree growth of the Luquillo everwet forest in relation to the timing of stem growth, the variability 432 

in that dynamic attributable to environmental differences and growth difference by tree size. 433 

Wagner et al. (2016) found that sites lacking a dry season, like Luquillo, were outliers in their 434 

analyses of precipitation controls on wood production in tropical forests. In very wet tropical 435 

forests, stems can be subject to waterlogging, which results in cambial dormancy during the 436 

wettest periods of the year when the soil is water-saturated (Schöngart et al. 2002). Absolute 437 

growth rates of trees measured were comparable to other Caribbean montane forests (Bellingham 438 

& Tanner 2000), and lower than typical Neotropical lowland forest (Lieberman & Lieberman 439 

1987, Clark et al. 2003).  440 

 A significant limitation of the use of dendrometer bands is the inability to separate wood 441 

production from incremental increases in stem diameter (Keeland & Sharitz 1993, Stahl et al. 442 

2010). At the scale of our dendrometer measurements, diurnal fluctuations in stem water 443 

potential were consistent and thus negligible (Baker et al. 2003). However, several trees showed 444 

significant stem shrinkage in response to dry environmental conditions (see table S1, supplement 445 

1), reflecting atmospheric and soil moisture deficit (Stahl et al. 2010, Uriarte et al. 2016, 446 
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Bretfield et al. 2018). The degree to which individual stems shrunk during drought varied, and 447 

was greatest for Manilkara bidentata, a Sapotaceae with thick bark and a corky periderm 448 

(Keeland & Sharitz 1993, Table S1). We are still confident that we have measured variation in 449 

stem wood production because changes in stem diameter of angiosperm trees can be compared to 450 

that of a tree fern Cyathea arborea (see tree 74, CYAARB in supplement 1), which decreased in 451 

stem diameter 0.4 mm over the 4-yr study period. Thus, in the absence of wood production, stem 452 

shrinkage due to decreases in stem water potential for these data are estimated to occur at a 453 

maximum rate of 0.1 mm/yr. 454 

THE TIMING OF STEM GROWTH AT LUQUILLO. — From 2013 to 2016, eighty percent of tree growth 455 

occurred in two-thirds (66.8% or 244 d) of the calendar year between March 7 and October 16 456 

(Figs. 3 & 4). Stem growth increased in the summer months, peaking at June 15th (Fig.3), which 457 

corresponds to the temporal onset of sap flow increase in the trees (Warren 2009), slightly 458 

warmer temperatures, the maximum of total solar irradiance in the environment (Fig. S1, 459 

Zimmerman et al. 2007), the peak in leaf flush (Angulo-Sandoval & Aide 2000) and total forest 460 

litterfall (Zalamea & González 2008). Therefore, like the reproductive phenology of the forest 461 

(Zimmerman et al. 2007), the allocation of resources to stem growth by trees is mildly seasonal. 462 

Rainfall at Luquillo is uniformly distributed throughout the year (Fig.1), so seasonal patterns in 463 

stem growth cannot be explained by variation in precipitation.  464 

The circular statistical tests (Table 2) showed that the onset of the growing season in 465 

February was the most-synchronous among trees in the community, differing statistically from 466 

circular uniformity. This is probably due to the peak in total solar radiation (Zimmerman 2007) 467 

at the site which cues allocation to radial mainstem growth. Growing season midpoint and 468 

conclusion were marginally statistically different from circular uniformity and had greater 469 
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variability among individuals and years. Thus, trees in the forest synchronize when they start 470 

growing, but when they stop growing and how much they grow is related to tree size, access to 471 

resources, and the allocation of resources to other needs (e.g., defense, root and leaf production, 472 

or storage) (Chapin et al. 1990, Mahli et al. 2011, McMurtrie & Dewar 2013, Doughty et al. 473 

2014). Tree growth and net primary production have been shown to have a seasonal dynamic in 474 

other aseasonal, wet tropical forests, with total production varying with soil type, moisture, and 475 

fertility (Koh et al. 2013). 476 

DROUGHT EFFECTS ON STEM GROWTH & INTERSPECIFIC VARIABILITY. — Across and within years, 477 

not all trees grew; many individuals had no change in stem diameter or had stem shrinkage (see 478 

Fig. S4, supplement 1). Contrary to the hypothesis that drought would shorten the growing 479 

season, drought increased the variability in growing season length (Figs. 3, 4, 5). Hulshof et al. 480 

(2012) reported comparable results for a common tree in the dry forests of Costa Rica, where 481 

precipitation was decoupled from stem growth. The species at Luquillo that did not grow or had 482 

stem shrinkage tended to have conservative leaf traits associated with shade-tolerant species, 483 

(i.e., low leaf N, low SLA). Species with conservative leaf traits also grew slower (Table 1) 484 

(Poorter 1989) and experienced less of a post-drought increase in growth (Fig. 5), although these 485 

effects were weak and rarely statistically significant, because differences in data are at most a 486 

few mms in stem growth/yr.  487 

Growing season metrics estimated from the Richards growth curves varied across years 488 

and tended to be less consistent during drought, with increased variability in growing season 489 

length during 2015 (Fig. 3a). However, in 2016, most individuals had a shortened growing 490 

season (Fig. 4d,h), and experienced more overall growth as illustrated by the positive effect of 491 

2016 in the mixed-effect model (Fig 5, Table S1). This suggests that the effects of drought can 492 
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continue after drought conditions have subsided, with the frequency and severity of drought 493 

being important determinants of longer-term tree growth and ecosystem functioning (Anderegg 494 

et al. 2013, McDowell et al. 2018b). The drought of 2015 was the first severe drought since 1994 495 

(Larsen, 2000), provoking the question of species resiliency to drought and whether the trees 496 

studied herein were adapted to drought (see Mitchell et al. 2016) 497 

DROUGHT AND THE ABIOTIC ENVIRONMENT. — We tested for topographic effects using landscape 498 

slope and curvature (at the 23m scale), but results were inconclusive, most likely because of a 499 

small sample size (<100 trees). The three soil main soil types within the plot at Luquillo, Zarzal, 500 

Cristal, and Prieto (Mount & Lynn 2004 Thompson et al. 2002), represent a gradient from 501 

greatest to least water storage capacity, increasing amounts of available soil oxygen, and are 502 

weakly correlated with topography (Silver et al. 1999). Therefore, the fine Zarzal clays likely 503 

hold the available soil water more tightly, requiring a more negative plant water potential to 504 

extract a given quantity of water from the soil, which is one explanation for the negative effect of 505 

Zarzal soils in the linear mixed-effects model (Fig. 5). Future research directions could 506 

investigate the interaction of soil type (i.e., soil particle size) and drought to reveal if trees 507 

growing on Zarzal soils at Luquillo experience greater degrees of drought stress. During the 508 

roughly five-month drought in 2015, soils dried substantially (a 63% decline from >0.4 to <0.2 509 

soil moisture fraction) in ridge and slope habitats, and recovery of soil moisture took an 510 

additional 3 months following rewetting (O’Connell et al. 2018). A negative effect for tree size 511 

was also observed in the linear mixed-effects model (Fig. 5). In general, assessing how absolute 512 

growth rates of trees vary with tree size is complicated and depends on the metrics and statistical 513 

methods used (Das 2012, Stephenson et al 2014). Over four-years at Luquillo, our modeling 514 

approach shows that tree growth rates slowed as trees became larger. We had insufficient data to 515 
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fit a model with a year times size interaction term because we had very few large individuals and 516 

not for all species, so we could not directly model whether larger trees grew less during the 517 

2015-16 El Niño drought than in the previous years.   518 

A 350% increase in litterfall was recorded as the drought intensified (i.e., mid-May 2015, 519 

Fig. 1) (Fig. S5), and 30% decrease in the annual growth of the 1000 largest trees in the LFDP 520 

(Feng et al. 2017). As a drought avoidance strategy (Santiago et al. 2016, Wolfe et al. 2016), the 521 

litterfall event occurred in two stages, first with canopy trees abscising leaves in May and later 522 

shedding branches and portions of the canopy in September (Fig. S5). Shedding branches and 523 

portions of the canopy was observed during the 2015-16 extreme El Niño drought in the 524 

Amazon, as well (Leitold et al. 2018). Considering this, the early termination of stem growth in 525 

2016 likely reflects investment in other physiological processes such as the production of new 526 

branches, leaves, and roots (Mahli et al. 2011, Doughty et al. 2014) or replenishment of stored 527 

carbohydrate reserves (Würth et al. 2005, Sala et al. 2010). These processes occur to a greater 528 

degree in larger trees that are more affected by drought (Bennett et al. 2015, Rowland et al. 529 

2015).  530 

DIFFERENTIAL DROUGHT EFFECTS BY TREE SIZE: THE ROLE OF SMALLER TREES IN TROPICAL FOREST 531 

DROUGHT RESILIENCE. — What is arguably more important for predicting dynamics of tree 532 

growth in tropical forests under climate change is how tropical trees respond to increased 533 

precipitation variability and drought (Feng et al. 2013, Adams et al. 2017, McDowell et al. 534 

2018a, 2018b). Interestingly, several small trees (dbh < 200mm) showed increased growth 535 

during drought, which points to a release from light limitation, due to thinning in the canopy as a 536 

result of drought.  The only significant t-test of the eight conducted that comparted tree sizes 537 

among the six growth classifications (Table 3) was between trees with no visible effect of 538 
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drought in their diameter timeseries, and with differing growth trajectories following drought.  539 

This result should be interpreted with caution because of the multiple comparisons being made.  540 

Yet, Uriarte et al. (2016) found that drought reduced the growth of large trees and favored the 541 

growth of smaller trees in 8 plots of varying forest age in Costa Rica using 15-years of data. This 542 

dynamic was meditated by functional differences among species, where greater wood specific 543 

gravity improved drought survival in large trees, while species with lower wood specific gravity 544 

had higher growth potential during drier conditions (Uriarte et al. 2016, Zuleta et al. 2017). It 545 

can be explained by a trade-off in hydraulic efficiency and hydraulic safety, in that species with 546 

less-dense wood have higher rates of transpiration and smaller hydraulic safety margins 547 

(Santiago et al. 2004, Santiago et al. 2010, Choat et al. 2012, Bartlett et al. 2018). Furthermore, 548 

in response to the 2015 El Niño drought, Bretfield et al. (2018) showed that, in Panamian forests, 549 

forest successional status (i.e., forest age) does, indeed, influence forest-wide drought tolerance.  550 

They measured greater sap flow velocities increases in older forests than younger ones under 551 

drought conditions, leading them to conclude that the physiological-transpiration interface, under 552 

drought, shifts from the plant-soil boundary to the canopy-atmosphere boundary with forest 553 

succession.  554 

The lower evapotranspirative demand of smaller, sub-canopy trees also means they are 555 

generally less affected by the drought in the first place (Santiago et al. 2004, Kempes et al. 2011, 556 

McDowell & Allen 2015, Wolfe et al. 2016, McDowell et al. 2018b, Xu et al. 2018) allowing 557 

them to take advantage of an increase in light and grow well in the year following the drought. 558 

Such ontogenetic differences illustrate the need to better understand the interplay between 559 

individuals, ontogenies, and physiology in terms of resource allocation and growth for tropical 560 

trees in the context of drought and global change (Uriarte et al. 2016, McDowell et al. 2018b).  561 
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A recent study that measured non-structural carbohydrate stocks in leaves and stems of 23 tree 562 

species along a rainfall gradient in Panama during the 2015-16 El Niño drought (Dickman et al. 563 

2018), found them to be largely unrelated to metrics of drought stress (e.g., differences in pre-564 

dawn and mid-day water potentials) leading them to conclude that a high degree of homeostatic 565 

regulation exists. They did find interspecific variation in leaf and stem non-structural 566 

carbohydrate stocks along axes of life history variation (i.e., leaf and wood carbon investment), 567 

and an increase in starch content relative to soluble sugar contents with increasing dry period 568 

length. Taken in context, our results suggest that drought potentially acts as a mechanism 569 

alleviating growth suppression of juveniles, which is strong in moist tropical forests (Brienen et 570 

al. 2010). This could be due to the ability of smaller trees to continue to produce and use soluble 571 

sugars during dry periods.  Lastly, the drier year of 2015 interacted subtly with species life-572 

histories (Fig. 6). More resource-acquisitive species tended to grow slightly better after the 573 

drought year of 2015, while resource-conservative species grew more poorly, a reversal from the 574 

wetter years of 2013 and 2014 (Poorter 1989, Santiago et al. 2004). These effects were 575 

confounded by the size effects because many of the intermediate-sized trees in this study were on 576 

the resource-acquisitive end of the plant economics spectrum (Table 1).   577 

Conclusion 578 

 We used fine-scale tree growth measurements to shed new light on variability in growth 579 

and shifts in phenology during and following drought in a wet tropical forest.  These results are 580 

consistent with the predicted effects on vegetation and the projections of a regionally-581 

downscaled climate model for the El Yunque. Khalyani et al. (2016) predict an upslope 582 

migration of the wet forest life zone, given increasing frequency of drought. This could 583 

potentially be a consequence of decreased growth and reproduction of individuals in the wet 584 
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forest life zone given an increase in the frequency and intensity of drought stress. We show that 585 

drought increased the variability in stem growth cycles for the wet forest tree community, and 586 

this may preferentially affect shade-tolerant, dense-wooded species with low growth rates. 587 

Secondly, in the Ecosystem Demography model parameterized by Feng et al. (2017), a 30% 588 

drought frequency interacted with the climate warming scenario as a key determinant of the 589 

positive to negative switch in forest productivity. Over the twentieth century, droughts have 590 

occurred at a tenth of that frequency, with three severe droughts similar to the 2015 El Niño 591 

event affecting Puerto Rico (Larsen 2000). If droughts do occur more frequently in the near 592 

future, reduced growth of many dense-wooded species coupled with a major increase in leaf 593 

litterfall (including coarse woody material), could potentially drive the modeled flip in the total 594 

forest carbon balance (Feng et al. 2017). 595 
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Tables:  957 

Table 1: Average tree size (dbh: diameter at breast height) and growth (AGR: absolute growth rate, RGR: relative growth rate), for 72 958 

individuals of 12 species that grew (AGR > 0) in the Luquillo Forest Dynamics Plot from November 2012 to November 2016.  959 

Code Species Tree-
yr 

Mean dbh 
(± SE) 
(mm) 

Mean AGR (± 
SE) (mm/yr) 

Mean RGR(± SE) 
(%/yr) 

ALCFLO Alchorneopsis floribunda (Benth.) 
Müll  

6 185 ± 18 2.55 ± 0.70 0.0162 ± 0.0049 

ALCLAT Alchornea latifolia Sw. 8 217 ± 47 2.75 ± 0.66 0.0156 ± 0.0055 
CALCAL Calophyllum antillanum Britton  5 342 ± 28 1.59 ± 0.48 0.0049 ± 0.0016 
CASARB Caseria arborea (Rich.) Urb. 33 145 ± 8 1.95 ± 0.22 0.0143 ± 0.0017 
DACEXC Dacryodes excelsa Vahl 47 290 ± 12 1.52 ± 0.12 0.0056 ± 0.0005 
DENARB Dendropanax arboreus (L.) Decne. 

& Planch. 
4 192 ± 2 3.67 ± 0.54 0.0189 ± 0.0028 

GUAGUI Guarea guidonia (L.) Sleumer 16 289 ± 21 3.49 ± 0.71 0.0125 ± 0.0024 
GUTCAR Guatteria caribaea Urb.  6 166 ± 24 3.54 ± 0.87 0.0199 ± 0.0028 
INGLAU Inga laurina (Sw.) Willd. 19 171 ± 12 4.25 ± 0.87 0.0234 ± 0.0044 
MANBID Manilkara bidentata (A. DC.) 

A.Chev. 
18 170 ± 14 1.70 ± 0.29 0.0115 ± 0.0022 

MELHER Meliosma herbertii Rolfe 5 149 ± 11 1.00 ± 0.34 0.0062 ± 0.0020 
SLOBER Sloanea beteroana Choisy ex DC. 13 220 ± 27 2.76 ± 0.59 0.0126 ± 0.0023 

960 
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Table 2: Circular statistical tests for the seasonal metrics derived from Richards curve fits for 80 trees from 2013-2016 at Luquillo, 961 

Puerto Rico. See Fig. 2 for seasonal metric descriptions and circular distributions of data. Statistically significant p-values are bolded.  962 

 963 

₳ Kuiper’s V critical value for α = .05 is 1.747 964 
₤ Watson’s U2 critical value for α = .05 is 0.187 965 
₡ Rao’s U critical value for α = .05 is 140.57 966 
  967 

metric 
Rayleigh’s Z Kuiper's V  Watson's U2 Rao's U 

Test 
Statistic 

p-
value 

Test 
Statistic₳ 

p-value 
Test 

Statistic₤ 
p-value 

Test 
Statistic₡ 

p-value 

Start of growing 
season 0.110 0.039 1.745 0.05 < x < 0.10 0.201 0.025 < x < 0.05 185.774 < 0.001 

Middle of growing 
season 0.103 0.060 1.743 0.05 < x < 0.10 0.173 < 0.10 168.089 < 0.001 

End of growing 
season 0.094 0.098 1.425 > 0.15 0.156 0.05 < x < 0.10 160.420 < 0.001 
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Table 3: Table of growth classifications for 65 individual trees from the Luquillo Forest Dynamics Plot, Puerto Rico, which grew in at 968 

least one year (AGR > 0).  Tags are listed for reference and comparison to supplement 1, which contains tree diameter time series and 969 

Richards curve fits.  An average of individual tree size using the starting diameter for each of the 4-years of measurements was used 970 

for the average size by growth classification.  Letters following average sizes denote no statistical differences among groups using a 971 

single-factor two-way ANOVA with post-hoc Tukey HSD test.   972 

Growth classification N Tree tag numbers† Average size (mean 
dbh ± standard 
error, mm)  

1) unaffected by drought, no post-
drought growth response 

22 105159, 123839, 125584, 12997, 16345, 16348, 
16826, 17456, 18385, 18621, 19012, 24120, 28638, 
3502, 37823, 43232, 4531, 4548, 4953, 5507, 
61542, 78229 

257 ± 20a* 

2) unaffected by drought, post-drought 
growth response 

14 105170, 106782, 106792, 12961, 1470, 1476, 
16330, 19011, 42889, 4970, 68013, 79274, 79307, 
96326 

187 ± 22a* 

3) negatively affected by drought, no 
post-drought growth response 

10 103861, 14699, 16761, 17284, 17310, 28364, 
29003, 4502, 48829, 68097 

220 ± 38a 

4) negatively affected by drought, 
post-drought growth response 

11 16827, 16828, 17317, 21970, 3956, 4557, 5516, 
5555, 68005, 68585, 69190 

218 ± 33a 

5) positively affected by drought 6 111812, 112715, 13906, 17901, 17903, 4934 179 ± 24a 
6) dying 2 1512, 4954 186 ± 6a 

†see supplement 1 973 
* statistical difference 2-tailed T-test between groups 974 
  975 
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Figure Legends 976 

Figure 1: a) Walter climate diagram for El Verde, Puerto Rico, using temperature and 977 

precipitation data from 1990-2016. The temperature curve is shown in red, and the precipitation 978 

curve in blue. The shaded blue areas show months of precipitation surplus (i.e., exceeds 979 

100mm). b) Monthly precipitation matrix plot for the years when fine-scale tree growth data 980 

were collected (2013-2016). Color shade corresponds to total monthly precipitation with red 981 

boxes indicating drier months. The mean monthly precipitation from 1990-2016 was 305 mm; 982 

months with 281-313 mm of precipitation are colored gray. 983 

Figure 2: Two examples of tree diameter time series: tree diameter a breast height (DBH) in 984 

millimeters over time, with annual Richards curve fits (green lines). a) a Dacryodes excelsa Vahl 985 

(Burseraceae), shows no change in stem diameter under meteorological drought, whereas the 986 

bottom tree, a Calophyllum brasiliense Cambess (Calophyllaceae), experiences drought-related 987 

stem shrinkage. Stem diameter time series plots along with model fits for all individuals can be 988 

found in supplement 1.  989 

Figure 3. Distributions of tree growth metrics. (a) Histogram of the 80th percentile of growing 990 

season length. Circular histograms of (b) the ordinal date at 10% annual growth (start of growing 991 

season), (c) the ordinal date at median annual growth (middle of growing season), and (d) the 992 

ordinal date at 90% annual growth (end of growing season). Data are derived from Richards 993 

curve fits for 94 trees in the Luquillo Forest Dynamics Plot measured for a total of 316 tree-yrs. 994 

Histogram bins are 7 d for (a) and 14 d for (b-d).  995 

Figure 4: Nonparametric circular regression plots for the four seasonality metrics derived from 996 

growth model fits; growing season length (a,e), start of growing season (c,g), median day of 997 

growth (b,f) and end of growing season (d,h). Circular response variables (y-axis) are in ordinal 998 
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date (b-d and f-h), or the number of ordinal days in the case of growing season length (a,e). 999 

Absolute growth rate (AGR) (a-d) and tree size (e-h) are the linear covariates (x-axes).  1000 

Figure 5: Standardized effect size for fixed-covariate relationships with absolute growth rate of 1001 

72 trees from 2013-2016. Points are mean parameter values and lines are 95% confidence 1002 

intervals. Effect magnitude is printed above the points with asterisks denoting statistical 1003 

significant (one for α = .05 and two for α = .01). The first level of factors, in this case, Cristal 1004 

soil and 2013, correspond to the model Intercept term. See Table S2 for model statistics.  1005 

Figure 6: Standardized effect size (dots are means and lines are 95% confidence intervals) of 1006 

year on tree growth. Best Unbiased Linear Predictors (BULP) for random slopes for species with 1007 

year as random intercept, demonstrating in the interspecific variability in absolute growth rate 1008 

across years. Species code abbreviations correspond to Table 1. See Table S2 for a complete 1009 

table of model coefficients and a statistical summary.  1010 

SUPPLEMENTS (1):  1011 
Supplement 1: Dendrometer time series and Richards curve fits for all 96 individuals fit with 1012 
dendrometer bands in the Luquillo Forest Dynamics Plot and measured from 2013-2016.  Red 1013 
shading delimits the 2015 El Niño drought (May-December).   1014 
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