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Summary  

Soil organic matter (SOM) is a major ecosystem component, central to soil fertility, carbon 

balance, and other soil functions. To advance SOM modelling, we devised a steady-state 

model of topsoil SOM, with explicit descriptions of physical states and properties, and used it 

to simulate SOM concentration, carbon:nitrogen:phosphorus (C:N:P) stoichiometry, bulk 

density, and radiocarbon content. The model classifies SOM by element stoichiometry 

(±SOM is poor in N and P, ² SOM is rich), mean residence times (1–2000 years), and 

physical state (free, occluded, adsorbed, hypoxic). The most stable SOM is either ² SOM 

preferentially adsorbed by mineral matter, or ±SOM in strongly hypoxic zones. Soil 

properties were simulated for random combinations of plant litter input (amount and C:N:P 

stoichiometry), mineral sorption capacity, propensity for hypoxia, and bulk density of non-

adsorbed ±SOM. To optimize model parameters, outputs from 5000 simulations were used to 

construct bivariate relations among soil variables, which were compared with those found in 

data for 835 survey sites, covering all common land uses. The bivariate relations, and patterns 

of data scatter, were reproduced, and also variations in soil radiocarbon with soil type, 

suggesting that apparent scatter in measured data might reflect SOM diversity. The temporal 

acquisition by soil of ‘bomb 14C’ could also be simulated. The steady-state model is the basis 

for a dynamic version, suitable for simulating changes in SOM through time. It provides 

insight into the possible manipulation of SOC sequestration; for example increasing litter 

inputs might only increase moderately-stable SOC pools, while encouraging the creation of 

² SOM by adsorption to mineral matter from deeper soil could lead to long-term stabilization. 
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Highlights 

 Models of SOM should include explicit descriptions of physical states and 

properties. 

 Our new topsoil SOM model is constrained by C:N:P stoichiometry, SO14C, and 

physical fractionation data. 

 Simulated soil properties, randomly generated, account for measured trends and 

patterns of scatter in SOM data. 

 SOM properties depend upon litter input, interactions with mineral matter, 

hypoxia, and bulk density.  
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Introduction 

The organic matter of topsoils comprises plant litter and its products in various stages of 

decomposition and conversion, and in different physical forms, a complex dynamic system 

(Christensen, 2001). Understanding and quantification of this system, its relationships to 

wider ecosystem conditions, and responses to environmental change, are necessary for 

management and prediction for agriculture, carbon storage and ecosystem conservation. An 

important part of the process is the incorporation of empirical research results and new 

conceptual insights into models. In turn, model outputs can provide further insights, suggest 

new experiments, and simulate changes at larger spatial and longer temporal scales. 

The most well-established, widely-used and influential quantitative models of soil 

organic matter (SOM), Roth-C (Jenkinson & Rayner, 1977) and Century (Parton et al., 1988), 

are based on organic matter pools and their first-order turnover rates, and were designed for 

the simulation of mineral topsoils, primarily agricultural. As more research has been 

conducted, and new theories developed, the absence of specific mechanisms in these models 

has become increasingly apparent. In a recent review, Campbell & Paustian (2015) 

considered how analytical and conceptual advances could be used to improve model realism. 

In terms of the soil processes that are responsible for storing and stabilizing SOM, they drew 

attention to protection against microbial attack by either occlusion in microaggregates or 

adsorption to mineral surfaces (Six et al., 2002; von Lützow et al., 2006; Kögel-Knabner et 

al., 2008). They noted the trend towards disregarding ‘humification’ reactions supposed to 

render SOM chemically recalcitrant (Schmidt et al., 2011; Dungait et al., 2012; Lehmann & 

Kleber, 2015). However, they questioned whether the explicit modelling of microbes, which 
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is strongly favoured by some authors (e.g. Cotrufo et al., 2013; Wieder et al., 2015), is 

appropriate for longer-term models, primarily because of the lack of input data. Although 

parameterized modelling of aggregate formation was reported by Segoli et al. (2013) for use 

in incubation studies, and relatively complicated parameterized models with explicit 

simulation of adsorption alone (Hassink & Whitmore, 1997; Michalzik et al., 2003; Ahrens et 

al., 2015), or adsorption and aggregate formation (Mazzoleni et al. 2012), have been 

developed, suitable representations of these processes in a new generation of widely-

applicable models are awaited. Some recent thinking about SOM is included in a new 

conceptual model put forward by Abramoff et al. (2018), which has five, measurable, soil 

carbon (C) pools (particulate, low molecular weight, aggregated, mineral-associated, and 

microbial), but this model has yet to be quantitatively implemented.  

The foregoing summary refers largely to aerobic mineral soils, with C concentrations 

typically less than 10%. In less aerobic soils, an additional stabilization mechanism operates, 

exclusion of the oxygen required for mineralization (Schimel et al., 1994; Keiluweit et al., 

2017). The occurrence of hypoxia because of excess rainfall, or poor drainage, or both, is 

implicit in models of peat formation (Frolking et al., 2001; Heinemeyer et al., 2010), and in 

the ECOSSE model, developed by Smith et al. (2010) from RothC and DAISY (Bradbury et 

al., 1993). A complete approach to SOM modelling requires both aerobic (or mineral) and 

hypoxic (or organic) soil properties to be simulated. 

The focus in SOM models, conceptual and quantitative, is very much on C. Thus, the 

reviews by Campbell & Paustian (2015), Stockman et al. (2013), Luo et al. (2016) and the 

new model of Abramoff et al. (2018) hardly mention nitrogen (N) and phosphorus (P), and 
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although both N and P are included in Century, ECOSSE and N14CP (Davies et al., 2016), 

they are forced to follow C. Consequently, the important role of N in SOM stability (Knicker, 

2011) is disregarded, and the same might apply also to P. That N and P may provide valuable 

modelling constraints is shown by the recently demonstrated systematic relations involving 

C, N, P and sulphur (S) in SOM (Tipping et al., 2016). An important finding was that N:C, 

P:C and S:C ratios are largest at small C concentrations, where soil mineral matter is most 

dominant, leading to the conclusion that mineral matter selectively adsorbs organic molecules 

that on average are rich in N, P and S, in accord with ideas advanced by Kleber et al. (2007) 

and Knicker (2011). Density fractionation results also point to large N:C and P:C ratios in 

mineral associated OM (Schrumpf et al., 2013; Adams et al., 2017). 

To address the issues described above, we developed a new steady-state model in 

which stoichiometrically-differentiated topsoil SOM exists in different physical states: free 

(unprotected), occluded in aggregates, competitively adsorbed, and in hypoxic zones. We 

carried out parameterization and testing using field data from surveys of 835 British soils at 

sites with land uses covering arable agriculture, intensive pasture, upland grazing, woodland 

and peatland, and including almost 100 measurements of bulk soil radiocarbon (14C). The 

main aim was to evaluate how well the model could account simultaneously for C, N and P 

pools and concentrations, N:C and P:C ratios, and 14C values, with physically realistic 

processes, parameters and controlling variables such as litter input and mineral matter 

properties. We used the results to consider how a corresponding dynamic model could be 

developed, and the implications of the findings for promoting soil C storage.  
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Model description 

We use SOC, SON and SOP to refer to specific elements, and SOM more generally. Pools 

are expressed as gC m-2, gN m-2 and gP m-2, concentrations of SOC, SON and SOP are in % 

(g 100g-1), fluxes in g m-2 a-1. For soils with an O horizon, we include it as part of the topsoil, 

rather than considering just the mineral soil, as is sometimes done (e.g. Crow et al., 2007; 

Schrumpf et al 2013). 

The postulated pools and fluxes of SOC are shown in Figure 1, for mineral and 

organic soils, which are treated separately here for clarity. The mineral soil model is a 

simplification of the conceptual model of Six et al. (2002), including stabilization by 

occlusion (i.e. within microaggregates), and by adsorption, but disregarding the concept of 

stabilization through chemical recalcitrance. In the organic soil model, SOM is stabilized 

both by adsorption and by existing in weakly- or strongly-hypoxic zones, SOMhypox1 and 

SOMhypox2, respectively, but not by occlusion. There are two stoichiometric types of SOM 

and adsorbable dissolved organic matter (DOM); the ± form is relatively poor in N and P, the 

²  form relatively rich. The ±SOM is present in SOMfree (unchanged plant litter), in SOMocc, 

SOMhypox1 and SOMhypox2, and in adsorbed states, whereas ² SOM exists only in mineral-

adsorbed forms. Having the same stoichiometry for ±SOM and ±DOM is a simplification 

used for the present analysis. Apart from the fluxes of adsorbable DOC, losses of C from the 

soil pools are considered to be losses from the system (indicated by horizontal arrows in 

Figure 1), as either CO2-C or DOC, i.e. there is no recycling of desorbed DOC. Excess (not 

adsorbed) DOC is also lost from the system. 
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As well as being quantified in terms of mass (gC m-2 and g mineral matter (MM) m-2), 

the soil constituents are quantified by volume (cm3 m-2), related to the mass pools by the bulk 

densities (g cm-3) of the individual components. Occluded and adsorbed SOM are assigned 

the same bulk density (ρocc,ads); SOMfree, SOMhypox1 and SOMhypox2 have a separate value 

(ρfree,hypox). The value of ρMM is assumed to be the same for all mineral matter.  

Model equations (see Supporting Information) describe the following features: 

(1) Outputs of SOC from the model pools are governed by rate constants for first-

order loss, e.g. kfree (Table 1). For four of the model pools (Figure 1), outputs of OC are 

partitioned into two, three or four different forms; in these cases the sum of the fluxes equals 

the total first-order loss flux from the parent pool. 

 (2) In mineral soils, the fraction of the ±SOCfree loss flux that transforms to ±SOCocc 

depends upon the clay content of the soil (cf. Six et al., 2002). The model does not use 

mineral textural properties explicitly; as a proxy for clay content we use the product of the 

total SOC adsorption capacity, σMM, and the MM pool. This assumes that the greater the 

amount of clay in the soil, the greater will be its adsorption capacity. 

(3) Organic soils have varying amounts of hypoxically-protected ±SOM that 

decomposes slowly because of restricted oxygen supply. Type 1 hypoxia is less intense than 

type 2. The transfers of ±SOMfree to ±SOMhypox1 and ±SOMhypox2 depend on the volume of 

soil that can potentially become hypoxic (Vhypox,pot). A maximum volume, VSOM_hypox1,max, that 

can be occupied by ±SOMhypox1 is defined, and if this equals or exceeds Vhypox,pot then only 

±SOMhypox1 can exist. Otherwise, any volume remaining, i.e. (Vhypox,pot – VSOM_hypox1,max), is 

occupied by ±SOMhypox2, subject to the availability of ±SOMfree. 
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(4) A fraction of the loss from SOMfree, SOMocc, SOMhypox1, and SOMhypox2 comprises 

±DOM and ² DOM. Both DOM forms can adsorb to MM, depending upon the size of the 

MM pool and its complement of sorption sites. The sorption sites comprise two classes, 

strong and weak, to account in a simple way for surface heterogeneity. A key assumption of 

the model is that ² DOM is preferred over ±DOM by the strong adsorption sites. If the 

sorption sites are insufficient to take up all the DOM, there is an excess flux of ±DOM and/or 

² DOM (Figure 1).  

(5) For comparison with density fractionation results for mineral soils, the SOMfree 

pool is equated with the free light fraction, fLF, and the aggregate-protected pool with 

occluded LF, oLF (see e.g. Schrumpf et al., 2013). Thus the amount and composition of the 

total LF are obtained from the sum of ±SOMfree and ±SOMocc. The heavy fraction (HF) SOM 

comprises ±SOMwkads, ² SOMwkads, ±SOMstrads and ² SOMstrads. 

(6) Radiocarbon contents of the different SOM pools in a given year are obtained 

from their loss rate constants, the atmospheric 14C signal, and a steady-state turnover model 

(Mills et al., 2014). Variations in 14C reflect radioactive decay, which depends on the 

turnover of longer-lived pools, and the acquisition by photosynthesis and litter production of 

‘bomb carbon’ from atmospheric thermonuclear weapons testing during the mid twentieth 

century. For simplicity, we assume that all plant litter is produced during the same year as 

photosynthetic uptake, disregarding any longer-term storage of 14C in plant tissues, e.g. roots 

and tree twigs. Except during the period around the atmospheric ‘bomb C’ peak (1960-1975), 

for which no soils data were used in this work, we estimate that such storage would alter 

simulated topsoil 14C values by less than ±2.0 percent modern absolute (pMC), more 
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typically by less than ±1.0 pMC. Such discrepancies can be considered negligible compared 

to the ranges of values of SO14C in our data. Account is taken of the passage of some SOM 

though more than one pool (Bruun et al., 2004), which means that the DOM forms released 

from SOMfree, SOMocc, SOMhypox1, and SOMhypox2 differ in their 14C contents when adsorbed 

by MM. The 14C contents of bulk soil, LF and HF are obtained from the proportions of the 

contributing pools.   
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Methods 

Soils data 

Soil survey data for Great Britain were taken from Emmett et al. (2010) and Toberman et al. 

(2016). Measured topsoil (15 cm depth) variables used for modelling comprised %OC, % 

total N, %OP and bulk density. Organic N was approximated as total measured N, which is 

on average 95% organic N (Schulten & Schnitzer, 1998). Additional variables calculated 

from the measured data were C, N and P pools and N:C and P:C ratios. In all, 835 field sites 

were sampled, although only for the 65 sites sampled by Toberman et al. (2016) did the data 

include %OP. We used density fractionation data for British soils from Adams et al. (2017). 

Radiocarbon data were taken from results for samples collected in 2007 (Mills et al., 

2014) and 2013 (Toberman et al., 2016), and assumed to apply to the intermediate year, 

2010. An approximate average value of 110 pMC for topsoil 14C in 1980 was taken from the 

global (mostly North American) compilation of Harrison (1996); the need for temporally-

separated 14C values arises because the model ought to produce an upturn and subsequent 

decline in soil 14C in response to the input of ‘bomb’ radiocarbon in the mid twentieth century 

(Harrison, 1996; Jenkinson et al., 1992; Tipping et al., 2010). The 65 samples from 

Toberman et al. (2016) were tested for the presence of charcoal and coal, negligible amounts 

being found. The Mills et al. (2014) samples had not been checked. Data for four samples 

from Mills et al. (2014) and two from Toberman et al. (2016) were omitted from the analysis; 

these all had 14C < 90 pMC and were judged to be atypical. 
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Additional data were taken from the WISE database (Batjes, 2009) and from Tomar 

(2000) to test model-predicted relations involving C, N, P and bulk density. Radiocarbon and 

related soil data for testing predicted temporal variations in 14C were taken from Torn et al. 

(2002) for a natural grassland site in Russia, Baisden & Parfitt (2007) and the New Zealand 

Soils Bureau (1968) for a pasture in New Zealand, Tipping et al. (2010) for a UK broadleaf 

forest, and Fröberg et al. (2011) for Swedish coniferous forests. 

Parameter and input values 

Parameters are single-value fixed quantities for all soils (Table 1), while input values (Table 

2) are either true variables (e.g. litter input rate) or loss rate constants for passive pools that 

vary among soils. These values are sampled from even distributions within defined ranges, as 

inputs to the model. Some of the parameter values, and some ranges of input values, could be 

set a priori, others were fitted to the data. 

Loss rate constant values were based on previous work such as the Century model 

(Parton et al., 1988), Mills et al. (2014), and N14CP (Davies et al., 2016), with fast (or 

active), slow and passive pools having mean residence times (MRT) of c. 1, 20 and 1000 

years respectively (k values of 1, 0.05 and 0.001 year-1). The slow pool is needed to simulate 

the effect on soil 14C of the input of ‘bomb carbon’ since the mid twentieth century, as 

mentioned above. In mineral soils the slow pool comprises ±SOMwkads, ² SOMwkads and 

±SOMstrads, whereas in organic soils it comprises these three pools together with ±SOMhypox1. 

The MRT of SOMocc is about 100 years (Crow et al., 2007; Meyer et al., 2012), therefore kocc 

= 0.01 year-1. The passive pool is ² SOMstrads in mineral soils, ² SOMstrads and ±SOMhypox2 in 

organic soils. After initial trials, it was decided to treat k² ,strads and khypox2 as input variables, 
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with values centred on 0.001 year-1, to simulate scatter in the 14C data. The value of kfree,occ 

was set to 1×10-6 m2 gC-1, which, when combined with the chosen ranges of litter input and 

adsorption site densities (see below) ensured that pools of ±SOMocc were in the range zero to 

1000 gC m-2, in accordance with observations of occluded LF (Crow et al., 2007; Meyer et 

al., 2012; Schrumpf et al., 2013). 

The soil volume was set to 1.5×105 cm3 m-2, corresponding to a stone-free soil depth 

of 15 cm, to coincide with the sampling depth (see above). The fraction of organic matter that 

is C was set to 0.55 (Emmett et al., 2010). The maximum fraction of the soil volume that can 

be ±SOMhypox1 was set to one-third, bearing in mind the need to represent conifer and other 

podzols with O horizons of c. 5-cm thickness. We set the hypoxic volume fraction for organic 

soils to a range of 0.2–0.995. 

The bulk densities of ±SOMocc and all adsorbed forms of SOM were assumed to be 

the same; ρocc,ads was optimised in the fitting process, as was ρMM. The bulk density of free 

and hypoxic SOM, ρfree,hypox, was treated as an input variable, with a range of 0.05 to 0.15 g 

cm-3, based on measured data for the most organic-rich soils (~ 50 %C). The adsorption 

capacity of MM, σMM, was assumed to range from 0.01 to 0.2 gC gMM-1, based on data for 

soil heavy fractions (Swanston et al., 2005; Crow et al., 2007; Schrumpf et al., 2013; Adams 

et al., 2017) and size-fractionated soils (Makarov et al., 2004; Moni et al., 2012).  

The model includes three fractional quantities, namely f²  (fraction of DOM that is 

² DOM), fstr (fraction of adsorption sites that are strong), and fSOM,DOM (fractional loss to 

DOM from ±SOM pools). Each was treated as a parameter and optimized by comparison of 

model outputs with measured data. 
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The element stoichiometry of ±SOM was set to three-fold ranges of 0.0165 to 0.0495 

for N:C and 0.0006 to 0.0018 for P:C, based on data for the soil light fraction (Schrumpf et 

al., 2013; Adams et al., 2017), temperate litter composition (Trofymow et al., 1995), and 

from end-member modelling (Tipping et al., 2016). Three-fold ranges for the N:C and P:C 

ratios of ² SOM were optimised.  

We used a range of 50 to 800 gC m-2 year-1 for litter inputs based on vegetation 

productivity data for UK grasslands, shrublands and woodlands (Table S1, Supporting 

Information), adjusted for below-ground production, and allowing that OM supplies to arable 

soils might be small because of harvesting.  

Calculation procedure 

The field data provide a large sample, but we lack site-specific information for model inputs. 

Therefore we compared the properties (trends, scatter) of the measured data with simulated 

values derived from random combinations of the model input variables (Table 2). A value for 

each input variable was chosen randomly from the fixed ranges or those ranges being 

optimized, for 5000 different examples. We chose to simulate 3333 mineral soils and 1667 

organic soils, because of the greater logarithmic range of %C in the former. These numbers 

of simulations were sufficient to produce essentially unvarying results for different sets of 

random choices. 

Firstly, the size of the SOMfree pool was calculated from the litter input rate and the 

loss rate constant kfree. For a mineral soil, the remaining soil volume was then partitioned 

among the remaining SOM pools by iteratively adjusting the size of the MM pool while 

computing the sizes of the occluded and adsorbed pools. For an organic soil, the SOMhypox1 
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and SOMhypox2 pools were computed from the chosen available hypoxic volume, then the 

MM pool was calculated iteratively, to obtain the value that corresponded to the filled total 

soil volume. Calculations were done with Microsoft Excel. A version of the model capable of 

simulating a single soil is included in Supporting Information. 

Fitting procedure 

Fitting was done by comparing derived quantities characterizing measured data with the 

equivalent quantities for the simulated results. In 10 cases, this meant comparing slopes and 

intercepts of linear bivariate relations (Table 3(a)), while in five cases average or percentile 

values were used (Table 3(b)). Because both x- and y-axis values are subject to error, 

bivariate constants were derived using reduced major axis regression.  

The objective function to be minimized was the sum of weighted squared differences 

between the quantities (slopes, intercepts, average values) derived from the measured and 

simulated data (standardized by dividing each difference by the quantity derived from 

measurements), a total of 25 different values. In choosing the weighting factors, we judged it 

important to obtain good agreements for the slopes of log10 %N against log10 %C, log10 %P 

against log10 %C, BD against log10 %C, and the individual averages of 14C in 1980 and 2010 

(see Table S2, Supporting Information). We used the Solver function in Microsoft Excel to 

optimise the five adjustable parameter values (Table 1), and the two stoichiometric ranges for 

² SOM (Table 2). We tested the sensitivity of the model by systematically fixing individual 

values of parameters or input variables, and then re-fitting.  

As described above, the fitting procedure relies on reproducing trends in the data, 

rather than measured quantities for individual soils. Therefore multivariable matching (i.e. 
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matching of all available quantities for each soil) was done to check that each property of a 

single real soil could be reproduced in one or more single simulated soils. The simulated soil 

most closely matching a given real soil was taken to be the one with the smallest sum of 

squared residuals between the full suite of measured and simulated variables (BD, %C, N:C 

ratio, P pool, 14C content etc). A few large residuals might contribute to the smallest sum of 

squared residuals, producing a skewed match, therefore we averaged simulated data for the 

three simulated soils that best-matched each real soil. A large weighting was given to 

residuals of 14C values, otherwise 14C values did not match well. 

Correlation coefficients (r) and probabilities (P) associated with reduced major axis 

regression were used to compare observed and simulated bivariate relations between soil 

variables, and in the evaluation of multivariable matching. They were calculated with the 

lmodel2 package (version 1.7-3) in R (R Core Team, 2013).  
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Results 

Optimization of the five adjustable parameters and the two adjustable ² SOM stoichiometry 

ranges (Tables 1 and 2) yielded the slopes, intercepts and mean quantities shown in Table 3. 

The agreements between the quantities derived from  measured and simulated data are 

generally quite close, within 10% for 15 of the 25 quantities and within a factor of two for all 

but two quantities. The correlation values, r, agree reasonably. The data patterns for the 

measured and simulated data are generally very similar (Figure 2). The simulated mineral 

soils have SOC contents ranging from 0.4 to 14.4%, with a median of 4.5% and a mean of 

5.0%, and the corresponding values for organic soils are 0.9% – 53.5%, 13.7% and 17.2%. 

Thus, there is appreciable overlap of the two soil types with respect to SOC. Note that the 

model permits the existence of organic soils with small %C values, which form if there are 

small hypoxic zones and low litter input rates; routine bulk analyses would not identify such 

soils as organic. 

The two bulk density parameters are physically realistic; ρMM is approximately the 

same as measured whole soil values at small %C, while ρocc,ads is somewhat greater than the 

bulk density of highly organic soil, indicating that adsorbed or occluded SOM is slightly 

denser than SOM not associated with MM. The average values (within the assumed threefold 

ranges) of N:C and P:C for ±SOM and ² SOM are defined approximately by the ranges of the 

measured values (Figures 2(j,k,l)), and so are also physically realistic. Three parameters, f² , 

fstr and fSOM,DOM, are model constructs constrained to fall between zero and unity. Their values 

could be varied only within modest ranges, c. ±30%, without changing the value of the 

objective function by more than 5%, and so they are quite well-defined. The value of 
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fSOM,DOM means that 37% of the C lost from ±SOM in its decomposition is in DOM, the 

remainder being primarily CO2-C, and the value of f²  means that 6.3% of the DOC is in 

² DOM, which represents a small but important flux (see below). The value of fstr means that 

25% of the adsorption sites of MM are in the strong category; this can be considered only a 

rough division for modelling purposes, since the adsorbent-adsorbate systems must be quite 

complex and variable among soils. 

Figure 2 compares model outputs with observations, and shows that the measured 

data are represented well by the simulations. In particular, there is agreement for the 

variations in log10 %N and log10 %P with log10 %C (panels a and b), and of N:C and P:C with 

log10 %C (panels j and k), accounting for the strong tendency of the N:C and P:C ratios to 

decrease with %C. The patterns of scatter in the observations and simulations are similar, and 

arise in the simulations from variations in the input variables. The effects of the different 

input variables can be seen in Figure S1 (Supporting Information). 

There were also relations involving BD, N, P and C in topsoil global data, from the 

WISE database and Tomar (2000), and these largely overlap our simulations (Figure S2, 

Supporting Information), although the agreement is relatively poor for BD, which is 

considerably more variable in the WISE data.  

Radiocarbon 

Measured radiocarbon values for 2007–2013 increase weakly but significantly with %C (R2 = 

0.14, P < 0.001) and the SOC pool (R2 = 0.04, P < 0.05) and decrease weakly but 

significantly with N:C (R2 = 0.07, P < 0.01), and the simulations show the same trends 

(Figure 2). These trends were not used for fitting, but it was evident from inspection of the 
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plots that to generate the necessary scatter in 14C, ranges had to be assigned to the values of 

k² ,strads and khypox2 (Table 2); this can be appreciated by comparing Figures 2 and S1(d) 

(Supporting Information). For 14C variation with N:C, a smaller contribution to the scatter 

arises from variation in the N:C ratios of ±SOM and ² SOM. 

Multivariable matching (see Methods) of measured data for four sites or regions for 

which temporal 14C data were available was used to test the model’s ability to reproduce 

temporal variation in 14C following atmospheric enrichment in 14C by atmospheric weapons 

testing. Reasonable agreement was obtained between available measured and simulated 

values of element pools, concentrations, and BD (Table S3, Supporting Information). The 

simulated variations in 14C over time are compared with observations in Figure 3. Note that in 

this exercise we were attempting to match a number of soil variables at the same time, and 

therefore were unable to adjust k or MRT values to match the 14C values precisely, as has 

been done in previous radiocarbon studies (e.g. Harrison, 1996; Tipping et al., 2010). The 

exercise confirms that the model predicts rises and falls in 14C of the right timing and 

magnitude. 

Pools of C, N and P 

Simulation outputs for average soils with different %C (Figure 4) show dominance of the 

adsorbed pools at small %C, and the increasing importance of the hypoxic forms as %C 

increases. Whereas for C the total pool increases with %C, only falling slightly at the largest 

%C, maxima for N and P are seen at around 10%C, reflecting the importance of adsorption 

for retaining these elements.  

This article is protected by copyright. All rights reserved.



 
 

 

This is further demonstrated by results for the average simulated mineral soil (4.7% 

C), in which 85% of the SOC is in the adsorbed pools, but 93% of the SON, and 99% of the 

SOP, a trend which agrees with the density fractionation results of Adams et al. (2017). 

Moreover, while 35% of SOC is present as ² SOCstrads, the values for SON and SOP are 64% 

and 88% respectively. Since the ² SOCstrads pool has an MRT of 667–2000 years, it follows 

that most mineral topsoil organic N and P are in slow turnover pools, playing minor roles in 

nutrient cycling.  

The same conclusions apply qualitatively to the average simulated organic soil 

(16.6% C), with 34% of the SOC, 54% of the SON, and 84% of the SOP in adsorbed pools. 

The additional SOM in the hypoxic pools means that the importance of the adsorbed forms is 

less. In the most organic-rich soils (> 50%C), the adsorbed N and P pools are nearly 

negligible (Figure 4). 

Simulated occupancy of adsorption sites 

The high affinity of the strong adsorption sites for ² DOM, and to a lesser extent their affinity 

for ±DOM, means that these sites are saturated in the majority (92.5%) of the simulated soils, 

and the average degree of saturation is 97%. The corresponding figures for the weak 

adsorption sites are 27% and 49%. 

Fluxes of C 

The main fluxes of C through the average mineral soil (Figure 5) are from SOCfree to CO2 and 

from SOCfree to the adsorbed ±SOC forms, as DOC. Much smaller fluxes maintain the SOCocc 

and ² SOC pools. These differences reflect the longer MRTs of the SOCocc and ² SOCstrads 
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pools, and the relatively small size of the ² SOCwkads pool. In the average organic soil, there is 

an additional large flux from SOCfree to SOChypox1, and an additional small flux maintains the 

SOChypox2 pool. The small flux needed to maintain the ² SOMstrads pool explains the small 

value of f² , the fraction of DOM in the ²  form (Table 1). 

The average excess fluxes of unadsorbed DOC in both soils (Figure 5) are comparable 

to, but generally larger than, measured values of DOC drainage fluxes in the field 

(Buckingham et al., 2008; Kindler et al., 2011). Over the 5000 simulated soils, there is a wide 

range of values, 0–310 gC m-2 year-1, which exceeds the measured range appreciably. This 

implies that not all the excess DOC is leached from the soil, which means that there can be 

additional mineralization of DOM, not simulated in the present version of the model. 

Soil volume 

Bulk density model parameters estimated by fitting (Table 1) are similar to the values of 

0.223 and 1.27 g cm-3 for SOM and MM respectively found by Adams (1973) for Welsh 

podzols, and to those reported by Federer et al. (1993) for New England forest soils, which 

were 0.11 g cm-3 for SOM and 1.45–2.19 g cm-3 for MM, depending upon texture. Here we 

distinguish free SOM, assigned a range of 0.05 to 0.15 g cm-3, from the denser SOM in 

aggregates or adsorbed to MM. 

The low bulk density and large porosity of SOM mean that soil space is dominated by 

SOM except in soils with small %C (Figure 4). At about 5% C, SOM accounts for 50% of the 

soil volume. Because we have a fixed topsoil volume in the model, competition between 

SOM and MM for space constrains the build up of mineral-associated SOM.  
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Sensitivity to key input variables 

The main factors affecting the composition of mineral soils are litter input and adsorption 

capacity. When all parameter and input values were held constant, and only litter input was 

varied (Figures 6(a) and 6(b)), the SOC pool increased with litter input, but the nature of the 

SOC changed. At small litter inputs, SOC accumulated at the strong adsorption sites, 

primarily as ² SOCstrads. With increasing litter input, more SOC accumulated, but only in the 

weaker-sorbing forms, ±SOCwkads, ±SOCstrads and ² SOCwkads; the pool of ² SOCstrads actually 

decreased because the pool of MM decreased, to make space for the additional SOM. Thus, 

mineral soils with relatively large SOC pools are dominated by relatively unstable SOM. In 

soils receiving the same litter input (Figure 6(c)) ² SOC, chiefly in the ² SOCstrads form, 

increased with adsorption capacity, becoming dominant at the highest adsorption capacity. 

There was also an increase in SOCocc, because the model assumes that the larger is the clay 

content of MM (proportional to adsorption capacity), the greater is the tendency for 

aggregates to form. 

The compositions of organic soils also depended on litter inputs and MM adsorption 

capacity, and on their potential to develop hypoxic zones. If the potential hypoxic volume 

was relatively small, then the model allowed only SOChypox1 to form, as in Figure 5(d), and 

when this space was filled, additional litter input went to the adsorbed ±SOC pools. When the 

potential hypoxic volume was larger, SOChypox2 could also exist, but this involved only small 

input fluxes, and so the total SOC pool was maximal at relatively small litter input rates 

(Figure 6(e)). In such soils, most of the SOC is in the hypoxic forms. This results in a 

situation where the total C pool in the 0–15 cm layer cannot be increased by the addition of 
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litter above c. 200 gC m-2 year-1. Under such circumstances peat might accumulate, by the 

effective burial of excess SOC. 

Explanations of how the model produces the trends and scatter in the simulated 

outputs plotted in Figure 2 are presented in Table 4. 

Matching soils / multivariable survey 

We tested whether simulated soils could be found that gave multivariable matches to 

observed soils (see Methods), using the Toberman et al. (2016) data set, for a total of 66 soil 

samples, finding the best values of %C, %N, %P, C pool, N pool, P pool, 14C, and BD. The 

simulated %C, %N and %P values tended to be smaller than the observed, especially N 

which had an average simulated-to-observed ratio of 0.83, the worst agreement of all. The 

simulated C, N and P pools tended to be greater than the observed values. Perfect matching 

would give all ratios of calculated to measured variables a value of 1.00. The overall average 

for all the variables (66 × 8 = 528 cases) was 1.03 with a standard deviation of 0.23, therefore 

95% of the ratios were within the range 0.58 to 1.48, which can be considered successful 

matching.  

 The matching involved averaging the three best matches in each case. For some soils, 

all three matches were simulated as mineral, for others all three as organic, but in about one-

third of cases the simulated soils were mixtures of mineral and organic, even for some arable 

soils. The matching indicated that nearly all acid soils were organic, and most non-

agricultural, i.e. semi-natural, soils were organic (Figure S3, Supporting Information). 

After dividing the field sites into four categories, arable (n=16), heath–rough 

grassland (18), improved pasture (20), and woodland (12), the averaged litter inputs (gC m-2 
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year-1) were calculated to be arable 107, improved pasture 262, woodland 488, and heath–

rough grassland 498. These differed significantly from one another (t-test, P < 0.001) except 

for heath–rough grassland and woodland, and they are in fair agreement with published 

estimates for the different land uses (Table S1). 

A second assessment of the results compared modelled adsorption capacities, σMM 

(gC gMM-1), with clay and clay+silt contents of the soils (g gMM-1), for which measured data 

were available in 56 cases. Because σMM would be expected to depend on the content of 

finely-divided, large surface area, MM, its value should increase with the clay or clay+silt 

content. There were significant relations for both clay and clay+silt, stronger for the latter  

(Figure 7). To comply with the model’s expectations, if clay and silt account for the 

adsorption capacity (maximum 0.2 gC gMM-1), the slope of σMM plotted against clay+silt 

content should be 0.2 gC g-1, and the intercept should be zero. These criteria are nearly met 

by the results, albeit with considerable scatter (Figure 7).  
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Discussion  

That the simulated soils possess the combined properties of real soils was demonstrated by 

the results of the multivariable matching exercises for (i) temporal variation in radiocarbon 

and (ii) the properties of the 66-soil data set, including sensible estimates of litter inputs, and 

the statistically significant relation between deduced adsorption capacity and measured 

clay+silt contents (Figure 7). Comparison of model simulations with independent data from 

other biomes (Figure S2) suggests that the modelling approach applies globally. The 

successful simulation of a range of data trends and scatter (Figure 2) suggests that SOM is a 

mixture, and that apparently simple relations, notably between litter input and the total SOC 

pool (Figure 6), might arise from complex variation in the responses of contributing SOC 

pools. Therefore apparent scatter in measured data is explicable in terms of SOM diversity.  

Adsorbed SOM 

A key model assumption is that selective adsorption, and consequently high stabilization, of 

² SOM (large N:C and P:C) is responsible for the relations among N, P and C (Figure 2). The 

strong adsorption sites of MM select ² DOM molecules, so that when steady state is reached a 

persistent SOM pool, ² SOMstrads, exists. The molecules comprising ² SOM accumulate by a 

common process, adsorption, not because they have a common source or chemistry.  

Most mineral soil N is calculated to be in ² SOM, and according to Knicker (2011), 

most SON is in peptides, the N:C ratio of which is about 0.3 g g-1. Because the average N:C 

of ² SOM is about 0.12 (Table 2), not all the ² SOM molecules can contain N. This is 

consistent with the results of Nelson & Baldock (2005) for the clay-sized particles of an 

Australian Mollisol, which had an N:C of 0.13 g g-1, and contained about 40% protein. Much 
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soil organic P is in inositol phosphates (Dalal, 1977; Turner et al., 2002), which can adsorb 

strongly to oxide surfaces, in particular phytic acid (Anderson et al. 1974; Celi & Barberis, 

2006). The P:C ratio of inositol monophosphate is 0.43 g g-1, while that of phytic acid is 2.6 g 

g-1, both of which greatly exceed the average ² SOM P:C of 0.030 (Table 2), which means 

that only some of the ² SOM molecules contain P. This is consistent with the idea that ² SOM 

comprises molecules selected by adsorption; only on average are they rich in N or P, some 

contain neither element. Because peptides do not contain P and inositol phosphates do not 

contain N, the N and P must often be in separate molecules, but co-occurrence in nucleic 

acids is possible (Levy-Booth et al., 2007). Although ² SOM is rich in N and P, this does not 

mean that all N- and P-rich molecules need be adsorbed.  

The model assumes that adsorbed SOM comes from DOM, mostly released from 

SOMfree but also from SOMocc and SOMhypox1 (Figures 1 and 5). The DOM could comprise 

products derived directly from plant litter and also products of microbial processing. Given 

that the N:C ratio of total SOM arises from selection by adsorption, there is no obvious 

reason, according to the model, for its component molecules to come preferentially from 

plant litter or microbes. This idea accords with Kramer et al. (2017) who concluded, from 

sequential density fractionation and 15N data, that mineral association exerts a greater control 

on the variation of SOM C:N ratios with soil depth, than does in situ organic matter decay. 

To simulate adsorbed SOM pools, we assumed that adsorption strength is inversely 

related to the loss rate constants k±,wkads, k² ,wkads, k±,strads and k² ,strads, and heterogeneity in 

mineral surfaces was approximated by assuming weak and strong adsorption sites. We 

incorporated simple competition, such that the greater was the combination of adsorption 
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strength and DOM flux the greater wass the extent of adsorption (Equations S19–S28, 

Supporting Information). However, we recognise that adsorption of DOM by MM in soil is a 

much more complex process, with much greater heterogeneity in both DOM and mineral 

surfaces than we allow (Kaiser & Guggenberger, 2003; Kleber et al., 2015). It depends upon 

clay mineralogy, solution chemistry (Weng et al., 2006; Rasmussen et al., 2018) and possibly 

involves aggregation of adsorbed material (Kaiser & Guggenberger, 2003; Piccolo, 2016), 

even to the extent of systematic multilayer formation (Kleber et al., 2007). Such complexity 

might partially explain why, although there is a significant relation, there is also appreciable 

scatter in the plot of σMM against measured clay+silt content of soil (Figure 7). 

Occluded SOM 

This relatively small pool comprises SOM isolated by its incorporation in microaggregates. It 

differs from total microaggregate SOM, which also includes adsorbed material. Thus, SOMocc 

has smaller N:C and P:C ratios than total microaggregate SOM. In their study of the uptake 

of a local spike of 14CO2 by a forest ecosystem, Swanston et al. (2005) showed that topsoil 

HF SOM took up 14C more quickly than the occluded SOM. This is expected because the 

MRT of SOCocc is longer than that of three of the adsorbed pools, i.e. kocc< k±,wkads, k² ,wkads, 

k±,strads (Table 1). The ² SOCstrads pool would have been unresponsive to the 14CO2 spike. 

Hypoxically-protected SOM 

The SOMhypox1 and SOMhypox2 pools are assumed to have the same stoichiometry as SOMfree, 

but lower turnover rates, and this is sufficient to match the observed stoichiometries of soils  

eith large %C (Figure 2). The other important factor is assumed variation in ρfree,hypox, which 
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allows the model to simulate the wide range of C pools at large %C (Figure 2). This variation 

in bulk density might reflect differences in the source vegetation (Chambers et al., 2011) or 

hydrological factors (Holden et al., 2004).  

Classification of soils in multivariable matching showed that most of the organic soils 

in the database were acid (Figure S3). The acidity from the large concentration of organic 

matter and low base cation weathering input might contribute to the slow turnover of SOM in 

organic soils. Low pH might reinforce hypoxia in soils that are not permanently waterlogged, 

by promoting aggregation of SOM through decreasing its net (negative) charge, favouring 

hydrophobic interactions and consequent aggregation.  

How are the model pools related to humic substances? 

Much of what is known about the molecular composition of SOM has come from studies of 

humic substances (HS), defined in terms of their extraction from soil (Hayes & Swift, 2017); 

some fulvic acid is extracted with acid, but most of the fulvic acid and all the humic acid are 

released by treatment with a base. The total amount extracted is usually more than half the 

total SOM. Each of the pools identified in our model (Figure 1) could supply HS, which must 

therefore comprise a mixture of molecules with different stoichiometries and ages, with 

appreciable differences among soils.  

Stoichiometric data for soil HS, compiled by Rice & McCarthy (1991), give an 

average N:C ratio of 0.057 for fulvic acids (n = 127) and 0.065 for humic acids (n = 215), 

which are similar to the average ratio of 0.061 (standard deviation 0.023) obtained from our 

5000 simulations. Therefore, with respect to N:C ratio, HS appear to be representative of bulk 

SOM, at least on average.  
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The long-held view that humic substances are the products of de novo (bio)synthesis 

from plant and microbial components has recently been questioned (Kelleher & Simpson, 

2006; Lehmann & Kleber, 2015), although such questioning is disputed (Piccolo, 2016; 

Hayes & Swift, 2017). Humification reactions might occur during the residence of SOM in 

the different pools, and reactions among mineral-adsorbed molecules have been suggested 

(Shindo & Huang, 1982; Lambert, 2008; Johnson et al., 2015). It is conceivable that the most 

strongly adsorbing compounds (in ² SOMstr) are relatively large molecules formed in situ, but 

these might not be extracted as HS.  

Application and development of the model 

The introduction of temperature dependence of metabolic transformations would permit a 

fuller application to global soils; although the predicted trends align with global data (Figure 

S2), the smaller range of %C values was not covered, possibly reflecting faster SOM turnover 

because of higher temperatures at some locations. Another extension would be to modify or 

elaborate the parameterization to simulate DOM leaching fluxes and stoichiometry. Effects of 

pH might be introduced with respect to both decomposition rates (Walse et al., 1998; Leifeld 

et al., 2008) and adsorption (see above).  

Our modelling approach works satisfactorily because it deals with processes on 

medium to long timescales, that can be represented physicochemically, approximated by 

steady state, and with simple and available input data. Short-term OM processing is largely 

confined to the fast turnover pool, SOMfree, with smaller contributions from the 20- and 100-

year pools, and nearly negligible involvement of the passive pools. To elaborate the short-

term processing, more fully interlinked C, N and P cycling would be required, including plant 
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growth and death, and the passage of elements through soil microbiota. This might allow the 

production of ±DOM, and especially ² DOM, to be related to the soil nutrient status.  

Although steady state modelling aids understanding, a dynamic model is needed to 

take into account the effects on topsoil SOM of historical and future changes in temporally-

varying SOM factors such as fertilizer applications, atmospheric deposition, N fixation, land 

use and management changes, climate change and ‘black carbon’ incorporation. This will 

require the full coupling of element cycles, and account to be taken of tillage and the 

weathering processes that affect P supply and soil pH. The inclusion of MM in the model 

opens the way to include physical erosion. A complete model requires SOM in deeper soil to 

be represented. The adsorptive selection of ² SOM type materials might be a common process 

at all soil depths, given widespread observations of increasing N:C and P:C with depth in soil 

(Batjes, 1996; Rumpel & Kögel-Knabner, 2011; Tipping et al., 2016), and also increasing 

SOM radiocarbon age with soil depth (Scharpenseel, 1993). For accumulating peat soils, an 

additional flux needs to be included, namely the continual accumulation of SOM in the 

deepening catotelm. 

Implications for the promotion of SOC storage 

According to Whitmore et al. (2015) soil carbon pools might be increased by (i) increasing 

the rate of input of organic matter, (ii) decreasing decomposition rates, (iii) increasing 

stabilization by physicochemical protection and (iv) increasing the depth of soil in which 

maximun sequestration occurs. The simulations of Figure 6(a,b) show how possibility (i) 

might operate. For a fixed topsoil depth, the resulting additional stored SOC would be 

primarily in the ±SOCads forms because the strong sites are saturated in most cases (Results). 
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The MRT of the additional SOC would be 20 years, therefore after a new steady state was 

achieved the greater input rate of litter would need to be maintained, or else the sequestered C 

would be lost fairly rapidly over several decades (Tipping et al., 2017).  

The present model does not offer a way to change loss rates, as in possibility (ii), but 

this might be achieved effectively by diverting adsorption of ² DOM to unoccupied strong 

adsorption sites in MM from deeper soil, a combination of (iii) and (iv). This might be 

achieved by deep ploughing (Alcántara et al.; 2016). In principle, the ‘engineering’ addition 

to soils of MM with strong adsorption capacity, could lead to the stabilization of ² SOM, 

perhaps reinforced by the establishment of plants that produce large amounts of ² DOM. With 

regard to organic soils, the priority is to conserve the SOC that has already accumulated by 

ensuring that hypoxic conditions are maintained, or by managing them to promote greater 

hypoxia.  

 

 

Conclusions 

Temperate soils vary widely in their pools and concentrations of SOC, SON and SOP, and in 

their radiocarbon contents. There are strong bivariate relations among these variables and 

related derived variables, with appreciable, but well-defined, data scatter. The data patterns 

can be reproduced by a steady-state model that recognizes SOM in different physical forms 

(free, occluded in aggregates, adsorbed, present in hypoxic zones) with different element 

stoichiometries, and with mean residence times ranging from 1 to 2000 years. The principal 

controlling factors of SOM properties are the input rate and element stoichiometry of litter, 
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the DOM adsorption properties of mineral matter, the propensity of the soil to develop 

hypoxia, and the bulk density of free SOM. 

The results support the key modelling assumption, which is that SOM and DOM exist 

in two stoichiometric forms; an ± form relatively poor in N and P, and a ²  form that is 

relatively rich in these elements. Likely candidates for the N- and P-containing molecules in 

² SOM are peptides and inositol phosphates, but some of the ² DOM molecules contain 

neither element. One form of highly stable SOM arises from the strong selective adsorption 

of ² DOM by mineral matter. In mineral soils, most of the SON and SOP are in this form, and 

therefore hardly contribute to nutrient cycling. Most ±SOM exists in pools with mean 

residence times between one and 100 years; these are free SOM, and SOM weakly adsorbed 

by mineral matter, occluded within microaggregates, or in weakly hypoxic zones. Highly 

stable ±SOM occurs in organic soils with strongly hypoxic zones.  

The modelling approach is given credence by independent tests. These are (i) 

agreement between predictions based on British soils with observations from the global 

WISE database, (ii) similarities between observed temporal variations in bulk soil 14C at four 

temperate sites and variations predicted by the model for soils with similar properties, (iii) a 

sensible sequence of average litter inputs in relation to land use (arable < intensive grassland 

< heath–rough grassland ~ woodland) and (iv) significant and quantitatively sensible 

relations between observed clay and clay + silt soil pools and simulated adsorption capacity 

pools. 

The steady-state model is the basis for the development of a dynamic version, suitable 

for simulating changes in SOM through time. It provides insight into how the sequestration of 
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C in soils might be promoted; for example (i) increasing litter inputs is likely to increase only 

the more moderately stable SOC pools and (ii) facilitating the adsorption of ² DOM by 

mineral matter from deeper soil could lead to long-term stabilization. 
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Model equations. 

Excel workbook for model calculations. 

Table S1. Litter input rates to soil (gC m-2 year-1). 
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Table S3. Observed and selected simulated results for four locations with temporal 

radiocarbon data. Figure S1(a–d). Observed data compared with simulations, for different 

fixed parameter and input values. 

Figure S2. Data for global topsoils compared with model outputs from the present study. 

Figure S3. Measured pH values for mineral, mineral-organic and organic simulated soils. 
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Table 1.  Parameters and their values. Fitted values are in bold italic. 

Parameter Symbol Units Value 

Loss rate constant ±SOCfree kfree year-1 1.0 

Loss rate constant ±SOCocc kocc year-1 0.01 

Loss rate constant ±SOChypox1 khypox1 year-1 0.05 

Loss rate constant ±SOCwkads k±,wkads year-1 0.05 

Loss rate constant ² SOCwkads k² ,wkads year-1 0.05 

Loss rate constant ±SOCstrads k±,strads year-1 0.05 

Conversion factor, ±SOCfree to ±SOCocc kfree,occ m2 gC-1 1.0×10-6 

Fraction of DOM flux that is ² DOM f²  - 0.0658 

Fraction of adsorption capacity that is strong fstr - 0.251 

Bulk density of SOMocc and SOMads ρocc,ads g cm-3 0.139 

Bulk density of MM ρMM g cm-3 1.84 

Fraction of OM is C fC - 0.55 

Total soil volume Vsoil cm3 1.5×105 

Maximum volume fraction due to ±SOMhypox1 fhypox1,vol - 0.333 

Fraction of ±SOMfree, ±SOMocc,  ±SOMhypox1 converted 

to DOM 

fSOM,DOM - 0.368 
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Table 2.  Model input variables and their values. Fitted values are in bold italic. 

Input variable Symbol Units Values 

   Lower Upper 

Litter input flux Cinflux gC m-2 

year-1 

  50 800 

Loss rate constant ±SOChypox2 khypox2 a-1     0.0005      0.0015 

Loss rate constant ² SOCstrads k² ,strads a-1     0.0005      0.0015 

Fraction of non-SOMfree volume that is hypoxic fhypox -     0.2      0.995 

N:C ratio of ±SOM & ±DOM  g g-1     0.0165      0.0495 

P:C ratio of ±SOM & ±DOM  g g-1     0.0006          0.0018 

N:C ratio of ² SOM & ² DOM  g g-1     0.0709      0.213 

P:C ratio of ² SOM & ² DOM  g g-1     0.0165      0.0495 

Adsorption capacity of mineral matter σMM gC g-1     0.010          0.200 

Bulk density of free and hypoxic OM ρfree,hypox g cm-3     0.05        0.15 
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Table 3. Model fitting results for (a) bivariate (y against x) relations and (b) average values. All the bivariate relations are significant (P < 0.001). 

(a)    Observed    Simulated  

y x n Slope Intercept R  Slope Intercept R 

BD Log10 

%C 

835           –0.928         1.56 

–0.909 

           –0.926        1.50 

–0.986 

Log10 %N Log10  

%C 

835            0.754        –0.943 

 0.954 

            0.810       –1.06 

 0.895 

Log10 %P  Log10 

%C 

  66            0.757        –1.87 

 0.492 

            0.728       –1.86 

 0.575 

Tot C pool  Log10 

%C 

835      6910   1093 

 0.599 

      5100   2400 

 0.857 
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Log10 %P  Log10 

%N 

  66            0.986        –0.917 

 0.697 

            0.899        –0.908 

 0.722 

N:C Log10 

%C 

835           –0.0526         0.120 

–0.770 

           –0.0708         0.124 

–0.561 

P:C Log10 

%C 

  66           –0.0179         0.0258 

–0.661 

           –0.0181         0.0252 

–0.596 

Log10 P:C Log10 

N:C 

  66            2.44         0.749 

 0.895 

            1.84         0.145 

 0.745 

Tot C pool N:C 835 –131 000 16 800 –0.466    –72 000 11 300 –0.432 

Tot C pool P:C   66 –304 000   8880 –0.499  –282 000   9500 –0.454 
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(b) n Observed Simulated 

Bulk 14C 1980, pMC       – 110.0 111.6 

Bulk 14C 2010, pMC      95 102.1 103.2 

%C in HF, mineral soil      20   85.0   79.0 

Log10 %C 5%ile    835     0.255     0.137 

Log10 %C 95%ile    835     1.71     1.50 
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Table 4. Explanations of simulated bivariate trends and data scatter in Figure 2. 

2(a), 2(b) Slopes of log10 %N against log10 %C and log10 %P against log10 %C are less 

than 1. When %C is small, there is a large proportion of ² SOMstrads, which has large N:C and 

P:C. At large %C, ±SOM dominates, and the N:C and P:C ratios are small. 

2(a), 2(b), 2(j), 2(k) Scatter in plots of log10%N against log10 %C, log10 %P against log10 

%C, N:C against log10 %C and P:C against log10 %C.  Soils can have the same %C, but 

differ in %N and %P because the SOM comprises different mixtures of ± and ²  forms. The 

range of P:C between ±SOM and ² SOM is greater than that of N:C, hence there is wider 

scatter in the plot of log10 %P against log10 %C . 

2(g) Variation of BD with %C.  As %C increases, %MM decreases and SOM, which has 

low bulk density, increasingly occupies the soil volume. 

2(d) The ‘trumpet’ shape plot of the C pool against log10 %C. At small %C, SOM is 

mainly SOMocc and SOCMads, and the BD is directly related to the proportions of SOM and 

MM, so there is a tight relation between the C pool and log10 %C. At large %C the SOM is 

dominated by SOMhypox1 and SOMhypox2, which have a range of BDs, hence the C pool – 

log10 %C relation is looser. 

2(h), 2(i) Triangular shapes of the plots of N pool and P pool against log10 %C.  When 

%C is small, so are the C, N and P pools. When it is large, the SOM is dominated by ±SOM, 

which has small N:C and P:C ratios, and therefore the N and P pools are small. In between, 

soils vary in their ±SOM to ² SOM ratios giving rise to a range of N and P pools. The spread 

in N pool values at large %C reflects variations in SOM BD, as in 2(d); this is not evident in 

the P pool because ±SOM is very low in P. 

2(e), 2(f) Large scatter in C pool against N:C and P:C plots.  This arises firstly because 

the N:C and P:C ratios are variable, and secondly because of the range of the ±SOM BD. 

2(c), 2(l) trend and scatter in log10%P against log10 %N, and log10 P:C against log10 

N:C.  The trends are due to the larger N:C and P:C ratios in ² SOM compared to ±SOM. The 

scatter arises because within ±SOM, or within ² SOM; N:C and P:C do not covary.  

2(m), 2(n), 2(o) Radiocarbon trends and scatter.  The (weak but significant) positive 

slopes of the plots of 14C against %C and 14C against SOC pool are due to the large 
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proportion of the major SOM form, ² SOMstrads (highly stable, small 14C), at small %C and 

SOC pool, and the smaller proportion of the major SOM form, ±SOMhypox2 (also highly 

stable, small 14C), at large %C and C pool. For the same reason, 14C decreases with N:C. The 

scatter arises mainly from the ranges of k² ,strads and khypox2 (Table 2). 

 

Figure 1.  Model C pools and fluxes for (a) mineral soils and (b) organic soils. DOC, 

dissolved organic carbon; hypox1, hypoxically-protected type 1; hypox2, hypoxically-

protected type 2; occ, occluded; SOC soil organic carbon (types ± and ² ); strads, strongly 

adsorbed; wkads, weakly adsorbed; xs, excess. The horizontal arrows indicate losses from the 

system, which can be as CO2 or DOC. 

 

Figure 2.  Bivariate relations plotted for observed (black points) and simulated (grey points) 

data. A few large C pool values are cut off in panels (d), (e) and (f). Element ratios are in g g-

1. 

 

Figure 3. Variation of bulk soil 14C over time, for sites in (a) New Zealand (Judgeford), (b) 

Great Britain (Meathop Wood), (c) Russia (Kamennaya) and (d) Sweden. The simulated 

values (lines) are the averages of the three soils that are most similar to the observations 

(points). See Table S1 (Supporting Information) for element and bulk density data.  

 

Figure 4.  Distributions of simulated (a) C, (b) N,  (c) P and (d) volume over SOM pools, for 

different %C values, averaged over  95–105% ranges (i.e. 0.95  to 1.05 , 23.75  to 26.25 %C 

and so on).  Note that the averaging involves results for both mineral and organic soils. 
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Figure 5. Model pools and fluxes for (a) mineral soils and (b) organic soils. Values in bold 

are average simulated SOC pools (g m-2), those in italic are average simulated C fluxes in g 

m-2 year-1. Mean residence times of the pools are encircled. Outputs from the adsorbed pools 

(not shown) are the same as the inputs. See Figure 1 for key to abbreviations. 

 

Figure 6. Dependence of simulated SOC pools on litter input and adsorption capacity, for 

fixed parameters and averages of other input variables (Tables 1 and 2). Mineral soils: in (a) 

and (b) the adsorption capacities are 0.05 and 0.15 gC gMM-1, respectively, in (c) the litter 

input is 425 gC m-2. Organic soils: in (d) the volume available for hypoxia is 25% of the total, 

in (e) it is 75%. Note that in (d) there is no formation of SOChypox2. In both (d) and (e) the 

adsorption capacity is 0.1 gC gMM-1. 

 

Figure 7. Plot of simulated adsorption capacity (σMM) against measured clay+silt content of 

the soil MM for 56 soils from Toberman et al. (2016), after multivariable matching. The 

reduced major axis regression line has a slope of 0.23 gC g-1 and an intercept of –0.022 gC 

gMM-1, with r = 0.39, P < 0.01. 
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