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Abstract 27 

The flanks of the ultraslow-spreading Mid-Cayman Spreading Center (MCSC) are characterized by 28 

domal massifs, or oceanic core complexes (OCCs). The most prominent of these, Mt. Dent, comprises 29 

lower-crustal and upper-mantle lithologies and hosts the Von Damm vent field (VDVF) ~12 km west of the 30 

axial deep. Here-presented AUV-derived swath sonar (multibeam) mapping and deep-towed side-scan sonar 31 

imagery lead to our interpretation that: (i) slip along the OCC-bounding detachment fault is ceasing, (ii) the 32 

termination zone, where detachment fault meets the hanging wall, is disintegrating, (iii) the domed surface 33 

of the OCC is cut by steep north-south extensional faulting, and (iv) the breakaway zone is cut by outward-34 

facing faults. The VDVF and dispersed pockmarks on the OCC’s south flank further suggest that 35 

hydrothermal fluid flow is pervasive  within the faulted OCC. On the axial floor of the MCSC, bright 36 

acoustic backscatter and multibeam bathymetry reveal: (v) a volcanic detachment hanging wall, (vi) a major 37 

fault rifting the southern flank of Mt. Dent, and (vii) a young axial volcanic ridge intersecting its northern 38 

flank. These observations are described by a conceptual model wherein detachment faulting and OCC 39 

exhumation are ceasing during an increase in magmatic intrusion, brittle deformation, and hydrothermal 40 

circulation within the OCC. Together, this high-resolution view of the MCSC provides an instructive 41 

example of how OCCs formed within an overall melt-starved ultraslow spreading center can undergo 42 

magmatism, hydrothermal activity, and faulting in much the same way as expected in magmatically more 43 

robust slow-spreading centers elsewhere.  44 

 45 

1. Introduction 46 

 Mid-ocean ridges accommodate seafloor spreading via a combination of magmatic and tectonic 47 

processes (Sykes, 1967; Cann, 1968; MacDonald & Luyendyk, 1977; Smith & Cann, 1990; Mutter & 48 

Karson, 1992;  Shaw & Lin, 1993). Where the magmatic component of seafloor spreading is low and 49 

tectonic extension is high, the oceanic basement may be characterized by large-offset detachment (normal) 50 

faults that dip shallowly at the surface, yet accommodate significant seafloor spreading resulting in the 51 

exhumation of lower-crustal and upper-mantle rocks at the seafloor to form oceanic core complexes (OCCs) 52 

(Karson & Dick, 1983; Cannat, 1993; Tucholke & Lin, 1994; Cann et al., 1997; Tucholke et al., 1998, 53 

2008; Cannat et al., 2006; Ildefonse et al., 2007; Escartin et al., 2008; Schouten et al., 2010). Indeed, 54 

geodynamic modelling has found that OCCs appear to form in environments where magma, intruded into 55 

the brittle lithosphere, accommodates between 30-50% of the total plate separation (Buck et al., 2005; 56 

Behn and Ito, 2008). 57 
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 Observations along the slow-spreading Mid-Atlantic Ridge (MAR), combined with geodynamic 58 

modelling, suggest that OCCs evolve via a “rolling hinge”, wherein the OCC detachment fault initiates at a 59 

higher angle and then, as a result of flexure and exhumation of the lower crust and/or upper mantle, is back-60 

tilted to emerge as a domal footwall (Garces & Gee, 1997; Lavier et al., 1999; deMartin et al., 2007; Morris 61 

et al., 2009). Following this exhumation, at some point OCCs are rendered inactive and are passively 62 

transported off axis. Understanding this “life cycle” (cf., MacLeod et al., 2009) thus hinges on 63 

understanding which processes dominate the late-stage OCC evolution (e.g., Reston et al., 2002). MacLeod 64 

et al. (2009) argue that for OCCs at slow spreading ridges the detachment fault migrates past the spreading 65 

axis resulting in magmatic intrusion into the footwall, across the detachment fault, and into the brittle 66 

hanging wall, thereby ceasing the continued exhumation of the OCC. Other models of OCC life cycles 67 

envision elevated amount of magmatic intrusion to cause mechanically favorable conditions for high-angle 68 

faults to cut across OCCs (Tucholke et al., 2008; Olive et al., 2010). But could such magmatic controls on 69 

OCC development be important in ultraslow spreading centers that are thought to be generally magma-poor 70 

(e.g. Dick et al., 2003)?  Furthermore, what roles might hydrothermal activity play in OCC evolution via 71 

mechanical linkages with faulting (e.g. Hirose and Hayman, 2008) and cooling of magmatic bodies within 72 

OCCs (e.g. Canales et al., 2017)?  73 

 Here, we provide evidence that a well-developed OCC at the ultraslow-spreading Mid-Cayman 74 

Spreading Center (MCSC), is in the process of “dying” as slip on the detachment faulting ceases, 75 

magmatism intrudes the OCC’s footwall, and faulting accommodates extension internal to the OCC. 76 

Variations in acoustic backscatter and micro-bathymetry from Autonomous Underwater Vehicle (AUV) 77 

data, deep-towed side-scan sonar and shipboard multibeam data reveal the spatial and, in some cases, 78 

temporal distribution of faulting across and along the OCC. We posit that this structural evolution is 79 

intimately linked with magmatism and hydrothermal activity, the latter expressed at the Von Damm Vent 80 

Field (Connelly et al., 2012). At some stage in this evolution, the OCC will then be transported off axis by 81 

axial seafloor spreading, as has occurred for previous OCCs along the spreading center (Grevemeyer et al., 82 

2018). By documenting the structural geology observed at the surface with a range of seafloor-imaging 83 

datasets, we offer a case study in the magmatic and tectonic mechanisms underlying the cessation of OCC 84 

development along an ultraslow spreading-center. 85 

2. Tectonic Setting 86 

The OCC we focus on is known as Mt. Dent (Edgar et al., 1991) and it separates the northern and 87 

southern segments of the MCSC (Figure 1). The MCSC is among the world’s deepest and slowest spreading 88 

centers, having an axial depth of ~5000-7000 meters and an ultraslow full-spreading rate of ~15 mm/yr 89 
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(Macdonald & Holcombe, 1978; Rosencrantz et al., 1988). At 110 km long, the MCSC is bound by two 90 

transform faults: the Oriente Fracture Zone to the north and the Swan Island Fracture Zone to the southwest. 91 

The MCSC formed as a pull-apart basin between these two transform faults to accommodate Caribbean-92 

North American plate motion and retreat of the Caribbean Arc/Lesser Antilles (LeRoy et al., 2000; Mann et 93 

al., 2007). Gravity analyses and seismic imaging suggest that the MCSC hosts basaltic, gabbroic, and 94 

exhumed (serpentinized) mantle peridotite, and thus has been spreading by a mixture of magmatic accretion 95 

and tectonic spreading for the last ~10 myr (ten Brink et al., 2002; Grevemeyer et al., 2018). In fact, there is 96 

a clear record of ultraslow seafloor spreading dating back to at least ~20 Ma, if not ~49 Ma (Leroy et al., 97 

2000; Hayman et al., 2011).  98 

As is the case for ultraslow spreading centers worldwide (Edmonds et al., 2003; Michael et al., 99 

2003; Sauter et al., 2004; Tao et al., 2012), the MCSC is well known to host basaltic and gabbroic rocks 100 

along with exhumed mantle rocks (Stroup and Fox, 1981; Hayman et al. 2011), as well as hydrothermal 101 

activity (German et al. 2010; Connelly et al., 2012). Yet, the deep axial depths and incompatible-element 102 

enriched Mid-Ocean Ridge Basalt (MORB) compositions are indicative of some of the lowest potential 103 

temperature and melt fractions of any mid-ocean ridge mantle (Klein & Langmuir, 1987). Similarly, seismic 104 

data suggest that there is a wide range of crustal thicknesses in the Cayman Trough, with some areas hosting 105 

~3-5 km of crust, significantly thinner than crustal sections on slow-spreading centers overall, and other 106 

areas comprising only exhumed mantle (Grevemeyer et al., 2018). Some of the thicker sections (~5 km) of 107 

MCSC lower oceanic crust accreted in zones of deep partial melt and ultimately formed OCCs (Hayman et 108 

al., 2011; Harding et al., 2017). Within the northern and southern areas of the axial deep, basaltic basins 109 

overlie ongoing lower crustal accretion, though here too the crust is thin relative to global averages (Van 110 

Avendonk et al., 2017). Lastly, peridotite samples from the MCSC are evidence of truly amagmatic seafloor 111 

spreading, preserving geochemical signatures that share some similarity to Gakkel Ridge and Southwest 112 

Indian Ridge mantle (Mallick et al., 2014). Thus, the MCSC is an overall melt-poor environment relative to 113 

the global mid-ocean ridge system, though in detail there are areas of robust magmatism. Our effort here is 114 

to better understand how OCCs evolve in such an environment. 115 

3. Methodology 116 

 The data used here were collected during RRS James Cook cruises JC44 and JC81 in 2010 and 2013, 117 

respectively. Shipboard swath bathymetry data, acquired using a Kongsberg-Simrad EM120 multibeam 118 

sonar operating at a frequency of 10 kHz and at a speed over the ground of 2 kts, were filtered for spikes 119 

and errors before being gridded at 50 m. Side-scan sonar imagery was acquired from a deep-towed 30 kHz 120 

system (TOBI), that was deployed at an average altitude of ~300 m above the seafloor, and insonified the 121 
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axial zone of the MCSC. The data were corrected for vehicle altitude (slant-range), geographic position and 122 

speed over the seafloor before being gridded at 6 m. High-resolution swath bathymetry and acoustic 123 

backscatter data were acquired using a 200 kHz Kongsberg-Simrad EM2000 multibeam sonar, fitted to the 124 

Autonomous Underwater Vehicle (AUV) Autosub6000 operating at an average altitude of 150 m above the 125 

seafloor. Subsea navigation was provided by a combination of ultra-short baseline acoustic tracking from 126 

the surface vessel, inertial navigation and Doppler velocity logging. The AUV bathymetry and acoustic 127 

backscatter intensity were gridded at 1 m and the final grid position adjusted to match major features seen 128 

on the GPS-navigated shipboard bathymetry maps. These data were imported into ArcGIS
TM

 and analyzed 129 

using a combination of raster- and vector-based tools. Acoustic backscatter, either from TOBI side-scan 130 

sonar, or AUV-derived multibeam swath sonar, is shown with light-greys as high-amplitudes and indicates 131 

seafloor with high acoustic albedo. Bathymetric and backscatter images reveal a variety of morphologies 132 

and textures from which features are identified (Blondel & Murton, 1997; Searle et al., 2010) including: 133 

smooth high-reflectivity areas indicative of sheet flow lavas; smooth low-reflectivity areas indicative of soft 134 

sediment cover;  high-frequency, low amplitude topography with moderate to high mottled acoustic 135 

reflectivity indicative of hummocky volcanic terrain, and circular or crescent-shaped features indicative of 136 

volcanic edifices. The intensity of acoustic backscatter varies inversely with the thickness of pelagic 137 

sediment cover.  138 

Fault scarps are identified as linear or curvi-linear marking the traces of slopes in excess of 40°. Such offsets 139 

in seafloor depth are in many places, but not everywhere, associated with higher intensity sonar backscatter 140 

depending on sediment cover. Where appropriate, slope azimuth and inclination maps for the faults were 141 

generated from 3x3 matrices applied as a high-pass filter over the gridded bathymetry data and centered on 142 

each grid element. The choice of 40° slope for the fault identification probably under samples the fault 143 

population and is considered here a conservative estimate. The high-resolution survey areas were 144 

subsequently visually surveyed and sampled using the robotic underwater vehicle (RUV), HyBIS (Murton et 145 

al., 2012) and the ROV Isis. We make reference to the ROV and RUV observations below but do not 146 

present them in any detail as our focus is the regional interpretations of the bathymetric and backscatter 147 

datasets. 148 

4. Results  149 

4.1 Geology of the MCSC 150 

Based on shipboard and AUV-derived multibeam bathymetry, deep-towed side-scan sonar imagery 151 

(30 kHz TOBI), and near-bottom video-surveying and sampling, we can divide the MCSC into three distinct 152 
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segments (Figures 1B,  2A): (1) a northern segment containing circular volcanoes and a ridge of hummocky 153 

lavas that extends into the nodal deep basin marking the intersection with the Oriente Fracture Zone, (2) a 154 

central segment dominated by the Mt. Dent massif, and (3) a southern segment comprising, from north to 155 

south, several smooth floored basins, divided by a number of prominent NW-SE trending morphological 156 

ridges and a field of hummocky and sheet-flow lavas, respectively.  157 

 The northern segment is dominated by a hummocky volcanic field, identified in TOBI side-scan 158 

sonar records as having high acoustic backscatter and a typical mottled appearance reflecting the presence 159 

of numerous small volcanic cones, as seen in other spreading centers (e.g., Searle et al., 2010). This 160 

hummocky volcanic field fills 85% of the width of the MCSC axial valley floor (Figure 2A, B), which is 161 

itself bounded by N-S normal fault scarps (near 81º44’W and 81º50’W) forming the inner axial valley walls. 162 

This field includes a number of circular volcanic edifices, up to 2.5 km in diameter, some with distinct 163 

craters (Figure 2C). The center of the volcanic field contains a 9 km-long axial volcanic ridge (AVR) that 164 

rises up to 600 m from the valley floor. The AVR has a series of oblique ridges trending NW and NE away 165 

from its crest. One of these, on the eastern flank of the AVR, hosts an 800 m diameter volcanic pillow-lava 166 

mound on top of which is the deepest (5000 m) known high-temperature hydrothermal vent field and 167 

seafloor massive sulphide deposit, the Beebe Vent Field (BVF) (Connelly et al., 2012), also known as the 168 

Piccard Vent Field (German et al., 2010; McDermott et al., 2018). The BVF comprises a series of sulphide 169 

mounds and black-smoker chimneys venting supercritical fluids at up to 410°C (Webber et al., 2015) with 170 

compositions that indicate a fluid-rock reaction zone located ~3 km below the seafloor that involves both 171 

mafic and ultramafic rocks (Webber et al., 2015; McDermott et al., 2018). At the northern end of the AVR, 172 

hummocky volcanic terrain and sheet flows cover most of the floor of the 7000 m nodal deep basin that 173 

marks the junction between the MCSC and the Oriente Fracture Zone. The southern end of the AVR 174 

terminates abruptly against the northern flank of Mt. Dent. Here, the AVR is at its most prominent, with the 175 

crest of the AVR and its hummocky lava flanks clearly visible in the bathymetry data with bright acoustic 176 

backscatter indicating it is relatively sediment free (Figure 2B).  177 

 Compared with the hummocky terrain of the northern segment, the southern segment of the MCSC 178 

comprises several smooth-floored basins, with moderate acoustic backscatter, cut by a series of curvilinear 179 

ridges and scarps (bright backscatter ribbons) that generally trend to the NW-SE (Figure 1-3).  Seismic 180 

imaging and sampling by dredging show these are filled with volcanic products (Hayman et al., 2011; Van 181 

Avendonk et al., 2017). What we refer to here as the ‘Central Basin’ is divided into two oval-shaped sub-182 

basins each 8-10 km long and 3-5 km wide (Figure 3). These have flat and smooth (volcanic) seafloor and 183 

the moderate intensity and homogeneous acoustic backscatter is indicative of thinly draped, sediment 184 
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covered lavas, likely dominated by sheet flows given the smooth surface of the seafloor (Figure 3C). We do 185 

not attribute the flat nature of the seafloor in these regions to sediment blanketing over hummocky lavas 186 

because such an effect is not observed elsewhere in the axial deep, the sedimentation rate is very low (Land, 187 

1979), and the two areas are seismically interpreted to be deep volcanic basins rather than, for example, 188 

flanks of an axial high.   189 

The two sub-basins are separated by an obliquely trending, steep-sided, curvilinear ridge that cross-190 

cuts the southern edge of Mt. Dent (Figure 3B). While this ridge has been proposed to be an AVR that has 191 

propagated in to the southern flank of Mt. Dent by Cheadle et al.,(2012), its steep flanks, sharp curvilinear 192 

spine with high acoustic backscatter, and lack of hummocky morphology (Figure 3B, C) are evidence of a 193 

tectonic origin such as a fault-bound horst. Where this horst intersects the southern flank of Mt. Dent, it 194 

continues up-slope as a deep V-shaped gully dissecting the massif (Figures 3A, B).  195 

 The southern end of the MCSC is similar to the northern segment, with bathymetry showing elevated 196 

hummocky terrain characterized by bright acoustic backscatter, indicative of sediment-free volcanic terrain 197 

along much of the axial floor (Figure 4A, B, C). We interpret the lack of sedimentation to be an indicator of 198 

relatively young eruptive units compared with lower reflective seafloor that indicates thicker sediment 199 

cover. Side-scan sonar imagery (Figure 4C) also reveals a brightly reflective but smooth area, surrounding 200 

the elevated hummocky terrain. The highly reflective area continues southwards as a sinuous (in map view) 201 

ribbon. This bright and sinuous feature follows the deepest part of the axial floor of the MCSC southwards 202 

for over 5 km where it surrounds elevated areas of less reflective (i.e. more sediment covered) seafloor 203 

(Figure 4C). The smooth morphology of this feature suggests it is a sheet flow with a long and thin runout. 204 

In contrast with the adjacent darker seafloor, the bright acoustic backscatter indicates that it is virtually 205 

sediment free and thus a relatively recent eruption. This assumption is confirmed by ground-truthing using 206 

visual observations from the ROV (see Figure 4C for vehicle track in orange) that reveal the bright ribbon to 207 

have a smooth lava surface with sparse sediment cover, whereas the darker and more elevated areas are flat-208 

topped ‘islands’ of seafloor, with thicker (~1 m) sediment cover, which are surrounded by the (relatively) 209 

younger sheet-flow lava. The AUV-derived micro-bathymetry also shows this sheet flow to be cut by a 210 

~250 m high vertical fault scarp that downthrows the axial floor to the south (3D projection facing the 211 

northwest in Figure 4B, NE-SW black line in Figure 4D). Close inspection of the side-scan sonar imagery 212 

(Figure 4C) reveals an area of bright and diffuse backscatter at the base of the scarp and a continuation of 213 

the lava flow, albeit with lower reflectivity, towards the southeast away from the bottom of the scarp and 214 

down-slope into the nodal-deep basin. Visual observation by the ROV of fresh lava draping the top edge and 215 

bottom of this scarp is evidence that it once formed a ‘lavafall’ over which the sheet lava flow once 216 
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cascaded as it flowed south into the nodal basin at the intersection with the Swan Island Fracture Zone. The 217 

AUV bathymetry shows the scarp strikes across the axial valley in a SW-NE orientation as a fault and, from 218 

the geometry of its trace as it intersects the topography, has a dip of 62° to the southeast. As such, it marks 219 

the intersection between the southern end of the axis of the MCSC and the Swan Island Fracture Zone 220 

(Figure 4D). 221 

4.2. Geology of the Mt. Dent OCC 222 

4.2.1. Overview 223 

 In contrast with the northern and southern segments of the MCSC, the central segment is dominated 224 

by the ~16 km long (E-W), ~14.5 km wide Mt. Dent massif, that rises up to 2000 m above the adjacent 225 

~4800 m deep axial floor of the MCSC (Figure 5A). Its smooth surface is cut by N-S striking faults forming 226 

scarps and incisions that strike across the massif (Figure 5A).  In E-W profile, the domed and smooth 227 

surface of Mt. Dent decreases in its maximum curvature from 8° km
-1

 at the base of its eastern flank, where 228 

it dips 23° to the East, to 0.2° km
-1

 at its summit, where it is nearly horizontal (Figure 5A). 229 

The geology of Mt. Dent has been determined from early dredging efforts, Alvin dives, and more 230 

recent ROV investigations (Stroup & Fox, 1981; Hayman et al., 2011). Lithologies recovered from the 231 

domed surface of Mt. Dent include serpentinized harzburgite and dunite, deformed gabbro (including 232 

mylonitized and amphibolite-facies meta-gabbros), fresh dolerite dikes and lavas. The western limit of the 233 

massif is marked by a 25 km-long, N-S trending ridge with a series of parallel scarps along its crest and 234 

orthogonal rills incising its eastern slope (Figure 5A). The smooth, lower southern flank of the massif has a 235 

series of E-W striking, sub-parallel corrugations (Figure 5A, B). Immediately to the east of Mt. Dent, the 236 

axial floor of the MCSC is characterized by hummocky terrain and circular volcanic edifices. The most 237 

prominent of these is a ~2 km-diameter volcanic seamount, located 1.5 km east of the base of Mt. Dent 238 

(Figure 5A). The junction between the hummocky volcanic terrain and smooth lower eastern flank of Mt. 239 

Dent is marked by a curvilinear fault scarp that trends north-south and bends around the base of the massif 240 

(Figure 5A, B).  241 

 We recognize the curvilinear scarp separating the smooth lower eastern flank of Mt. Dent from the 242 

hummocky seafloor to the east as marking the location of the eastward dipping detachment fault that 243 

exhumes deep-crustal and upper-mantle lithologies and displaces the neovolcanic hanging wall toward the 244 

MCSC axial floor. Tucholke et al. (1998) refer to similar features on the MAR as the termination. However, 245 

since the geological structures that we map here have a finite width, we adopt the term termination zone for 246 
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convenience. In turn, we define the N-S elongated ridge, forming the western limit of the Mt. Dent massif, 247 

as the site of initiation of detachment faulting. Again, following the terminology coined by Tucholke et al.  248 

(1998) to describe oceanic detachment faults, we refer to this structure as the breakaway. Note that the term 249 

breakaway generally refers to any region where a fault initially breaks the Earth’s surface, and has been 250 

widely used to describe continental core complexes (e.g. Davis, 1980). Similarly, termination describes the 251 

down-dip limit of a fault, and has been widely used in marine geology studies to describe where a 252 

detachment fault emerges from the subsurface. The terms hanging-wall cutoff and footwall cutoff have also 253 

been invoked for termination and breakaway zones in continental and oceanic core complexes 254 

(Allmendinger et al., 1981; Escartin et al., 2017), but we do not adopt that terminology here.  255 

4.2.2 The Termination Zone 256 

 We interpret the history of the termination zone from high-resolution bathymetry, slope mapping, 257 

and acoustic backscatter imagery from the AUV of the base of the smooth, eastward-sloping flank of Mt. 258 

Dent and the hummocky volcanic seafloor of the MCSC axis immediately to the east. In general the area has 259 

low acoustic backscatter intensities except for a N-S trending, curvilinear “ribbon” and chaotic area of high 260 

acoustic backscatter (Figure 6A, B). The bathymetry and slope-azimuth map (Figure 6A, C) show the 261 

bright, curvilinear feature to be associated with a low, west-facing scarp that is ~10 m high at a depth of 262 

approximately 4100 m.  High acoustic backscatter is indicative of exposure of hard rock and rough seafloor, 263 

whereas lower backscatter reflects sediment cover. High intensity acoustic backscatter is found to reduce 264 

westwards, over a distance of ~100 m, to become similar to the low value of backscatter we find in the 265 

surrounding sediment covered basement (Figure 6B). We interpret this change in backscatter to reflect 266 

increasing acoustic attenuation by a wedge of sediment cover that thickens in the up-dip direction across the 267 

termination zone. This reflects a history of detachment slip in which the accumulation of  pelagic sediment  268 

progressively attenuates the acoustic backscatter albedo of the detachment surface as it ages from initial 269 

exposure immediately adjacent to the hanging wall. We note for context that a virtually identical feature has 270 

been imaged (MacLeod et al., 2009) and sampled (Escartin et al., 2017) at the 13°20’N OCC (MAR).  271 

 The acoustic backscatter image and slope-azimuth map (Figure 6B, C) shows how the westward 272 

dipping curvilinear active termination zone merges north of 18°22’N with a broader and more chaotic 273 

terrain. The more chaotic terrain comprises patches of low-backscatter seafloor (i.e. sediment covered), 274 

surrounded by a highly reflective (i.e. hard substrate) rugged and blocky seafloor,. When superimposed on 275 

the micro-bathymetry, the acoustic backscatter image reveals these dark and angular patches to lie within 276 

areas of highly reflective and steeply sloping seafloor, characteristic of recent slumping and displacement of 277 

‘rafts’ of sediment covered footwall to the east (Figure 7). The micro-bathymetry and slope-azimuth maps 278 
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(Figure 6A, C) also reveal another ~10 m high, N-S striking, westward-facing curvilinear fault scarp that 279 

merges with the active termination zone to the south (black line in Figure 6D). The low acoustic backscatter 280 

of this scarp shows it to be draped by a continuous sediment blanket and hence we infer that it is unlikely to 281 

have been recently active.   282 

4.2.3. Corrugations  283 

 Ship-board multibeam bathymetry data of the flanks of Mt. Dent reveal a series of parallel 284 

corrugations, undulating grooves observable at the map scale (Figure 5A, B;) referred to as mullion 285 

structures in some areas (e.g. John, 1987). The spatial orientations, described here, were determined via 286 

analyses of the bathymetric data. These corrugations trend between 083° and 100° (Figure 5C), 287 

approximately parallel to the spreading direction of the MCSC. Smaller-scale corrugations, observed from 288 

the AUV-derived micro-bathymetry from near the base of the eastern side of Mt. Dent just west of the 289 

termination zone, have a slightly different orientation of  between 075° and 100°. The variation in 290 

corrugation trend at Mt. Dent could be due to rheological responses during their evolution as the OCC was 291 

exhumed (cf. Escartin et al., 2017). Alternatively, the variation could be due to progressive changes in slip 292 

direction and/or the result of deformation of the detachment fault surface after the corrugations formed, such 293 

as by folding and/or flexure of the Mt. Dent massif. The data also reveal that these corrugations have a 294 

wavelength of 100-200 m, an amplitude of 25-35 m, and lengths of up to 1.2 km (Figure 8).  295 

 The AUV bathymetry data also reveal arcuate structures superposed on the crests of the 296 

corrugations, especially near the termination zone (Figure 8). These arcuate structures are ~10 m high, up to 297 

1.5 km long, ~150 m apart, and concave downward toward the east. The origin of these is enigmatic, but we 298 

note that they occur to the west of an arcuate bend in the trace of the termination zone (Figure 8), and may 299 

result from debris deposited on the footwall by erosion of the hanging wall. We note that similar features are 300 

described and sampled from the MAR 13°20’N OCC, by Escartin et al., (2017) and propose that these are 301 

common features of oceanic detachment faults where the hanging wall is eroded onto the emerging footwall.  302 

The micro-bathymetry also reveals similarly oriented corrugations, albeit of a slightly more subdued 303 

amplitude, located to the east of the termination zone (Figure 8). These features, termed here ghost 304 

corrugations are continuous along strike with the corrugations to the west of the termination zone. Their 305 

occurrence is enigmatic as they are formed in the rougher terrain of the thin trailing-edge of the hanging-306 

wall. As such, they are not ornamentations on the detachment surface, but might reflect the draping of the 307 

thin trailing-edge of the hanging wall over topography of the yet-to-be exhumed footwall (see also MacLeod 308 

et al., 2009).   309 
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4.2.4. The upper slopes of Mt. Dent 310 

 The topography of the upper slopes of Mt. Dent, above a depth of 3000 m, contrast with the smooth 311 

eastern and southern flanks of the massif by comprising a blocky and chaotic seafloor with east-facing steps 312 

and gullies tens of metres deep (Figures 5B and 9). Similar chaotic terrain is reported from the upper slopes 313 

of the 13°20’ N OCC, MAR, by Bonnemains et al. (2017) and Escartin et al. (2017). Prominent lineaments 314 

and scarps in this area are found by ROV observations and sampling to expose gabbro and serpentinized 315 

ultramafic rocks (Hodkinson et al., 2015), and are consistent with faulting of the basement. The most 316 

prominent feature in this region is a series of conical mounds, up to 70 m tall and ~100 m metres in diameter 317 

(Figure 9). These mounds form both the active and inactive vents in the Von Damm Vent Field (VDVF), 318 

located at 81°47’ W; 16°22.50’ N (Connelly et al., 2012; Hodgkinson et al., 2015). Primary vent fluid, 319 

emitted from mounds of hydrothermal talc at 215°C, has a composition that indicates high-temperature 320 

reaction between seawater, gabbro, and serpentinizing ultramafic rocks (Hodgkinson et al., 2015). The 321 

VDVF dissipates up to 500 MW of thermal energy, cooling the interior of Mt. Dent (Hodgkinson et al., 322 

2015).  323 

The rocks surrounding the VDVF are mainly gabbroic with some serpentinized ultramafic rocks and 324 

relatively fresh diabase dikes, all of which were recovered by ROV as reported in Hodgkinson et al. (2015), 325 

and which are consistent with previous sampling studies (Stroup and Fox, 1981). Another prominent but 326 

hydrothermally inactive talc mound is located ~500 m to the east of the active VDVF and is surrounded by 327 

smaller mounds of a similar origin. These are estimated from the observed thickness of the sediment cover 328 

as well as analyses of the vents themselves to have ceased hydrothermal construction at least 20,000 years 329 

ago (Hodgkinson et al., 2015), suggesting an extended history of hydrothermal activity at the VDVF.  330 

 The active hydrothermal mounds of the VDVF are aligned N-S and associated with several sets of 331 

steep, NNW-SSE trending slopes, interpreted from the AUV-derived bathymetry, ROV observations, and 332 

sampling of gabbroic outcrop as normal fault scarps (Figure 9). In addition, the micro-bathymetry maps 333 

show cusp-shaped scarps and tongues of disturbed and hummocky material that are elongated down-slope 334 

towards the east (Figure 9C). This has especially affected the active VDVF mounds, with the eastern slopes 335 

showing signs of collapse and mass wasting. To the north of the VDVF, another tongue of blocks and 336 

boulders extends to the east and widens into an E-W trending depression. 337 

 338 

  339 
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4.2.5. The summit of Mt. Dent and Breakaway Zone 340 

 At approximately 81°50’30” W, a N-S trending (structural) ridge marks the breakaway zone of Mt. 341 

Dent (Figure 10A). Here, the summit area is characterized by a smooth region of depressions bound 342 

between approximately N-S and E-W striking ridges and scarps (Figure 10B).  These linear features, which 343 

have been identified from the high-resolution multibeam bathymetry data, are likely to be the result of 344 

sediment draping over underlying fault scarps.  345 

To the west of the summit ridge, the scarps mainly dip towards the west in a series of steep steps that 346 

form the western flank of the breakaway ridge. To the east of the breakaway ridge, the structures dip east 347 

and form N-S elongated basins with smooth seafloor. Despite having only mapped a small area in high-348 

resolution by AUV, the shipboard multibeam bathymetry map shows the N-S trending structures continue 349 

across the summit of Mt. Dent and along the breakaway zone (Figure 10A).  350 

 In this area, the AUV-derived micro-bathymetry also reveals clusters of pockmarks grouped in an E-351 

W trending band along the upper-southern flank of the summit region (blue dots on Figure 10B and inset 352 

detail). The pockmarks are up to 10 m in diameter (Figure 10C). Observations by the ROV of the seafloor in 353 

the vicinity of these larger pockmarks (yellow ‘X’ on Figure 10B) reveal steep-walled circular holes up to 354 

75 cm in diameter and >1 m deep (Figure 10D). The presence of relatively undisturbed seafloor surrounding 355 

the holes is indicative of material having been removed from the sub-seafloor. These features are 356 

characteristic of fluid flow or degassing from the basement as seen in other seafloor environments, albeit in 357 

those examples pockmarks are developed in thick sediments (Hovland et al., 2002).  358 

5. Discussion  359 

5.1. Mt. Dent & OCC Evolution 360 

Mt. Dent shares structural similarities with many other OCCs, including a gabbro-dominated crustal 361 

architecture and asymmetric domed surface that dips towards the rift axis where it terminates against 362 

hummocky volcanic terrain (Figure 11). Like many of these OCCs, which also host hydrothermal systems, 363 

the domed surface of Mt. Dent is characterized by corrugations spanning a range of scales from hundreds to 364 

kilometers long and tens to hundreds of meters wide and with a narrow range of orientations. Most regional 365 

analyses of OCC corrugations find that they trend roughly parallel to the spreading direction (e.g. Smith and 366 

Cann, 2006). Escartin et al. (2017) and Parnell-Turner et al. (2018), based on their work on the the 13°20’N 367 

and 13°30’N MAR OCCs, suggested that the corrugations are the product of an integrated evolution of the 368 
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fault plane as it passes through the brittle-ductile transition. More generally, corrugated structures on any 369 

fault surface can be due to the slip behaviour of faults in the brittle crust (Resor and Meer, 2009). 370 

The MAR OCCs in particular exhibit detachment faults that, in places (especially 13°30’ N), are cut 371 

by high-angle faults and dike intrusions (MacLeod et al., 2009). MacLeod et al. (2009) proposed that these 372 

dike intrusions “kill” detachment faults after they migrate into the axial valley, thereby allowing magmatism 373 

from the adjacent AVRs to propagate across the OCC footwalls. Such a model may well apply to Mt. Dent 374 

which shows evidence of tectonic instability in the: (i) disintegration of its termination zone, (ii) brittle 375 

faulting across its upper flanks, summit, and breakaway, (iii) rifting of the southern flank, (iv) the 376 

intersection of an axial volcanic ridge with its northern flank, and (v) likely magmatic intrusion deep within 377 

the interior of Mt. Dent. We suggest that these features are indicative of Mt. Dent being in a terminal stage 378 

of tectonic seafloor spreading, with slip on the detachment fault virtually ceased, and magmatic spreading 379 

reasserting itself as the dominant mechanism of seafloor spreading.  380 

5.2. Cessation of Detachment Faulting 381 

Evidence for reduced tectonic activity of the detachment fault comes from near the most recently 382 

exposed area of the termination zone where a thin band of acoustic reflectivity rapidly diminishes 383 

westwards over a distance of ~100 m. We interpret this as a narrow (50-100 m) zone in which a hard and 384 

rough basement exposed by slip on the detachment fault gives way to soft sediment cover. Our 385 

interpretation is based on the reasoning that at a frequency of 200 kHz pelagic sediment attenuates the 386 

backscattered signal from the EM2000 multibeam sonar by ~20-50 dB per metre, approximately equal to the 387 

difference in acoustic backscatter between hard rock and soft sediment (Stoll, 1985; Mitchell, 1993). A 388 

similar observation has been reported for the 13°20’N MAR OCC (e.g. Parnell-Turner et al., 2018), where 389 

a reduction in backscatter-intensity across the termination zone is suggested to reflect the changing 390 

thickness of sediment covering the fault surface as a result of slip of the detachment fault. There, the surface 391 

of the emerging footwall is now covered by basaltic rubble eroded from the hanging wall (Bonnemains et 392 

al., 2017). 393 

Although the sedimentation rate for the central MCSC is unknown and is likely to be variable (e.g. 394 

Erikson et al., 1972), the regional pelagic accumulation rate has been measured as <5 mm/ka (Land, 1979). 395 

We estimate that, given these low sedimentation rates, a reasonable slip rate to cause the observed reduction 396 

in acoustic backscatter intensity across the width of the active termination zone would be <5 mm/yr. Though 397 

just an estimate we suggest that the pattern of sedimentation on the detachment surface indicates that the 398 

slip rate is now very slow, if not inactive. In our interpretation, the few mm per year deficit between the 399 
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spreading rate and slip rate is increasingly accommodated by high-angle faulting and magmatism at this 400 

location. 401 

Further evidence that the detachment is currently inactive, or becoming inactive, is seen in the 402 

termination zone to the north of 18°22'5"N. Here, the ribbon of bright acoustic backscatter indicates that the 403 

active termination zone widens and becomes chaotic. We attribute this backscatter pattern to result from the 404 

upper crustal dismemberment a weak footwall and brittle disintegration of the termination zone. Elsewhere, 405 

the west-facing curviplanar fault scarp located 1-1.5 km west of the active termination zone (Figure 6) is 406 

evidence of vertical dislocation; Stroup and Fox (1981) reported similar fault scarps from their observations 407 

from the human occupied vehicle Alvin. An alternative interpretation of this particular fault splay is that it is 408 

an antithetic normal fault or detachment fault splay formed after the footwall was denuded. In either case, 409 

we interpret the bifurcation of faults in the termination zone as evidence of a transfer of stress following 410 

strengthening (locking) of the detachment fault due either to its rheologic evolution, rotation to an 411 

unfavorable orientation for slip, or both. As the hanging wall and footwall become more tightly coupled, 412 

strain is transferred from the low-angle detachment fault to new and steeper dipping normal faults that cut 413 

across the footwall, and the detachment fault surface disintegrates.  414 

 The central basin, forming the northern end of the southern segment of the MCSC, is dissected by a 415 

NW-SE trending horst that rifts the southern flank of Mt. Dent. Such horsts are components of horst-and-416 

graben structures and rift shoulders that are predicted in models of extensional brittle failure of thick 417 

lithosphere (e.g., Lavier & Buck, 2002). Similar features have been observed along the axis of the ultraslow 418 

spreading Southwest Indian Ridge (Sauter et al., 2013).  The intersection between the faults generating the 419 

horst and the detachment fault could be a response to a non-transform offset proposed to bound the southern 420 

end of Mt. Dent (Macdonald and Holcombe, 1978). The horst could also be a result of the generally melt-421 

poor environment (see below), thereby accommodating tectonic extension and potentially exposing as-yet 422 

unidentified deeper crustal or upper mantle materials. Alternatively, in some respects the horst bears some 423 

resemblance to the area near the Rainbow vent field (MAR 36°14’N) where detachment faulting and 424 

magmatic sill emplacement have been identified in a non-transform offset (Paulatto et al., 2015; Eason et 425 

al., 2016). Regardless, the fact that the horst is associated with normal faulting along the southern flank of 426 

Mt. Dent is further evidence that the locus of extension is being transferred away from the detachment fault.  427 

5.3. Magmatism and OCC death 428 

Seismic imaging (Van Avendonk et al., 2017), seafloor observations (Hayman et al., 2011), and the 429 

new data we present here show that the northern and southern segments of the central MCSC are currently 430 
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dominated by robust volcanic activity. The northern segment, which our data reveal is typified by a young, 431 

hummocky AVR, circular volcanoes, and hydrothermal activity at the Beebe Vent Field, lies directly above 432 

a low-velocity seismic anomaly of probable magmatic origin (Van Avendonk et al., 2017). The prominent 433 

AVR in this location intersects the northern flank of Mt. Dent. Indeed, the presence of a wide field of fresh 434 

hummocky volcanics along the northern AVR at its intersection with Mt. Dent is evidence for a robust 435 

magma supply immediately adjacent to the OCC if not beneath it. Such magmatism would explain the 436 

hydrothermal activity at the Von Damm Vent Field near the summit of Mt. Dent. Fluid flow is likely 437 

facilitated by fracturing and opening of fluid-flow pathways over the possible magmatic intrusion and the 438 

subsequent mining of heat from deep within the OCC (Hodgkinson et al., 2015; McDermott et al., 2015). 439 

The fracturing and magmatism likely contributes further to a low P-wave seismic anomaly in the deep 440 

subsurface below Mt. Dent (Harding et al., 2017).  441 

Our data also show the area between the two volcanic segments of the MCSC, in the hanging wall of 442 

the detachment fault, comprises hummocky volcanics including a circular seamount. Seismic studies show 443 

this to be underlain by thin crust (Van Avendonk et al., 2017; Harding et al., 2017). We note that we cannot 444 

rule out that these volcanic features have been tectonically juxtaposed against the footwall of Mt. Dent OCC 445 

by the detachment fault. However, if these volcanic features indeed cross-cut the detachment fault then they 446 

are further evidence that the OCC is being intruded by magma, contributing to the cessation of detachment 447 

faulting. 448 

 449 

5.4. Hydrothermal Activity & the Mechanical Evolution of OCC interiors  450 

Following intrusion, Hodgkinson et al. (2015) estimated that the interior of Mt. Dent cools by 500°C 451 

over 3800 and 6400 years. This estimate is based on a 10x10x3 km volume and a rate of about 0.3 m
3
s

-1
 452 

assuming the dominant lithology is gabbro (Arafin and Singh, 2016) and that chemically produced heat from 453 

serpentinization is not significant.  Such rapid cooling will deepen the brittle-ductile transition within the 454 

OCC footwall, enhancing further brittle deformation, fluid flow, and weakening of the interior of the massif.  455 

 Faulting, fracturing and fluid flow are a response to magmatic intrusion within the OCC and also a 456 

reflection of the changing stress field as the OCC is flexurally exhumed and spreads off axis. However, the 457 

brittle deformation and fluid flow are also likely to change the effective stress within the Mt. Dent massif, 458 

thereby further weakening the interior of the OCC relative to the detachment fault to the east. Such a strain 459 

evolution has also been proposed for the Atlantis Massif, where exhumation is accompanied by flexural 460 

uplift and rotation of normal faults into a mechanically favorable high-angle orientation, accompanied by 461 

internal strain within the OCC (Karson et al., 2006). Also at the Atlantis Massif, fluids flow through 462 
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fractures and faults within the OCC feeding the Lost City Field vents (Denny et al., 2016), and may also 463 

cause a change in effective stress due to the overall low-permeability environment (Hirose and Hayman, 464 

2008). The presence of pockmarks distributed across the southern flank of Mt. Dent potentially indicates an 465 

even broader fluid-flow regime associated with internal deformation of the OCC. We note that the 466 

pockmarks themselves do not align along individually mapped faults, illustrating that the permeability and 467 

fluid flow regime is more widespread within the faulted regions, perhaps in the distributed fractures of 468 

damage zones surrounding the faults themselves. 469 

 The idea that the detachment is becoming inactive is also consistent with modelling that indicates 470 

that, as conditions become less favorable for continued OCC growth (e.g. through diking and magmatic 471 

intrusion across the detachment fault and into the hanging wall), new high-angle faults begin to dissect the 472 

OCC (Behn and Ito, 2008). As discussed above, such a transition may have already occurred at Mt. Dent, as 473 

suggested by the occurrence of predominately N-S striking normal faults and recent slumping higher up on 474 

the domed massif, the hydrothermal venting, and the clusters of pockmarks indicating fluid released from 475 

within the upper massif by brittle faulting. We note similar tectonic features, other than perhaps the 476 

pockmarks, have been reported from OCCs elsewhere, including the FUJI Dome, an inactive OCC on the 477 

Southwest Indian Ridge (Searle et al., 2003), and the Rainbow massif on the northern MAR (Paulatto et a., 478 

2015), and suggest this style of faulting is associated with OCC termination.  479 

5.5. OCC Evolution at Ultraslow Spreading Centers 480 

Before explaining how our interpretations and hypotheses are consistent with current views of 481 

ultraslow spreading centers, we note that there are alternative hypotheses for the origin of several of the key 482 

geologic features. Though singularly we cannot rule these hypotheses out, we find them to be less consistent 483 

both with our data and with the model framework we describe below. For example, the detachment could be 484 

currently slipping at an unchanged rate, but then we would expect more irregular, unsedimented areas of the 485 

detachment surface near the termination zone as seen, for example, at the Kane transform OCC of the MAR 486 

(Tucholke et al., 2013). Furthermore, if the detachment was still active, we would expect sedimentary wedge 487 

and hanging-wall normal fault relations more consistent with a Coulomb Wedge model (Hayman et al., 488 

2003; Olive et al., 2019); we observe neither of these features. Magmatic diking could have formed the 489 

southern horst, but we observe no neovolcanic zone associated with this feature on its trace along the 490 

seafloor. Lastly, lithospheric heat (Lowell, 2018) and/or heat from serpentinization (Fruh-Green et al., 491 

2003) could be  driving the hydrothermal system. However, the fluid and mineral chemistry at the VDVF 492 

(Hodgkinson et al., 2015; Webber et al., 2015; McDermott et al., 2015), the spatial coincidence with the 493 

nearby AVR, the similarities of the setting with the magmatic sills seismically imaged below the possibly 494 
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analogous Rainbow vent field on the MAR (Canales et al., 2017), and arguments that venting requires 495 

magmatic heat (Allen and Seyfried, 2004), all lead us to suspect there are gabbroic intrusions from the 496 

mantle intruding the OCCs. 497 

We now describe how our interpretations and hypotheses are oddly consistent with current views of 498 

ultraslow seafloor spreading. Ultraslow spreading centers worldwide are thought to have relatively thin 499 

crusts and great axial depths, a reflection of generally low melt production from a mantle with a low 500 

potential temperature (e.g., Klein & Langmuir, 1987; Dick et al., 2003). The MCSC falls within this class of 501 

ultraslow spreading centers, and seafloor older than 10 Ma is dominate by exhumed mantle (Grevemeyer et 502 

al., 2018), and serpentinized peridotites from the axial deep resemble those from the Southwest Indian and 503 

Gakkel Ridges (Mallick et al., 2014). Yet, Mt. Dent is also similar to OCCs on other ultraslow spreading 504 

ridges, such as Atlantis Bank on the Southwest Indian Ridge (SWIR) which despite the overall melt-poor 505 

environment have drill cores dominated by plutonic gabbro bodies intruded into an ultramafic host rock 506 

(Dick et al., 2000).  507 

With an E-W length of 14 km from the termination zone to the breakaway, and a full spreading rate 508 

of 15 mm/yr, we calculate that the Mt. Dent OCC was active for between about 1 and 2 myr, given that the 509 

youngest edge of magnetic anomaly 2 (~1.64 Ma, Leroy et al., 2000) coincides approximately with the 510 

breakaway region (Hayman et al., 2011). We note that even though magnetic anomalies are highly 511 

asymmetric in their character from west to east across Mt. Dent, Anomalies 2-3 are roughly symmetrically 512 

located on the conjugate sides of the spreading center (Rosencrantz, 1988; LeRoy et al., 2000; Hayman et 513 

al., 2011). Given that the eastern flank of the central MCSC is dominated by volcanic rocks and the western 514 

side by detachment faulting at Mt. Dent, the symmetry in spreading indicates that tectonic extension on the 515 

OCC detachment fault accommodates ~50% of the plate separation while magmatic accretion 516 

accommodates the other 50%. 517 

 In the terminology of Buck et al. (2005) the MCSC seafloor spreading is thus described by an M (ratio of 518 

tectonic to magmatic spreading) of 0.5. Olive et al. (2010) argue that termination of OCC growth is favored 519 

where this proportion of magmatism is intruded into the brittle lithosphere deep within the footwall of an 520 

OCC. Thus, ironically, even though overall the MCSC is a melt-poor environment, local magmatism can 521 

accommodate enough seafloor spreading so as to disfavor OCC development as is observed at faster 522 

spreading centers worldwide.   523 

 524 
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5. Conclusions 525 

Interpretations of multibeam bathymetric and side-scan sonar data highlight how a range of tectonic 526 

and magmatic processes are impacting a prominent OCC, Mt. Dent, that defines the central east flank of the 527 

ultraslow-spreading MCSC. Extensive and recent volcanism in the northern axial valley of the MCSC leads 528 

to southward prolongation of an axial volcanic ridge (AVR) into the northern flank of the OCC. In the 529 

southern axial valley an extensional fault system generates a horst that continues northwards into the 530 

southern flank of the massif. Faulting and distributed fracturing cut across the OCC-bounding detachment 531 

surface leading to significant mass wasting in several locations. Pelagic sedimentation unevenly drapes  the 532 

corrugated detachment surface, but in a manner that suggests recent detachment exhumation at a slower rate 533 

than tectonic spreading. The propagation of magmatism and faulting into the into the massif’s flanks from 534 

the north and south allows the transfer of strain from the OCC detachment fault to the steeply dipping 535 

normal faults that dissect the flexed massif. Deep-rooted hydrothermal activity cools the interior of OCCs 536 

and deepens the ductile/brittle transition, increasing the volume of footwall that undergoes brittle 537 

extensional deformation and further weakening the footwall. Some alternative hypotheses cannot be ruled 538 

out, including possible ongoing detachment faulting, significant contributions from other heat sources to the 539 

hydrothermal system, and magmatic intrusions associated with the southern horst. However, our favored 540 

interpretations are in broad agreement with both existing subsurface geophysical  data and geodynamic 541 

models for OCC evolution, whereas collectively the alternatives are not. Namely, that models predict that 542 

OCC termination occurs when magmatic intrusion and diking into the brittle part of an OCC footwall 543 

exceeds 50%. This model prediction, when applied to the MCSC, leads to the conclusion that despite the 544 

melt-starved nature of ultraslow spreading ridges, tectonic spreading by OCC growth is terminated by an 545 

increase in magmatic activity, as is observed for faster spreading centers.  546 
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FIGURE CAPTIONS 778 

 779 

Figure 1: A: Location and geological setting of the Mid-Cayman Spreading Centre (MCSC). B: 50 m-780 

gridded ship board multibeam bathymetry of the Mid-Cayman Spreading Centre showing the location of 781 

Mt. Dent and the other major morphotectonic features discussed in the text: AVR = axial volcanic ridge, FZ 782 

= fracture zone. Mt. Emms and Mt. Hudson were named in Cheadle et al. (2012) and are also OCCs on the 783 

inside corners of the MCSC intersection with the adjacent fracture zones. 784 

 785 

Figure 2: A: Map of MCSC showing the four different volcanic terrains. BVF and VDVF are the Beebe and 786 

Von Damm Vent Fields; see Figure 1B for a colored version with bathymetric scale. Inset panels illustrate 787 

the terrain types in more detail and using side-scan sonar to help identify each volcanic terrain type: B: 788 

hummocky terrain, C: seamount, D: sheet flows. 789 

 790 

Figure 3: A: Location map of the Southern segment, Central Basin and Horst. B: Shaded relief bathymetry 791 

of the Horst with faulted regions labelled, based on high backscatter in TOBI data. C: Side-scan sonar 792 

image of the Central Basin and Horst. Faults appear as brightly (acoustic) backscattering curvilinear 793 

reflectors while sheet flows are smooth with moderate backscatter. 794 

 795 

Figure 4: A: Location of the southern ridge-transform-intersection (RTI) between the MCSC and the Swan 796 

Island fracture zone, inset box indicates location of panels C and D. Box B is the location of 3D image for 797 

panel B. B: 3D projection (from the south) of a ‘lavafall’ formed by a sheet flow as it has cascaded over the 798 

RTI fault scarp. The AUV bathymetry does not have the same depth color scale as the ship multibeam in 799 

panels A and D. C: Side-scan sonar image with lava flows appearing as a strong reflector (bright) and 800 

sediment covered areas with lower reflectivity. The RTI fault-scarp is a very bright curvilinear reflector. 801 

Note the presence of a small high-standing ‘islands’ of sediment covered seafloor surrounded by brighter 802 

sheet flows near to and NW of the RTI fault scarp, crossed by an ROV track (light orange). Also the area of 803 

diffuse backscatter at the base, and SE of the RTI scarp. D: Geological map of the southern RTI showing 804 

different volcanic terrains and faults. 805 

 806 

Figure 5: A: 50 m resolution 3D bathymetric projection of Mt. Dent, looking northwest. The extent of the 807 

AUV autosub6000 bathymetry survey is highlighted in white. Black box is the extent of Figure 6. Also 808 

outlined in white dashes is the northern AVR, in black dashes are volcanoes, and in red lines are the 809 

termination zone (squares on hanging wall) and normal faults (ticks on down-thrown side). B: 2 m-gridded 810 

resolution AUV bathymetry of the domed surface of Mt. Dent, viewed from the south. Note that the AUV 811 

and ship bathymetry have different scales. C. Rose diagram of corrugation orientations. 812 

 813 

Figure 6: AUV-derived maps of the lower eastern flank of Mt. Dent. A: 1 m resolution, shaded relief 814 

bathymetry. Lower red box the extent of Figure 8. B: 1 m-gridded multibeam backscatter, lighter is stronger 815 

acoustic reflectivity. Upper red box indicates extent of Figure 7. C: Color-coded slope azimuth map 816 

calculated from the 1 m-gridded bathymetry using a 3x3 matrix. D: Geological interpretation of the 817 

termination zone.  The dashed blue line is the curvilinear scarp with high backscatter that is interpreted here 818 

as marking the trace of the termination zone. 819 

 820 

Figure 7: 3D projected  AUV-derived multibeam acoustic backscatter of the chaotic region north of where 821 

the detachment trace bifurcates, see figure 6 and georeferenced tick-marks for location. Consolidated rafts 822 

of lower-backscatter (sediment covered) seafloor surrounded by brighter areas of seafloor indicating freshly 823 

exposed harder substrate (slumps) are annotated as a slump block.  824 

 825 

Figure 8: Oblique image of the AUV data illustrating corrugations that characterize the lower eastern 826 

flank of Mt. Dent. See Figure 6A and georeferenced tickmarks for location. See text for discussions of 827 
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the “Ghost Corrugations” observable to the east (above) the termination zone and arcuate structures 828 

thought to be fault-related detritus accumulated along the corrugations. 829 

Figure 10: A: Location map of panels B, on the crest of Mt Dent. B: The crest of Mt Dent showing N-S and 830 

E-W orientated faults scarps (white lines) form grabens which produce basins. Pockmarks (blue 831 

dots)identified from AUV bathymetry (C). C: Zoom in of box C in panel B showing pockmarks in 832 

bathymetry as circular depressions. D: photograph from the ROV HyBIS of a pockmark from within the 833 

pock-mark field located as the yellow ‘X’ in panel B.  834 

 835 

Figure 11: Schematic block diagram illustrating the key elements of the dying stages of the Mt. Dent OCC. 836 

The OCC is formed by detachment faulting, emerging from the termination zone and aging to the west, 837 

exposing a foot wall that has corrugations parallell to the detachemnt fault’s slip direction, and a 838 

heterogeneous ‘plum-pudding’ crustal structure comprising gabbroic plutons and dikes intruded into a 839 

matrix of serpentinised ultramafic mantle material. The northern AVR intersects Mt Dent’s northern flank, 840 

while in the south, the horst cuts obliquly into Mt Dent’s southern flank. The hanging wall immediatley to 841 

the east and above the detachment fault comprises recent volcanics, including a seamount. Subtle 842 

ornamentation depicts hypothesized magmatic intrusions under the VDVF and the detachment (red) and 843 

associated fluid flow (blue). 844 
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