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A B S T R A C T

Drought has wide ranging impacts on all sectors. Despite much effort to identify the best drought indicator to
represents the occurrence of drought impacts in a particular sector, there is still no consensus among the sci-
entific community on this. Using a more detailed and extensive impact dataset than in previous studies, this
paper assesses the regional relationship between drought impacts occurrence in British agriculture and two of
the most commonly used drought indices (SPI and SPEI). The largest qualitative dataset on reported drought
impacts on British agriculture for the period 1975–2012 spanning all major recent droughts was collated.
Logistic regression using generalised additive models was applied to investigate the association between drought
indices and reported impacts at the regional level. Results show that SPEI calculated for the preceding six months
is the best indicator to predict the probability of drought impacts on agriculture in the UK, although the variation
in the response to SPEI6 differed between regions. However, this variation appears to result both from the
method by which SPEI is derived, which means that similar values of the index equate to different soil moisture
conditions in wet and dry regions, and from the variation in agriculture between regions. The study shows that
SPEI alone has limited value as an indicator of agricultural droughts in heterogeneous areas and that such results
cannot be usefully extrapolated between regions. However, given the drought sensitivity of agriculture, the
integration of regional predictions within drought monitoring and forecasting would help to reduce the large on-
farm economic damage of drought and increase the sector's resilience to future drought.

1. Introduction

In recent decades the severity and frequency of extreme climatic
events, including droughts, have increased significantly, causing severe
damage, casualties and injuries around the world (FAO, 2008; Giddens,
2011). Climate change is expected to contribute to this increasing trend,
posing greater risks to society, the environment and those sectors de-
pendant on precipitation and water resources (IPCC, 2014).
A drought is normally defined as a natural hazard caused by a

period of abnormally low precipitation. Drought differs from other
natural disasters in the slowness of onset and its usual lengthy duration
(European Commission, 2007a). Its effects accumulate slowly over
time, so it is difficult to determine the onset, duration and termination
of a drought event (European Commission, 2007b; Parry et al., 2016;
Wilhite, 2007). Drought has wide-ranging impacts on the environment,
economy and society. The agricultural sector is particularly sensitive to
drought and water scarcity (Wilhite et al., 2014) as it is directly

dependent on precipitation and evapotranspiration. Droughts can de-
crease crop yields and quality (Rey et al., 2016), and affect livestock by
reducing grass and feed availability. Drought impacts do not depend
only on the severity of the hazard, but also on the sensitivity of a sector
or activity. Thus, as agriculture varies spatially, the vulnerability to the
same drought is different, and so are the associated impacts.
There are several papers on the relationship between drought se-

verity (usually measured as some form of standardized index) and the
associated impacts using statistical methods with data such as time
series of crop yields (Gunst et al., 2015; Potopová et al., 2015; Vicente-
Serrano et al., 2012). In Europe, since the multi-sectoral European
Drought Impacts Inventory (EDII) was released (containing impact
entries for all countries in Europe, ranging from one entry for Ukraine
to 278 for Germany), this qualitative dataset has been used to assess the
association between drought indicators and reported impacts at dif-
ferent scales: continental (Blauhut et al., 2015), national (Stagge et al.,
2015) and regional (Bachmair et al., 2015, 2016, 2017). Still, there is
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no consensus on which indicator best represents drought impact oc-
currence for any given sector, including agriculture (Zargar et al.,
2011). As stated by Bachmair et al. (2016), the main limitation for
evaluating commonly used drought indicators is the lack of information
on drought impacts. While most previous papers looking at the re-
lationship between drought indicators and agricultural impacts in
Europe used the EDII, or a proxy, such as remote sensing data
(Bachmair et al., 2018), this paper uses a more comprehensive dataset:
the United Kingdom (UK) Agricultural Drought Inventory, which covers
a wider range of agricultural impacts reported during past droughts. It
contains text-based reports on 1480 agricultural impacts between 1975
and 2012, compared with 202 for the same period in the EDII. This
period captures all major recent UK droughts, with the exception of a
limited duration heatwave and drought in 2018. This allows for a more
accurate and nuanced evaluation of national and regional drought in-
dicators against reported impacts.
There are numerous proposed drought indices (Dalezios et al.,

2016a, 2016b; Svoboda and Fuchs, 2016) of which> 20 have been
reviewed for various purposes by other authors (e.g. Pedro-Monzonís
et al., 2015; Zargar et al., 2011). These may be broadly grouped by the
types of data used to construct the indices. The simplest use meteor-
ological data only, and will be discussed further below. These lack any
explicit consideration of retention of water in the soil or the responses
of crops. To overcome the first of these limitations, several indices in-
clude a soil water balance model; one of the earliest examples was the
Palmer Drought Severity Index (PDSI) (Palmer, 1965). These indices
are better suited to application at scales where soil conditions are re-
latively uniform. In non-uniform regions, there may be considerable
variations in the index within a region. More sophisticated agricultural
drought indices, such as the Crop Specific Drought Index (Meyer et al.,
1993), include explicit modelling of crop water use. These may be able
to give better predictions for specific crops, but are not suitable for
large-scale forecasting where cropping is not uniform. Other methods
use crop monitoring via remote sensing, for example Normalized Dif-
ference Vegetation Index (Tucker, 1979). Although these can be applied
at large spatial scales by utilising satellite imagery, they are more ap-
propriate for monitoring than forecasting and planning. Finally, com-
posite indices such as the US Drought Monitor (Svoboda et al., 2002)
combine several existing indices to try to improve their predictions. The
use of multiple indices, which are likely to be correlated, makes these
unsuitable as the basis for further statistical modelling.
As the emphasis of this work was on the potential use of indices for

forecasting drought impacts at large scales using readily available data,
purely meteorological indices were the most appropriate. The simplest
of these, such as the Effective Drought Index (Byun and Wilhite, 1999)
and the more commonly used Standardized Precipitation Index (SPI)
(McKee et al., 1993) are derived from precipitation only, comparing
precipitation in the period of interest with the long-term mean and
standard deviation. For use in agriculture, a potentially important
limitation of these indices is the omission of evapotranspiration, as the
available water may be significantly reduced by evaporation in hot
weather.
This is addressed by several indices such as the Standardized

Precipitation Evapotranspiration Index (SPEI), which extends the SPI
method to include evapotranspiration, and the Potential Soil Moisture
Deficit (PSMD). These can use evapotranspiration calculated from
temperature alone in the simplest cases, or uses more sophisticated
models when the necessary variables are available period (Vicente-
Serrano et al., 2009). Other indices that include evapotranspiration,
such as the PDSI for determining long-term drought and the Crop
Moisture Index (Palmer, 1968) for short-term moisture deficits require
additional soil data, so are less suitable for use at regional scales.
This paper aims to assess the probability of drought impacts on

agriculture for each region of the UK using regional drought indices
based on meteorological data, so Standardized Precipitation Index (SPI)
and Standardized Precipitation Evapotranspiration Index (SPEI) were

chosen as representative indices that are easily derived from readily-
available data. Reported drought impacts were taken from the UK
Agricultural Drought Inventory. The paper explores which drought
index best represents the historical regional drought impacts pattern
and identifies the relative sensitivity of regional agricultural systems to
drought. The outputs of this study should inform improved sectorally-
relevant drought monitoring and early warning for British agriculture,
increasing the resilience of the sector. The same approach could be
applied to any other country/region where reported impact data are
available.

2. Data and methods

2.1. Drought indices

SPI, as originally defined by McKee et al. (1993), is a drought index
based on the probability of precipitation for a given accumulation
period. A positive SPI represents a surplus of precipitation in compar-
ison to the long-term average for the region where it is assessed
whereas negative values represent rainfall deficit. SPI calculated for
short accumulation periods allows the identification of short drought
events, whereas SPI for longer accumulation periods will detect longer,
multi-year droughts.
SPEI is similar to SPI, but also takes into account the evaporative

demand, as it is based on the probability of Climatic Water Balance,
which is equivalent to the amount of precipitation minus the amount of
potential evapotranspiration, for a given accumulation period (Vicente-
Serrano et al., 2009). Generally, precipitation in the UK is not strongly
seasonal, in contrast to evapotranspiration. Although precipitation in
the UK normally exceeds evapotranspiration for periods over 1 year, the
converse is usually the case through the spring and summer, especially
in drier eastern regions, leading to significant soil water deficits in some
years, so SPEI is potentially a better indicator of agricultural drought in
these periods.
Gridded datasets of SPI and SPEI were acquired from the

Environmental Information Data Centre1 (Tanguy et al., 2015a,b). The
standard period which was used in these two datasets to fit the gamma
distribution for SPI and the generalised logistic distribution for SPEI
was 1961–2010, and the different accumulation periods available for
both indicators were 1, 3, 6, 12, 18, 24months. Time series of area-
averaged SPI and SPEI for all accumulation periods at a monthly time-
step from 1961 to 2012 were extracted from the gridded datasets for
European NUTS1 administrative regions (NUTS=Nomenclature of
Territorial Units for Statistics, map version 13 used).
In addition to the two standardized indicators, Potential Soil

Moisture Deficit (PSMD) was also calculated for the same period. This
agroclimatic indicator has been extensively used to reflect the re-
lationship between aridity and irrigation needs (e.g. Knox et al., 1997;
Rodríguez Díaz et al., 2007). It takes into account the distribution of
rainfall and potential evapotranspiration (PET) amounts throughout the
year to provide an absolute measure of moisture deficits that can be
compared across regions (unlike with standardized indices), and is used
to support the discussion of the results from our analysis. The PSMD in
each time-step was calculated from

= +PSMD PSMD PET Pi i i i1

where PSMDi=potential soil moisture deficit at timestep i, mm,
PETi=potential evapotranspiration of short grass in timestep i, mm,
Pi=rainfall in timestep i, mm. Rainfall was extracted for NUTS1 re-
gions from the GEAR dataset (Keller et al., 2015; Tanguy et al., 2016)
and PET from the CHESS-PE dataset (Robinson et al., 2016; Robinson
et al., 2017) and historic gridded data for Northern Ireland (Tanguy
et al., 2018). In timesteps where Pi > (PSMDi-1+ PETi), PSMDi was

1 http://eidc.ceh.ac.uk/
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returned to 0. The estimation of PSMD from monthly data started with
January as month i=1 and PSMD was set to zero each year to avoid
the unrealistic carry-over of soil moisture deficits from the previous
year. For comparison with the drought indices calculated over periods
of months, the maximum PSMD within a number of preceding months
(N) of accumulation (PSMDmaxN) was used.

2.2. Agricultural impacts

The agricultural drought inventory for the UK is a subset of data
from the UK Drought Inventory.2 It contains qualitative text-based
drought data related to UK agriculture based on an extensive review of
two weekly farming periodicals in the UK: Farmers Weekly and Farmers
Guardian. These represent the most widely-read industry periodicals
with weekly circulations of> 50,000 and> 35,000 copies, respec-
tively. From 2004 onwards, the issues are in electronic format. For
items before 2004 (not available electronically), issues in paper format
were consulted. The search terms were: drought, dry weather/spell,
rainfall/precipitation, soil moisture, water scarcity/stress/deficit. After
all the text containing one or more of these terms were collected, the
content was screened and only the relevant ones were included in the
inventory. The agricultural inventory contains a total of 2565 text en-
tries, of which 1480 relate to impacts. The collected data were classified
using spatial (unspecified, NUTS1, NUTS2, NUTS3, location), date (day,
month, year, season) and DPSIR framework categories (Driver, Pres-
sure, State, Impacts and Responses), among others (Lange et al., 2017).
For the purpose of the paper, only the text entries regarding drought
impacts that could be associated with a particular NUTS1 region were
considered (839 references). The data was aggregated by NUTS1 region
(Fig. 1) and month-year to get the number of reported impacts in each
region (Table 1).3

2.3. Data analysis

2.3.1. Probability of impacts
Logistic regression and generalised additive models (GAM) were

used to investigate the association between drought indices and re-
ported impacts. This is similar to the method used by other authors to
model impacts at national level for several economic sectors (Bachmair
et al., 2017; Stagge et al., 2015). Logistic regression is generally used to
model the relationship between a binary response variable (in this case
the occurrence of an impact) and continuous predictor variables (see
e.g. Hosmer and Lemeshow, 2013). The frequency of occurrence is
treated as the sample observation of the probability of occurrence (p
(X)), which is transformed to the range (−∞, ∞) using the logit
transform:

=p X p X
p X

logit ( ( )) log ( )
1 ( ) (1)

This can then be used as the dependent variable for regression in a
generalised linear model (GLM). GAMs extend the approach to allow
the linear predictor variables to be replaced by smoothed functions of
the variables using, for example, spline functions (Hastie and
Tibshirani, 1986).
All the statistical analysis was conducted in R (R Core Team, 2017)

and model fitting was performed using the mgcv package (Wood, 2011).
The predictor variables considered were: drought indices (SPI and SPEI
for the 1, 3, 6 or 12 preceding months), month number (treated as a

continuous variable) and year. The response variable was the binary
impact/no impact status for each month, with the number of impacts in
the month used as a weight.
Only one drought index was considered in each model, because

drought indices for overlapping periods would be correlated due to the
data from the common period being used in both. After fitting GAMs
using each of the drought indices alone, with and without smoothing, to
find the best predictor, month and year were then introduced into the
models. A smoothing function was always applied to the month, as the
effect was expected to be seasonal rather than linear. Conversely, no
smoothing was applied to the year, as the intention was to test for a
temporal trend. The GAMs were examined for signs of overfitting, such
as responses to one of the variables with multiple minima and maxima,
indicating that the model was effectively generating different para-
meters for every data point.
Each model was fitted to the complete data set and to the data for

each NUTS1 region separately. The models were assessed using the
McFadden pseudo-R2, the adjusted R2, the Akaike information criterion
(AIC), where appropriate, and the receiver operating characteristic
(ROC) curve, using the ROCR package (Sing et al., 2005). The
McFadden pseudo-R2 (or proportion of deviance explained) is one
minus the ratio of the log-likelihood of the model to the log-likelihood
of the null model (McFadden, 1973). The adjusted R2 is the proportion
of the variance explained by the model. The AIK is derived from the log-

Fig. 1. NUTS 1 regions of the UK (prefix letters by UK for the NUTS1 code). ©
EuroGeographics for the administrative boundaries.

2 http://historicdroughts.ceh.ac.uk/content/task-3-drought-inventory
3 Note that Scotland, Wales and Northern Ireland are constituent countries of

the United Kingdom, whereas the other NUTS1 regions are subdivisions of
England, but all will here be referred to as regions in the sense of NUTS1. Due to
the very low number of reported impacts in Northern Ireland, it was omitted
from most of the analyses.
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likelihood, penalised by the number of parameters to allow compar-
isons between models; where the number of parameters is constant,
minimising AIK is equivalent to maximising log-likelihood. The ROC
shows the trade-off between false positive and true positive responses.
A successful classifier deviates as far as possible from a 1:1 straight line,
and it is useful to calculate the area under the curve (AUC): a perfect
classifier has an AUC of 1, whereas an AUC of 0.5 indicates a prediction
that is no better than random (Bradley, 1997). As explained in Section
3.1, SPEI calculated over six months was chosen for more detailed
analysis.

2.3.2. The relationship between SPEI and PSMD
The SPI and SPEI calculation depend on long-term mean values in

the region being considered, so that a value of 0 represents approxi-
mately average conditions for that region. Consequently, the same
value for SPEI may represent very different degrees of water stress in
different regions, given the large spatial differences in climate across
the UK. To explore this, a comparison was made between SPEI and
potential soil moisture deficit (PSMD), which is indicative of the water
stress experienced by crops.
For consistency with the impacts model, SPEI calculated over six

months (SPEI6) and maximum PSMD over the same period (PSMDmax6)
were examined. In order to have sufficient results to perform a statis-
tical comparison, the months with SPEI6 in the range [−2, 0] (drier
than average, but not extremely dry) were selected and the mean value
of PSMDmax6 for these months was compared between regions by
analysis of variance and post-hoc analysis using Tukey's Honest
Significant Difference (Tukey, 1949) to adjust for the effect of multiple
comparisons.

3. Results and discussion

3.1. Selection of variables and smoothing functions

Models of the recorded drought impacts were first fitted to each of
the drought indices with no other variables, using a single model for the
UK and also separate models for each region. NUTS1 regions UKC
(north-east England), UKD (north-west England), UKI (London), UKL
(Wales) and UKN (Northern Ireland), which are generally wet or highly
urbanised regions, were found to contain too few reported impacts to
estimate the models reliably (see Table 1). Table 2 shows the results of
using SPI and SPEI over different periods for the complete UK dataset;
the results for the regions were similar. SPEI for a six-month period
(SPEI6) gave the best performance, and so it was used for all the sub-
sequent analyses.
This contrasts with Bachmair et al. (2016), who found that SPI and

SPEI were very similar in terms of the strength of correlation in the UK.
More recently, Bachmair et al. (2018) found that the meteorological
indicators best linked to agricultural drought were SPI2 or SPI3 in most
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Table 2
Fit statistics for generalised linear models containing the drought indices only
fitted to the complete UK data set.

Drought index Adjusted R2 Deviance explained AUC AIC

SPI_1 0.0099 0.0086 0.551 3341
SPI_3 0.0700 0.0586 0.620 3173
SPI_6 0.1017 0.0894 0.648 3069
SPI_12 0.0259 0.0240 0.588 3290
SPI_18 0.0369 0.0341 0.606 3255
SPI_24 0.0164 0.0154 0.577 3318
SPEI_1 0.0268 0.0220 0.580 3296
SPEI_3 0.1011 0.0829 0.656 3091
SPEI_6 0.1188 0.1043 0.669 3019
SPEI_12 0.0429 0.0405 0.610 3234
SPEI_18 0.0496 0.0492 0.619 3205
SPEI_24 0.0269 0.0270 0.591 3279
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of southern England (UKK and UKJ), and mostly SPI12 for North-
Eastern England (UKE and UKF). For the rest of the UK, the drought
indicator best correlated to agricultural impact was more variable. Of
SPI, SPEI and PDSI, Haro-Monteagudo et al. (2017) found that SPEI3
was best suited for identifying drought conditions for both irrigated and
rainfed crops. The differences are probably due to a very different way
of quantifying agricultural impact. Bachmair et al. (2018) based their
analysis on remotely sensed vegetation health indicators, using them as
proxy for crop yield, and Haro-Monteagudo et al. (2017) used simulated
yields from a biophysical potato model, whereas this study used a
comprehensive database of reported impacts, which included many
other agricultural impacts not measurable by considering the vegeta-
tion health alone or a single crop type.
The GAM fitted slightly better with smoothing than without, as

would be expected, since it contains additional parameters (Table 3).
However, plotting the response for estimated probability of impact
against SPEI6 showed severe overfitting in many cases: rather than
being monotone, the curve had numerous local minima and maxima.
Reducing the basis dimension of the smoothing reduced overfitting, but
did not prevent it, except at the minimum value, where the fit was no
better than the linear model. The use of a smoothing function for SPEI6
was therefore rejected and was not used in the subsequent analysis.
The inclusion of the month without smoothing was not considered,

because a linear term would not be able to model a seasonal effect.
Including the month with smoothing improved the model fit and re-
sulted in a clear seasonal response, with a peak in the summer.
Conversely, the effect of a linear term for the year was examined to
model potential long-term trends. The combined model using SPEI6
(linear), month (smoothed) and year (linear) fitted better than the
models containing one or two of these terms on all the criteria
(Table 3). The linear parameters for all the NUTS1 regions are shown in
Table 4. All three variables and the constant term were significant with
p < .01 for all regions, except for the SPEI6 term for Scotland, which
was significant with p < .05.
The coefficient of SPEI6 was always negative, representing a greater

estimated probability of impacts at lower values of the drought index,
as expected. The coefficient of year was positive, indicating an

increasing trend in estimated drought impact probability for the same
value of SPEI6.

3.2. Responses to month and year

The response to the month term, illustrated by fixing SPEI6 and year
(Fig. 2), had a seasonal pattern for all regions, with a maximum in
summer (July or August), and a minimum in winter. It was not possible
to include continuity constraints between January and December, but
the values in these months were generally similar. Stagge et al. (2015)
also observed that seasonality had an important effect in the four
countries they modelled, although in their data set it was not significant
for the UK.
The model thus suggests that the probability of reported impacts of

drought is higher in summer than winter for the same value of SPEI6;
several factors may contribute to this. In the UK, most arable crops and
many other crops are harvested around July and August, which typi-
cally have the highest temperatures, so this period is often when
drought effects are manifest and likely to be reported, even if the cause
was lack of water earlier in the growing season. The six-month period
used to calculate the SPEI6 for July and August covers most of the main
growing season for the majority of crops, so water stress in this period
would have a strong effect on yield at harvest, and also on the quality of
crops such as potatoes. It is also more likely that there will be low river
levels, resulting in irrigation restrictions in some dry regions (princi-
pally the east and south-east) during this period (Salmoral et al., In
press).
Drought in the spring and summer could also have an impact on

grass-based livestock, by reducing the available grass for grazing and
the yield of forage for conservation. Poor cereal yields would also in-
crease feed prices for intensive livestock producers, which would be-
come evident around the harvest period.
The year term had a positive coefficient, showing an upward trend

over time (Table 4 and Fig. S.1 in the online supplementary material),
which is slightly surprising. There is no obvious biophysical reason why
the same value of SPEI6 should have a greater effect in 2012 than 1975,
but the effect was substantial (Fig. S.1), especially in the South East.
Two possible explanations are a change in the actual or perceived
vulnerability of farm enterprises to drought or a change in reporting
practice. A change in vulnerability might have resulted from the trends
towards intensification, particularly larger farms with lower labour
inputs. This may have reduced the crop diversity within farms or the
capacity to respond to drought pressures. It may also have arisen from
increasing sectoral and regional concerns regarding the effects of
strengthening environmental legislation (e.g. the European Water Fra-
mework Directive), ongoing reform of the abstraction licencing system
in England and increasing competition for water resources, particularly
in the South East. However, (Rey et al., 2017) found that farms in
Eastern England utilising irrigation considered themselves to be be-
coming more resilient to drought, through farm-level adaptations and
drought planning, collective actions at catchment level, and improved

Table 3
Fit statistics for models based on SPEI6 with additional variables when fitted to
the UK data set (s() indicates smoothing applied to a variable).

Model terms Adjusted R2 Deviance explained AUC AIC

SPEI6 0.119 0.104 0.669 3019
SPEI6+ s(Month) 0.269 0.236 0.757 2590
SPEI6+Year 0.185 0.167 0.709 2811
SPEI6+ s(Month)+Year 0.333 0.306 0.796 2358
s(SPEI6) 0.119 0.108 0.669 3010
s(SPEI6)+ s(Month) 0.270 0.240 0.758 2582
s(SPEI6)+Year 0.187 0.171 0.712 2800
s(SPEI6)+ s(Month)+Year 0.336 0.310 0.796 2348

Table 4
Coefficients of linear terms and fit statistics for the best model (SPEI6+ smoothed(month)+ year) fitted to the whole UK and to the regions.

Regiona Coefficients Adjusted R2 Deviance explained AUC AIC

Intercept SPEI6 Year

UK −154 −1.022 0.0759 0.333 0.306 0.796 2358
UKE: Yorkshire and the Humber −135 −1.287 0.0658 0.264 0.320 0.849 156
UKF: East Midlands −172 −0.707 0.0856 0.345 0.331 0.835 260
UKG: West Midlands −152 −1.662 0.0744 0.414 0.389 0.833 157
UKH: East of England −189 −1.368 0.0943 0.444 0.472 0.853 273
UKJ: South East −244 −0.839 0.1215 0.467 0.430 0.854 242
UKK: South West −229 −1.275 0.1137 0.503 0.467 0.862 233
UKM: Scotland −168 −0.697 0.0832 0.229 0.255 0.807 178

a UKC, UKD, UKI, UKL and UKN are omitted due to lack of sufficient impact records.
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working relationships with the regulator. It therefore seems more likely
that the results reflect a change in awareness and reporting of drought
impacts.

3.3. Regional responses

The variation in the response to SPEI6 differed between regions.
This can be seen in the model fitted to SPEI6 alone (Fig. 3) and the full
model with the year and month fixed (Fig. 4). The response was nor-
mally a reversed S-shape, though in some regions it was truncated at
one or both ends for the range of SPEI6 values considered. The regions
differed in both the slope of the steepest part of the curve (the point of
inflection) and the value of SPEI6 where it occurred. Two possible
components of the regional effect are the relationship of SPEI6 to other

measures of the water stress actually experienced by crops and the
differences in types of agriculture between regions.
The comparison between the regions appeared to show that drought

impacts were likely to be reported in the East and South East at higher
values of SPEI6 than in the other regions. However, as the SPEI depends
on the long-term mean values for a region, the soil water conditions for
the same SPEI may differ between regions.
PSMDmax6 was derived from regional meteorological data as an

indicator of the water stress experienced by crops, whilst avoiding as-
sumptions regarding regionally-averaged crop development, rooting
depth and soil properties. Fig. S.3 in the online supplementary material
shows PSMDmax6 plotted against SPEI6 for all the regions of the UK. It is
clear that much higher values of PSMDmax6 are common in southern
and eastern regions than in Scotland, Wales and northern England, and
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Fig. 2. Estimated probability of drought impacts vs month for SPEI6=−1 and year 1996.
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that the same SPEI6 in the south and east corresponds to drier soil
conditions. Furthermore, even at negative values of SPEI6, the soil
conditions in Wales and Scotland can be maintained close to field ca-
pacity, so an agricultural drought is unlikely.
The PSMDmax6 values corresponding to SPEI6 in the range [−2,0]

(drier than average) were compared between regions using analysis of
variance. The effect of region was found to be highly significant
(p < .001). Using Tukey's HSD to test the differences between pairs of
regions showed that many of the apparent differences were significant
with p < .05 (Fig. 5). It is possible to divide the regions into four
groups, all of whose members differ significantly from regions in the
other groups. The ‘very dry’ region (group f in the boxplot) is the East of
England; the ‘dry’ regions are South East and East Midlands (group e);
the ‘medium’ regions (groups c and d) are North East, Yorkshire and

Humberside, West Midlands and South West; and the ‘wet’ regions
(groups a and b) are North West, Wales and Scotland. A similar trend is
seen in the number of reported drought impacts.
The highest drought vulnerability was found in the East of England

and the South East (Fig. 4). These were in the ‘very dry’ and ‘dry’ groups
above, and they are the two UK regions with the highest competition for
water resources and greatest water scarcity (Knox et al., 2018; Rio
et al., 2018). The response curve for the East of England was S-shaped,
but slightly truncated on the right, in the range considered, with a steep
slope, and the point of inflection was between −1 and −2. As a result,
the estimated probability of reported impact was over 0.8 at SPEI6≅ 0,
so even average or moderately dry conditions by this measure resulted
in a high risk of reported impacts. Over 80% of the agricultural land in
this region is in arable production, including drought-sensitive crops,
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Fig. 3. Estimated probability of drought impacts vs SPEI6 from model fitted to SPEI6 only.
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such as potatoes and sugar beet. Irrigation is more common in this
region than the other regions of the UK, and it is notable that it had the
highest probability of impacts throughout the year (Fig. 2) for a fixed
value of SPEI6. This may reflect the fact that concerns for a summer
drought will start during the winter recharge period, whereas a mod-
erately dry winter is less likely to be problematic for rain-fed agri-
culture.
The South East also showed a less steep slope, but the point of in-

flection occurred at SPEI6≅ 2.5, so the lower tail of the S-shape fell

outside the range of SPEI6 considered: at 3 the estimated probability of
reported impact was>0.3 and at 0 it was 0.9, so there was a high
chance of reported impacts across most of the range of SPEI6.
Agriculture in this region is mixed: about 50% of the land is arable, and
several livestock-based farming systems are present; however it also
includes top fruit (apples, pears etc.) and salad vegetables, which oc-
cupy small areas but are high-value drought-sensitive crops (Salmoral
et al., In press).
Two regions – East Midlands and Scotland – had comparatively
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Fig. 4. Estimated probability of drought impacts vs SPEI6 from model fitted to SPEI6, month and year, for month 8 and year 1996.
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shallow slopes with the point of inflection at SPEI6≅ 0, resulting in an
almost linear response across the range of values for SPEI6, representing
progressively increased chance of reported impact with drought se-
verity. The estimated probability of reported impact at SPEI6= 0 was
about 0.5 for both regions, and an estimated probability of 0.8 occurred
at SPEI≅−2, so a severe drought was necessary for there to be a high
estimated probability of reported impacts. This similarity shows that
the relationship with PSMD is not the complete explanation for the
regional variations: the East Midlands was in the ‘dry’ group, whereas
Scotland was the wettest region.
Scotland is also much larger than any other region and more geo-

graphically diverse, ranging from the drier southern lowlands, with
arable farming and soft fruits, to low-intensity grazing in upland areas
(Fig. S.2 in the online supplementary material). The large proportion of
high-rainfall, grazed uplands may explain the relatively low sensitivity
to drought. In contrast, agriculture in the East Midlands is pre-
dominantly arable farming (65% of the area), with the most of the re-
maining agricultural land used for livestock and mixed farming. The
reason for the similarity of response in these areas is not entirely clear.
West Midlands and Yorkshire and the Humber, both in the ‘medium’

group, had similar responses: fairly steep slopes with the point of in-
flection occurring at SPEI6≅−1. The steeper slope showed greater
sensitivity to SPEI6 around the point of inflection, but the value where it
occurred meant that the estimated probability of reported impact was
quite low over most of its range. For both regions the estimated prob-
ability of reported impact at SPEI6≅ 0 was<0.2, and an estimated
probability of 0.8 occurred at SPEI6≅−2. These regions are thus vul-
nerable only to severe droughts (as measured by SPEI6). Both regions
have substantial combined areas of grazed livestock and mixed farming
(65% and 50% respectively).
The South West, which was also in the ‘medium’ group showed a

response intermediate between these two and the ‘dry’ or ‘very dry’
regions. The point of inflection was slightly> 0, resulting in somewhat
greater vulnerability to drought than the other ‘medium’ regions. The
estimated probability of reported impact at SPEI6≅ 0 was about 0.6,
and an estimated probability of 0.8 occurred at SPEI≅−0.7, so a less
severe drought than the other ‘medium’ regions had the same risk of
impact. This region had the third highest number of reported impacts
(Fig. 1). There is relatively little arable farming (27%) and this region

has the highest proportion of land used for cattle (40%). The reason for
the relatively high drought sensitivity is not completely clear from the
data, although it might relate to the need to conserve forage for the
winter for cattle, especially dairy cows. Some of the reported impacts in
the database also relate to heat stress effects on cattle during summer
drought periods.
These results show that SPEI cannot be interpreted reliably at a

national scale in a country with as much regional variation in climate
and agricultural practice as the UK. The same value of SPEI in different
locations corresponds to widely different growing conditions, as in-
dicated here by PSMDmax, but this does not explain all of the observed
differences in the reported impacts. Therefore, if SPEI is to be used as an
indicator of agricultural drought, it must be calibrated on a regional (or
smaller) scale.

3.4. Non-drought years

The agricultural impacts data focused on years where there were
known to be regional droughts in the UK, but contained results for
complete years, not just the drought periods, and for all regions in these
years whether affected or not. In order to test whether the selection of
drought years biased the results, additional data was collected from the
same sources for the years 2007–2009, and the model was refitted for
all the regions.
The fit of the model was slightly worse with the additional data: the

two R2 measures decreased by 1–11%, AUC decreased by 0–4% and AIC
increased by 6–22%. There was a small systematic decrease in the in-
fluence of the year: the coefficient decreased by 6–19% depending on
the region and the magnitude of the intercept decreased by the same
amount. The change in the coefficient of SPEI6 was mixed, ranging from
a 15% decrease in magnitude to a 27% increase, with most changes
being<10%, tending to reduce the range of differences between the
regions. The effects on the response curves were very slight.
There is thus some evidence that the response to the year may be

partly due to the years selected, and that the difference between the
regions are most evident in the drought years. This is not unexpected, as
the number of reported impacts in the non-drought years was relatively
low in all regions and was mainly associated with drought-related
discussions that did not relate to contemporary hydro-meteorological
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Fig. 5. Boxplot of PSMDmax6 for records with SPEI6 in the range [−2,0] by regions. Regions including the same letter in brackets are not significantly different (at
p < .05). For example, Yorkshire and the Humber does not differ significantly from West Midlands, South West or North East.
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conditions.

3.5. Implications for drought monitoring and early warning

The results show that SPEI6 combined with year and month at re-
gional level may be able to predict, albeit imperfectly, the probability of
drought impacts. Clearly, within-season planning would require a
forecast value of SPEI6, which could be derived from a combination of
recent past observations and short-term or medium-term weather
forecasts, ideally using an ensemble of forecasts to model the varia-
bility. For example, in the spring, weather observations for the past
three months could be combined with a three-month forecast to esti-
mate the probability of drought impacts in the summer.
As an example of the type of estimates that could be derived,

Table 5 gives estimates of the values of SPEI6 with the month set to
August and the year set to 2012 (the last year used in fitting the model)
at which the probability of impacts reached 0.25, 0.5, 0.75 and 0.9. In
several regions, the threshold value of SPEI6 for some levels of prob-
ability exceeded 3.0, the maximum value in the model. Thus the model
predicts a substantial risk of drought impacts in August within these
regions in the later years of the period studied even in years that are
relatively wet for those regions, as also seen in Fig. S.1 in the online
supplementary material.

4. Conclusions

Because of its slow onset and lengthy duration, the impacts of a
drought are difficult to quantify or predict. There is still no full un-
derstanding of the relationship between drought severity and the as-
sociated impacts on different sectors. This paper aims to help fill this
gap by exploring the national and regional relationship between
drought indicators and reported agricultural impacts in the UK for the
period 1975–2012, using a more comprehensive dataset than previous
studies.
From these results, of the indices examined, SPEI6 is the best pre-

dictor of drought impacts on agriculture in UK regions. However, the
results demonstrate that the relationship between drought indicators
and reported drought impacts are complex and vary between regions,
reflecting differences in agricultural drought sensitivity, agro-meteor-
ology, and the relative regional concerns surrounding regulatory and
legal reform, water scarcity and sectoral water competition.
As a result, it is misleading to use a national value of SPEI6, or one

aggregated over a large heterogeneous area, because there are sub-
stantial differences in the relationship between SPEI6 and the number of
reported drought impacts between the regions. Therefore, in any cli-
matically and agriculturally diverse country, it is likely to be necessary
to derive relationship for smaller spatial units.
The comparison of PSMD and SPEI shows that the value of SPEI

alone is potentially a poor indicator of soil conditions related to an
agricultural drought unless the regional variations are also taken into
account. For example, negative values of SPEI during the winter are a

poor indicator of drought for rain-fed agriculture, especially in wetter
areas, because soils may still reach field capacity.
Improving the predictive ability of indicators will require more

systematic recording of drought impacts and the derivation of indices
that are designed around the conditions that result in agricultural
droughts. These will need to differentiate between the regional effects
on different types of agriculture, such as irrigated crops, rain-fed crops
and grazing livestock. However, given the drought sensitivity of agri-
culture, the integration of regional predictions within drought mon-
itoring and forecasting would help to reduce the large on-farm eco-
nomic damage of drought and increase the sector's resilience to future
drought.
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