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Abstract

The boreal forest is a globally critical biome for carbon cycling. Its forests are shaped by wildfire 

events that affect ecosystem properties and climate feedbacks including greenhouse gas (GHG) 

emissions.  Improved understanding of boreal forest floor processes is needed to predict the impacts 

of anticipated increases in fire frequency, severity, and extent.  In this study, we examined 

relationships between time since last wildfire (TSF), forest floor soil properties, and greenhouse gas 

emissions (CO2, CH4, N2O) along a Pleurozium schreberi-dominated chronosequence in mid- to late 

succession located in northern Sweden. Over three growing seasons in 2012-2014, GHG flux 

measurements were made in situ and samples were collected for laboratory analyses.  We predicted 

that P. schreberi-covered forest floor GHG fluxes would be related to distinct trends in the soil 

properties and microbial community along the wildfire chronosequence.  Although we found no 

overall effect of TSF on GHG emissions, there was evidence that soil C:N, one of the few properties 

to show a trend with time, was inversely linked to ecosystem respiration.  We also found that local 

microclimatic conditions and site-dependent properties were better predictors of GHG fluxes than 

TSF.  This shows that site-dependent co-variables (i.e. forest floor climate and plant-soil properties) 

need to be considered as well as TSF to predict GHG emissions as wildfires become more frequent, 

extensive and severe.

Key words: boreal forest; wildfire disturbance; greenhouse gas emissions; carbon dynamics; forest 

floor; chronosequence
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Introduction

Occupying 11% of the global land surface, boreal forests represent Earth’s largest terrestrial biome 

and provide habitats for uniquely adapted biodiversity (Wardle and others 2003).  These forests are 

estimated to hold 32% of global forest ecosystem carbon (C) stocks (Pan and others 2011) and play a 

major role in global greenhouse gas (GHG) dynamics (McNamara and others 2015).  Wildfire is a 

major driver of change in the boreal region, turning the forest from a sink to a source of C through its 

release to the atmosphere, mainly in the form of CO2 but also as methane (CH4), carbon monoxide, 

and particulate C (Flannigan and others 2005).  However, there is currently little information on how 

wildfire history influences forest floor GHG emissions.  

Boreal forests are also particularly vulnerable to climate change with warming and reduced 

precipitation predicted to lengthen the fire season, increase fuel load, and reduce fuel moisture 

(Kovats and others 2014).  These conditions have the potential to increase the frequency, intensity, 

severity, and extent of wildfires in the boreal region (de Groot and others 2013; Flannigan and others 

2013), although fire suppression by human activity and land-use change may counteract this to some 

degree (Niklasson and Granstrom 2000; Girardin and others 2009).  Understanding the mechanisms 

underpinning the recovery of these ecosystems is important for predicting how an overall increase in 

fire activity will contribute to global GHG emissions.

Boreal forests are characteristically nutrient poor, but fire releases nutrients, such as nitrogen (N), 

locked up in living biomass back into the system (Harden and others 2002; DeLuca and others 2002a; 

2008).  In the years following burning, this nutrient flush is essential for the growth of new biomass 

and recovery of C stocks.  This fertile early successional stage, with plant communities of high litter 

quality and rapid turnover supporting belowground microbial biomass and decomposition processes 

(Wardle and Zackrisson 2005), transitions into a slower stage of recovery after several decades 

(Chapin and others 2002, Ward and others 2014).
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In later succession, decreasing nutrient availability slows the growth of biomass and leads to changes 

in the forest floor plant communities, upon which belowground activity is highly dependent (Wardle 

1997).  In these stands, forest floor vegetation is dominated by slow-growing species with more 

recalcitrant litter.  In particular, the feather mosses Pleurozium schreberi (Bird.) Mitt and 

Hylocomium splendens can take several decades to establish but then often cover up to 70-100% of 

the ground surface (Engelmark 1999; DeLuca and others 2002a; Zackrisson and others 2004; Street 

and others 2013).  These mosses contain N-fixing cyanobacteria that contribute to the accumulation 

and cycling of an otherwise limiting nutrient in the system (DeLuca and others 2002b; Zackrisson and 

others 2009) and influence belowground microbial processes by altering conditions such as soil 

moisture and temperature (Oechel and Van Cleve 1986; Bonan and Shugart 1989; Williams and 

Flanagan 1996).

Despite substantial work done to understand forest floor ecosystem properties in a post-fire 

chronosequence of forested Swedish boreal islands that have not experienced fire for hundreds up to 

thousands of years (for example, Wardle 1997; Wardle and others 2003, 2012a, 2012b; Lagerström 

and others 2009; Clemmensen and others 2013, 2015; McNamara and others 2015), only a few studies 

have looked at trends in post-fire forest floor recovery in the wider boreal landscape of northern 

Europe (Zackrisson and others 1996; DeLuca and others 2002a, Zackrisson and others 2004), where 

the fire return interval is approximately 200-300 years (Carcaillet and others 2007).  Although some 

evidence suggests that rapid early changes in forest floor ecosystem properties reach a “steady state” 

several decades after fire (Ward and others 2014), other evidence shows that more gradual changes 

continue over longer periods of time (Paré and others 1993; DeLuca and others 2002a; O’Neill and 

others 2003; Zackrisson and others 2004).  To date, no studies have examined the relationship 

between in situ GHG fluxes and boreal forest floor properties across a wildfire chronosequence in 

mid- to late succession in northern Europe.

In this study, we wanted to determine the relationships between time since last wildfire (hereafter 

‘time since fire’, TSF), soil properties, and forest floor GHG emissions of CO2, CH4, and N2O in 
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Pleurozium schreberi-dominated boreal forest stands in mid-late succession.  We achieved this using 

a wildfire-disturbed chronosequence located in northern Sweden consisting of six sites ranging from 

47 to 367 years since last wildfire.  These sites form part of a larger chronosequence used in previous 

works, which have shown increased feathermoss cover and associated N-fixation with increasing 

TSF, as well as reduced nitrification, ammonification, and N mineralization (DeLuca and others 

2002a, Zackrisson and others 2004).  We collected forest floor samples and measurements during the 

growing season over three years between 2012 and 2014. Our objectives were to explore whether P. 

schreberi had an effect on forest floor GHG emissions with increasing TSF and to examine whether 

changes in forest floor soil properties and local climatic factors account for variance in these GHG 

emissions.  We hypothesized TSF would be an important predictor of P. schreberi-dominated forest 

floor GHG fluxes as a result of associated changes in soil properties.  Specifically, we expected that 

with increasing TSF, CO2 fluxes would increase with the buildup of the organic soil horizon, CH4 

influx would increase as in McNamara and others (2015), and that N2O fluxes would increase in 

relation to increased P. schreberi cover and associated increases in N2-fixation.

Methods

Field sites and microclimate measurements

The field sites for this project were located in the Northern Boreal zone of Sweden.  They comprised a 

subset of six forest reserve stands of varying age since last wildfire (i.e. 47-367 years) selected from a 

chronosequence of sites that had previously been dated using tree ring scars (Zackrisson 1980) (Table 

1; site ages are TSF as of 2014).  The sites were selected at locations with a similar soil type 

(developed in granitic glacial till or sediment, with a 2-10 cm thick Oa/Oe horizon, 10-20 thick cm E 

horizon, and 30-40 cm thick Bs horizon, classified as either Typic or Entic Haplocryods; DeLuca and 

others 2002a) and vegetation composition (i.e. Scots pine (Pinus sylvestris), Norway spruce (Picea 

abies)), and a ground vegetation of dwarf shrubs (i.e. Vaccinium sp., Empetrum sp., and Calluna sp.) 

and feather mosses (i.e. P. schreberi and H. splendens)).  Weather stations measuring air temperature, 

soil temperature at 1 cm and 5 cm depth, soil moisture, and surface leaf moisture (Decagon Devices, 
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Inc, USA) were installed at all sites.  Microclimate data was collected between June 2012 and July 

2014.

Forest floor greenhouse gas fluxes

To measure forest floor greenhouse gas fluxes (i.e. excluding trees), five permanent PVC collars (30 

cm diameter, 10 cm height) were installed along a 50-100 m transect at each site.  Collar locations 

were selected at 10-20 m distance intervals, on a mat of P. schreberi.  These were left for two days 

before the first sets of GHG flux measurements were made.  Plots were sampled once in June 2012 

and twice in each following sampling campaign (September 2012, June 2013, and July 2014).  Gas 

fluxes were measured following the methods of Ward and others (2013).  Briefly, forest floor 

ecosystem respiration (ER) and net ecosystem exchange (NEE) were measured over 2 minute 

intervals using a portable infrared gas analyser (PP Systems EGM4) connected to an opaque or clear 

chamber lid (35 cm height), respectively.  For NEE, measurements were made of photosynthetically 

active radiation (PAR) at the height of forest floor vegetation using a PAR Quantum Sensor (Skye 

Instruments, UK).  NEE is the combination of ER and gross primary productivity (GPP), such that a 

negative value for NEE indicates that GPP is greater than ER (i.e. CO2 is being sequestered) while a 

positive value indicates that ER is greater (i.e. net CO2 is being released).  Forest floor CH4 and N2O 

fluxes were measured using a closed static chamber approach, whereby opaque chamber lids were 

sealed and headspace samples (10 mL) were taken using a gas syringe every ten minutes over half an 

hour and immediately injected into evacuated 3 mL Exetainer® vials (Labco Ltd, UK).  Samples were 

analysed in the laboratory on a PerkinElmer Autosystem XL gas chromatograph (GC) with an FID for 

CH4, an electron capture detector for N2O and argon carrier gas.  Sample peak areas were converted to 

part per million (ppm) concentrations using a standard curve based on three calibrated gas standard 

mixtures (BOC, UK).  Results were corrected for instrumental drift as required.  Gas concentration 

data from the GC were transformed from parts per million to flux of mg CH4-C or mg N2O-N m-2 hr-1.  

Quality control procedures were implemented to identify missing data values or effects of 

atmospheric contamination of stored samples (all methods from Ward and others 2013).
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Plant and soil sampling and analyses

Following the final round of GHG flux sampling in 2014, gas sampling plots were destructively 

harvested.  All aboveground plant material within the gas chamber collars was collected, dried at 

60ºC, and weighed for total dry weight biomass.  One soil core (5 cm diameter, 10 cm depth) was 

taken from the centre of the collar to measure soil horizon depth, bulk density, and total soil C and N 

content.  Estimates of cover by individual plant species were made where plants were often overlaid, 

creating >100% cover.  In June 2012, six soil cores were collected along a transect for measurements 

of inorganic nitrogen (i.e. NO3
-, NH4

+).  In September 2013, four additional cores were collected for 

analysis of more soil properties, including pH, total phosphorous (P), loss on ignition (as a measure of 

organic matter content), and microbial PLFA content (as described below) of the soil organic horizon 

at each site.

To determine microbial biomass and fungal/bacterial ratios, soil samples were extracted following a 

modified Bligh and Dyer (1959) method, as described by Crossman and others (2004).  Briefly, lipids 

were extracted from freeze-dried, finely ground soil samples using Bligh and Dyer extractants and a 

citrate buffer, then separated into neutral, free fatty acids, and phospholipids on a silica solid phase 

extraction column.  Mild alkaline methylation of the phospholipids produced fatty acid methyl esters 

for analysis. Once suspended in hexane, 1 μL PLFA samples were analysed on an Agilent 

Technologies (UK) 6890 GC equipped with a CP-Sil 5CB fused-silica capillary column (50 m x 0.32 

mm i.d. x 0.25 μm) and flame ionization detector (FID).  Sample PLFA peaks were identified based 

on known relative retention times, calculated as a proportion of the internal standard C19:0 methyl 

nonadeconoate, and converted to nmol PLFA gdw
-1.  Bacterial PLFAs were identified by terminal and 

mid-chain branched fatty acids (15:0i, 15:0a, 16:0i, 17:0i, 17:0a) or cyclopropyl saturated and 

monosaturated fatty acids (16:1ω7, 7,cy-17:0, 18:1ω7, 7,8cy-19:0), while fungal PLFAs were 

identified as 18:2ω6,9.  The concentration of total PLFAs was calculated using all identified peaks 

(Whitaker and others 2014).
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Statistical analysis

Statistical analyses were executed to determine the significance of a) relationships between TSF and 

site forest floor properties, and b) key ecosystem properties as predictors of forest floor GHG 

emissions.  All statistical analyses were performed in R software (R Development Core Team 2014).  

Soil and plant properties along the chronosequence

Linear regression analyses were carried out to determine trends in some forest floor properties with 

increasing TSF.  These were carried out on soil collected both from within the gas sampling collars 

and along the transects, as well as on P. schreberi cover and total aboveground biomass from within 

the sampling rings.  If required, data were transformed to meet model assumptions. To correct for 

multiple comparisons, a false discovery rate (FDR) correction was applied to p-values using the 

Benjamini-Hochberg critical value for FDR of 0.25.

Linear mixed effects modelling to predict GHG fluxes

Linear mixed effects (LME) models were developed to examine controls on forest floor GHG fluxes.  

Before looking at more complex models, we created simple LME models for individual sampling 

campaigns to determine trends in GHG fluxes with increasing TSF (nlme package, Pinheiro and 

others 2015).  For this, GHG flux response was modelled with TSF as a fixed effect and plot as a 

random effect for repeated sampling.  Again, data were transformed where necessary to meet model 

assumptions and the FDR correction was applied to p-values.  Parameter estimates were obtained 

through a restricted maximum likelihood (REML) estimation of the models.  P-values were obtained 

through likelihood ratio tests of each model compared to the same model minus TSF as a fixed effect, 

both created using a maximum likelihood (ML) estimation.  R2 values for each model were obtained 

using the MuMIn package (Bartoń 2016)

Following the simple mixed effects modelling procedure, it was determined that the GHG flux 

responses measured did not show any consistent trends with increasing TSF; therefore, two sets of 
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models containing the other measured parameters were subsequently developed: one set containing 

TSF (continuous) as a fixed effect, and the other set using site (discrete).

The models were developed using the following approach.  To begin, a correlation matrix was used to 

identify factors showing collinearity (>70% correlated) and one of each collinear pair was excluded 

from the initial model.  To examine the effects of site-specific microclimates on forest floor 

greenhouse gas fluxes, weather station data was incorporated into the LME models.  This, however, 

meant data was reduced to five sites as GUO had no weather station.  After removing collinear 

weather station variables, we included the following data averaged over one hour prior to sampling: 

mean soil temperature at 5 cm depth, mean soil moisture, and mean surface leaf moisture.  Although 

plant species cover was recorded, only final aboveground biomass and percent cover of P. schreberi 

were included in the models due to collars being placed selectively on P. schreberi mats rather than 

randomly, covering natural variation in plant cover.  The final selection of factors included in the 

initial models are summarized in Table 2.  Next, random effects were included in the models to 

account for repeated sampling at each plot and unequal variances between sites (Zuur and others 

2009).  Using ML estimations, fixed effects selection was performed using single term deletions and 

chi-squared likelihood ratio (LR) tests, where factors with non-significant effects (p > 0.05) were 

sequentially removed from the model.  Again, likelihood ratio deletion tests (LRTs) determined the 

significance of retained factors by comparing the selected model with that same model but with the 

factor removed.  If single terms were included in significant interactions, the interaction was also 

dropped before testing LRs (Zuur and others 2009; De Vries and others 2012).  Finally, the models 

were fit using REML estimations to obtain parameter estimates.

Results

Soil properties and plant composition
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We measured a range of soil metrics to determine whether differences in soil organic horizon 

properties underlying mats of P. schreberi differed across the chronosequence.  Linear regression 

analyses showed C:N at these six sites to increase with TSF, both within the GHG rings (R2 = 0.153, p 

< 0.033) and from the other samples taken along the transects (R2 = 0.233, p < 0.020).  Also from 

samples taken along the transects, total N (R2 = 0.181, p < 0.043) and NH4
+ (R2 = 0.190, p < 0.008) 

decreased with increasing TSF; however, this was not seen in the samples taken from the GHG rings 

(Figure 1).  No other properties showed significant changes with TSF (Figure S1).

Measurements of plant aboveground biomass and percent cover of P. schreberi were taken from 

within the gas sampling rings at each site.  Total aboveground biomass did not change with TSF, 

while P. schreberi cover ranged from 70-100% in the youngest site and increased to 100% in the two 

oldest sites (Figure S2).

Greenhouse gas fluxes

The results of simple mixed effects models on the various GHG fluxes with age are presented in 

Figure 2.  Mean rates of ER were in the range of 20 to 120 mg CO2-C m-2 hr-1.  July 2014 showed 

higher overall fluxes and was the only sampling campaign to show a trend for ER (decreasing) with 

increasing TSF (–0.144*year-1 ± 0.04 (SE), R2
marginal = 0.204, df = 4, p < 0.001).  Mean NEE fluxes 

ranged from about -42 to +33 mg CO2-C m-2 hr-1, where negative values equate to a net sink and 

positive values represent a net source of CO2.  In June 2013 alone, NEE showed a slight but weak 

increasing trend with TSF (0.098*year-1 ± 0.048 (SE), R2
marginal = 0.084, df = 4, p < 0.049).  Mean 

methane flux rates were all negative, ranging from approximately -73 to -2 g CH4-C m-2 hr-1, 

suggesting a net oxidation of CH4.  Regression analyses showed weak trends of small increases in 

CH4 flux with stand TSF in June 2013 (0.063*year-1 ± 0.031 (SE), R2
marginal = 0.097, p < 0.039) and 

July 2014 (0. 108*year-1 ± 0.050 (SE), R2
marginal = 0.127, p < 0.030). N2O fluxes ranged from -3 to +4 

g N2O-N m-2 hr-1 and did not vary significantly across sites.
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Because there was not a consistent linear effect of TSF on soil properties or GHG fluxes, we have 

focussed on presenting GHG flux models created using site (discrete) rather than TSF.  However, 

results of the flux models created using TSF are presented in Tables S1-S2.  No significant model was 

found for N2O fluxes when TSF was used as a fixed effect.

The model results (using site) for the different gas fluxes are summarized in Tables 3 and 4.  The site 

x soil temperature interaction was significant for NEE, with soil temperature correlated with increases 

in NEE (i.e. lower uptake of CO2).  Site was a significant factor for ER, CH4, and N2O fluxes.  ER, 

NEE, and CH4 flux also varied across different sampling campaigns.  Related to recent condensation 

and precipitation, increases in mean leaf surface moisture around the time of sampling were 

negatively related to ER and CH4 flux but positively related to N2O flux; however, increased soil 

moisture was strongly associated with higher ER and also linked to lower N2O. Soil properties were 

significant in only two of the GHG flux models (Table 3); ER was negatively related to C:N while 

NEE decreased (i.e. higher uptake of CO2) with increased organic horizon depth.

Discussion

In this study, we set out to determine whether soil properties of P. schreberi-dominated boreal forest 

stands in mid- to late succession show patterns of change that could be used along with TSF and 

microclimatic data to predict forest floor GHG fluxes.  We found that properties of the soil organic 

horizon, to which post-fire changes to soil C and nutrients are largely restricted (Holden and others 

2013), varied amongst the six sites.  There were some weak trends in soil properties with TSF; C:N 

showed a small increase with time since fire while NH4
+ and total N content decreased.  Due to 

equipment, logistical, and time limitations associated with closed-chamber gas sampling, we were 

forced to select six chronosequence sites, so it is likely that the number and age range of our sites 

were not great enough to capture many significant differences. In a prior study using this 

chronosequence, eight sites (including three from this study) were used and some differences in soil 
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variables were indeed observed with TSF (DeLuca and others 2002a).  Of the few observed changes 

in soil properties with increasing TSF, the increasing ratio of C to N was associated with lower ER 

fluxes in our study.   This result indicates that higher natural soil N is associated with enhanced soil 

microbial activity, which has been seen with N addition studies in other low-N systems (Jonasson and 

others 1999; Allison and others 2008).  However, there was no such relationship observed with total 

N, and some research suggests that total C:N is not a good indicator of humus decomposition, which 

can be more dependent on the quality of C rather than N availability (e.g. bound up in N-polyphenol 

complexes that inhibit production of complex-C degrading enzymes) (Prescott and others 2000; 

Hobbie and others 2002; DeLuca and Boisvenue 2012).  

We found that forest floor GHG fluxes showed minor, intermittent trends across the wildfire 

chronosequence.  There was some evidence of decreased ER and increased NEE on two separate 

sampling campaigns.  The decrease in the influx of CH4 with increasing TSF, as observed on two 

sampling campaigns, was small but statistically significant.  This is contrary to the results of 

McNamara and others (2015), who found an increase in the CH4 sink capacity of boreal soils with 

increasing TSF in the aforementioned chronosequence of island sites in northern Sweden.  One reason 

for this could be in part due to the higher amount of P. schreberi cover in older stands, as some 

mosses are known to emit small amounts of CH4 (Lenhart and others 2015).

The site x soil temperature interaction was significant in the LME model of NEE, suggesting that the 

effect of a rise in temperature varied from site to site.  One explanation for this could be that the 

temperature sensitivities (Q10) of the forest floor community vary amongst the sites, since the 

respiration activity of soil microbial communities (Briones and others 2014) and plants (Tjoelker and 

others 2008) can acclimate under different conditions.  For instance, FET (215 years since fire) 

consistently experienced higher average annual temperatures than other sites (data not shown) and had 

the lowest ER and CH4 consumption in July 2014 (Figure 2), which was much warmer and drier than 

the other sampling periods.  It is possible that the microbial community at FET is less sensitive to 

warmer temperatures than those at other sites and therefore had a smaller response to higher 
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temperatures.  In relation to this, sampling period was highly significant in ER, NEE, and CH4 fluxes, 

highlighting the importance of overall climatic conditions at the time of sampling.  Again, evidence of 

this was seen in July 2014, which had higher ER and NEE fluxes as well as higher CH4 consumption 

corresponding to warm, dry conditions (Figure 2).  Notably, compared to other sites, the youngest site 

(NJA, 47 years since fire) had exceptionally low (i.e. highly negative) NEE linked to high 

photosynthetic activity during this period.  This is likely the result of higher grass biomass (data not 

shown), which is much faster-growing than the feathermoss or shrub species.  

Ecosystem respiration showed a strong positive response to soil moisture, which is known to be 

important for microbial activity and plant productivity in boreal systems (Williams and Flanagan 

1996; DeLuca and Boisvenue 2012; Van Cleve and Sprague 2015).  Although soil moisture, a driver 

of methane oxidation in boreal soils (McNamara and others 2015), did not appear to influence our 

CH4 fluxes, increases in leaf moisture were associated with greater CH4 influx.  Leaf and soil moisture 

were both significantly linked to N2O fluxes; however, this model had a very low R2 value, resulting 

in low confidence in its use as a predictor of N2O fluxes and highlighting the complexity of the N 

cycle in this system.

Neither total aboveground biomass nor percent cover of P. schreberi had any significant effect on 

greenhouse gas fluxes in our models.  We expected that N2O emissions would increase as feathermoss 

abundance (and associated N2-fixation) has been shown to increase with TSF in these stands 

(Zackrisson and others 2004) and because feathermosses such as H. splendens have been shown to 

release N2O (Lenhart and others 2015).  It is possible that a decrease in nitrification and 

ammonification in the soil (DeLuca and others 2002a) counteracted this somewhat, but also the P. 

schreberi cover in our plots only ranged from 70-100%, which may not have been enough variation to 

see an effect.  Future work might include measurements of these processes along with N2O emissions 

to explore this further.
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In this heterogeneous, high latitude landscape, micro-topography can greatly influence site conditions 

and microclimate; for example, the low solar angle means that slope and aspect influence how much 

solar radiation a stand can receive (Bonan and Shugart 1989).  Similarly, Zackrisson (1977) noted that 

stands on south-facing slopes in the Swedish boreal region experience more frequent fires than those 

facing north.  Several other factors contributing to soil and plant community compositions following 

wildfire are important considerations.  The intensity and severity of the burn greatly impact secondary 

succession by influencing forest structure and the remaining nutrient pool (Flannigan and others 2005; 

Lecomte and others 2006).  For example, we know NJA (47 years since fire) experienced a high 

severity, stand-replacing fire and now has much higher grass cover (data not shown) and fewer trees 

(personal observation) than JAR, which burned only six years earlier.  Moreover, stand structure prior 

to burning partially dictates how severe the next fire might be (i.e. recently burned stands with less 

organic material accumulated will likely experience a less severe burn than an old site with abundant 

fuel).  As well, the amount of charcoal remaining is important for enhancing soil fertility and 

adsorption of allelopathic polyphenols following fire (Zackrisson and others 1996; DeLuca and others 

2002a).  Future work on in situ boreal forest floor GHG fluxes would benefit from measures of these 

factors.

Conclusion

We predicted that there would be trends in soil properties, P. schreberi cover, and microbial 

communities with increasing time since last wildfire disturbance and that these properties would 

influence GHG emissions along our chronosequence.  Our results show that boreal forest floor GHG 

emissions are both site- and climate-driven, where site encompasses combinations of measured and 

unmeasured factors (such as the intensity and severity of the last burn, the structure of the forest prior 

to burning and adjacent to burn sites, and the amount of charcoal remaining).  Climate, as indicated by 

sampling period, was a strong driver of GHG fluxes but some soil properties (C:N, depth, and 

moisture) were influential.  Many studies show trends in ecosystem properties along boreal forest 
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wildfire chronosequences, but our study suggests that local heterogeneity in the landscape is a 

powerful regulator of later successional forest floor GHG emissions and needs to be considered when 

predicting the effects of more frequent, severe and extensive wildfires.
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Figure Captions

Figure 1. Significant (linear regression with time since fire) soil properties of the organic horizon 
sampled within the gas chamber rings (blue circles) and along a separate transect (black dots) at 
selected sites; dw = dry weight.
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Figure 2. Mean greenhouse gas fluxes (± standard error) in each sampling campaign.

Figure S1. Non-significant (linear regression with time since fire) soil properties of the organic 
horizon samples within the gas chamber rings (blue circles) and along a separate transect (black dots) 
at selected sites; dw = dry weight, SOM = soil organic matter, PLFA = phospholipid fatty acid.

Figure S2. Linear regression results of final plant aboveground biomass and percent cover of 
Pleurozium schreberi in the field plots at selected sites.
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Table 1. Summary information for sampling locations.  Site ages are the time since fire as of 2014.

Site name Site code Location Time since fire (years)
Njållatjivelg NJA 65° 48′ 54″ N 

19° 02′ 07″ E
47

Jarvliden JAR 65° 34′ 09″ N 
18° 24′ 01″ E

53

Laddok LAD 65° 56′ 43″ N 
18° 22′ 37″ E

136

Guorbåive GUO 65° 48′ 57″ N 
19° 02′ 54″ E

183

Fettjärn FET 65° 55′ 28″ N 
18° 29′ 58″ E

232

Reivo REV 65° 46′ 28″ N 
19° 06′ 19″ E

367
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Table 2. Summary of fixed factors initially included for LME model selection.

Factors Included in Model Selection Mean Standard Error Range
Site (or Time Since Fire)* Soil Temperature (5 cm depth) - - -
Site (or Time Since Fire) 169.67 years 23.18 years 47 – 367 years
Soil Temperature (5 cm depth) 9.26°C 0.60°C 5.26 – 15.78°C
Sampling Period - - -
Photosynthetically Active Radiation (PAR) 79.41 µmol m-2 s-1 38.47 µmol m-2 s-1 2 – 1130 µmol m-2 s-1

Soil Moisture 24% 1% 4 – 33%
Leaf Moisture 514.81 raw counts 25.27 raw counts 437 – 909.83 raw counts
DepthOH 5.82 cm 0.57 cm 1.5 – 10.5 cm
C:NOH 34.90 0.90 19.99 – 48.14
Total NOH 7.15 mg g-1 soil 0.40 mg g-1 soil 2.74 – 12.54 mg g-1 soil
Final Aboveground Biomass 149.69 g 5.71 g 84.1 – 208.40 g
% Cover - Pleurozium schreberi 95.5% 1.39% 70 – 100%

After removal of collinear terms, these factors were included in the initial linear mixed effects models and subject to removal using a step-wise process. OH = 
Soil organic horizon.
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Table 3. Likelihood ratio deletion test results for selected models of greenhouse gas fluxes

Ecosystem Respiration Net Ecosystem Exchange CH4 Flux N2O Flux
R2

marginal = 0.642
R2

conditional = 0.679
RMSE = 1.338

R2
marginal = 0.397

R2
conditional = 0.489

RMSE = 24.589

R2
marginal = 0.299

R2
conditional = 0.608
RMSE = 0.022

R2
marginal = 0.040

R2
conditional = 0.040
RMSE = 0.005

Site*Soil Temperature5cm - 17.86, df = 15,20, p < 0.0013 - -
Site 21.24, df = 11,17, p < 0.0003 18.95, df = 10,16, p < 0.0008 12.38, df = 9,15, p < 0.0148 10.06, df = 6,13, p < 0.0394

Soil Temperature5cm - 5.13, df = 10,16, p = 0.0236 - -

Sampling Period 81.87, df = 11,17, p < 0.0001 32.08, df = 15,20, p < 0.0001 43.54, df = 9,15, p < 0.0001 -

PAR - - - -

Soil Moisture 22.78, df = 11,17, p < 0.0001 - - 6.02, df = 6,13, p < 0.0141

Leaf Moisture 24.80, df = 11,17, p < 0.0001 - 7.07, df = 9,15, p < 0.0078 8.19, df = 6,13, p < 0.0042

DepthOH - 8.55, df = 15,20, p < 0.0035 - -

C:NOH 4.72, df = 11,17, p < 0.0299 - - -

Total NOH - - - -
Final Plant Biomass - - - -

Fa
ct

or

% Cover – P. schreberi - - - -
Likelihood ratio deletion test results (LR, degrees of freedom (df), p-value) and model fit (marginal and conditional R2, root mean square error (RMSE)) of linear mixed effects 
models of greenhouse gas (GHG) fluxes.  The final model for each GHG was selected based on a step-wise routine using single term deletions combined with likelihood ratio 
testing.  The LR and p-values for each variable are the results of likelihood ratio tests between the maximum likelihood estimations of the final model and the same final 
model with that variable removed.  R2 values and RMSE are from final models with restricted maximum likelihood estimations.  PAR = photosynthetically active radiation, OH 
= soil organic horizon.
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Table 4. Parameter estimates for selected LME models of greenhouse gas fluxes
Ecosystem Respiration Net Ecosystem Exchange CH4 Flux N2O Flux

Parameter estimate
(± SE)

p-value Parameter estimate
(± SE)

p-value Parameter estimate
(± SE)

p-value Parameter estimate
(± SE)

p-value

Intercept 3. 924 ± 2.067 0.0606 27.686 ± 28.821 0.3389 -0.010 ± 0.013 0.4331 0.00264 (± 0.00281) 0.3497

Site*Soil Temperature5cm - - - - - -
    JAR*Soil Temperature5cm - - 7.425 ± 2.119 0.0007 - - - -
    LAD*Soil Temperature5cm - - 15.938 ± 4.911 0.0016 - - - -
    FET*SoilTemperature5cm - - 3.592 ± 2.317 0.1240 - - - -
    REV*SoilTemperature5cm - - 5.567 ± 2.281 0.0163 - - - -

Site  
     JAR -0.917 ± 0.552 0.1133 -27.353 ± 21.266 0.2138 0.006 ± 0.013 0.6619 -0.00060 (± 0.00165) 0.7206
     LAD 0.752 ± 0.627 0.2455 -111.812 ± 39.599 0.0109 0.007 ± 0.013 0.5946 -0.00226 (± 0.00170) 0.1999
     FET 3.228 ± 0.955 0.0032 19.294 ± 24.358 0.4381 0.040 ± 0.012 0.0043 -0.00577 (± 0.00198) 0.0087
     REV -0.286 ± 0.490 0.5666 -26.392 ± 23.237 0.2702 0.018 ± 0.012 0.1532 -0.00146 (± 0.00158) 0.3648

Soil Temperature5cm - - -0.658 ± 3.140 0.8344 - - - -

Sampling Period - -
     Sept 2012 -1.752 ± 0.419 0.0001 -12.619 ± 8.270 0.1300 -0.016 ± 0.005 0.0012 - -
     June 2013 0.059 ± 0.457 0.8975 -47.146 ± 7.752 <0.0001 -0.010 ± 0.006 0.0656 - -
     July 2014 3.813 ± 0.544 <0.0001 -32.776 ± 14.908 0.0301 -0.036 ± 0.005 <0.0001 - -

PAR - - - - - - - -

Soil Moisture 28.662 ± 5.698 <0.0001 - - - - -0.02417 ± 0.00994 0.0166

Leaf Moisture -0.006 ± 0.001 <0.0001 - - -4.0 x10-5 ± 1.5 x10-5 0.0072 9.91 x 10-5 ± 3.38 x 10-6 0.0041

DepthOH - - -5.213 ± 1.847 0.0109 - - - -

C:NOH -0.067 ± 0.032 0.0545 - - - - - -
Total NOH - - - - - - - -
Final Plant Biomass - - - - - - - -

Fa
ct

or

% Cover – P. schreberi - - - - - - - -

Parameter estimates and p-values (restricted maximum likelihood estimated models) are based on comparisons to the intercept, which includes site NJA and sampling 
period June 2012.  PAR= photosynthetically active radiation, OH = soil organic horizon.
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For Peer Review

 

Figure 1. Significant (linear regression with time since fire) soil properties of the organic horizon sampled 
within the gas chamber rings (blue circles) and along a separate transect (black dots) at selected sites; dw 

= dry weight. 
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For Peer Review

 

Figure 2. Mean greenhouse gas fluxes (± standard error) in each sampling campaign. 
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For Peer Review
Figure S1. Non-significant (linear regression with time since fire) soil properties of the organic horizon samples within the gas chamber rings (blue circles) and along a 
separate transect (black dots) at selected sites; dw = dry weight, SOM = soil organic matter, PLFA = phospholipid fatty acid.
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Figure S2. Linear regression results of final plant aboveground biomass and percent cover of Pleurozium schreberi in the field plots at selected sites.
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Table S1. Likelihood ratio deletion test results for selected models of greenhouse gas fluxes (using time since fire in fixed effects selection)

Ecosystem Respiration Net Ecosystem Exchange CH4 Flux N2O Flux
R2

marginal = 0.593
R2

conditional = 0.666
RMSE = 1.434

R2
marginal = 0.136

R2
conditional = 0.335

RMSE = 28.654

R2
marginal = 0.307

R2
conditional = 0.601
RMSE = 0.022

No significant model

Time Since Fire*Soil Temperature5cm - - - -
Time Since Fire - - - -

Soil Temperature5cm - 7.55, df = 4,11, p = 0.0060 - -

Sampling Period 92.72, df = 5,12, p < 0.0001 26.49, df = 4,11, p < 0.0001 42.85, df = 9,16, p < 0.0001 -

PAR - - - -

Soil Moisture 93.08, df = 5,12, p < 0.0001 - - -

Leaf Moisture 105.68, df = 5,12, p < 0.0001 - 7.26, df = 9,16, p = 0.0007 -

DepthOH - - - -

C:NOH - - 7.90, df = 9,16, p = 0.0049 -

Total NOH - - 4.87, df = 9,16, p = 0.0273 -
Final Plant Biomass - - - -

Fa
ct

or

% Cover – P. schreberi - - - -
Likelihood ratio deletion test results (LR, degrees of freedom (df), p-value) and model fit (marginal and conditional R2, root mean square error (RMSE)) of linear mixed effects 
models of greenhouse gas (GHG) fluxes where time since fire was included in fixed effects selection.  The final model for each GHG was selected based on a step-wise routine 
using single term deletions combined with likelihood ratio testing.  The LR and p-values for each variable are the results of likelihood ratio tests between the maximum 
likelihood estimations of the final model and the same final model with that variable removed.  R2 values and RMSE are from final models with restricted maximum 
likelihood estimations.  PAR = photosynthetically active radiation, OH = soil organic horizon.
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Table S2. Parameter estimates for selected LME models of greenhouse gas fluxes (using time since fire in fixed effects selection)
Ecosystem Respiration – Log10 Net Ecosystem Exchange CH4 Flux N2O Flux

Parameter estimate
(± SE)

p-value Parameter estimate
(± SE)

p-value Parameter estimate
(± SE)

p-value Parameter estimate
(± SE)

p-value

Intercept 5.649 ± 1.024 <0.0001 -40.583 ± 20.503 0.0602 -0.046 ± 0.023 0.0539 - -

Time Since Fire*Soil Temperature5cm - - - - - - - -

Time Since Fire - - - - - - - -

Soil Temperature5cm - - 6.658 ± 2.266 0.0040 - - - -

Sampling Period - -
     Sept 2012 -1.577 ± 0.419 0.0003 -6.555 ± 8.525 0.4436 -0.015 ± 0.005 0.0013 - -
     June 2013 -0.391 ± 0.449 0.3852 -39.028 ± 7.722 <0.0001 -0.010 ± 0.006 0.0688 - -
     July 2014 2.924 ± 0.486 <0.0001 -42.874 ± 14.422 0.0036 -0.036 ± 0.005 <0.0001 - -

PAR - - - - - - - -

Soil Moisture 13.270 ± 2.862 <0.0001 - - - - - -

Leaf Moisture -0.005 ± 0.001 <0.0001 - - -4.08 x 10-5 ± 1.47 x 10-5 0.0066 - -

DepthOH - - - - - -

C:NOH - - - 0.0017 ± 0.0006 0.0086 - -

Total NOH - - - - -0.0008 ± 0.0004 0.0405 - -
Final Plant Biomass - - - - - - - -

Fa
ct

or

% Cover – P. schreberi - - - - - - - -

Parameter estimates and p-values (restricted maximum likelihood estimated models) are based on comparisons to the intercept, which includes sampling period June 2012.  
PAR= photosynthetically active radiation, OH = soil organic horizon.
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