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Abstract. Developing a holistic understanding of the ecosystem impacts of global change
requires methods that can quantify the interactions among multiple response variables. One
approach is to generate high dimensional spaces, or hypervolumes, to answer ecological ques-
tions in a multivariate context. A range of statistical methods has been applied to construct
hypervolumes but have not yet been applied in the context of ecological data sets with spatial
or temporal structure, for example, where the data are nested or demonstrate temporal auto-
correlation. We outline an approach to account for data structure in quantifying hypervol-
umes based on the multivariate normal distribution by including random effects. Using
simulated data, we show that failing to account for structure in data can lead to biased esti-
mates of hypervolume properties in certain contexts. We then illustrate the utility of these
“model-based hypervolumes” in providing new insights into a case study of afforestation
effects on ecosystem properties where the data has a nested structure. We demonstrate that the
model-based generalization allows hypervolumes to be applied to a wide range of ecological
data sets and questions.

Key words: afforestation; Countryside Survey; Gaussian distribution; high-dimensional; multivariate;
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INTRODUCTION

Ecological systems are characterized by multivariate
and stochastic dynamics at varying scales. Therefore it is
challenging to identify when change determined by an
environmental or external driver has resulted in a shift
to a new state (Kowalchuk et al. 2003). Analyses that
focus solely on univariate responses risk being unable to
detect and predict emergent phenomena that result from
the positive or negative covariance between system prop-
erties. For example, a perturbation could cause a change
that is only observable in a multivariate context (Kerst-
ing 1984). Ideally, it would be desirable to consider
changes in multiple ecosystem characteristics simultane-
ously, requiring an ability to theoretically and empiri-
cally evaluate high-dimensional responses. Here we
follow convention by referring to the high-dimensional
space of interest as the hypervolume (Blonder 2018).

A range of approaches have been developed to calcu-
late ecological hypervolumes (see Table 1 for examples;
also see Blonder (2018) for a comprehensive review),
which vary in their assumptions and in their applicabil-
ity to different scenarios (Blonder 2016, Junker et al.
2016). The methodologies can be split into parametric
and non-parametric approaches. Non-parametric approaches
have been widely applied and have the advantage of making
no distributional assumptions, making them appropriate for
data that does not correspond to a multivariate distribution.
There is often a requirement for orthogonality of variables to
conduct non-parametric approaches, e.g., in the kernel den-
sity estimation (KDE) procedure conducted by Blonder et al.
(2014) and the dynamic range boxes (DRB) introduced by
Junker et al. (2016). Therefore researchers applying these
methods often use some form of Principal Components
Analysis (PCA) or allied approach prior to computing hyper-
volumes to ensure orthogonality (Barros et al. 2016). The
drawback of this approach is that the dimensions used to
build the hypervolume (e.g., PCA axes) are no longer easily
interpretable in terms of the original input variables. Non-
orthogonality is not a problem for parametric approaches
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such as the multivariate normal model implemented in
nicheROVER (Swanson et al. 2015), which incorporates
information about covariance in the structure of the hyper-
volume. An additional advantage to parametric approaches
is that they allow extrapolation and interpolation, which can
be useful when sample size is low. Data set size is a particu-
larly important problem with high dimensional problems as
data becomes increasingly sparse in high dimensions (Bell-
man 1957).
An additional consideration is whether methods can

be applied to data collected in a structured manner, for
example using a nested survey method or time series.
For practical reasons data collected in observational
studies are often structured, e.g., multiple samples taken
within catchments or regions. When data have been col-
lected using some form of grouped design, then the
hypervolume will be influenced by both the covariance
within groups, and the differences between groups
(Fig. 1a, b). In some cases we may want to understand
the properties of the system demonstrated within groups,
while accounting for differences between groups
(Fig. 1c). For example, the hypervolume may reflect
some underlying process shared between groups and we
are therefore interested in estimating this shared covari-
ance structure.

Accounting for data structure is possible in non-para-
metric approaches by incorporating a weighting struc-
ture (Breunig 2008, Blonder et al. 2018) so that
observations do not all contribute equally to the calcu-
lated hypervolume. We aim to demonstrate that multidi-
mensional parametric approaches can be generalized to
account for complex data structures in an analogous
way to incorporating data structure into univariate mod-
els. If the covariance is assumed to be the same between
groups, then differences in univariate means between
groups should be sufficient motivation to include data
structure in hypervolume construction, assuming we are
interested in within-group variation.
In what follows, we present an approach to generalize

the hypervolume concept to account for data structure,
which we term the model-based hypervolume. We use
simulated data to show that not accounting for structure
in the data leads to biased estimates of hypervolume size,
assuming that the hypervolume of interest is that
obtained from the underlying within-group covariance
matrix. We then apply the method to a case study to
demonstrate how model-based hypervolumes can be cal-
culated for nested ecological data to investigate impacts
of afforestation on the ecological properties of terrestrial
vegetation.

TABLE 1. Examples of existing methods for hypervolume calculation.

Method R package Parametric Assumes orthogonality Reference

Kernel density estimation (KDE) hypervolume no yes Blonder et al. (2014, 2018)
Dynamic range boxes (DRB) dynRB no yes Junker et al. (2016)
Multivariate normal model nicheROVER yes no Swanson et al. (2015)
Convex hull geometry::convhulln no yes Cornwell et al. (2006)

FIG. 1. Demonstration of the concept of model-based hypervolumes. (a) Data from different groups may share an underlying
covariance structure (e.g., defined by an underlying ecological process) but have different mean values. (b) Ignoring group structure
and fitting an empirical hypervolume removes any inference on covariance within groups. (c) Fitting a model-based hypervolume
can account for group differences and return the shared covariance structure.
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MODEL DESCRIPTION

Data with no structure

We initially assume that the variance–covariance
matrix of a multivariate normal distribution can be used
to calculate a 95% confidence ellipsoid, which is the
basis of the approach to hypervolume estimation intro-
duced by Swanson et al. (2015). We assume that the data
Yi,j come from a multivariate normal distribution where
Yi1. . ..YiJ represents the J variables measured for a single
ecological unit i. The mean of the multivariate normal
distribution is described by lj, with each variable j hav-
ing a different mean value (Eq. 1). The covariance
matrix is given by Σ and has the dimension J 9 J.
Matrix decomposition of this covariance matrix provides
the major axes of the 95% confidence ellipsoid used to
represent the hypervolume. Assuming that there is no
structure in the data then Σ should approximate the
covariance matrix derived directly from the data (ΣR;
Swanson et al. 2015):

Yi:j �MN lj ;R
� �

: (1)

Accounting for structured data

If observations are grouped or nested, then potential
non-independence of observations can be accounted for
by adding a random effect, which varies by group. Ran-
dom intercepts can be included in the above model by
letting the mean of the multivariate distribution vary by
each group k (k = 1,. . .,K) as well as by variable j
(Eq. 2). For each variable j, the means for each group k
are drawn from a normal distribution with zero mean
and variance e (Eq. 3). Note that overall means for each
variable are not estimated, and the variance term e cap-
tures variability in means both between groups and vari-
ables. There is no constraint therefore that means of
groups within variables should be more similar than
means of groups between variables. This makes it diffi-
cult to interpret e but ensures that the within-group vari-
ance and covariance of interest is captured in Σ, which is
then used to construct the hypervolume. The covariance
matrix Σ is assumed to be the same across groups and
the 95% confidence ellipsoid is calculated as in the previ-
ous section:

Yi;j;k �MN lj;k;R
� �

(2)

lj;k �N 0; eð Þ: (3)

Probability of inclusion

The probability q of any new observation (Y*) being
within the 95% confidence ellipsoid representing the
hypervolume can be calculated from the probability
distribution function of the multivariate normal

distribution defined by the estimated l1. . .J and Σ. When
the mean of the distribution differs by groups, lj can be
estimated by averaging lj,k for each j. To test whether q
is significant at any desired probability threshold, a num-
ber of simulated observations drawn from the distribu-
tion can be used to construct a cumulative probability
distribution against which q is tested to give a probabil-
ity of inclusion p. To capture uncertainty in the initial
estimates of l and Σ this process can be repeated for any
number of l and Σ and a summary of the inclusion prob-
ability p taken.

Comparison of two or more hypervolumes

The volume of the hypervolume can be calculated
using the eigenvalues of Σ to determine the major axes
lengths of the 95% confidence ellipsoid. Overlap between
two volumes of high dimensions is difficult to calculate
precisely therefore overlap between hypervolumes is esti-
mated by simulating a large number points from each
hypervolume then testing the proportion of points from
one hypervolume belonging to the other using the prob-
ability of inclusion test described above. The overlap is
defined as the number of points shared divided by the
total number of points simulated. This step is computa-
tionally demanding therefore the appropriate number of
points to simulate should be considered based on the
required precision and the available computational
resources.

SIMULATION STUDY

A simple simulation study was performed to evaluate
the performance of the model-based hypervolume in
estimating the within-group covariance structure com-
pared to an empirical approach where group structure is
ignored. The simulation study had two main compo-
nents. Firstly, variable numbers of dimensions (3–7),
sample sizes (10–50), numbers of groups (4–10), and
between-group variances (0–2) were assessed to check
that the method was robust with a range of feasible
study designs. Secondly, data were simulated with
unequal variances within groups to check whether the
model was robust to the assumption of shared within-
group variances. Full details of the design and imple-
mentation are given in Appendix S1.
Empirical (structure ignored) and model-based hyper-

volumes were estimated for the simulated data. To pro-
duce a single metric for comparison between models the
volume was computed as above, and the (estimated vol-
ume � true volume)/true volume was used as an estimate
of the performance of each model. The true volume was
derived from the known covariance matrix used to simu-
late the data.
Markov chain Monte Carlo (MCMC) estimation was

used to estimate the parameters of the distribution. The
prior for the covariance matrix Σ was given by a Wishart
prior on the covariance matrix of the raw data ΣR with
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degrees of freedom equal to the number of variables plus
one. If there is no structure in the data the estimated
covariance matrix Σ is expected to converge on the data
defined matrix ΣR (Swanson et al. 2015). The variance
parameter e (Eq. 3) was not estimated but was set at
10,000, giving a weakly informative prior on group- and
variable- level means. All other parameters were given
uninformative priors from either normal or uniform dis-
tributions. Each simulation was repeated 500 times. All
models were implemented in R version 3.4.0 and JAGS
using R package rjags (Plummer 2016). An R package to
run the simulations is available (see Data Availability).

SIMULATION STUDY RESULTS

The simulation study showed that as the between-
group variance increased, the empirical approach, where
structure was ignored, increasingly overestimated hyper-
volume size whereas the model-based method produced
estimates closer to the truth (Fig. 2). When there was no
difference between group means then both methods
performed similarly and slightly underestimated the
hypervolume. The potential for the empirical method
to produce incorrect estimates of hypervolume size
increased slightly with increasing numbers of hypervol-
ume dimensions and numbers of groups (Appendix S1).
Varying the number of observations per group did
not have a large influence on the results. For the
second part of the simulation study it was shown
that the model-based approach was robust to violat-
ing the assumption of equal within-group variance
(Appendix S1).

CASE STUDY: AFFORESTATION IMPACTS ON ECOSYSTEM

SERVICES

The case study used to demonstrate the potential for
model-based hypervolumes to address interesting ecolog-
ical questions comes from a long term, large-scale study
of British ecosystems known as Countryside Survey. The
survey incorporates multiple co-located observations of
habitat type and vegetation composition in 2 m 9 2 m
plots nested within a random stratified sample of 1-km
squares across Great Britain that have been repeatedly
sampled since 1978 (Norton et al. 2012). The aim of the
case study was to use model-based hypervolumes to
characterize two habitats using multiple ecological met-
rics measured in the vegetation plots, accounting for the
nested survey design. We are assuming here that we are
interested in the covariance between ecosystem proper-
ties shared across 1-km squares and therefore a model-
based, rather than empirical, approach is required.
Heath and coniferous woodland were chosen as the

habitats to characterize as they were represented by a
reasonable number of observations each (105 and 83
plots across 16 and 18 1-km squares, respectively). Three
variables were chosen to represent the ecosystem service
indicator space in each habitat: specific leaf area (SLA),
canopy height, and potential nectar production index;
all were cover weighted. Data collection and processing
is fully described in Appendix S2. Prior analyses of these
variables have shown large variation between survey
squares, highlighted in univariate plots of the data
(Appendix S3), thus demonstrating the potential to
apply a model-based hypervolume. All raw data used to

FIG. 2. Results of a simulation study to compare true vs estimated hypervolume size with empirical and model-based methods
for nested data with varying levels of between-group variation. Simulations shown had three dimensions, four groups and 10 obser-
vations per group. Note that the y-axis is scaled by the true hypervolume size to give a relative difference. Box plot components are
mid line, median; box edges, first and third quartiles; whisker, most extreme data less than 1.5 times the interquartile range from the
median, and points, data more than 1.5 times the interquartile range from the median. Results for other permutations of number of
observations, groups and dimensions are shown in Appendix S1.
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derive hypervolume parameters are freely available and a
list of data set DOIs is provided in Appendix S4.
We quantified a model-based hypervolume for each

habitat based on the three variables described above to
assess hypervolume size and overlap between habitats.
Additionally, a number of plots were identified that
underwent habitat transition from heathland to conifer-
ous woodland between 1978 and 2007. We assessed the
probability of inclusion of each of these plots in each
habitat hypervolume and tested whether plots that had
changed habitat belonged to the heath hypervolume, the
coniferous woodland hypervolume, both or neither
based on a probability of inclusion threshold of 0.05.
Data were centered to improve convergence, which

was tested using visual inspection of the MCMC chain
and via the Gelman-Rubin diagnostic (Gelman and
Rubin 1992). Models were implemented in the same
manner as the simulations, using 100,000 MCMC itera-
tions, with a burn-in of 50,000.

CASE STUDY RESULTS

Two dimensional representations of the hypervolumes
for both habitats are presented in Fig. 3a, showing the
data points used to construct them. Seven plots were
identified that had changed habitat from heath to conif-
erous woodland over the survey period. Fig. 3b shows
variation in the position of the habitat transition plots
within the hypervolumes; probabilities of inclusion and
full descriptions of each plot are given in Appendix S5.
All seven habitat transition plots had a probability of

inclusion in the heath hypervolume of <0.05, indicating
their ecosystem properties were now more reflective of

coniferous woodland. This was largely due to higher
canopy height and lower nectar production in these
plots than in heathland. All but one transition plot fell
inside the coniferous woodland hypervolume; this plot
had a combination of low SLA and average canopy
height that was not typical of coniferous woodland habi-
tat. This demonstrates the utility of the multivariate
approach; the values of SLA and canopy height in this
plot were not unusual for coniferous woodland when
considered separately, but the combination of values
placed this plot outside of the ecological range of conif-
erous woodland defined by the hypervolume.
When the volumes of each hypervolume were calcu-

lated, the hypervolume for coniferous woodland was
found to be approximately twelve times larger than the
hypervolume for heathland habitat (Appendix S6).
Overlap between the hypervolumes was 34% and the
coniferous woodland hypervolume almost completely
contained the heath hypervolume with 99% of the heath
hypervolume within the conifer hypervolume. This sug-
gests that the range of conditions across coniferous
woodlands in aboveground properties is much larger
than that in heathlands, which comprise a subset of
coniferous woodland conditions. The variable nature of
the coniferous woodland hypervolume probably reflects
the fact that areas of coniferous woodland habitat are
defined by conifer cover that varies from 25% to 100%.

DISCUSSION

The novel methodology of model-based hypervolumes
described here allows parametric hypervolumes to be
defined from structured ecological data sets when the

FIG. 3. Two dimensional visualization of the heath (red) and coniferous woodland (blue) model-based hypervolumes: panel a
shows the data points used to build the hypervolumes plus the hypervolume boundaries, panel b shows the same hypervolume
boundaries plus the location of the seven plots that underwent afforestation in the hypervolume space. Note that data are centered
on zero but not standardized.
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shared covariance structure is of interest. The simulation
study shows the potential for biased estimates of hyper-
volume properties if structure in the data is ignored in
hypervolume construction.
Several considerations should be made when applying

model-based hypervolumes. First the method assumes
that there is covariance shared between groups that can
be estimated, reflecting shared underlying ecological
processes. In addition, the method assumes the variables
defining this covariance matrix are normally distributed.
Deviations from normality will influence hypervolume
structure, but parametric implementation of approaches
for non-normal data are challenging. Therefore a prag-
matic approach is to treat data as normal where this can
be reasonably assumed, and inspect deviations from this
assumption in the results. In the case study, it was obvi-
ous that the nectar production index was not quite nor-
mally distributed, particularly in heathlands, leading to
an area of hypervolume with no points. To demonstrate
the capability of this method this was seen as acceptable,
however a more in depth assessment of this data may
require a different approach. Further investigation into
the potential use of Gaussian copulas in hypervolume
construction could be useful here (Fischer et al. 2009),
otherwise a nonparametric approach might be preferred.
All multivariate approaches are subject to the curse of

dimensionality (Bellman 1957). That is, increasing
amounts of data are required as the number of dimen-
sions increases. The simulation study indicated that the
model-based hypervolume performed well in up to seven
dimensions, but performance in higher dimensions has
not been evaluated. Hypervolumes with large (j > 10)
numbers of dimensions are likely to require data sets of
a size not achievable in most ecological investigations. In
addition, although the hypervolume approach intro-
duces tools to add insight to high dimensional data,
visualization and interpretation becomes increasingly
difficult as dimensionality increases. Informed and ques-
tion-led selection of variables is therefore essential.
The simulation study showed that the model-based

approach had no benefit over an empirical approach
when there was no or little between-group variance.
Therefore if there is no or only slight evidence of
between group differences an empirical approach may
be more suitable. If there is uncertainty around this then
applying both approaches and inspecting the differences
in results is likely to be the most informative solution.
The method also assumes that the grouping structure of
the data is known. Therefore this method is most suit-
able for cases where nesting or grouping is defined by the
study design. Future investigations could consider how
uncertainty in group membership might affect interpre-
tation of model-based hypervolumes.
In conclusion, we present the model-based hypervol-

ume as a useful extension of existing methods to investi-
gate multivariate dynamics in ecological data. The
hypervolume concept considers that systems are
dynamic and multidimensional, and the model-based

approach provides a flexible method for constructing
the hypervolume for a wide range of ecological data
sets. The simulation study shows the method is
robust under a realistic set of study designs and the
case study demonstrates that model-based hyper-
volumes can be used to observe patterns not appar-
ent via univariate analyses. We believe the approach
could be generalizable to a broad range of ecological
scenarios and could also be extended to consider
temporal autocorrelation and other forms of non-
independence.
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