

Gateway to the Earth

3D geological modelling at the British Geological Survey (BGS)

David Entwisle and many other BGS staff

dce@bgs.ac.uk

NTU-BCA Workshop on 3D Geological Modelling BCA Academy, Building and Construction Authority, Singapore, 17 January 2019

© UKRI All rights reserved

This version of this talk '**3D geological modelling at the British Geological Survey (BGS)**' by David Entwisle, with contributions of many others from the BGS, contains all the slides presented at the NTU-BCA Workshop on 3D Geological Modelling BCA Academy, NTU, Singapore, 17 January 2019 for which permission was granted. The talk lasted about 53 minutes of the allocated hour. It also contains additional slides that provide more background to the talk, helping explain a number of points.

An additional modelling method is also included i.e. voxel and other features of uncertainty/confidence.

After conversations at the meeting and elsewhere, the importance of understanding the geology (conceptual ground model), the quality of the data and the documentation about the model are also included.

BGS Minecraft is also mentioned.

Synopsis

Why do we want 3D models? BGS models

What is required to make 3D models?
 Examples of models
 Delivery
 Uncertainty

About models

"All models are wrong, some are useful"

George Box, statistician (1976) Journal of the American Statistical Association

- Geologist understand the geology and relationships between units
- Communicate to other-geologists and non-geologists
- Thickness and volumes Aggregates and Minerals
- Aquifer Lithology and relationship to above and below units
- Examine ground conditions and inform planning decisions on proposed development
- Desk study tool ground model (tests the conceptual ground •ukmodel and informs investigations does not replace it)

3D Modelling Data processing for 3D modelling (e.g. GSI3D or Subsurface viewer)

<u>Geological knowledge</u>: Conceptual ground model Relationships between units (erosional, folded, faulted etc.) <u>Data Preparation</u>:

• DTM

Input data

- Boreholes (description, coding rules)
- Geophysics GPR and Seismic sections etc.
- Geological map linework

Geological - general vertical section (GVS) and conceptual understanding of the ground model Legend – to show the different modelled units Others (as required)

Ground models for 3D geological modelling (after Parry et al. 2014) Engineering Geology Model

Conceptual Engineering ground model

•Based largely on geological/ground information, **Desk study**;

•Anticipate what might be encountered on site and relationships between the different units, faults, erosional surfaces, unconformities

GI data General GI DATA

3D geological model – preliminary observation model •Based on conceptual ground model and collected data/information collected from various investigations. Not project specific.

Project DATA

Project observational engineering/geotechnical ground model

•Based on data/information collected from the project investigation;

Identify and quantify(?) ground hazards; ground/groundwater conditions and uncertainties, also resources and material management. Project risk register.
Inform further investigation;

•Can be further developed during construction.

Analytical ground model

- Based on observational (conceptual) models
- Consolidates essential geology support ground based engineering activity
- Analogue/mathematical models

Engineering geological models: an introduction: IAEG commission 25 http://nora.nerc.ac.uk/id/eprint/508530/

Data processing for 3D modelling - Digital Surface/Terrain Models

http://nora.nerc.ac.uk/id/eprint/8759

File formats often include:

- XYZs
- Gridded data
- Contours
- TINs/TRNs

Lidar DEM Nottingham Castle

Lidar DTM of landslide

Need to select an appropriate point/mesh/grid/cell spacing size for the model area

Digital Terrain Model - scale

- Bare earth (no trees, no building, bridges etc.)
- Practical (balance between size and detail)
- Availability (price) 50 m

Contains Ordnance Survey data © Crown copyright and database rights 2010

Smaller files less detailed Easier to use Larger files more detailed Slows down the computer

5 m

NEXTMap Britain elevation data from Intermap Technologies

Digital Terrain Model - Artefacts

Digital elevation models contains non-ground structures such as man-made structures, vegetation etc.

DTM generally have various degrees of removal of these features: Identify if there are artefacts (e.g. buildings, trees etc.)

> Is this a building (should not be there) or an embankment (OK.)

Borehole data

Ground investigation data – Descriptions to National / International standards BS/EN/ISO (e.g. BS5930, EN ISO 14688-1, 14689-1)

Analogue information

- Paper reports
- pdf reports

Transcribing errors

AGS digital data transfer format Ascii format (commas and quotes)

Rapid and easy to add to database (few errors)

Data processing for 3D modelling Boreholes - different ages/quality (Standards)

Suitable grid reference and ground level Borehole description

Also consider the accuracy (Singapore cable percussion drilling Boundaries mostly to whole numbers)

Description of Stream		Depth below G.L	O.D. Level		Sampling	Casing Depth	()& 'N'	Install -ation
(Stratum continued from previous sheet)	1000	10.10	105.00	+-	r			6.6
Very stiff orangish brown sandy CLAY with much rounded fine to coarse gravel of fire.	l	10.30	99.50	B	10.20	10.30	30	
VEASAL OLDRAVEN BELTS	/ <u></u>	1		1-				1 2.2
rear your date block grey CLAT with many when binanc shells and shell	F				1			1 1
(WOOLWICH PORMATION)	E-2		I	D	10.80		1	1 b°
from 10.30m to 10.45m yellowish brown	E-2			Lи	11.00 11.45	10.20	685	1 4 -
more to see to its for entreety closely farared				1-				(d)
				L .				4.
		1		в	11.59	1		1 a a
				· ·				P.P.
				I .				1 15
			1	D	12.00			1 11.01
				-				14.0
							1	[4[o:
				U	12.50 12.95	10.20	(30)	1 6
								1 P.P.
			I i	1				1 1.1
				D	13.00			66.
				L 1				_ B°
	2-2-							- [4] • -
	E-3			D	13.50			[4[•]
								60.
wat bil führ stightly sands aller								1 8.
a cross signal many car	1 2 - 1			ь	14.00			1 2
	1.000			i i				1 581
	1 - 1		~~~~					l "•"•:
Dark brown frishle LEINTTE, very weak.		14.00	90.50	U8	14.50 14.80	10.20	(1909NR	5959
(WOOLWICH FORMATIKIN)								1 20000 -
				so	34.85 13.00	10.20	75/30	I 1998-1
								I 20000 1
N 16		15.40	94.70	f				
Very soft dark gray CLAY with occasional possible pockets or knots of gray	1.1			n	16.61			1 10992 1
(WOOLWICH FORMATION)								1 8861
				NO.	13.70 16.13	0.30	-54-	
					1			8664
	<u></u>							
				D	16.50			
				me	16 20 12 14	16.00	7437	
					10.10 11.13	19.00	-0	
								1 1/2-1
				D	17.30			
				U	17.50 17.95	15.00	15(7)	1 1861
		18.00	92.10					
Borshole complete at 18.00m.				D	18.00			I []

Borehole data input and coding

Full description, lithology code, (lithostratigraphical code) Useful to include geological at Group, Formation, Member (bed) level

	H	.ي . ن	÷						Acc	ess					?	- 0	×		
5-0	⇒- <u>C</u>								gl٩	NT_GEOLOGY_\	/10_1.xlsx -	Excel						<u> </u>	o x
File Ho	me In	sert Pa	ige Layout	Formulas	Data Review	View	ACROBAT	Q Tell m	ne what you want t	to do								Terrington, Ricky	L. A Share
💼 🔏 Cut		Calibri	Ŧ	11 x A A	=~	- 🖶 w	/ran Tevt	Genera	al v			Normal	Bad	Good	- -		∑ AutoSum		
Darto Cop	, -	Calibii		A A	- = -		nap text	Genera			Eormat ac	Normal	Calculation	Charle Call		E Delete Format	👽 Fill 🕆	Z I P	
- V Forn	nat Painter	BI	<u>U</u> -	• 🖓 • 🗛 •		•≡ ₽ N	1erge & Center 🔻	1	% *	Formatting	Table *	Neutral	Calculation	Check Cell			🧶 Clear 🔻	Filter • Select •	
Clipboar	d I	2	Font	Gi	A	Alignment	15	<u>.</u>	Number 🕞				Styles			Cells	Ec	iting	^
H6	- : [×✓	fr																
			-			D			-			6							
A A		Booth	GEOL			U							-	н	GEOL G	501	GEOL		
2 Hole ID	TO	o dent 🔻 F	Base dent v	Description				v	BGS Code	▼ Legend	BGS GE	ology Code	BGS Model Na	ime		Code for Plotti	Imported		Arun 2nd G
3 DI 601 BH	001	0	0.76	Hard white de	etrital limestone	(cemente	d coral and shel	lls), Po	LMST	Legend		ology couc			GCOIDE	coucion nota	Imported	Zild Geology cot	Arup Zild G
4 DI 601 BH	001	0.76	3.51	Hard white de	etrital limestone	(loosely o	emented coral a	and sh	LMST										
5 DI_601_BH	001	3.51	3.81	Hard grey det	rital limestone. F	Porous wit	h some voids		LMST										
6 DI_601_BH	001	3.81	12.19	Hard white de	etrital limestone	(loosely o	emented coral a	and sh	LMST										
7 DI_601_BH	002	0	0.3	Hard white de	etrital limestone	(cemente	d coral and shel	lls). Pc	LMST										
8 DI_601_BH	002	0.3	15.85	Hard white de	etrital limestone	e (loosely o	emented coral a	and sh	LMST										
9 DI_601_BH	003	0	4.88	Hard white de	etrital limestone	e (cemente	d shell and shel	lls and	LMST										
10 DI_601_BH	003	4.88	8.53	Hardish grey o	detrital limeston	ne (cement	ed shell fragme	ents so	LMST										
11 DI_601_BH	003	8.53	10.67	Hard grey det	rital limestone (cemented	shell fragments	s and s	LMST										
12 DI_601_BH	003	10.67	12.19	Firm grey silty	y clay with patche	es of ceme	ented material		CZ										
13 DI_601_BH	004	0	2.59	Hard grey det	rital limestone (cemented	shell and shell t	fragm	LMST										
14 DI_601_BH	004	2.39	4.72	Hard corraline	e limestone (den	ise coral gr	owth with moli	luscs).	LMST										
15 DI_001_BH	004	4.72	5.03	Hard grey cald	areous sandston	ne vo with trav	os of marl Borr	ous wi	SUST										
17 DI 601 BH	004	5.05	1/1 22	Fragments of	coral and grey ca	alcareous r	narl	ous wi	LIVIST										
18 DI 601 BH	004	14.33	15.5	Hardish grev	shelly sandstone	Porous			SDST										
19 DI 601 BH	005	0	4.72	Hardish grey-	brown detrital li	mestone (cemented shell	fragm	LMST		_								
20 DI 601 BH	005	4.72	7.62	Hard grey det	rital limestone.	As above b	out number of vo	oids b	LMSTSDST										
21 DI_601_BH	005	7.62	12.19	Hard grey det	rital limestone: ((cemented	shells and shel	ll fragr	LMST										
22 DI_602_BH	001	0.00	1.37	Loose brown	medium SAND a	nd coral (s	hell fragments)		SCORAL										
23 DI_602_BH	001	1.37	2.97	White slightly	cemented (calc	areous) m	edium SAND an	id cora	SCORAL										
24 DI_602_BH	001	2.97	12.80	porous white	coral LIMESTONE	E with som	e shells and nu	merou	LMSTCORAL										
25 DI_602_BH	001	12.80	18.90	Greenish detr	rital shelly LIMES	STONE			LMST										
26 DI_602_BH	001	18.90	24.38	Fairly massive	e, white, fine gra	ained chalk	Y LIMESTONE W	ith occ	LMST										
27 DI_602_BH	002	0.00	4.27	Hard porous g	rey coral LIMEST	FONE with	numerous voids	s. Fairl	LMSTCORAL										
28 DI_602_BH	002	4.27	5.79	Greenish-grey	y silty CLAY and p	pieces of C	ORAL		CZCORAL										
29 DI_602_BH	002	5.79	13.41	Weakly ceme	nted shell SAND	. Some cor	al growths towa	ards ba	S										
30 DI_602_BH	002	13.41	24.29	Greenish-grey	y coral LINESTON	ve, original n chollu de	i voids filled wit	th fine	LIVISTCORAL										
32 DI 602 BH	002	0.00	24.50	Well cemente	ad brown coarse	shell SAM		NC. FEV	LIVIST										
33 DI 602 BH	003	2.51	4.57	Slightly ceme	nted brown coar	rse shell SZ			S										
34 DI 602 BH	003	4.57	8,92	Stiff light grev	very silty CLAY	.se snen or			CZ		-				_				
35 DI 602 BH	003	8.92	17.53	Fairly massive	e hard white muc	ddy detrita	I LIMESTONE. SI	lightly	LMST										
36 DI_602 BH	003	17.53	23.77	Medium hard	, friable and clay	ey, white	dolomotic detri	ital LIN	LMSTC										
	POINT	GEOI	DETL	GEOG GE	02 CORE	FRAC D	ISC WETH	(+))		1				-				
Ready					10112			0					·					·····	+ 100%
					_	_					_	_	_		-				10.50
	Hole Iden	tifier												Numlock	iltered		L E		

Num Lock Filtered 🔳 🖽 🗄

Borehole Issues – Urban Areas

- Age of borehole
- Location (National grid reference, Accuracy?)
- Ground level start height of borehole (changes?)
- Units used feet/metres (consistent conversion)
- Drilling and description quality

Deeper geology – interpreted seismic sections Generally for implicit models

Example from the Niger delta

https://commons.wikimedia.org/wiki/File:Niger_ Delta_Tectonic_structure.jpg

Interpretation - Identification of units Geological structures including faults, folds etc. Also need borehole control

© UKRI All rights reserved

Borehole and section density Modelling of the London and Thames Valley

120 km x 40 km

7,174 boreholes considered

922 cross-section up to3 km spacingDo they maximise the datafor the geology?

Contains Ordnance Data © Crown Copyright and database rights 2019 . Ordnance Survey Licence no. 100021290

© UKRI All rights reserved

Units to be modelled: general vertical section GVS in stratigraphical order (top to base)

Detail required for model use or uses

Modelled units (lithology, lithostratigraphy (Group, Formation, Member, bed)

London and Thames Valley model 76 units

- 5 Anthropogenic units
- 59 Superficial units (Quaternary)
- 12 Bedrock units (Tertiary and Cretaceous)
 1 Group, 7 Formation, 2 Members, 2 Beds

¹²⁰ km x 40 km x -100 mOD

GVS – Manchester model

- Manchester-Salford superficial model 15 km x 7 km to base of Quaternary
- 191 units 160 Glacigenic units
- Sand and gravel beds (glaciofluvial) Clay and silt beds (glaciolacustrine)

https://www.bgs.ac.uk/downloads/start.cfm?id=1733

GVS – central Glasgow superficial model 10 km x 10 km to base of superficial deposits Additional

| characteristics

	A	В	С	D	E	F	G	н	1	J	К	L	М
1	Name	id	Geological_Unit	Compositio	LEX_CO	Origin	Age	Aquifer_Produc	Permea	Enginee	Running	Plastici	Geotech
2	water	5	water	water	NULL	water	water	water	water	water	water	water	water
3	MGR-ARTDP	10	Made and Worked Ground	Made and Wor	MGR	Made and Worked Ground an	Recent	Non Aquifer	Variable	ENG1	RUN2	PLAS4	VAR
4	HEAD-XCZSV	15	Head	CS	HEAD	Mass Movement Deposit	Flandrian	Null	Moderate	ENG3	RUN3	PLAS4	VAR
5	PEAT-P	20	Peat	organic	PEAT	organic	Recent	Non Aquifer	Low	ENG8	RUN2	PLAS5	PEAT
6	LDE-XCZSP	25	Lacustrine deposit	CZS	LDE	Lacustrine	Recent	Null	Low	ENG4	RUN2	PLAS1	SFTFRM
7	LAWSG-XCZSVP	30	Law Sand and Gravel Merr	S	LAWSG	Present fluvial deposits	Flandrian	High	High	ENG2	RUN2	PLAS3	LOOSE
8	KELV-XCZSP	35	Strathkelvin Clay and Silt	CZ	KELV	Lacustrine	Flandrian	High	Low	ENG4	RUN2	PLAS1	SFTFRM
9	GOSA-XCZSV	40	Gourock Sand Member	SV	GOSA	Marine_estuarine	Flandrian	Moderate	High	ENG2	RUN2	PLAS3	LOOSE
10	KARN-XSV	65	Killearn Sand and Gravel M	VS	KARN	Raised beaches raised marine	Devensian	Moderate	Moderate	ENG6	RUN3	PLAS7	DENSEV
11	LIWD-XCZS	70	Linwood Clay Member	CZ	LIWD	Glacimarine	Devensian	Non Aquifer	Low	ENG4	RUN2	PLAS1	SFTFRM
12	PAIS-XCZS	75	Paisley Clay Member	CZ	PAIS	Glacimarine_estuarine	Devensian	Non Aquifer	Low	ENG4	RUN2	PLAS1	SFTFRM
13	BRON-XSVZ	80	Bridgeton Sand Member	S	BRON	Glacimarine delta	Devensian	Moderate	Moderate	ENG6	RUN1	PLAS3	VAR
14	RSSA-XSV	90	Ross Sand Member	S	RSSA	Glaciofluvial_Glaciolacustrine	Devensian	Moderate	High	ENG6	RUN1	PLAS3	DENSEM
15	RSSA-XSZ	95	Ross Sand Member, silty s	SZ	RSSA	Glaciolacustrine_deltaic	Devensian	Moderate	Moderate	ENG6	RUN1	PLAS3	DENSEM
16	BILL1-XZCS	100	Bellshill Clay Member	CZ	BILL	Lacustrine	Devensian	Non Aquifer	Low	ENG5	RUN3	PLAS6	FIRM
17	bhse_terrace	105	Broomhouse Sand and Gr	SV	NULL	Fluvial	Devensian	High	High	ENG6	RUN1	PLAS6	VAR
18	BHSE-XSV	110	Broomhouse Sand and Gr	VS	BHSE	Fluviodeltaic_ice contact	Devensian	High	High	ENG7	RUN2	PLAS7	VAR
19	BHSE-S	115	Broomhouse Sand and Gr	SV	BHSE	Fluviodeltaic_ice contact	Devensian	High	High	ENG7	RUN2	PLAS7	VAR
20	WITI-DMTN	135	Wilderness Till Formation	CZSVLB	WITI	Glacial	Devensian	Non Aquifer	Low	ENG3	RUN2	PLAS2	STIFF
21	SUPD-XZC	140	Clay and silt	ZC	null	Glaciolacustrine	Devensian	Non Aquifer	Low	NULL	NULL	NULL	FIRM
22	CADR-XSV	145	Cadder Sand and Gravel F	SVB	CADR	Glaciofluvial	Devensian	High	High	ENG7	RUN3	PLAS7	DENDENV
23	BRLL-XCZ	150	Broomhill Clay Formation	XCZ	BRLL	Glacimarine_estuarine	Devensian	Non Aquifer	Low	ENG5	RUN3	PLAS6	STIFF
24	BNTI-DMTN	155	Baillieston Till Formation	CZSVLB	BNTI	Glacial	Devensian	Non Aquifer	Low	ENG3	RUN2	PLAS2	STIFF
25	SUPD-XSV	160	Sand and gravel	SV	NULL	Glaciofluvial	Devensian	Unknown	High	ENG7	RUN1	PLAS7	DENDENV

nora.nerc.ac.uk/500548

Modelling software -Interpretation Tools & Techniques

Implicit (probabilistic or stochastic) & Explicit (deterministic) Modelling

Implicit models (statistical, stochastic, voxels etc.)

Data used to calculate the model

- + totally objective, reproducible, suitable for numerical data
 - e.g. contouring grades in an ore body.
- Easy to quantify uncertainty
- Obeying laws of maths, physics and statistics but calculated models.
- However, might not make geologically sensible.
- No or little interaction by the geologists knowledge and understanding.
- Is the data (interpretation) correct?

Explicit models (expert controlled, capturing knowledge)

hard and soft data to calculate the model

- + Geological sensible results, drawing on the holistic knowledge of the most suitable geologist(s) available.
- Non-reproducible, uncertainty difficult to quantify

Explicit	Implicit
GSI3D (*Groundhog Desktop)	Leapfrog
AutoCAD	GOCAD-SKUA
MicroStation	GeoModeller
Subsurface Viewer	Petrel

Other software used (modelling, visualisation presentation) Surfer, Voxler, Grapher, Strater, Slicer Dicer, AutoDesk 3dMax, Adobe Creative Cloud includes 3d pdf capability Unity, Engine

3D models

Sources: C25: Parry et al., 2014, Bull Eng Geol Environ, doi:10.1007/s100064-014-0576-x

Central Glasgow model – deterministic and probabilistic models

Which package to use?

Deterministic modelling GSI3D/subsurface viewer/Groundhog (cross-sections) For simple 'layer cake' geology perhaps with simple faults. GOCAD is used to further investigate modelled surfaces.

Implicit modelling GOCAD used for more complex geology such as folds, faults etc. Petrel is used for seismic interpretation

Model checking and approval - project

Completed
 approval form

Metadata report

Project Approval Workflow – New/Ongoing Models										
Modelling Team		Modeller Completes	in o ng	Project Check						
commences modelling team seeks help and guidance from NGM		Model and data files Metadata report		Manager/Team Leader check model is complete. Use Corporate NGM						
data managers regarding best practise and standards		Model Approval Form		checklist Modellers actions comments						
				Sign approval form, collate files, exports and metadata for storing on corporate drives.						

Model QA metadata for each model (software dependant)

What is metadata?

A set of data that describes other data

Purpose

Important to capture information about the spatial extent of the 3D model coverage (including details about each model)

https://www.bgs.ac.uk/data/publications/pubs.cfc?method=viewRecord&publnId=19867285

Metadata – GSI3D + Subsurface viewer

Metadata report includes:

- Modelling volume, purpose and scale;.
- Modelled surfaces/volumes (GVS) with description and units included.
- Modelled faults
- Model Workflow
- Model datasets
 - GVS, legend file, digital geological line work, DTM, Borehole data, interpreted geophysics
 - Other models
- Model assumptions, geological rules used etc.
- Model limitations
 - Model specific- data, geological units amalgamated or not included
 - General modelling
- Model QA
- Model images

http://nora.nerc.ac.uk/id/eprint/519288/

Gocad metadata report

- Modelling volume, purpose and scale
- Modelled surfaces/volumes
- Modelled faults
- Model datasets (Gocad Objects)
- Software used and model workflow
- Model limitations
- Model images

http://nora.nerc.ac.uk/id/eprint/507028/

• Sign off form

3D Geological modelling GSI3D

© UKRI All rights reserved

Systematic coverage plus

Urban areas, aquifers, Glasgow and civil engineering etc.

First model 1992-93 London - LOCUS

Urban areas include London – Thames Manchester and lower Mersey Glasgow and the Clyde

Scope of BGS geological models

- Framework models (mostly National Capability)
 - Systematic
 - Multi-purpose (can be limited)
 - Generalised geological subdivisions
 - Equivalent to geological maps at 1:50 000 to 1:625 000
- Bespoke models (National Capability or commissioned)
 - On demand
 - Addressing a specific purpose(s)
 - Detail as required (as possible?)
- Regional

[e.g. 100 km x 100 km x 1 km]

- to local detail [e.g. 20 km x 20 km x 200 m]
- to site-specific [e.g. 800 m x 400 m x 50 m]

National 3D geological model

 National network of cross sections new 1:625 k scale national geological maps

National Geological Map (1:1 000 000 scale)

Most significant stratigraphic divisions, major faults and plutons

http://www.bgs.ac.uk/science/3dmodelling/lithoframe1mvis.html

Geological Modelling and Visualisation - BGS

Industry and Consultancy

- Dr Sauer Group/CrossRail Farringdon Station
- Singapore (Building and Construction Agency) – <u>3D</u> <u>geological Model</u>
- HS2 Formation Expertise, <u>Rayleigh</u> <u>Wave Assessment</u>
- Tata Steel <u>Leeds to York</u> <u>Electrification</u>
- Arup UAE Offshore
- Ministry of Energy (Abu Dhabi) <u>Abu</u> <u>Dhabi Geological model</u>
- Keynetix/Atkins <u>BIM for the</u> <u>Subsurface</u>
- Vale/Coffey Mining <u>Mineral</u> <u>Exploration</u>
- Wardell Armstrong <u>TELLUS HOW</u>
- Anglo American Visualisation Training
- Arup/Yorkshire Water Doncaster

Local/National Government and Agencies

- Glasgow City Council <u>ASK Network</u>
- Radio Active Waste Management -Geological Screening
- Environment Agency:
 - <u>National Geological Model UK 3D</u>
 - <u>Aquifers and Shales</u>
 - <u>Manchester</u>
 - Knowsley
 - Holderness
 - Chichester
 - Doncaster
 - North Kent
 - London Chalk Model
- British Waterways Monmouthshire and Brecon Canal
- Forres-Moray (Moray Council) <u>Flood</u> <u>Prevention</u>
- CO₂ storage <u>CASSEM</u>
- Dept Energy and Climate Change <u>Shale Study Midland Valley (Scotland)</u>
- Oil and Gas Authority <u>Bowland Shale</u> <u>Gas</u>
- Jurassic Shale of the Weald Basin
- Scottish Government <u>Geothermal</u> <u>Energy</u>
- Ordnance Survey 3D workshops/Project Iceberg

Geological Survey Organisations and Universities

- SGU (Sweden) Esker Pilot Study
- Illinois Visualisation and Modelling
- GTK (Finland) <u>Groundhog</u> <u>Desktop Development</u>
- Chile Digital Mapping Workflow
- University of Newcastle Groundwater Flooding
- Volcano Research <u>STREVA</u>
- University of East Anglia DTCs-Wensum
- Kingston University Visualisation
 Training
- UNITEN (Malaysia) Visualisation Capability and Training
- <u>European 3D Geological Modelling</u>
 <u>Community</u>
- <u>Sub-Urban</u> Consortium of GSOs, Cities and Research partners management of ground beneath cities.

BGS international

https://www.bgs.ac.uk/research/international/UAE.html

Abu Dhabi - UAE

11

nora.nerc.ac.uk/516278

Abu Dhabi Ministry of Energy and Industry

<u>||</u>|

Published with the permission of the Building and Construction Authority (BCA), Singapore

Singapore - bedrock

© UKRI All rights reserved

Case Study Crossrail Farringdon station – London (UK) (includes test of a model)

Contains Ordnance Survey data @Crown Copyright and Database rights 2012. Licence No. 100021290

Crossrail project

- Links 41 stations over 100 km
- 42 km of new tunnels, 10 stations
- Over 50 km of new track

Thanks to Crossrail, Angelos Gakis, Dr Sauer & Partners

Reducing risk – Ground models Crossrail Farringdon Station

- Approximately 1km of SCL tunnels
- Approximately 7km of Probing
 - 6 Shafts
 - 4 TBMs (Drives X/Y)

Thanks to Crossrail, Angelos Gakis, Dr Sauer & Partners

© UKRI All rights reserved

Reducing risk – Ground models Crossrail Farringdon Station

- Approximately 1km of Spayed concrete lined tunnels open face tunneling
- Approximately 7km of Probing
 Contractor
 Contractor
 Contractor
 Contractor
 Contractor
 - 6 Shafts
 - 4 TBMs (Drives X/Y)
 - 2 Platform Tunnels
- 8 Cross Passages + 2 Ventilation Adits
- 2 Escalators/Concourse Tunnels

Dr. SAUER & PARTNERS

4 Stub Tunnels

Thanks to Crossrail, Angelos Gakis, Dr Sauer & Partners

Example – Crossrail Farringdon Station

Farringdon Street Station in the lithological complex Lambeth Group (Palaeocene ~)

- Hard beds, water bearing sand channels, faulting
- Interpretation of initial ground investigation (pre 2009) no coherent ground model established
- Zones of 'disturbed ground' (faults) number, character and orientation uncertain
- Water-bearing sand units 'random' distribution and thickness

Risk -Further intrusive investigation was needed but where to locate the boreholes?

UUMC

BGS commissioned to produce a 3D geological model in 2009

Modelled structure 1 m contours – Base Upper Mottled Clay (Beds) ~dip 2° to south

Block with different dip direction

Synthetic cross-section ~ along tunnel line

Model development

© UKRI All rights reserved Thanks to Crossrail, Angelos Gakis, Dr Sauer & Partners

Integrating the data

All intersecting (affected) sections were subsequently updated

Integrating the data

- Face Observation
- Draft Sketch
- Detailed Face Log
- Data Input in the Model.

Farringdon Fault - face

111

- Farringdon Fault
- Smithfield Fault
- St. John Street Fault
- Charterhouse Fault
- Lindsey Street Fault

Lambeth Group

UMB – Upper Mottled Bed LTB – Laminated Bed LSB – Lower Shelly Bed LMB – Lower Mottled Bed Gravels belong to the Upnor Formation (UPR)

© UKRI All rights reserved Gra Thanks to Crossrail, Angelos Gakis, Dr Sauer & Partners

Farringdon Fault

- Farringdon Fault
- Smithfield Fault
- St. John Street Fault
- Charterhouse Fault
- Lindsey Street Fault

Farringdon Fault

- Farringdon Fault
- Smithfield Fault
- St. John Street Fault
- Charterhouse Fault
- Lindsey Street Fault

BGS modelled - Faults and Sand 2009 model

Thanks to Crossrail, Angelos Gakis, Dr Sauer & Partners © UKRI All rights reserved

Final and BGS faults and sand

Thanks to Crossrail, Angelos Gakis, Dr Sauer & Partners

© UKRI All rights reserved

Example 2 Singapore – bedrock

BGS Involvement 2012-14 ICS is the International Commission Stratigraphy

- First project commissioned by the Building and Construction Authority (BCA)
- Desk study; fieldwork; digitisation geological maps; ICS lithostratigraphical framework; national scale 3D geological bedrock and superficial deposit models; training and knowledge exchange.

Published with the permission of the Building and Construction Authority (BCA), Singapore

BGS Study 2016 -18

Objective: Resolve bedrock geology of Singapore Develop new more suitable lithostratigraphical framework and 3D geological models to aid subsurface development in Singapore. New information including: new and new field observations collected by BGS across Singapore.

Main outcomes

Chronostratigraphical divisions				Lithodemic units (rank and name)			
Period	Epoch	Age	4	5	6		
Cretaceous	Upper Cretaceous	Cenomanian		Pulau Sekudu Quartz-monzonite Pluton			
Probably no and no young	older than Upper Tri ger than Lower Creta	assic Epoch ceous Epoch		Singapore Basalt-andesite Dyke-swarm	unnamed dykes		
Triassic	Una an Taisania	Cornian	e	Pulau Ubin Granite Pluton			
	Opper massic	Carinan	Centr	Simpang Granite Pluton			
	Middle Triassic to Upper Triassic	Anisian to Carnian	imah	Dairy Farm Quarry Granite-rhyolite Pluton			
Permian to Triassic	Guadalupian to Middle Triassic	Capitanian to Anisian	ukit T	Gombak Gabbro-granite Pluton			
Permian	Cisuralian	Artinskian	В	Choa Chu Kang Granodiorite–tonalite Pluton			

System /Epoch	stem Proposed Stratigraphy (BGS, 2018)			Depositional Age	Dating GJH0 BGS Sediments BGS Eruptive	Geological Events	Environments	Sedimentary Variability
Neogene la cally mi5- Plaintocane		Bedok Formation		Modern weathering and erosion	Terrestrial Alluvial to Colluvial			
Gretaceous SJ Neogene		Fort Canning Formation				Palaeo-weathering surfaces & related processes (205m processes	?Deep Weathering	Non-deposition
Cretaceous		Bukit Batok Formation		<125 Ma	BH2B5 - 450-160 Ma BH1F11 - 127.0 +/-3 Ma BH2B4 (top)125.0 +/-2 Ma BH2B4 (top)127.0 +/-5 Ma	Isolated, preserved occurrences of originally more widespread fluvio-dettaic system. Localised fault control?	Fluvio-deltaic	
		Tebak Formation		<145 Ma	145 Ma AGLE 65 02 225 +- 1 Ma	Strike-slip, transfernsional acting, resulting in isolated basins	Fluvial	States
7Lower Jurassic		Buona Vista Formation	>195 Ma Yeunged Granke at 155 Ma Sutura + Compression onripieted by Inea <250 Ma BHIB2 - 250-300 Ma Re-werked Conjournantes		Youngest Graniko at 195 Ma Sutura + Compression completed by them BH182 - 250-300 Ma Re-worked Conglomerates	Syn-Tectonic Sedimentation	Alluvial and Fluvial	
ssic	Group	Fort Siloso Formation		Birlin: XA:00 + 3Ma Onset of Thrusting (post-dates at, fashing) Marginal Marine Fluxio-deltaics 215 Me 255/27202 Ha Marginal Marine Marginal Marine Interpretation				
Upl Tria: Sentosa	Sentosa	Labrador Park Formation		<209 Ma	AGLE_65_01 224.0 H/1 Wa 209 Ma	Regional Active Excellen and High Uplift Sedimentation	Fluvial Braided to Meandering	
	~~~~~~	Bukk Resam Glementi Formation Member	Pangurang Formation	~243 Ma +/- 5 Ma	Pangerang Fris 255 +1/4 Ma BH200 - 243 0 +1 - 1 Ma BH2010 243 0 +1 - 2 Ma	Volcanism Clastic Input	Shallow Marine to Terrestrial (Inboard Volcanic Landscape)	
Middle Triassic Jurong Group	Pandan Kent Ridge Member			BH1F13 - 240.3 +/- 1.4 Ma BH1B6 - 240.4 +/- 1.1 Ma BH1A8 - 245.0 +/- 1 Ma	Volcanism Carbonato Production	Shallow Marine Carbonate Lagoon	v v v v v	
	Tuas Member Formation			BH1A9 - 245.0 +/- 1.1 Ma BH1B2 - 245.0 +/- 3 Ma	Deep Marine Sedimentation	Deep Marine to Shallow Marine	Sher	
		Breakwater Formation		~243 Ma +i- 5 Ma	BH1A1 - 243.0 +/- 2 Ma or	Shallowing Upwards	Shallow Marine Carbonate Platform and Marginal Marine	
Permiari		Sajahat Formation						

Published with the permission of the Building and Construction Authority (BCA, Singapore



- **Revised lithostratigraphical framework**
- Substantial revision to the structural • geological framework
- Comprehensive facies analysis of all sedimentary bedrock units
- Revised understanding of the evolution • of the bedrock geology. Better constraint of ages of deposition and deformation



#### Carboniferous Shale Gas: Geology and resource estimation Modelling down to >4 km depth

https://www.ogauthority.co.uk/onshore/onshore-reports-and-data/reports-bowland-shale-gas-study/

Modelling software: GOCAD and Petrel Bowland Shale and Hodder Mudstone formations Data

- Boreholes
- Surface geophysics e.g. 2 and 3D seismic (Landmarks' Seisworks)

Gravity, Bouguer anomalies (geophysics)

3D geological model Top, Base and thickness



#### Resource Carboniferous Shale Gas: Geology and resource estimation

Addition of other data and knowledge (chemistry, gas behaviour etc.) Likely occurrence of gas (Thickness or area)



#### Lower Bowland/Hodder unit

#### Upper Bowland/Hodder unit



#### Resource Carboniferous Shale Gas: Geology and resource estimation Summary map



Figure 44. Summary of areas prospective for gas in the upper and lower parts Bowland-Hodder unit in relation to the urban areas of central Britain.

Contains Ordnance Data @ Crown Copyright and database rights 2019 . Ordnance Survey Licence no. 100021290

### Physical property modelling – stochastic voxels

Voxel: a regular volumes (boxes) relative to other volumes - used in visualisation and analysis of values. (Used in oil and gas reservoir modelling) BGS -

Based on upscaling observation (lithology, parameter values)

Assessment of uncertainty – multiple realisations

- Probability of a limited set of values in any voxel
- Constraints on simulations
- Example probability of sand occurring, bulk density is <2 Mg/m³, hydraulic conductivity based on particle size





### Physical property modelling – stochastic voxels Flowchart of property modelling





### Physical property modelling – stochastic voxels Example – bulk density



# GeoVisionary examples

- Data Integration
- CAD Models
- Lidar point clouds
- 3D Geological Model data





### Model delivery

- Papers and reports,
   Model
- GIS (.shp, .grid), 3Dpdf
- Model Viewers

   (Lithoframe viewer, synthetic cross-sections and boreholes),
- CAD,
- 3D software
- Bespoke thematic outputs to address specific issues provided as required
- Web enabled via extranet delivery
   © UKRI All rights reserved



### **CAD** model integration

○日秋×・1をおうちはいだきや・2回ではほそんだいがらっ

**3DVS can bring together** data from engineers and geoscientists, enabling better cooperation and understanding





© UKRI All rights reserved

### **Future Delivery Systems**

Web Delivery (e.g. <u>Geology of Britain Viewer 3D</u>) or bespoke <u>web delivery systems</u> Plus – <u>commercial delivery</u>

Cloud served data

**Augmented Reality** 



# Provision of 3D models -Lithoframe viewer etc.

https://www.bgs.ac.uk/services/3dgeology/lithoframeSamples.html

#### LithoFrame samples

Sample LithoFrame models are available as free downloads in various formats.

#### Model data downloads

The sample downloads are also available to view in the virtual borehole and section viewer.

Visualisation of the 3D PDFs is recommended on PCs and laptops using a Windows operating system. The 3D PDFs use Flash Technology so is unlikely to work or will suffer poor performance on devices using IOS and Android operating systems.

Şamples	3D pdf	LithoFrame Viewer	Other formats	Information
National Bedrock Fence Diagram (UK3D)	UK3D England North 3D pdf UK3D England South 3D pdf UK3D Northern Ireland 3D pdf UK3D Scotland 3D pdf UK3D Wales 3D pdf	UK3D LithoFrame model	UK3D individual sections (KMZ format)	Report describing the National Bedrock Fence Diagram
Thurrock	Thurrock 3D pdf	Thurrock LithoFrame model	<ul> <li>ASCII grids [Download]</li> <li>ESRI shells [Download]</li> <li>Gocad surfaces [Download]</li> </ul>	Thurrock model information
York	York 3D pdf	York LithoFrame model	Not available	York model information

Uncertainty/confidence (explicit models) What is uncertainty/confidence?

"A parameter associated with the result of a measurement, that characterises the dispersion of the values that could reasonably be attributed to the object being measured"

BGS Three primary methods of investigation

- A structured approach to the measurement of uncertainty in 3D geological models
- Statistical and Multi-component uncertainty in 3D models <u>http://nora.nerc.ac.uk/id/eprint/503978/</u> <u>http://nora.nerc.ac.uk/id/eprint/503860/</u>
- Expert elicitation



### Uncertainty/confidence (explicit models)

#### http://nora.nerc.ac.uk/id/eprint/6959/

- Identify all sources of uncertainty (Fish Diagram)
- Arrive at a definition of 'Fit for Purpose' for the project
- Identify qualitative and quantitative uncertainties
- Measure/model uncertainty from each branch of the Fish diagram (bootstrap, fuzzy logic)
- Combine the inputs to arrive at an overall uncertainty
- Decide how to represent the final uncertainty

https://www.bgs.ac.uk/research/environmentalModelling/ParametrisationAndGeostatistics.htm http://nora.nerc.ac.uk/id/eprint/509482/ http://nora.nerc.ac.uk/id/eprint/503860/ spallagliegtion.org/content/specpubgsl/436/1/1.full.pdf

### Understanding uncertainty -



### Uncertainty confidence Qualification of terms

10	DATA	THEORY	METHOD	AUDITABILITY	CALIBRATION	VALIDATION	OBJECTIVITY	EXPERT
VERY HIGH	Measured or field data collected specifically for making this interpretation.	Vlell- established and highly accepted g∋ological theories were used in the	Field survey or direct measure of data following appropriate <i>Best Practice</i> guide-lines.	Well documented, clear link between raw geological data and interpretation.	Interpretation correlates with all available raw geological data.	This interpretation is the only geologically sound interpretation of available	No discernible bias to preconceived geological understanding or interpretative	Interpreter is familiar with theories/metho ds and has the local geological knowledge required to
HIGH	Historical, or field measured data collected as part of the general survey process, or for another	Accepted theories with a high peer consensus.	Majority field survey or direct measure with iterative checking. Some additions from desk	Poorly documented but traceable link from interpretation to raw geological	Interpretation correlates with the majority of available geological data - anomalies can be	Interpretation is the strongest solution to available data but a few, less likely interpretations	Influence of understanding of the regional geology but not at the expense of evidence from data.	Interpreter is familiar with theories, methods required but unfamiliar with aspects of the
MOD.	Computed or derived/calcula ted geological data including statistically generated values.	Accepted theory but poorly tested, lacking in examples or with a low peer consensus.	Desk compilation from derived/ historical data with field- checking, or from	Raw geological data traceable in part.	Interpretation correlates with most available data but some small, local, unexplained anomalies	Interpretation is valid but a few, equally valid interpretations would fit the data just as well.	Moderate bias towards specific style of interpretation in data-poor areas but data evidence not	Interpreter is unfamiliar with aspects of the theory or method required to make the
LOW	'Standard' values or approximated numbers.	Preliminary theory, poorly tested and un- validated.	Desk compilation from historical, inappropriate or insufficient data with no field check.	Weak, unclear or ambiguous link to the raw geological data. Original data on which the	Interpretation correlates with most data but geologically significant and/or large- scale,	A significant number of plausible interpretations would fit the data.	Strong bias towards specific style of interpretation even the face of refuting geological	Interpreter is significantly lacking in understanding of theory or methods required to
VERY LOW	Ball-park approximation.	Crude speculation.	No discernable rigour, best guess interpretation.	No link to the raw geological data, no recorded input to interpretation.	Correlation with the minority of data or no apparent correlation.	The interpretation is speculative.	Obvious bias toward specific interpretation and disregard of significant geological data.	Interpreter has little or no knowledge of the theories or method required to make the



٥I

### Estimation of information quality





### **Uncertainty Summary Documentation**

Type of Uncertainty				Score	Explanation	4144144411
Main Branch	Small branch	Twig	Leaf	$\mathcal{M}$	+CP4+G+G+G4AAAAAAAA	
Expert Input				9	For even the simplest models, expert input is essential	Poor (0-2.5) Medium Poor (1.5-4.5) Medium Good (4-7.5) Good (7-10)
	Interpretation			5	Uncertainty will arise from ones 'own' style of interpretation of all data available which will be different from an interpretation of the same data by some one else. The differences will depend upon other factors e.g. knowledge, timetable. For two persons of similar backgound one would generally get interpretations that are broadly the same but with minor differences	Low Confidence (0-2.5) Acceptable Confidence (1.5-4.5) Confident (4-7.5) High Confidence (7-10)
	Goal uncertainty			5.5	It is important to understand what the model is being made for. If you do not know what is the model being made for it will be unfocussed and not meet the requirements for that work. It is a big influence on both the interpretation and the model	Undefined (0-6.5) Defined (4.5-10)



### Fuzzy Model

Fuzzy logic - Approach to computing base on 'degrees of truth' not true or false.

Used six fuzzy inference systems

30 input functions4 output functions84 rules




## Uncertainty/confidence



## Uncertainty/confidence assessment Expert Elicitation – borehole logs

- Structured questioning of geologists consensus for geological model and uncertainty.
- Geologists create a model and inferring the uncertainty from differences in interpretations

#### Solid Earth (2014) 5, 1189-1203 Solid Earth, 6, 727–745, 2015 www.solid-earth.net/6/727/2015/



One geologist's interpretation of the base of the London Clay Formation (red) with 95% confidence intervals (blue)



### Presenting Uncertainty/Confidence



# Summary

A snap shot of BGS 3D geological models and modelling

- Why a 3D model?
- Data, information and knowledge needed
- Software Explicit & Implicit Modelling
- Metadata and reports
- Examples of models
- Model delivery
- Uncertainty/confidence

Not including: Much of the BGS work!

