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Abstract The upwelling of deep waters in the Southern Ocean is a critical component of the climate
system. The time and zonal mean dynamics of this circulation describe the upwelling of Circumpolar Deep
Water and the downwelling of Antarctic Intermediate Water. The thermodynamic drivers of the circulation
and their seasonal cycle play a potentially key regulatory role. Here an observationally constrained ocean
model and an observation-based seasonal climatology are analyzed from a thermodynamic perspective,
to assess the diabatic processes controlling overturning in the Southern Ocean. This reveals a seasonal
two-stage cold transit in the formation of intermediate water from upwelled deep water. First, relatively
warm and saline deep water is transformed into colder and fresher near-surface winter water via wintertime
mixing. Second, winter water warms to form intermediate water through summertime surface heat
fluxes. The mixing-driven pathway from deep water to winter water follows mixing lines in thermohaline
coordinates indicative of nonlinear processes.

Plain Language Summary Deep, cold and salty water is drawn to the surface ocean around
Antarctica. This is controlled by the combined action of winds blowing over the sea surface and the stirring
by large 100-km eddies. Studying the ocean around Antarctica is notoriously challenging. We therefore have
sparse ocean measurements in this region. This limits our understanding of some of the processes involved
in the circulation of deep water, notably, a stage involving the warming and freshening of deep water to
form intermediate water. Intermediate water plays a key role in drawing excess anthropogenic heat and
carbon dioxide from the sea surface into the interior ocean. Our results show that the conversion of deep to
intermediate water involves a two-stage “cold transit” that takes place over the course of the austral season.
First, during the winter, deep water sits below the very cold and fresh surface water. Ice formation around
Antarctica makes this surface water slightly saltier, decreasing the density difference between the deep and
surface water. This drives a mixing which cools and freshens the deep water while drawing it to the surface.
Second, during summer surface warming and melting sea ice warm and freshen this deep/surface water
mixture forming intermediate water.

1. Introduction

The upwelling, transformation, and downwelling of water masses in the Southern Ocean exerts a profound
influence on the heat, freshwater, and carbon budgets of the world ocean (Iudicone et al., 2011; Purkey &
Johnson, 2010; Rintoul & Naveira-Garabato, 2013; Sabine et al., 2004; Talley, 2013). This residual meridional
overturning circulation (MOC; Marshall & Speer, 2012) is thought to be governed by a balance between
wind-driven upwelling/downwelling, eddy-induced advection and stirring, diapycnal mixing, and air-ice-sea
buoyancy fluxes (Abernathey et al., 2011; Naveira Garabato et al., 2007; Speer et al., 2000; Zika et al., 2009).
The prevailing westerly winds over the Southern Ocean drive an equatorward mass transport near the sur-
face, causing upwelling poleward and downwelling equatorward of the zonal wind stress maximum. From a
dynamical point of view, this tilts isopycnals and sets up the geostrophic eastward flow of the Antarctic Cir-
cumpolar Current. Baroclinic instabilities within the Antarctic Circumpolar Current generate eddies that act
to shoal isopycnals, balancing the action of the winds (Marshall & Radko, 2003). From a water mass point of
view, transient and stationary eddies compensate for the wind-driven circulation by pushing dense waters
downward and northward and lifting light waters upward and poleward. Ultimately, the only water that flows
northward is that which is diabatically transformed from dense water by air-sea buoyancy fluxes and diapycnal
mixing (Pellichero et al., 2018; Speer et al., 2000).
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The diabatic processes that convert dense waters to lighter waters, and the seasonal cycle in that conversion,
are poorly understood. This not only hinders accurate estimates of the Southern Ocean MOC but also limits our
ability to predict its fate in a changing climate (Downes et al., 2009; Fyfe & Saenko, 2006; Morrison et al., 2015;
Thomas et al., 2015). Most conceptual views of the Southern Ocean MOC use time mean values for air-ice-sea
buoyancy fluxes to explain the net transformation of Upper and Lower Circumpolar Deep Water (hereinafter
“deep water”) into either Antarctic Bottom Water (hereinafter “bottom water”) or Antarctic Intermediate Water
(hereinafter “intermediate water”; Cerovečki et al., 2013; Czaja & Marshall, 2015, Karsten & Marshall, 2002).

Intermediate water formation and subduction form the downwelling limb of the Southern Ocean MOC’s
upper cell (Speer et al., 2000). A net warming and freshening of upwelled deep water into the less dense inter-
mediate water typically occurs in the vicinity of the Polar Front (Pellichero et al., 2018). This transformation is
predominantly driven by a net freshening associated with sea ice export and melt (Abernathey et al., 2016;
Pellichero et al., 2018). Further, a recent analysis of Lagrangian upwelling pathways in the Southern Ocean
indicates that this upwelling deep water may initially become colder and fresher upon reaching the surface
mixed layer before forming intermediate water (Tamsitt et al., 2018). This hints at the importance of con-
sidering seasonally varying air-ice-sea buoyancy fluxes in setting the strength of the Southern Ocean MOC
(Evans et al., 2014).

Using both models and observations, we investigate the seasonal variation in the transformations of water
masses in the Southern Ocean, to assess the role of air-ice-sea fluxes and diapycnal mixing in setting the sea-
sonal formation and destruction of deep water, intermediate water, and Antarctic winter water (hereinafter
“winter water”) which forms the winter mixed layer south of the Polar Front. We show that the seasonal
evolution of the air-ice-sea buoyancy fluxes plays a critical role in the wintertime upwelling of deep water
through mixing with overlying winter water. Summertime warming and freshening forms intermediate water
through heat exchange with the atmosphere and sea ice melt. Close inspection of the mixing-driven pathway
from deep water to winter water in thermohaline coordinates suggests a strong association with nonlinear
mixing processes.

In the ocean, nonlinear mixing processes are represented by nonlinear terms in the equation of state (EOS)
of seawater (McDougall, 1987). This nonlinear dependence of density on temperature and salinity leads to
curious effects such as cabbeling, where two water parcels can be mixed to form water that is denser than
either parcel. Thermobaricity is another nonlinear processes that relates to the effect of pressure on the ther-
mal expansion of water, whereby large pressure changes induce larger density changes in colder water. Such
nonlinear effects are generally thought to be obscure despite early studies that indicated their importance for
the overturning circulation in the ocean (Fofonoff, 1957; Foster & Carmack, 1976). Fofonoff (1957), for exam-
ple, analyzed profiles of temperature and salinity in the Weddell Sea and suggested that cabbeling was a
rate-limiting process in the formation of bottom water and the lower limb of the Southern Ocean MOC. Recent
studies have since highlighted the importance of EOS nonlinearities in setting the formation of intermedi-
ate water (Groeskamp et al., 2016; Nycander et al., 2015). Here we suggest that cabbeling may indeed be of
critical importance to the strength of the Southern Ocean overturning but in relation to the upwelling and
transformation of deep waters into intermediate waters.

2. Methodology

The aim of this analysis is to understand the role of temperature (Θ) and salinity (S) transformations in Southern
Ocean overturning. Walin (1982) introduced a framework to relate the intensity of surface heat fluxes and
mixing to transformation rates. He compared volumes of water in Θ classes to the diasurface transformations
of water between Θ classes affected by air-sea heat fluxes and mixing. Here we extend this analysis to two
tracer dimensions, Θ and S (Döös et al., 2012; Groeskamp et al., 2014; Zika et al., 2012), and to a time-varying
ocean (Evans et al., 2014).

Consider the total volume of water per unit temperature and salinity for a particular geographical region
(V ; Worthington, 1981). Since seawater is, to a good approximation, incompressible, V can only increase or
decrease in this region if water enters from the boundaries via horizontal advection or air-sea exchange (M,
the volume transport per unit temperature and salinity) or through transformation of water within the region
across isotherms (GΘ, the transformation across an isotherm per unit salinity) or across isohalines (GS, the
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transformation across an isohaline per unit temperature) such that

dV
dt

= M −
𝜕GΘ

𝜕Θ
−

𝜕GS

𝜕S
. (1)

Above, the G terms can be thought of as analogous to velocity in (Θ, S) coordinates, and so (1) can be seen as
a continuity equation in (Θ, S) space. If a sufficiently long time integration is considered such that the system
is steady (i.e., dV∕dt = 0, where the overbar is a time mean) and if M is small (i.e., for the global ocean or
when water masses below particular Θ and S values are never in contact with the boundaries) a thermohaline
streamfunction (Ψ; Döös et al., 2012; Groeskamp et al., 2014; Zika et al., 2012) can be defined at Θ = Θ∗ and
S = S∗ such that

Ψ(Θ∗, S∗) = −∫
S∗

min(S)
GΘ(Θ∗, S)dS ≈ ∫

Θ∗

min(Θ)
GS(Θ, S∗)dΘ. (2)

As discussed by Hieronymus et al. (2014), both transformation terms (GΘ and GS), and hence the streamfunc-
tion, can be related purely to diabatic convergences of heat and salt. Following this, Evans et al. (2014) and
Groeskamp et al. (2017) were able to use the seasonal cycle of V and observation-based estimates of air-sea
fluxes to estimate both G terms via an inverse calculation.

Here we focus on understanding the mean circulation of Southern Ocean water masses in (Θ, S) coordi-
nates (Ψ), and how this circulation emerges from the seasonal cycle of water mass formation and destruction
described by (1).

3. Data Sources

To determine V , we use an observation-based seasonal climatology and an ocean state estimate. The sea-
sonal climatology we use is the CSIRO (Commonwealth Scientific and Industrial Research Organisation) Atlas
of Regional Seas (CARS) 2009 (Ridgway et al., 2002), accessed at www.cmar.csiro.au/cars. CARS is a global
atlas of seasonal water mass properties with a horizontal resolution of 1/2∘ that extends to 75∘S, derived
from all available subsurface data. Using CARS, year-round seasonal-mean estimates of Conservative Temper-
ature and Absolute Salinity (IOC et al., 2010) are calculated from a mean field and the semiannual and annual
components of the seasonal cycle, extending from the surface to 1,000 m.

The state estimate used here is the Estimating the Circulation and Climate of the Ocean version 4 (ECCOv4;
Forget & Ponte, 2015). ECCOv4 uses an adjoint model to find the best fit between the state estimate and
any available observational data by adjusting the initial conditions of the model. Here we use monthly fields
(1992–2012) for potential temperature, practical salinity, air-sea and ice-sea fluxes, and 3-D velocity (includ-
ing parameterized subgrid eddy advection). We use ECCOv4 to compute V and the transformation rates
due to air-ice-sea fluxes and mixing that combine to give G in equation (2). These data are accessed via
https://ecco.jpl.nasa.gov/. Both Conservative Temperature (CARS) and potential temperature (ECCOv4) will be
referred to byΘ, while Absolute Salinity (CARS) will be referred to by SA and practical salinity (ECCOv4) by S. To
calculate density from Conservative Temperature and Absolute Salinity, we use TEOS-10, while we use EOS-80
for density calculations involving potential temperature and practical salinity. Although ECCOv4 and CARS
use some of the same observational data in producing the final output of each product, the implementation
of these observational data is very different. Any features that are consistent between ECCOv4 and CARS are
more likely to be independent of the methods specific to each product.

Transformation rates in ECCOv4 are computed using both the velocity down the tracer gradient and the rate
of movement of the tracer isosurface (Groeskamp et al., 2014). The 3-D velocity includes contributions from
both the Eulerian velocity and the eddy velocity, which results from parameterized subgrid scale physics. It
is the sum of these velocities that advects Θ and S. The contribution of air-sea and ice-sea fluxes to these
transformations is computed following Evans et al. (2014). We do not account for the effects of shortwave
radiation depth penetration, which has little effect on the derived transformations in the Southern Ocean
(Groeskamp & Iudicone, 2018). The mixing component is inferred as the residual of the total transformation
and air-ice-sea flux-driven transformation. Hence, this includes potential contributions from both explicit mix-
ing and implicit mixing linked to discretization and the advection scheme of the ocean model underpinning
ECCOv4 (MITgcm).
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Figure 1. (a) Global estimate of the thermohaline streamfunction (Ψ) from ECCOv4. Black contours show density
anomaly referenced to 0 dbar (𝜎0). The dashed box highlights the area shown in panel (b). In both (a) and (b), the
dashed black lines showing the isotherm at 0.5 ∘C and the isopycnal at 𝜎0 = 27.4 kg/m3 approximately separate the
water masses considered here: deep water (Θ> 0.5∘C, 𝜎0 > 27.4 kg/m3), winter water (Θ < 0.5∘C) and intermediate
water (Θ> 0.5∘C, 𝜎0 < 27.4 kg/m3). (c) Transformation rate across the 0.5 ∘C isotherm for the global ocean and for each
of the Northern and Southern Hemispheres.

4. A Southern Ocean “Cold Transit” of the Thermohaline Circulation

In this section, we describe the global thermohaline streamfunction and its variability in ECCOv4 and demon-
strate the dominance of Southern Ocean processes in the cold and fresh corner of the (Θ, S) diagram. The
global estimate ofΨ from ECCOv4 confirms the existence of two minor anticlockwise cells, one at the warmest
temperatures and another at the coldest temperatures (red contours; Figure 1a), and of one major clockwise
cell spanning the majority of the temperatures observed in the world ocean (blue contours; Figure 1a).

In the clockwise cell, approximately 20 Sv (1 Sv = 106m3/s) of water undergo the following sequence of trans-
formations: (a) relatively cool and fresh water is warmed; (b) warm, fresh water is salinified; (c) warm, saline
water is cooled to form dense water (the densest waters are in the cold-saline corner of the diagram, with the
dashed contour showing the 27.4 kg/m3 isopycnal); and (d) cold, saline water is freshened. Zika et al. (2012)
and Döös et al. (2012) found that this cell was consistent with descriptions of the “global conveyor” or global
thermohaline circulation, with densification and sinking occurring in the North Atlantic, upwelling and fresh-
ening occurring in the Southern Ocean, and warming and salinification along broad return routes via the
surface of all the world’s ocean basins.

These data enable us to corroborate the dominance of the Southern Ocean in the freshening route within
an observationally constrained model and to assess the processes underpinning these transformations. Of
interest here are the coldest and freshest water masses in the world ocean and the Southern Ocean’s role in
their modification. Figure 1b showsΨ in the area of thermohaline space occupied by these water masses, with
three distinct water types highlighted: deep water (Θ> 0.5∘C and 𝜎0 > 27.4 kg/m3); winter water (Θ ≤ 0.5∘C);
and intermediate water (Θ> 0.5∘C, Θ < 3∘C, and 𝜎0 < 27.4 kg/m3). This shows that deep water is converted
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to intermediate water through winter water. The freshening branch involves an approximate ratio of 0.4 g/kg
of freshening for every 2 ∘C of cooling. The warming branch involves very little freshening.

To provide a simple quantification of the Southern Ocean’s prevalence in shaping Ψ at low temperatures, we
compare contributions to the transformation rate across the 0.5 ∘C isotherm (Ψ|Θ=0.5∘C) from the Southern
and Northern Hemispheres separately (Figure 1c). We find that 12.7 Sv crosses the 0.5∘C isotherm from cold
to warm temperatures at waters fresher than 34.1 g/kg (arrow 2 in Figure 1b). Later we show that this trans-
formation is set by air-ice-sea buoyancy fluxes. Of this transformation, 11.4 Sv (∼ 90%) occurs in the Southern
Hemisphere. At higher salinities, approximately 21 Sv crosses the 0.5∘C isotherm from warm to cold tempera-
tures (arrow 1 in Figure 1b). As discussed in section 5 this transformation is set by subsurface mixing. This is the
sum of a 26 Sv transformation from warm to cold in the Southern Hemisphere, balanced by 10 Sv from cold
to warm elsewhere. Computing a Southern Hemisphere-only streamfunction for cold, fresh waters, confirms
the dominance of Southern Hemisphere processes in this part of the global thermohaline circulation (Figure
S1 and the supporting information). In summary, ECCOv4 shows a prominence of a cold transit (below 0.5 ∘C)
in the global thermohaline circulation. Via this cold transit, saline deep water is transformed into fresh inter-
mediate water, through the cold and fresh winter water. These transformations take place almost exclusively
in the Southern Ocean.

5. Seasonal Cycle of Water Mass Transformations

Having shown that the transformation of saline deep water into fresh intermediate water occurs via a Southern
Ocean cold transit of the thermohaline circulation, in this section we demonstrate that this cold transit is
linked to the seasonal cycle of air-ice-sea buoyancy fluxes and subsurface mixing. Pronounced seasonality
occurs in the bulk volumes of winter water, intermediate water, and deep water, in both CARS (Figure 2b) and
ECCOv4 (Figure 2a). Winter water experiences the largest variation, with maximum volume toward the end of
the austral winter in October, and minimum volume during the summer in March. Intermediate water volume
reaches a maximum during the summer in February and a minimum in August. Deep water volume is highest
during June and July and attains a minimum in October—suggesting a relatively rapid depletion of deep
water between July and October (4 months), with a gradual recharge between October and June (8 months).

These bulk volume changes can be related to seasonal variations in the distribution of water in (Θ, S) space
(Figures 2c–2f; here we show ECCOv4 only, but CARS exhibits very similar structures: see Figure S2). The volu-
metric distribution in (Θ, S) space forms a dominant ridge of high volume that begins with intermediate water
(I; Figure 2), at the warmest and freshest Θ and S shown in Figures 2c–2f. This ridge then bends toward the
higher salinities characteristic of deep water (II; Figure 2) and finally back toward the lower Θ and S associated
with bottom water (III; Figure 2). Also evident are two minor ridges of elevated volume that connect winter
water to deep water, and winter water to intermediate water (marked by red lines in Figure 2c). During the
transition from summer (December; Figures 2d and 2f) to winter (August; Figures 2c and 2e), there is a redis-
tribution of volume between intermediate water and winter water, indicative of cooling and the formation of
the winter mixed layer. The coldest of this water further shifts to a higher salinity, close to that of the ridge con-
necting winter water to deep water, through brine rejection linked to sea ice formation. During the transition
from winter to summer, warming and freshening redistributes volume from winter water into intermediate
water. The seasonal variations of water mass volume in (Θ, S) space are also shown in Movie S1 and Figure S3.

The respective roles of air-ice-sea buoyancy fluxes and subsurface mixing in the transformation of water
between different (Θ, S) classes can be understood by comparing the vector fields of the diasurface trans-
formation due to air-ice-sea buoyancy fluxes and the diasurface transformation due to subsurface mixing
(Evans et al., 2014, 2017). Wintertime surface cooling drives the negative diathermal transformation convert-
ing intermediate water into winter water (Figure 2c). Near Θ = −1.8 ∘C and at S>34, a positive diahaline
transformation driven by sea ice formation and brine rejection forms a salty type of winter water, with a max-
imum S of ∼34.4. In addition, subsurface mixing induces a negative transformation across isotherms and
isohalines that brings about a cooling and freshening of the water along the ridge of high volume connect-
ing winter water to deep water (Figure 2e). This corresponds to arrow 1 in Figure 1, the transformation of
deep water to winter water. This mixing between winter water and the underlying deep water coincides with
the seasonal reduction in the bulk volume anomaly of deep water (Figures 2a and 2b) and occurs when the
newly formed winter water reaches a sufficiently high salinity and density to spur mixing between winter
and deep water. The magnitude of the wintertime mixing-driven transformation from deep water to winter
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Figure 2. Time series of volume anomaly in (a) ECCOv4 and (b) CARS, for winter water (blue), intermediate water
(yellow), and deep water (orange). (c, d) Monthly mean (1992–2012) of log10 volume in (Θ, S) classes (in m3/∘C/(g/kg))
for August and December, respectively, from ECCOv4 in the Southern Hemisphere. Black contours show density anomaly
referenced to 0 dbar (𝜎0), and the thick dashed contour indicates 𝜎0 = 27.4 kg/m3. Black arrows represent vectors of the
diasurface transformation due to air-ice-sea buoyancy fluxes averaged over June/July and November, respectively (units:
Sv/∘C/psu). (e, f ) As in (c, d), but black arrows represent vectors of the diasurface transformation due to mixing inferred
from the residual volume change in ECCOv4. The red lines indicate the regions of elevated volume connecting deep
water to winter water and intermediate water to winter water. I = intermediate water, II = deep water, III = bottom water.

water is equivalent to the total transformation responsible for the formation of the winter mixed layer from
surface water masses. Winter water is transformed into intermediate water during spring and summer, as a
result of atmospheric warming (a positive diathermal transformation) and freshening linked to sea ice melting
(a negative diahaline transformation; Figure 2d). These process are also shown in Movie S1.

The geographical location of this water mass transformation is shown by displaying the location of mixed layer
(Θ, S) classes in ECCOv4 (Figure S4 and Movie S2). The wintertime mixing-driven transformations between
winter water and deep water typically occur in the Weddell Sea and in the Atlantic sector of the Southern
Ocean. This is evident in the warming and salinification of the mixed layer during the winter, which is typically
shallower than 200 m (Pellichero et al., 2017).

Our analysis of the seasonal cycle of water mass transformations is shown schematically in Figure 3 and can be
summarized as follows: (i) in the autumn and winter, intermediate water is cooled toward the freezing point
to form winter water, which is then salinified by brine rejection; (ii) during winter, deep water is transformed
into winter water by mixing with the coldest winter water; and (iii) in the spring and summer, winter water is
warmed to form intermediate water. In terms of the mean circulation in (Θ, S) coordinates described in the
previous section, we can now conclude that the circulation’s cooling and freshening branch (arrow 1, Figure 1)

EVANS ET AL. 6
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Figure 3. Schematic representation of the diabatic conversion of deep water into intermediate water through winter
water, over the course of a season in the Southern Ocean. Each water mass is represented by the colored blobs. The top
row presents the changes in geographical coordinates, and the bottom shows the same changes in temperature and
salinity coordinates. The large opaque arrows show the water mass transformations that occur during the respective
seasons.

is underpinned by wintertime mixing (ii) and that the warming/freshening branch (arrow 2 in Figure 1) is the
residual of wintertime atmospheric cooling (i) and summertime warming (iii).

These results are consistent with existing analyses of Southern Ocean water masses. For example, the cooling
and freshening of deep water during the wintertime portion of the cold transit is supported by an analysis
of the Lagrangian upwelling pathways of deep water by Tamsitt et al. (2018). Further, consistent with the
summertime portion of the cold transit, Abernathey et al. (2016), Groeskamp et al. (2016), and Pellichero et al.
(2018) describe the role of sea ice melt and the resultant freshwater fluxes in the formation of intermediate
water during the summer. However, through their use of a 1-D isopycnal framework rather than the 2-D (Θ, S)
framework adopted here, these analyses mask the more subtle seasonal water mass transformations between
(Θ, S) classes that we highlight. Our results therefore provide a clearer definition of the diabatic processes that
link the upwelling and downwelling limbs of the Southern Ocean overturning.

6. The Role of Nonlinear Mixing Processes in the Southern Ocean Cold Transit

Subsurface mixing drives a wintertime transformation of relatively warm and saline deep water into cold and
fresh winter water. Close inspection of the volumetric water mass distribution (Figures 2c–2f ) reveals that
the ridges of water mass volume (red lines Figure 2c) extend from the deep water to the dominant mode of
near-freezing winter water (between 34.3 and 34.4 g/kg, and −1.8 and −1.5 ∘C). Examining the mixing-driven
transformation vectors in ECCOv4, we find that the wintertime mixing-driven cooling of deep water to winter
water is aligned with these ridges.
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An important aspect of this pathway from deep water to winter water (arrow 1 in Figure 1b) is that the ridge in
the volumetric distribution and the transformation vectors are not as “steep” as density contours. This implies
that the dense water becomes lighter (rather than denser) upon mixing. It therefore discourages sugges-
tions that the deep water is transformed into winter water through gravitational instability or convection. This
would imply a densification of both winter water and deep water. Although we cannot definitively rule out
a mechanical driver (such as breaking internal waves, shear instabilities or entrainment into the mixed layer
via wind and wave driven turbulence), we suggest that this transformation may be consistent with a mixing
mechanism related to nonlinearities in the EOS of seawater.

Although they are typically considered obscure, recent work has shown that EOS nonlinearities have impor-
tant consequences for global ocean circulation and climate. Nycander et al. (2015) and Groeskamp et al.
(2016) show that the isopycnal mixing of cold/fresh surface water with deeper warmer/saltier water results
in a cabbeling-induced densification that forms intermediate water density classes. In addition to its role in
the lateral mixing of waters with the same locally referenced potential density, the role of cabbeling in ver-
tical stability has also been long recognized. Fofonoff (1957) and Foster (1972) speculated that, for example,
cabbeling may play a role in bottom water formation. They point out that a small amount of mechanically
driven wintertime mixing between cold/fresh winter water and warm/salty deep water can produce a mixture
that is denser than the deeper of the two water masses, initiating a cabbeling instability that drives enhanced
mixing between winter water and deep water. Foster and Carmack (1976) further suggest that thermobaricity
has a minimal impact on the mixing between deep water and winter water. Su et al. (2016) also highlight the
role of EOS nonlinearities in driving vertical mixing when cold/fresh water overlies warm/salty water, empha-
sizing in particular the importance of cabbeling. Here we conjecture that the nonlinear mixing that upwells
deep water via the cold transit may also be a consequence of cabbeling. The nonlinear mixing occurs when
cold/fresh winter water overlies warm/salty deep water, through a depth range spanning less that 200 m. It
is possible therefore that this mixing is the result of a similar cabbeling instability to that described by Foster
(1972) and Foster and Carmack (1976).

7. Summary and Conclusions

Conventional theory of Southern Ocean overturning is based on the balance between the competing actions
of winds, which tilt isopycnal surfaces, and mesoscale eddies, which flatten isopycnal surfaces. The resulting
residual overturning circulation entails upwelling of deep water south of the Polar Front and downwelling
of intermediate water and overlying Subantarctic Mode Water north of the Polar Front (Marshall & Radko,
2003). The diabatic conversion of deep water into intermediate water (or bottom water near the Antarctic
margins) is thought to depend on the location in which deep water upwells into the upper-ocean mixed layer,
relative to the local sign of the time mean air-ice-sea buoyancy flux (Marshall & Speer, 2012; Speer et al., 2000).
However, recent studies highlight the role of seasonally varying air-ice-sea buoyancy fluxes in intermediate
water formation (Abernathey et al., 2016; Groeskamp et al., 2016; Pellichero et al., 2018).

By projecting the Southern Ocean into (Θ, S) space, we have shown that the diabatic conversion of deep
water into intermediate water relies on seasonal variations of surface buoyancy forcing and subsurface mix-
ing. This presents an alternative pathway for the diabatic conversion of deep water via a cold transit in (Θ, S)
space, in which deep water is first cooled and freshened during the winter, as it mixes with overlying win-
ter water. Summertime warming and freshening of this winter water/deep water mixture subsequently forms
intermediate water. These diabatic transformations occur predominantly in the Weddell Sea and the Atlantic
sector of the Southern Ocean. An analysis of the Lagrangian upwelling pathways of deep water by Tamsitt
et al. (2018) supports the notion that deep water becomes cooler and fresher as it is entrained into the winter
mixed layer. In our analysis, the use of a (Θ, S) framework in combination with air-ice-sea buoyancy flux data
reveals important seasonal variations that would otherwise be lost using an isopycnal framework, where the
variability of water masses with similar densities but a differing (Θ, S) would be collapsed into one density
class. The cold transit may therefore be masked by the use of isopycnal frameworks in previous analyses of
these water masses.

The transformation of dense deep water into lighter upper-ocean mixed layer water by subsurface mixing
apparently occurs when the salinity of winter water is increased as brine is rejected by newly forming sea ice.
We propose that this critical salinity occurs when the overlying winter water and underlying deep water can
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be mixed to form a water mass that is denser than the deep water or more specifically when the water column
is unstable to cabbeling.

In conclusion, an increasing body of evidence suggests that seasonal variations in air-ice-sea buoyancy fluxes
and their impact on subsurface mixing play a key role in the diabatic closure of the MOC in the Southern
Ocean. Our analysis indicates that the transformation of deep waters into intermediate waters occurs via a
transit through cold winter water and that this cold transit is mediated by nonlinear mixing processes. These
findings advance our ability to estimate the drivers of Southern Ocean overturning and therefore its response
to forcing changes in past and future climates.
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