
Evaluation of Mumiyo Deposits From East Antarctica as
Archives for the Late Quaternary Environmental and
Climatic History
S. Berg1 , M. Melles1, W.-D. Hermichen2, E. L. McClymont3 , M. J. Bentley3 ,
D. A. Hodgson3,4, and G. Kuhn2

1Institute of Geology and Mineralogy, University of Cologne, Cologne, Germany, 2Alfred-Wegener-Institut Helmholtz-
Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany, 3Department of Geography, Durham University,
Durham, UK, 4British Antarctic Survey, Cambridge, UK

Abstract Mumiyo deposits form in the vicinity of snow petrel (Pagodroma nivea) nesting sites and
consist of fossil stomach oil (mumiyo), guano, and minerogenic material. Here we evaluate mumiyo
deposits from the inland mountain ranges of central Dronning Maud Land as high-resolution archives
for paleoenvironmental reconstructions in Antarctica. Investigation of internal structures and chemical
composition shows that the lamination reflects progressive sedimentation, despite the irregular outer
morphology of the deposits. Detailed radiocarbon analysis demonstrates that stratigraphies are intact:
14C ages become successively younger upwards in the deposits. Fatty acid and n-alcohol composition
was determined on samples from eight mumiyo deposits. Dominance of low molecular weight
compounds (C14 to C18) points to a dietary signal; however, the relatively low proportions of
unsaturated compounds compared to fresh stomach oils indicates some postdepositional degradation.
We found marine diatoms in the mumiyo, which potentially provide a proxy for sea ice conditions in
the foraging habitat of the petrels. Age ranges of the investigated deposits suggest occupation of the
analyzed sites by snow petrels from 17 ka to >58 ka. Changes in deposition rates point to higher
occupation frequency in Petermann Range from 46 to 42 ka compared to the late marine isotope stage 3
and the Last Glacial Maximum.

1. Introduction

Many ice-free terrestrial sites on the Antarctic continent and offshore islands are colonized by snow pet-
rels (Pagodroma nivea) during the breeding season from November to March (Croxall et al., 1995;
Delord et al., 2016; Figure 1). Snow petrels use sheltered rock cavities in bedrock or under moraine
boulders as nesting sites (Einoder et al., 2014). Uniquely for sea birds of the order procellariiformes,
they produce stomach oil, which serves as energy storage during long-distance flights between the hunt-
ing area in the open ocean and the nesting sites and for chick feeding (Warham, 1977). Snow petrels
also eject the oil against intruders to defend the nests (e.g., against predatory skuas and competitors).
Over periods of decades to millennia, this leads to the accumulation of stomach oil, so-called
Antarctic mumiyo, in the vicinity of the nests (e.g., Ainley et al., 2006; Hiller et al., 1988). In the cold
and dry climates on the continent the stomach oil deposits are preserved and thus provide a record of
snow petrel occupation in the past.

Initial radiocarbon (14C) dating of mumiyo deposits proved the datability of the organic material (e.g.,
Hiller et al., 1988). The 14C ages of mumiyo deposits provide age constraints on the timing of deglacia-
tion or inundation of terrestrial sites, since mumiyo deposition at a given time implies subaerial expo-
sure, that is, neither ice or snow coverage nor flooding by lake or ocean (e.g., Kiernan et al., 2002;
Wand & Hermichen, 2005), and thereby can complement exposure dating of glacial erratics and land-
forms in Antarctica (Mackintosh et al., 2011). In currently unglaciated coastal areas of East
Antarctica, like Bunger Hills, Vestfold Hills, and Larsemann Hills, as well as from more inland sites
in the Prince Charles Mountains and Shackleton Range, mumiyo ages indicate a snow petrel coloniza-
tion predominantly during the Holocene, following local deglaciation (e.g., Ainley et al., 2006; Hiller
et al., 1988; Kiernan et al., 2002, 2009; Mackintosh et al., 2011; Verkulich & Hiller, 1994; Figure 1).
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Mumiyo ages of up to 37 thousand years before present (ka) were
found in the mountain ranges of western and central Dronning
Maud Land (DML), indicating snow petrel occupation and of ice-free
sites during the late Pleistocene (Hiller et al., 1988, 1995; Steele &
Hiller, 1997; Thor & Low, 2011; Figure 1).

The spatial and temporal pattern of snow petrel colonization in East
Antarctica also reflects paleoenvironmental changes related to their fora-
ging habitat in the Southern Ocean. The snow petrels depend on produc-
tive foraging grounds within flight distance to the colonies in austral
summers (e.g., Goldsworthy & Thomson, 2000) and feed in the pack ice,
at the northernmost sea ice margin or in polynyas (Ainley et al., 1984;
Ballard et al., 2012; Delord et al., 2016). During glacial periods, like the
Last Glacial Maximum (LGM, 26.5 to 19 ka; Clark et al., 2009), most of
these areas were likely covered by perennial sea ice (Gersonde et al.,
2005). However, coastal polynyas occurred in some areas off East
Antarctica (Smith et al., 2010; Sprenk et al., 2014), which may explain
the occurrence of snow petrel colonies in DML during the LGM (Hiller
et al., 1988; Thatje et al., 2008) and suggests that these regions were impor-
tant refuges for Antarctic biota during glacial periods (Thatje et al., 2008;
Younger et al., 2016). Hence, mumiyo deposits can provide unique infor-
mation on the coastal ocean, which may not be preserved or reflected in
marine sediment records from the respective areas. Furthermore, the
composition of mumiyo may reflect changes in diet over time, a depen-
dency that has repeatedly been shown for ornithogenic deposits from pen-
guin rookeries (e.g., Emslie & Woehler, 2005; Gao et al., 2018). However,
there is only one study so far, in which stable isotope data of organic car-
bon and hydrogen from mumiyo deposits in Bunger Hills were used to
reconstruct Holocene changes in the food web off the East Antarctic coast
(Ainley et al., 2006; Figure 1).

Here we present a multidisciplinary investigation of pre-Holocene mumiyo in Antarctica. The major inten-
tion of our study is to evaluate to what extent the mumiyo deposits can be used as a high-resolution archive
for paleoenvironmental reconstructions in Antarctica. The deposits investigated have thicknesses of up to
45 cm and originate from central DML (Figure 1). Laboratory work comprised (i) studies of the internal
structure to examine the three-dimensional stratigraphy of individual deposits, (ii) detailed radiocarbon
dating to extend the data set of historic snow petrel settlement and determine changes in deposition rates,
(iii) high-resolution X-ray fluorescence (XRF) elemental scans and C, N, and S analyses to characterize the
chemical composition, (iv) analyses of fatty acids (FAs) and n-alcohols to investigate the potential of lipid
biomarkers as an indicator for changes in prey composition, and (v) determination of diatoms in the
mumiyo as a potential proxy for sea ice conditions in the foraging habitat of the petrels.

2. Materials and Methods

The mumiyo samples originate from the Dallmann Mountains, Petermann Range, and Untersee Oasis,
and from Scharffenbergbotnen (Heimefrontfjella; Figure 1). Long-term storage of the samples was at
4 °C. The mumiyo was frozen (�20 °C) immediately prior to subsampling in order to prevent deforma-
tion of the resinous material, which melts at room temperature.

Analytical work was carried out on two sample types, namely, (a) samples from profiles throughout mumiyo
sections (PRM10 and DallSW1830) and (b) samples from the base and from the surface of 12 mumiyo blocks
(Table 1).

From the base and surface samples lipids were separated from clastic particles by extraction with a
Soxhlet apparatus in preextracted cellulose-extraction thimbles with 500-ml DCM:MeOH (9:1) for
24 hr. The resulting total lipid extract (TLE) was saponified and neutral lipids were separated by parti-
tioning the TLE in deionized water (MilliQ) and Dichloromethane (DCM). The n-alcohols (FAlc) were
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Figure 1. Modern distribution of snow petrel breeding colonies (Croxall
et al., 1995; Goldsworthy & Thomson, 2000; Steele & Newton, 1995) and
locations of 14C-dated mumiyo deposits (Hiller et al., 1988; Kiernan et al.,
2002; Kiernan et al., 2009; Mackintosh et al., 2011; Melles et al., 1997; Ryan
et al., 1992; Steele & Hiller, 1997; Thor & Low, 2011; Verkulich & Hiller,
1994; Wand & Hermichen, 2005). SR = Shackleton Range;
PMR = Petermann Range; PCM = Prince Charles Mountains. Stars indicate
locations of marine sediment records, which suggest polynyas during the
Last Glacial Maximum (LGM) and marine isotope stage 3 (MIS3; Smith
et al., 2010; Sprenk et al., 2014; Thatje et al., 2008).
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purified from the neutral lipids by open-column chromatography and acetylated prior to analysis with a
gas chromatograph (Agilent 7890B, Agilent Technologies, USA), employing a flame ionization detector
equipped with a 50-m DB5 MS column (0.2 mm i.d. and 0.33-μm film thickness by Agilent
Technologies, USA). Identification and quantification were done using authentic external standards
(C16 to C24). FAs were separated from the residual TLE by acidification with HCl to pH 1 and
separated by liquid-liquid separation, methylated, and purified by open-column chromatography as
described by Höfle et al. (2013). For identification of positions of double bonds in unsaturated
compounds they were separated from saturated compounds by open-column chromatography with
SiO2 coated with AgNO3 and eluted with ethyl acetate. A split of the unsaturated fraction was
dissolved in Hexane and derivatized with dimethyl-disulfide (DMDS). Identification was achieved by
GC-MS (single quadrupole mass spectrometer HP 5989 coupled with a HP 5890 gas chromatograph,
both Hewlett Packard). Quantification of FA methyl esters (FAMEs) was done by GC-FID (Flame
ionization detector, Agilent 7890B, Agilent Technologies, USA) using authentic external standards
(FAME-mix C8-C24 [CRM18918] and BAME-mix [47080-U] both Sigma Aldrich).

For diatom analysis, residual material insoluble in organic solvents of six samples was treated with HCl
(10%) and hydrogen peroxide (30%) to remove carbonates and organic matter, respectively. Identification
and counting of diatoms were made on permanent slides (Naphrax) with a Zeiss Axio Scope A1 at
1,000X magnification.

The mumiyo profiles became accessible after cutting the deposits vertically with a band saw (diamond
blade). On the profiles, high-resolution line-scan images were recorded and XRF analysis was carried
out with an ITRAX XRF core scanner (Cox Analytical Systems, Sweden). XRF analyses were conducted
with a chromium X-ray tube (settings 30 kV and 55 mA), an exposure time of 20 s, and a resolution of
500 μm. A principal component analysis was applied to the inorganic elemental dataset using the

Table 1
List of Mumiyo Deposits Used in This Study

Sample
name

Max.
thickness
(mm) Expedition Region Coordinates

Altitude
(m a.s.l.)

Altitude above ice
margin (m)

PRM4 250 GeoMaud
1995/1996

Petermann Range 71°220S/
12°350E

1,450 280

PRM6 70 GeoMaud
1995/1996

Petermann Range 71°220S/
12°350E

1,190 320

PRM8 180 GeoMaud
1995/1996

Petermann Range 71°210S/
12°360E

1,420 250

PRM10 180 GeoMaud
1995/1996

Petermann Range 71°220S/
12°350E

1,490 320

WMM3.2 450 GeoMaud
1995/1996

Untersee Oasis 71°220S/
13°190E

1,460 895

WMM7 170 GeoMaud
1995/1996

Untersee Oasis 71°220S/
13°190E

880 320

WMM11 100 GeoMaud
1995/1996

Untersee Oasis 71°200S/
13°220E

1,150 590

WMM14 200 GeoMaud
1995/1996

Untersee Oasis 71°220S/
13°230E

950 300

Dall E-II/1 150 GeoMaud
1995/1996

Dallmann-Berge, E 71°430S/
10°160E

1,730 30

DallSW1830-
2

150 GeoMaud
1995/1996

Dallmann-Berge, SW 71°460S/
10°110E

1,830 130

SB-I/1a 190 ANT-XV/2
1997/1998

Scharffenbergbotnen/
Heimefrontfjella

74°350S/
11°130E

1,350 150

SB-XI/1g 130 ANT-XV/2
1997/1998

Scharffenbergbotnen/
Heimefrontfjella

74°330S/
11°160W

1,295 35

Note. Maximum thicknesses of the deposits and information on the sampling campaign and sample locations are given.
A table with complete metadata is available on PANGAEA (doi:10.1594/PANGAEA.847318).
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PAST3 program (Hammer et al., 2001), in order to relate the element profiles to changes in
composition.

Additional information concerning the chemical composition of the mumiyo profiles was obtained by
analysis of total carbon (C), total nitrogen (N), and total sulfur (S) contents. Measurements were con-
ducted with a vario microcube (Elementar, Germany) on 2-mm-thick subsamples of the profiles. Due
to the sticky consistence of the material the samples could not be homogenized prior to analysis.
Consequently, each sample was measured in four replicates of ~2.5 mg each, and the mean
values ± standard deviations were calculated.

Both the base and surface samples from the mumiyo deposits and samples from the inner parts of one
mumiyo profile were dated by radiocarbon analyses on bulk material, which was treated with dilute
HCl to remove carbonates prior to analysis. Most samples (lab codes starting with COL, Table 2) were
graphitized with an automated graphitization system (AGE, Wacker et al., 2010) and analyzed for 14C
by accelerator mass spectrometry (AMS) at the CologneAMS, Germany (Dewald et al., 2013). Samples
with lab codes starting with AWI (Table 2) were analyzed for 14C at the radiocarbon laboratory of

Table 2
Radiocarbon Ages of Mumiyo Samples

Region Sample ID Depth (mm) Lab code 14C age (years BP) Age (cal years BP)

Petermann Range PRM4-top surface COL3020 40,660 ± 370 42,670–43,980
Petermann Range PRM4-top surface AWI-272 38,000 —

Petermann Range PRM4-A 190–192 COL4532 >58,000 —

Petermann Range PRM8-1 surface (10–15) COL4323 22,000 ± 112 24,840–25,570
Petermann Range PRM8-A 10–12 COL4761 15,735 ± 60 17,620–17,990
Petermann Range PRM8-A 20–22 COL4760 21,940 ± 90 24,760–25,460
Petermann Range PRM8-A 40–42 COL4759 39,420 ± 300 42,000–42,850
Petermann Range PRM8-A 60–62 COL4757 42,230 ± 380 43,855–45,351
Petermann Range PRM8-A 80–82 COL4756 46,470 ± 560 47,548 to >50,000
Petermann Range PRM8-A 100–102 COL4755 52,090 ± 1000 —

Petermann Range PRM8-A 120–122 COL4754 >56,000 —

Petermann Range PRM8-A 140–142 COL4753 >56,000 —

Petermann Range PRM6-A 0–2 COL4521 28,550 ± 150 31,060–31,500
Petermann Range PRM6-1 base COL4321 >58,000 —

Petermann Range PRM10-2 surface (0–10) COL4315 17,650 ± 80 19,685–20,190
Petermann Range PRM10-4 base COL4316 42,860 ± 490 44,270–46,010
Petermann Range PRM10-A 10–12 COL4515 17,160 ± 70 19,160–19,590
Petermann Range PRM10-A 40–42 COL4516 21,950 ± 90 24,790–25,490
Petermann Range PRM10-A 70–72 COL4517 38,530 ± 209 41,505–42,210
Petermann Range PRM10-A 100–102 COL4518 41,460 ± 380 43,200–44,660
Petermann Range PRM10-A 130–132 COL4519 43,330 ± 440 44,730–46,340
Petermann Range PRM10-A 150–152 COL4520 43,870 ± 470 45,106–46,960
Untersee Oasis WMM7-top surface COL3022 21,551 ± 110 24,250–25,021
Untersee Oasis WMM7-top surface AWI-279 21,200 —

Untersee Oasis WMM14-3 base COL4317 45,070 ± 560 45,950–48,550
Untersee Oasis WMM11-2B 10–15 COL4319 30,745 ± 180 33,490–34,120
Untersee Oasis WMM11-2A base COL4318 43,074 ± 490 44,445–46,190
Dallmann Mts. DallSW1830 surface AWI-277 4,900 —

Dallmann Mts. DallSW1830 base AWI-276 18,200 —

Dallmann Mts. Dall E-II/1 base AWI-172 3,440 —

Heimefronfjella SB-XI/1g-A3 base COL4320 5,248 ± 40 4,620–4,840
Heimefronfjella SB-I/1a 0–10 COL3021 1,885 ± 40 650–824
Heimefronfjella SB/1-1a 0–10 AWI-275 1,400 —

Note. Samples labeled with COL were measured by AMS at the CologneAMS and samples labeled AWI were measured
by LSC spectrometry at the Alfred Wegener Institute in Potsdam. Ages were calibrated with Calib 7.10 (Stuiver &
Reimer, 1993) and the calibration data set Marine13.14 (Reimer et al., 2013) with a constant marine reservoir correction
of 1,100 years. Calibrated ages are given as 95% confidence ranges. Samples PRM8-A and PRM10-A are from vertical
cross sections, while basal and surface samples were taken from the exterior of the respective deposits.
AMS = accelerator mass spectrometry.
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the Alfred Wegener Institute in Potsdam, Germany. There, total organic carbon was combusted and the
evolving CO2 was converted to benzene following standard procedures (Polach et al., 1972), and the 14C
activity was measured using a Packard TRI-CARB 2560 TR/XL liquid scintillation spectrometer.

3. Results and Discussion
3.1. Lithology

Due to the formation in front of different nesting cavities and between rocks the 12 mumiyo deposits have
rather individual, irregular shapes (Figures 2a and S1 in the supporting information). They have maximal
thicknesses of 70 to 450 mm (Table 1). At their bases, mumiyo-encrusted feathers and incorporated rock
fragments and sand particles represent the initial stage of their formation. The surfaces of the deposits are
uneven and wrinkled. This could be due to irregular formation, but it could also be an effect of degradation
as a consequence of microbial activity and/or physical weathering initiated by desiccation (Hiller et al.,
1988). In general, siliciclastic mineral grains and rock fragments in mumiyo deposits derive from bedrock
in the surroundings of the nests. Larger clasts incorporated in the deposits likely originate from the weath-
ered cave walls and roofs or indicate dislocation of the whole deposit, followed by further deposition. Grains
of sand and silt size, which were found in varying proportions in the extraction residues of the mumiyo sam-
ples, could as well be redeposited by wind transport and by the birds landing and sitting on top of
the deposits.

Despite the irregular shapes of the whole deposits, the internal structure shows distinct layering and, in
some deposits, even lamination on millimeter to sub-millimeter scale (Figures 2 and 3). The layers are repre-
sented by changes in color, which likely are due to different proportions of stomach oil, mineral grains, and
guano. The variability in the internal structure becomes evident from more detailed descriptions of cross

Figure 2. Mumiyo deposit PRM10 prior to subsampling (a) and after cutting longitudinal profiles, which were used for
lithological and structural descriptions as well as further analyses (b). (c) Close-ups of profiles PRM10-C and PRM10-A
(for location see b) illustrating the three-dimensional structure of the deposit and (d) close-up of the yellowish surface
layers, which likely are a weathering feature.
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sections of the mumiyo deposits PRM10 from Petermann Range and DallSW1830 from Dallmann
Mountains. The descriptions include three-dimensional correlations of visible structural features to study
the extent of layers and to identify possible discontinuities and hiatuses, which have to be considered in
interpreting paleoenvironmental conditions.

PRM10. The mumiyo deposit PRM10 has an inclined surface (Figures 2a and 2b). This results in profiles
of varying thickness in the block cut from the deposit (profile A: 180 mm, B: 180 mm, C: 190 mm, D:
150 mm; Figures 4 and S2). The bottom and backside of the deposit, which were originally attached to
the rock surface, are covered with white salt efflorescence, sand, rock fragments, feathers, and bones.
The mumiyo material is brownish and orange in color, with the exception of the undulated, yellowish
present-day surface (Figure 2d). The surface may reflect a weathering rind, which progressively forms
from the outer margins of the deposit during prolonged exposure and possibly leads to successive degra-
dation and erosion of the mumiyo over time (Figure 2d). In general, the internal structure of PRM10 is
finely laminated (Figures 2b–2d). While the submillimeter scale laminae are discontinuous and often
confine wedges and lenses, some prominent thicker layers are continuous in lateral extent on centi-
meter scale and can be tracked in all four profiles (Figure 2c).

The downcore changes in texture and color correlate between the profiles A to D, allowing subdivision of the
deposit into four stratigraphic units (Figures 4 and S2). In the lower part (unit 4), the layers are almost hor-
izontal and do not resemble the outer shape of the deposit. The orientation of the layers becomes more
inclined in the upper part (Units 3 to 1). Due to the three-dimensional internal structure this effect is less
pronounced in profiles PRM10-C and PRM10-D, which are oriented perpendicular to the inclined surface.
The varying thickness of the units within the deposit likely results from the irregular grounds the deposit
was initially formed on, the irregular paleo-surfaces (similar to the current surface) and the patchy nature
of accumulation.

1

4

3
2

5

6

Dall SW 1830 c) Fig. 5

1 
cm

b)

a) Dall SW1830

c)

3 µm

5 
cm

Figure 3. (a) Mumiyo deposit DallSW1830 after cutting longitudinal profiles, which were used for lithological and
structural descriptions as well as further analyses. Yellow lines highlight structural features, arrows and numbers 1 to 6
indicate position of XRF profile and lithological units and hatched line indicates mumiyo part presented in Figure 5 in
more detail. (b) Close-up of internal structures; note black nodules in the lower part. (c) Scanning electron microscope
image of urate nodules found in the basal layers of PRM10.
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DallSW1830. The mumiyo deposit DallSW1830 (Figure 3) was collected in front of a bouldery moraine
(Wand&Hermichen, 2005). It has a maximum thickness of ~160mm and a wrinkled, grayish, brownish sur-
face. In parts, the deposit is covered bymoltenmaterial, which probably is not an original feature but formed
after sample collection.

Cross sections reveal that DallSW1830 is internally layered (Figure 3a; plate 1 in Wand & Hermichen, 2005).
The surface is part of a layer that crosscuts the internal layering. This may reflect that the deposit was in a
state of degradation and not accumulation when it was sampled and that the surface consequently is a
weathering feature. Alternatively, the surface and the layer below could be a depositional feature, marking
the rather recent onset of deposition after a period of erosion or nondeposition.

Based on the internal structures DallSW1830 was divided into six lithological units (Figure 3a). The variable
thicknesses of the layers indicate wedge-like structures and some of the boundaries between the units likely
reflect discontinuities in deposition. The basal part (unit 6) is of light color and contains interspersed black
nodules of up to 1 cm in diameter (Figures 3b and 5). The contact with the following unit 5 is likely erosive,
since unit 5 contains more siliciclastic grains and reworked mumiyo layers. Units 4 to 2 show layering; how-
ever, structures onmillimeter to submillimeter scale are discontinuous and point to disturbance shortly after
deposition (hence prior to burial by subsequent material), for instance, due to the birds landing on the sur-
face or due to physical processes like desiccation or abrasion (Figures 3b and 5). In unit 1 small-scale

Figure 4. Line-scan images of mumiyo profiles PRM10-A (a) and PRM10-C (b). Arrows indicate units defined in the pro-
file and also mark the position of X-ray fluorescence elemental scans. In profile A, the positions of subsamples for 14C
analysis and the 14C ages are indicated. Results of X-ray fluorescence elemental scans are given as counts per second (cps).
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structure indicates a reworking horizon similar to unit 5, which is in accordance with the large-scale
structure (truncation of unit 2; Figure 3a).

3.2. Elemental Analyses

Analyses of total carbon (C), total nitrogen (N), and total sulfur (S) were conducted on 17 subsamples of pro-
file PRM10-A (Figure 4a). C contents range from 37.6 ± 4.7 to 59.2 ± 2.0 wt% and N contents from 3.9 ± 0.5 to
13.3 ± 1.6 wt%. C contents are lowest in the basal part of the profile and increase upwards, while N contents
show a decreasing trend. This is also reflected by the C/N ratio, which increases from ~5 in unit 4 to ~15 in
the uppermost unit 1 (Figure 4a). Sections with high C and low N contents (high C/N ratio) are likely rich in
stomach oil lipids (triglycerides and wax esters), which do not contain N. High N concentrations, in contrast,
reflect the incorporation of guano, since bird guano contains up to 50% nitrogenous compounds like uric
acid (C5H4N4O3; C/N ratio = 1.1), chitin, proteins, and ammonia (e.g., Haus et al., 2016; Lindeboom,
1984). S contents range from 0.16 ± 0.02 to 0.43 ± 0.05 wt%, with higher values (>0.3 wt%) in units 4 and
3 and low values (<0.3 wt%) in units 2 and 1, and may reflect changes in guano concentration (Roberts
et al., 2017).

Figure 5. Line-scan images of mumiyo profiles DallSW1830-A (a) and DallSW1830-B (b). Arrows indicate units and also
mark the position of X-ray fluorescence elemental scans. In profile A, the positions of subsamples for 14C and CNS analysis
and the 14C ages are indicated. Results of X-ray fluorescence elemental scans are given as counts per second (cps). Red
boxes in (a) indicate CNS values obtained from black nodules (cf. Figure 3b).
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In 11 subsamples of profile DallSW1830-A C contents range from 29.0 ± 2.4 to 48.9 ± 2.0 wt%, N contents
from 3.4 ± 0.5 to 16.3 ± 1.6 wt%, and S contents from 0.16 ± 0.03 to 0.71 ± 0.03 wt% (Figure 5a). C contents
are around 45 wt% throughout the profile, with distinctly lower values occurring in unit 5 only. These low C
contents likely reflect higher proportions of non-carbon-bearing siliciclastic material, which dilutes the car-
bon derived from stomach oil and guano.

XRF elemental scans of Al, Si, P, S, Cl, K, Ca, Ti, and Fe were obtained on profiles PRM10-A to PRM10-D
(Figures 4 and S2) and DallSW1830-A to DallSW1830-C (Figures 5 and S2). In both deposits changes in ele-
ment counts broadly correspond to the units defined in the lithological descriptions. Principal component

Figure 6. Biplot loadings PC1 and PC2 of X-ray fluorescence data for profiles PRM10-A (a) and PRM10-C (b), and
DallSW1830-A (c) and DallSW1830-B (d), along with loadings of the respective elements for PC1 and PC2. Scores of
subsamples of each profile are color coded for lithological units defined in Figure 4 (PRM10) and Figure 5 (DallSW1830).
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analysis of the XRF data indicates correlation of Al, Si, Ti, and Fe that reflect the siliciclastic component,
hence mineral grains like aluminosilicates (Figures 6 and S3). Ti and Fe profiles show distinct peaks
(Figures 4, 5, and S2), which point to intervals of enrichment of both elements, for instance, due to inter-
spersed mineral grains. Higher proportions of siliciclastic matter occur, for example, in unit 5 of
DallSW1830 (Figure 5) and units 4 and 3 in PRM10 (Figure 4).

The organic component is only indirectly reflected in the XRF data, since XRF elemental scanning does not
detect light elements like C and N, which are the main constituents of the mumiyo deposits. In deposit
PRM10, element XRF peak counts show a general trend of decreasing values upwards, while the proportion
of C and N increase (Figures 4 and S2). This dilution effect is also reflected by principal component PC1,
explaining 56.2% and 53.9% of variance in profiles PRM10-A and PRM10-C, respectively (Figures 6a and 6b).

The correlation of elements P, S, and Cl point to a marine, likely biogenic source (e.g., Huang et al., 2008; Liu
et al., 2013) and most likely reflect the incorporation of snow petrel guano (Figure 6). In PRM10 there is
some variability between the profiles A to D, however, relatively high concentrations of guano in units 4
and 3 are indicated by high values in Cl, S, and P (Figures 4 and S2). In DallSW1830 pronounced peaks in
Cl and S in unit 6 and partly in unit 2 (Figures 5 and S2) correspond to black nodules found throughout
the deposit (Figure 3b). Other elements are not enriched in the nodules, except P, which is higher in some
cases, like at 20-mm depth in DallSW1830-B (Figure 5b). The absence of higher Ca counts argues against
bones or carbonates as an origin of the nodules. However, the material could be remnants of bones or car-
bonate fossils after dissolution of the inorganic matrix under low pH, leading to enrichment of organic C,
S, and Cl.

In the investigated profiles the elements K and Ca show affinity to the siliciclastic as well as the guano-
related elements (Figures 6 and S3). In DallSW1830-A and DallSW1830-B, for example, Ca and P correlate
(negative loadings in PC2; Figures 6c and 6d), which could be explained by the occurrence of hydroxylapatite
or fluorapatite (Ca5(PO4)F). In deposit PRM10, K and Ca likewise correlate with guano elements. Aside from
siliciclastic aluminosilicates, K and Ca deposits are likely bound to authigenic phosphates in both deposits,
comparable to those which form in ornithogenic soils associated with penguin rookeries. There, weathering
products of guano andmineral detritus react and form a variety of K- and Ca-bearing phosphates (e.g., Pereia
et al., 2013; Roberts et al., 2017). The mineral detritus available for the formation of authigenic phosphates
probably differs in composition in DallSW1830 and PRM10, explaining the different correlation patterns for
K and Ca and influencing the amount and type of phosphates formed after deposition. In ornithogenic soils
in Antarctica, the formation of phosphates depends on the availability of water and is sensitive to the pH of
the weathering solution (Mychra & Tatur, 1991; Pereia et al., 2013). The formation of such minerals in the
vicinity of snow petrel nests indicates that moisture is available to form weathering solutions. Inland areas
are dry and cold and the nesting sites of snow petrels are often on north facing slopes (Hiller et al., 1995).
There, particularly high insolation likely leads to local warming of rock and mumiyo surfaces and episodic
melting of snow and ice, which provides water for weathering reactions. In penguin rookeries the pH of the
weathering solution is controlled by the microbial degradation of guano, which leads to the conversion of
uric acid into oxalic acid and a successive lowering of pH (Haus et al., 2016). During the initial stages of
guano degradation urates, struvite [(NH4)MgPO4·6(H20)], fluorapatite [Ca5(PO4)F], and brushite [Ca
(PO3(OH))·2(H20)] form under alkaline to neutral conditions (Mychra & Tatur, 1991). Successive lowering
of pH leads to formation of K-phosphates like minyulite [KAl2(PO4)2(OH,F)·4(H2O)], taranakite
[K3Al5(HPO4)6(PO4)2·18(H2O)], and leucophosphite [KFe2(PO4)2(OH)·2H20] (Mychra & Tatur, 1991;
Pereia et al., 2013). Apart from differences in the initial composition of mineral detritus, the supposed pre-
sence of K-phosphates in PRM10 as opposed to DallSW1830, where Ca phosphates seem to dominate, could
reflect a difference in the degree of guano weathering between the deposits.

3.3. Radiocarbon Analysis

A total of 27 AMS measurements was conducted on 9 mumiyo deposits (Table 2). AMS 14C ages from surfi-
cial samples of three deposits are very similar to ages measured on the same deposits by Liquid Scintillation
Counting spectrometry (PRM4-top, WMM7-top and SB I/1a; Table 2). These similarities indicate that both
methods provide reproducible 14C dates on mumiyo deposits. The existing age differences may result from
sample inhomogeneity, since the analyses were not carried out on identical aliquots. They may also be
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due to differences in sample mass, which is much larger (5 g C) for Liquid Scintillation Counting spectrome-
try compared to AMS analyses (~1 mg C).

The range of ages we determined on the mumiyo deposits is from 1.4 14C ka BP to infinite, corresponding to
>58 ka (Table 2). Top and basal ages of deposits DallSW1830, PRM4, PRM6, PRM8, and PRM10 were ana-
lyzed to assess the age ranges of the deposits. All four deposits from Petermann Range have pre-Holocene
ages, ranging from a minimum age of 22.0 14C ka BP (PRM8-1) to infinite (>58 14C ka BP; PRM4-A and
PRM6-1), while the deposit DallSW1830 from the Dallmann Mountains ranges from 18.2 to 4.9 14C ka BP
(Table 2).

Additionally, 14C ages of 2-mm-thick samples were obtained for profiles PRM8-A and PRM10-A (Table 2). In
PRM10 top and basal ages are in accordance with samples taken from the irregularly shaped exterior of the
deposit and span an age range of about 25,000 years. Six ages from the well-laminated profile PRM10-A
become consistently older with depth (ranging from 17.6 to 43.6 14C ka BP). Similar results were found
for profile PRM8-A, which spans an age range from 15.8 to>58 14C ka BP (Tables 2 and S1). The age of sam-
ple PRM8-1 (22.0 14C ka BP) that was taken from the subsurface elsewhere in the deposit (S1) coincides with
the age at 20 mm depth in profile PRM8-A (21.9 14C ka BP), likely reflecting the spatial variability in thick-
nesses of individual layers. The 14C ages suggest that the visually identifiable layers and horizons in the
mumiyo represent isochrones similar to layers in other sedimentary deposits. Mean deposition rates vary dis-
tinctly over time. For instance, the 14C ages of PRM10-A show that the lower 6 cm cover ~2,500 years (cor-
responding to ~24 mm/ka), while the upper 7 cm comprise >20,000 years (~3.5 mm/ka). In PRM8, the
deposition rate varies, between 7.1 mm/ka (60- to 40-mm depth) and 1.3 mm/ka (40- to 10-mm depth).
Changes in deposition rates likely correlate to the frequency of nest occupation. Aside from low accumula-
tion due to less frequent occupation, abandonment of the nests may lead to degradation/weathering and ero-
sion of the subaerially exposed mumiyo, resulting in apparently low accumulation. Although the internal
structure in PRM10 does not clearly evidence unconformities or mechanical disturbance, additional, high-
resolution 14C-dating could help to distinguish periods of very low accumulation from hiatuses caused
by erosion.

3.4. Diatom Analysis

All six samples analyzed for diatoms contain diatom frustules or fragments of frustules (Table S1). However,
in the samples from PRM6 and PRM8 diatom concentrations are low and the frustules are not well pre-
served, whereas from WMM11 only unidentifiable fragments were found. In samples from PRM10 and
Dall E-II/1 the frustules are well preserved and 15 species were identified (Table S1). The assemblages in
these deposits are dominated by F. curta and F. cylindrus, which comprise 21.4% to 56.8% and 7.7% to
39.6% of the counted diatoms, respectively. Both species are marine, associated with sea ice and frequently
occur in coastal areas of Antarctica and within the winter sea ice zone of the Southern Ocean (Zielinski &
Gersonde, 1997). Other sea-ice-related diatom taxa identified in the mumiyo samples are F. ritscheri, F. obli-
quecostata, and F. sublinearis. The open-ocean species F. kerguelensis, which comprises 6.5% to 23.8% in the
analyzed samples, is frequent in pelagic areas north of the winter sea ice edge, reaching maximum abun-
dances at water temperatures between 0 and 10 °C (Zielinski & Gersonde, 1997).

The diatoms in the mumiyo are likely supplied by the snow petrels, which ingest krill and other diatom-
feeding organisms, and excrete undigested diatoms at the nesting site as reported for penguins (Mychra &
Tatur, 1991). Some alteration of the diatom species composition in mumiyo deposits compared to the surface
ocean may occur due to selective preservation. Heavily silicified frustules could be enriched, since they are
more resistant to dissolution and/or breakage than delicately silicified diatoms. The three most abundant
species in the mumiyo samples (F. kerguelensis, F. curta, and F. cylindrus) have heavily silicified frustules
and are well preserved in the sediment record of the Southern Ocean (e.g., Zielinski & Gersonde, 1997).

3.5. Lipid Analysis

Eleven samples were analyzed for FAs (Figure 7) and n-alcohols (FAlc; Table S2). FAlc and FA are likely
derived from wax esters, which are major constituents in fresh stomach oil of snow petrels (Warham
et al., 1976) and monoglycerides and free FAs, which have additionally been found in fossil mumiyo
(Aiello et al., 2011). The dominant FA homologues are 16:0, 14:0, and 18:0 (Figure 7), comprising
33.7 ± 6.0, 16.9 ± 3.3, and 6.4 ± 1.1% of the FAs, respectively. The most abundant homologues for the
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FAlcs are 16:0, 14:0, and 18:0 as well (71.8 ± 1.5, 19.9 ± 1.9, and
5.3 ± 1.5%), which show only minor variability between the samples.
Monounsaturated FAs (MUFAs) comprise 1.4% to 24.2% (mean
13.5 ± 6.9%) of FAs and contain 16:1, 18:1 (mainly 18:1Δ9), 20:1Δ11,
22:1Δ11, and 22:1Δ13.

The FA and FAlc composition we find in the fossil material differs from
fresh stomach oils of snow petrels and other procellariiformes by low pro-
portions of unsaturated compounds. MUFAs and PUFAs contribute ~50%
to >95% of FAs in fresh stomach oils (e.g., Connan et al., 2007, 2008;
Warham et al., 1976). The mumiyo has lower proportions of C18 and
higher proportions of C16 and C14 compounds than fresh stomach oils.
The ratio of C18/C16 compounds in mumiyo ranges from 0.2 to 0.5 and is
higher in stomach oils of snow petrels (~2.7; Watts & Warham, 1976)
and other procellariiform birds (e.g., 2.3 for Halobaena caerulea; Connan
et al., 2008). Although these differences might reflect a diet specific to
DML, the FA patterns of organisms snow petrels generally feed on show
higher C18/C16 ratios as well (1.0 for Euphausia superba, 0.9 to 1.9 for
Electrona antarctica, 2.9 for Gonatus antarcticus; Lea et al., 2002; Phleger
et al., 1997, 2002; Phillips et al., 2002). Higher proportions of C16 and C14

relative to C18 are reported for phytoplankton (e.g., diatoms, Nichols
et al., 1993). The isoprenoid FAs 2,6,10,14-tetramethylpentadecanic acid
(phytanic acid) and 3,7,11,15-tetramethylhexadecanoic acid (pristanic
acid) were identified in the mumiyo (2.7 ± 0.5% and 3.2 ± 1.3%, respec-
tively). Both compounds are chlorophyll derivatives, which have been
assigned to conversion products of dietary phytol (Hansen & Meiklen,
1970). Both compounds have been found in herbivorous Antarctic krill
(E. superba) and krill feeding Antarctic whales (Hansen & Meiklen,
1970). Preservation of phytanic acid in triglycerides in stomach oils has
been demonstrated for Puffinus tenuirostris (Short-tailed shearwater)

(Connan et al., 2005). The relatively high proportions of isoprenoid FAs and relatively high proportions of
C14 and C16 relative to C18 could be an indicator for a specific diet of snow petrels in DML consisting of
organisms of lower trophic levels (e.g., herbivorous krill).

The high proportion of saturated compounds in the fossil mumiyo points to alteration, likely by subaerial
oxidation, UV radiation, and microbial degradation causing loss of the more easily degradable MUFAs
and PUFAs. For our sample set the proportion of MUFAs does not correlate with the age of the samples,
indicating that other factors than time affect the hydrogenation of FAs. Such factors could include differ-
ences in original stomach oil composition, deposition rate, temperature, moisture availability, and UV radia-
tion, which control the duration of exposure as well as the intensity of microbial activity on and in the
deposits. Iso and anteiso branched 15:0 and 17:0 FAs are generally assumed as bacterial markers and have
been found in mumiyo in concentrations of ≤0.6% (Table S2). This concentration is similar to that of mycto-
phid fish (Lea et al., 2002) and Antarctic euphausiids (Hansen & Meiklen, 1970; Phleger et al., 2002), which
are components of snow petrel diet (e.g., Ferretti et al., 2001). Hence, iso and anteiso 15:0 and 17:0 FAs levels
in the mumiyo are not significantly elevated compared to a potential dietary source and are not indicative for
bacterial activity specifically in the terrestrial deposits.

4. Environmental History

Our 14C analyses show that mumiyo deposits in central DML have formed and been preserved over a time
period of more than 58,000 years. The overlapping age ranges of the individual deposits indicate continuous
or recurrent snow petrel colonization of the Petermann Range and Untersee Oasis during this period
(Figure 8a). On shorter timescale (decades) temporary abandonment of a specific cavity could result from
the death of at least one individual of a breeding pair. A lack of occupancy can be accompanied by temporary
filling of the cavity with snow and ice, and it no longer being attractive to potential prospecting petrels. On

Figure 7. n-Fatty acids identified in mumiyo. For comparison, the composi-
tions of (1) fresh stomach oil of snow petrels from Northern Victoria Land
(Warham et al., 1976) and of a (2) Holocene mumiyo deposit from
Schirmacher Oasis are shown (A: fatty acids in monoglyerides B: free fatty
acids; Aiello et al., 2011).
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longer timescales (centennial to millennial) changes in deposition rates may reflect changes in the number
of snow petrels breeding in the region and in the proportion of potential nesting cavities that are actually
occupied by breeding petrels. High deposition rates at the sites PRM10 and PRM8 suggest frequent snow
petrel occupation between ~42 and 46 cal ka BP, which could be due to a relatively large number of
breeding snow petrels and high occupation rates of available nesting cavities in the area. Very low
accumulation between ~25 and 42 cal ka BP on the other hand points to rare occupation by snow petrels.
The 14C ages obtained from the deposits DallSW1830, WMM7, PRM10, and PRM8 indicate breeding snow
petrels in the mountain ranges also during the LGM (Figure 8a). Holocene mumiyo records are abundant
in the Dallmann Mountains and Untersee Oasis (e.g., Wand & Hermichen, 2005). The lack of Holocene
deposits in Petermann Range is likely a bias due to the sampling strategy, which focused on the
maximum thickness of the deposits and their appearance of “looking old.”

Our data suggest that changes in the terrestrial environment can be derived from the inorganic composition
of the deposits. In the basal part of PRM10, high K counts (Figure 8b) likely indicate increased amounts of K
relative to Ca phosphates. This probably reflects more intensive guano weathering due to increased bacterial
activity and higher availability of water, for instance, due to snow melt. The composition of weathering pro-
ducts of guano could either reflect microenvironments specific for the individual deposits or regional
changes in environmental conditions. This relationship needs to be further investigated.

Enrichment in siliciclastic grains is reflected by high Ti and Fe counts and low carbon contents (Figures 4
and 5). High availability of sand- to silt-sized detrital material in the surroundings of the nests as well as high
accumulation of guano and stomach oil may support increased accumulation of siliciclastic material. This is
suggested by deposit DallSW1830, in which siliciclastic matter is enriched in unit 5 (Figure 5), which was
likely was deposited during the deglacial period (~18 to 12 cal ka BP; Figure 8a). Hence, warming and surfi-
cial melting may have led to increased supply and redeposition of siliciclastic material in the surroundings of
the nesting site. In PRM10, the 14C ages reflect particularly high accumulation rates in units 4 and 3 (~46–
42 cal ka BP, Figure 8a). In this units higher siliciclastic content goes along with high guano content (high Cl
counts, low C/N ratios; Figure 4a), indicating frequent nest occupation. Consequently, windblown mineral
grains may have better been captured by burial during mumiyo deposition.

Figure 8. (a) Preliminary paleoenvironmental interpretation of mumiyo deposits from central Dronning Maud Land.
Green bars show age ranges of mumiyo deposits dated for this study (cf. Table 2). Calibrated ages are given as 95% con-
fidence ranges, stars indicate uncalibrated ages (either infinite 14C value or exceeding calibration curve). (b) Diatom
composition of three samples (cf. Table S1). (c) X-ray fluorescence elemental scans for Ca and K (given as kilo counts per
second [kcps] and elemental peak area) for PRM10-A and Cl (kcps) for PRM10-A and PRM8, with preliminary age models
created by linear extrapolation between dated horizons. (c) Timing of active polynyas in the eastern andwesternWeddell Sea
(WS) derived from marine sediment records (Smith et al., 2010; Sprenk et al., 2014). LGM = Last Glacial Maximum.
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During periods of low deposition, exposure of the mumiyo surface did not lead to accumulation of wind-
transported material nor did enrichment of clasts by weathering and degradation of the organic matrix prob-
ably take place. This is indicated by the deposit PRM10, in which a low accumulation between ~40 and
19 cal ka BP is accompanied by low amounts of siliciclastic matter and guano, and by high proportions of
stomach oil (low overall XRF-counts; Figure 8b). The same pattern is visible in the record from PRM8, which
shows a decline in guano content (reduced Cl counts) after ~40 cal ka BP (Figure 8b). An explanation could
be very cold and dry conditions, which have led to physical weathering and removal of the guano, as well as
selective preservation of the stomach oil component. The scarcity in siliciclastic material in PRM10may also
indicate temporary burial of the deposit by windblown snow and ice, which may have reduced the deposi-
tion of mineral particles and could also have resulted in the abandonment of the nesting cavity (Einoder
et al., 2014).

It is well known that FA signatures of organisms (e.g., crustaceans, myctophid fish, and copepods) differ
in their patterns of MUFAs and PUFAs and can be used to distinguish dominant prey organisms in pro-
cellariiform stomach oils (e.g., Clarke & Prince, 1976; Connan et al., 2008; Phleger et al., 1997, 2002;
Quillfeldt et al., 2011; Williams & Buck, 2010). Lipid analysis in this study revealed that alteration of
FAs in the mumiyo likely led to some loss in information on prey constituents by loss of characteristic
double bonds. Changes in the proportion of isoprenoid FAs could be an alternative indicator for food
composition of snow petrels and may reflect relative changes in the proportion of krill feeding. For
example, different FA patterns (e.g., ratio of C18 to C16 compounds) in snow petrel stomach oil from
birds living at Cape Hallet, Northern Victoria Land (Watts & Warham, 1976) compared to mumiyo from
DML (this study and Aiello et al., 2011; Figure 7) may reflect the different prey composition of snow
petrels feeding over the continental shelf in the Ross Sea (Ainley et al., 1984) compared to feeding over
the deep ocean in DML, where the shelf is very narrow (Ainley et al., 1992). The differences within the
Holocene to >58-ka samples from DML are smaller than those to the Northern Victoria Land stomach
oils further highlighting the possibility of regional differences in diet (Figure 7).

Although some information might be lost due to selective preservation, diatoms in mumiyo provide a
record of sea ice conditions during the summer months (breeding season) in the foraging area. Snow
petrels are closely associated with sea ice (Barbraud et al., 2000; Barbraud & Weimerskirch, 2001)
and preferably feed in loose pack ice (Ainley et al., 1984). Less sea ice and more open water species
in the surface sample (± modern) relative to deeper in the profile (corresponding to 2.4 cal ka BP) in
Dall E-II/1 (Figure 8d) likely reflects temporal changes in sea ice conditions (e.g., increased sea ice con-
centrations) and a more northward position of the summer sea ice edge 2.4 cal ka BP ago (Ainley et al.,
2006). During the LGM, summer sea ice was even more extensive and reached beyond the present-day
winter sea ice edge in the Atlantic sector of the Southern Ocean (e.g., Gersonde et al., 2005). In sample
PRM10-2, which was dated to the LGM, open-ocean diatoms comprise ~25% of the counted diatoms.
The mumiyo record and the accessory diatoms indicate the occurrence of areas with loose sea ice in
the foraging range of the snow petrels during and before the LGM. Today, a recurring polynya system
exists in the eastern Lazarev Sea, off central DML, ~200 km from the sampling sites (Arrigo & van
Dijken, 2003). Frequent snow petrel occupation of the terrestrial sites in DML between 46 and
42 cal ka BP may point to active polynyas in the region. Although polynyas are not exclusively neces-
sary for snow petrels (Ballard et al., 2012), reduced sea ice coverage in the polynya during winter may
have led to favorable foraging conditions in the pack ice in the marginal zones of the postpolynya dur-
ing summer. Polynays during this interval are also suggested for the Weddell Sea (Smith et al., 2010;
Sprenk et al., 2014; Figure 8c).

5. Conclusions and Outlook

We show that the small-scale and singular mumiyo deposits can preserve intact stratigraphy, which is a pre-
condition for their use as high-resolution archives of past environmental conditions. Detailed analyses of
internal structures, chemical composition and 14C ages reveal that temporal resolution varies within and
between deposits. The deposition rate of millimeters to centimeters per thousand years likely reflects the
occupation frequency of individual nests allowing for estimates of changes in snow petrel population
over time.
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By comparing several mumiyo records, we identified potential proxies for further investigations and
obtained a first regional interpretation for the late Pleistocene. The ages of the deposits from the northern
Petermann Range (central DML) as well as the age range of the deposits from central DML indicate occupa-
tion by snow petrels for more than 58,000 years. Guano and products of guano-diagensis (e.g., urates and
phosphates) incorporated in the mumiyo deposits probably contain information on local conditions like
temperature and moisture availability, which control microbial activity and guano degradation. In spite of
nest-specific variables (e.g., exposure to solar insolation, wind, and deposition rate) two mumiyo profiles
from Petermann Range show similar trends in accumulation rates and guano concentration over time.
This points to frequent snow petrel occupation between 46 and 42 cal ka BP, while the mountains of
Petermann Range were likely rarely visited by breeding snow petrels during the LGM.

Accessory diatoms reflect the foraging of snow petrels in close association with sea ice and could be useful to
identify past changes in the marine habitat with respect to sea ice (e.g., to distinguish feeding in loose pack
ice from feeding at the large-scale sea ice edge or in polynyas). The food composition is likely reflected by the
lipid composition (FAs and n-alcohols) of the fossil stomach oils. However, we found some alteration of
lipids in the fossil material compared to fresh stomach oil leading to some loss of information on prey com-
position. Systematic differences in FA patterns between mumiyo (Holocene to >58 ka) from DML as
opposed to fresh stomach oils from Northern Victoria Land likely reflect regional characteristics of foraging
over the deep ocean in DML as opposed to foraging over a broad continental shelf in the Ross Sea. In order to
validate this hypothesis more data (including stable isotopes) of mumiyo and fresh stomach oil from various
locations around the continent are needed.

Our study demonstrates that mumiyo deposits are unique records for environmental conditions during the
last glacial and provide new insights into the response of the Antarctic fauna under glacial climate condi-
tions. For future studies, systematic sampling and evaluation of mumiyo could provide an extended database
that allows for wider inferences about the coastal ecosystem and oceanographic conditions in Antarctica
during the past.
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